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Abstract
We report the performance of our newly introduced Ensemble Docking with Enhanced sampling of pocket Shape (EDES) 
protocol coupled to a template-based algorithm to generate near-native ligand conformations in the 2019 iteration of the 
Grand Challenge (GC4) organized by the D3R consortium. Using either AutoDock4.2 or HADDOCK2.2 docking programs 
(each software in two variants of the protocol) our method generated native-like poses among the top 5 submitted for evalu-
ation for most of the 20 targets with similar performances. The protein selected for GC4 was the human beta-site amyloid 
precursor protein cleaving enzyme 1 (BACE-1), a transmembrane aspartic-acid protease. We identified at least one pose 
whose heavy-atoms RMSD was less than 2.5 Å from the native conformation for 16 (80%) and 17 (85%) of the 20 targets 
using AutoDock and HADDOCK, respectively. Dissecting the possible sources of errors revealed that: (i) our EDES protocol 
(with minor modifications) was able to sample sub-ångstrom conformations for all 20 protein targets, reproducing the cor-
rect conformation of the binding site within ~ 1 Å RMSD; (ii) as already shown by some of us in GC3, even in the presence 
of near-native protein structures, a proper selection of ligand conformers is crucial for the success of ensemble-docking 
calculations. Importantly, our approach performed best among the protocols exploiting only structural information of the 
apo protein to generate conformations of the receptor for ensemble-docking calculations.

Keywords Molecular docking · Metadynamics · EDES · HADDOCK · AutoDock · BACE-1

Introduction

The Drug Design Data Resource (D3R) 2019 Grand Chal-
lenge is the fourth iteration (GC4) of the major docking 
competition organized by the D3R consortium [1–3]. The 

competition has two main goals: (i) assessing the ability of 
docking algorithms to accurately predict the binding poses 
of a protein against a diverse set of small molecules, and (ii) 
evaluating of the performance of binding affinity predictors.

The target in this iteration of the pose prediction assess-
ment is the beta-site amyloid precursor protein cleaving 
enzyme 1 (BACE-1), a beta-secretase 1 protein [4]. BACE-1 
plays an early role in Alzheimer’s disease, as it is essential 
for the generation of the β-amyloid peptides composing the 
amyloid plaques which are the hallmark neuropathological 
lesions [5, 6]. Given its role in initiating the formation of 
β-amyloids, BACE-1 has been a critical target in develop-
ing therapies against the progression of Alzheimer’s disease 
[7], as testified also by the huge number of BACE-1 protein 
structures deposited in the Protein Data Bank (PDB) [8] at 
the beginning of the challenge (> 300 on September 4th 
2018). Most of these structures contain putative BACE-1 
inhibitors, further witnessing the tremendous potential of 
this target for treating Alzheimer’s disease [9, 10].

Electronic supplementary material The online version of 
this article (doi:https ://doi.org/10.1007/s1082 2-019-00244 -6) 
contains supplementary material, which is available to authorized 
users.

 * Alexandre M. J. J. Bonvin 
 a.m.j.j.bonvin@uu.nl

 * Attilio V. Vargiu 
 vargiu@dsf.unica.it; a.v.vargiu@uu.nl

1 Dipartimento Di Fisica, Università Di Cagliari, Cittadella 
Universitaria, S.P. 8 km 0.700, 09042 Monserrato, Italy

2 Bijvoet Center for Biomolecular Research, Faculty of Science 
- Chemistry, Utrecht University, Padualaan 8, 3584, CH, 
Utrecht, The Netherlands

http://orcid.org/0000-0002-5985-257X
http://orcid.org/0000-0001-7369-1322
http://orcid.org/0000-0003-4013-8867
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-019-00244-6&domain=pdf
https://doi.org/10.1007/s10822-019-00244-6


150 Journal of Computer-Aided Molecular Design (2020) 34:149–162

1 3

Here we report the performance of a new approach for 
ensemble-docking [11, 12], which couples our recently pro-
posed EDES (Ensemble-Docking with Enhanced-sampling 
of pocket Shape) protocol to sample holo-like and drugga-
ble conformations of proteins [13] by means of MD simula-
tions [14, 15] with the template-based algorithm for ligand 
conformer generation successfully employed in the previous 
GC3 competition [16]. EDES is peculiar in that, regarding the 
search for holo-like conformations of proteins, it exploits only 
the experimental structure of the apo-enzyme (PDB ID 1SGZ 
[17]). The method enhances the sampling of druggable (prone 
to host ligands) conformations of a given receptor by means 
of metadynamics [18] simulations. Namely, EDES exploits 
an original set of collective variables (CVs) describing the 
geometry (that is, the shape and the volume) of the putative 
binding site(s). The method has been validated against targets 
undergoing very minor (single sidechain rearrangement) to 
very large (hinge-bending motions) conformational changes 
upon ligand binding [13]. In all cases, EDES was able to sam-
ple conformations of the binding site nearly identical to those 
occurring in the X-ray structures of the reference complexes, 
as well as to yield top ranked near-native docking poses, thus 
validating its potential as a new general approach to improve 
structure-based drug design.

The method for generating ligand structures [16] selects a 
number (here 10) of ligand conformations out of a pool of (up 
to 500) conformers generated using the OpenEye Omega soft-
ware [19] by searching for similar structures on the PDB based 
on the matching between extended Tanimoto coefficients. As 
such, it still does require available 3D structures of related 
ligands bound to the receptor to be present in the PDB. It is 
however a first step toward fully blind docking from the apo-
receptor in cases where no single structure of a related ligand 
would be present in the PDB.

We benchmark here for the first time in a blind docking 
experiment our hybrid approach in which proteins confor-
mations obtained from enhanced sampling of the apo struc-
ture are combined with ligand conformers selected using the 
templated-based approach described previously. Near-native 
ligand poses were found for 16 (80%) and 17 (85%) of the 
20 targets using AutoDock [20] and HADDOCK [21, 22], 
respectively. The most challenging ligands were those whose 
selected conformers displayed the largest deviation from the 
true geometry in the native complex. Importantly, our method 
performed best among those using conformations of the recep-
tor generated without exploiting previous structural informa-
tion of BACE-1 in complex with other ligands.

Materials and methods

The D3R GC4 is divided into a set of different stages, in 
which the participants are requested to predict the binding 
pose of a set of different ligands against the same receptor 
and to rank them and/or estimate their free energies of bind-
ing. We participated in stages 1a and 1b of the pose predic-
tion challenge. Specifically, in stage 1a (cross-docking) we 
performed ensemble docking calculations on conformations 
of the protein and of the ligands generated by our methodol-
ogy (vide infra), while in stage 1b (self-docking) the 10 con-
formers of each ligand were docked onto the conformations 
of BACE-1 extracted from the structures of their complexes 
with the 20 compounds in the dataset. For both challenges 
the participants were asked to generate a ranked set of maxi-
mum 5 poses for each ligand.

Data provided

In stage 1a the only data provided by the organizers con-
sisted of a list of 20 SMILES entries (corresponding to the 
20 compounds for which the participants were asked to pre-
dict the crystallographic pose) and of the protein sequence 
in FASTA format. In stage 1b the experimental structures of 
the receptors for all 20 BACE-1 complexes were provided, 
to allow the participants to re-dock each ligand on the cor-
responding holo-conformation of the receptor.

Binding site determination

In order to identify the putative binding site of the protein, 
we used the same approach presented in [16]. Namely, we 
retrieved in the PDB all the structures featuring at least 95% 
sequence identity to the amino acid sequence provided by 
the organizers and having a co-crystallized ligand (other 
than crystallization buffer molecules); this resulted in 340 
entries. We verified that the binding site was well charac-
terized and perfectly conserved in all the structures with 
no missing residues in the putative pocket. Next, we used 
the Tanimoto coefficient, as implemented in fmcsR [24] 
and chemmineR [25] packages to evaluate the similarity 
between the ligands present in the 340 entries and each of 
the 20 compounds provided, in order to identify a set of 
receptor templates featuring the most similar ligand to the 
compounds to be docked. Details on Tanimoto similarity 
measurement can be found in [16, 26]. The search for the 
structure featuring the most similar ligand to each of the 20 
compounds resulted in 10 complex structures selected as 
templates ((PDB IDs: 2B8L, 2IQG, 3DV1, 3DV5, 3K5C, 
3VEU, 4DPI, 4KE1, 4R92, 6BFD; see Table S1). In addi-
tion to providing a metric to select ligands conformers for 
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docking calculations (vide infra), these structures were used 
to identify the residues lining the putative binding site. This 
list was built by merging all the residues within 3.5 Å from 
the ligand in each of the 10 complex structures selected. 
Since this approach generated a very large number of resi-
dues (more than 30), we kept only the most conserved ones 
(appearing at least in two structures) and, among those pre-
sent only in one structure, the most buried ones (likely to 
interfere with ligand binding). The resulting selection is 
shown in Fig. 1, which clearly highlights that the chosen list 
of 20 residues (see Table S2) surrounds all the 20 congeneric 
ligands provided for this challenge.

Ligand preparation

The 20 ligands were similar in size, each containing about 
35 heavy atoms. For the generation of their conformers we 
employed the methodology featured in [16]. The protocol 
makes use of ligand similarities in the form of Tanimoto 
coefficients and can be summarized in the following steps 
(the first three steps are the same ones performed to identify 
the BS and resulted in the ten template structures reported 
in Table S1):

1. Identify existing highly homologous structures of the 
target protein bound to small molecules;

2. Discard undesirable structures (e.g. low resolution, 
split side chains near the binding site, covalently bound 
ligands in the case where the target ligand is known to 
bind non-covalently, etc.);

3. Calculate Tanimoto coefficients between all target and 
template ligands;

4. Generate up to 500 conformers for all ligand targets 
using the OpenEye OMEGA software package [19];

5. Select 10 conformers for all targets by comparing the 
generated conformers to the structure of the template 
ligand with the highest Tanimoto similarity per ligand, 
with OpenEye ROCS (shape and colour mode) [23].

Unbiased and enhanced‑sampling molecular 
dynamics (MD) simulations

In this work we applied essentially the same workflow 
presented in the original EDES publication (see [13] for 
details), with some minor modifications that are described 
in the following sections.

Starting protein structure

We used the package BLASTP 2.7.1 + [27] to search for 
protein structures homologous to the sequence provided by 
the organizers. We searched the PDB, setting the number of 
alignments (-num_alignments) to 1000 and the number of 

scoring evaluations (-evalue) to 10, while using the default 
values otherwise. We also requested the structures to have 
the word "BACE" in their name. With these search criteria, 
we identified around 300 structures, which included only 
eight apo proteins. Among these, we identified as template 

Fig. 1  Putative binding site identified on the BACE-1 apo protein 
(PDB ID 1SGZ [17]) for implementation of the EDES approach. a 
Structure of the protein (grey ribbons) showing the sidechains of the 
20 residues in Table 2 as sticks colored by type (polar, apolar, acidic 
and glycines in light green, magenta, red and white respectively); b 
zoom on the putative binding site in a), showing in transparent sticks 
the experimental poses of the 20 ligands provided by the organizers 
(after superposition of common  Cα atoms on all proteins to 1SGZ); c 
comparison between the apo structure of BACE-1 (grey ribbons) and 
the 20 ligand/BACE-1 complex structures (blue ribbons) released at 
stage 1b of the challenge. The magenta arrow highlights the major 
displacement undergone by the protein flap upon ligand binding
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the structure with PDB ID 1SGZ [17], which was resolved 
at good resolution (2 Å), did not feature any missing resi-
due, and displayed a full overlap with the BACE-1 sequence 
provided by the organizers. Prior to setting up the system, 
the template structure was further refined through the Mol-
Probity webserver [28].

Unbiased MD

Standard all-atom MD simulations of the apo protein (her-
after  MDapo) embedded in a 0.15 KCl water solution (~ 
60.000 atoms in total) and under periodic boundary con-
ditions were carried out using the pmemd module of the 
AMBER18 package [29]. The initial distance between the 
protein and the edge of the box was set to be at least 16 Å 
in each direction. Topology files were created for each sys-
tem using the LEaP module of AmberTools18 starting from 
the apo structure with PDB ID 1SGZ. The AMBER-FB15 
[30, 31] force field was used for the protein, the TIP3P-FB 
model was used for water, and the parameters for the ions 
were obtained from [32]. Long-range electrostatics was 
evaluated through the particle-mesh Ewald algorithm using 
a real-space cutoff of 12 Å and a grid spacing of 1 Å in each 
dimension. The van der Waals interactions were treated by 
a Lennard–Jones potential using a smooth cutoff (switching 
radius 10 Å, cutoff radius 12 Å). Multistep energy mini-
mization with a combination of the steepest-descent and 
conjugate-gradient methods was carried out to relax internal 
constraints of the systems by gradually releasing positional 
restraints. Following this, the system was heated from 0 to 
310 K in 10 ns of constant-pressure heating (NPT) using the 
Langevin thermostat (collision frequency of 1 ps−1) and the 
Berendsen barostat. After equilibration, a production run of 
1 µs was performed. A time step of 2 fs was used for pre-
production runs, while equilibrium MD simulations were 
carried out with a time step of 4 fs in the NPT ensemble 
(using a MC barostat) after hydrogen mass repartitioning 
[33]. Coordinates from production trajectory were saved 
every 100 ps.

Enhanced sampling MD

EDES aims to generate holo-like conformations of a pro-
tein exploiting only structural information on the apo 
counterpart. This is achieved by means of bias-exchange 
well-tempered metadynamics simulations [34, 35] on a 
set of generic CVs effectively biasing both the shape and 
the volume of the binding pocket. Ultimately, the method 
mimics induced fit rearrangements of the receptor due to 
ligand/protein interactions. Metadynamics simulations 
were performed on the apo protein using the GROMACS 
2016.5 package [36] and the PLUMED 2.3.5 plugin [37]. 
Simulations were started from the last conformation 

sampled along the pre-production step of the unbiased 
MD. AMBER parameters were ported to GROMACS using 
the acpype parser [38]. Following the original implemen-
tation, four CVs defined considering only protein residues 
within the binding site were used: (1) the radius of gyra-
tion of the binding site (hereafter  RoGBS) calculated using 
the gyration built-in function of PLUMED; (2–4) the num-
bers of (pseudo)contacts across three orthogonal “inertia 
planes” (CIPs), calculated through a switching function 
implemented in the coordination keyword of PLUMED. 
The inertia planes are defined as the planes orthogonal to 
the three principal inertia axes of the binding site and pass-
ing through its geometrical center. All non-hydrogenous 
atoms were considered to define the three CIPs, while only 
backbone atoms were used to estimate  RoGBS, on which 
we also implemented a “windows” approach aimed to sam-
ple in a controlled manner different shapes of the binding 
site. Namely, we applied soft restraints at  RoGBS values 
that are 7.5% higher and lower than the  RoGBS of the X-ray 
apo structure  (RoGX-ray

apo) and from that trajectory, cor-
responding to the first window, we randomly selected a 
conformation associated with a  RoGBS value 5% lower 
than  RoGX-ray

apo. This structure was used as starting point 
for another MD simulation (corresponding to window 2) 
with walls centered at ± 7.5%  RoGX-ray

apo from this new 
center. We repeated the procedure until we generated three 
windows including the first one, centered at 9.91, 9.41, and 
8.92 Å respectively (corresponding to a ~ 10% decrease 
of  RoGX-ray

apo). Note that the choice of biasing the con-
formational sampling towards structures corresponding to 
values of  RoGBS lower than  RoGX-ray

apo, primarily due to 
our intention to validate the original implementation of the 
protocol, is justified a posteriori by the (small) collapse 
of the binding site of BACE-1 occurring upon binding of 
all ligands (see "Results and discussion"). More gener-
ally, several studies showed that the binding of ligands to 
enzymes most often stabilizes a closed conformation of 
their binding pockets as compared to the apo structures 
(see e.g. [39, 40].).

Each replica was simulated for 100 ns, leading to 400 ns 
of metadynamics simulations per window; coordinates were 
saved every 10 ps. Note that in [13] we demonstrated that 
EDES is not sensitive to the exact choice of the windows 
parameters. The height w  of the Gaussian hills was set 
to 0.6 kcal/mol, while the widths si of the Gaussian hills 
were set to 0.06, 2.6, 1.7 and 3.0 respectively for  RoGBS 
and  CIP1,2,3, respectively. The bias factor for well-tempered 
metadynamics was set to 10. Hills were added every 2 ps, 
while the bias-exchange frequency was set to 20 ps. The 
force constants for the restraints on the  RoGBS were set to 
50 and 10 kcal mol−1 Å−2 for the upper and lower walls 
respectively. Hereafter, we will refer to these simulations 
as  EDES3w.
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Docking

Ensemble docking calculations were performed using 
either AutoDock4.2 [20] or the HADDOCK2.2 webserver 
[21, 22], following the same procedures described in [13]. 
However, at odd with the original implementation, calcula-
tions were here performed on 200 protein conformations 
obtained by merging structures extracted from both  MDapo 
and  EDES3w simulations (see Fig. S1). This variant of the 
original approach appeared to be reasonable, as the extent 
of the conformational changes occurring at the binding site 
was unknown a priori. In particular, since we expected to 
observe significant oscillations of this region including the 
flap (Fig. 1) also along  MDapo, including structures extracted 
from that trajectory should encompass a non-negligible frac-
tion of structures with  RoGBS larger than the value calcu-
lated on 1SGZ. In addition, the number of protein conforma-
tions was lowered to 200 to cope with the time constraints of 
the challenge, also considering that for each compound, ten 
ligand conformations were employed in ensemble-docking 
runs. Protein conformations were extracted by means of a 
multi-step cluster analysis as described in [13], with the 
additional requirement to extract at least ten cluster repre-
sentatives from each of the ten slices in which the  RoGBS 
distributions were binned, so as to include a certain number 
of structures also from poorly sampled regions. The multi-
step cluster analysis was applied separately to  MDapo and 
 EDES3w, extracting 500 clusters from each trajectory. Next, 
an additional cluster analysis using the same approach was 
performed on the pool of 1000 cluster representatives in 
order to generate the final ensemble of 200 conformations. 
For AutoDock, the docking was repeated with each selected 
conformer, while for HADDOCK the ensemble of conform-
ers was submitted and used in a single docking run. We sub-
mitted four sets of protein–ligand binding pose predictions 
generated through the following docking protocols:

1. Autodock (receipt ID pe6zg): Docking calculations and 
pose selection were performed following prescriptions 
detailed for Autodock in [13]. Briefly, for each ligand, 
10 different conformers were docked on each of the 200 
protein structures using the Lamarckian Genetic Algo-
rithm (LGA). In order to cope with the schedule of the 
Challenge, the ligand conformers were kept rigid dur-
ing docking (ensuring a correct cycle connectivity). The 
grid density and number of energy evaluations were both 
increased from default values (respectively by decreas-
ing the spacing parameter from 0.375 to 0.25 Å and by 
increasing the ga_num_evals parameter by a factor of 
10) in order to avoid repeating each calculation several 
times to obtain converged results. An adaptive grid was 
used, enclosing all of the residues belonging to the bind-
ing site in each different protein conformation. Next, the 

top poses (in total 200, one for each docking run) were 
clustered using the cpptraj module of AmberTools18 
with a hierarchical agglomerative algorithm. Namely, 
after structural alignment of the protein binding site con-
formations, the poses were clustered using a distance 
RMSD (dRMSD) cutoff dc = 0.075 ⋅ Nnh , where Nnh is 
the number of non-hydrogenous atoms of the ligand. 
This choice was made in order to tune the cutoff to the 
molecular size of each compound. Finally, clusters were 
ordered according to the top score (lowest binding free 
energy) within each cluster.

2. HADDOCK (receipt ID kmtri): Docking calculations 
and pose selection were performed following prescrip-
tions detailed for HADDOCK in [13]. A single docking 
run was performed per case, starting from the various 
ensembles of 200 conformations, with increased sam-
pling (10,000/400/400 models for it0, it1 and wat steps, 
respectively referring to rigid-body docking, semiflex-
ible and final refinement in explicit solvent). Namely, 
during it0 the protein binding site residues were defined 
as “active”, effectively drawing the rigid ligand into the 
binding site without restraining its orientation. For the 
subsequent stages only the ligand was active, improving 
its exploration of the binding site while maintaining at 
least one contact with its residues. During these stages 
the cycle connectivity was maintained owing to the 
definition of bonding networks and parameters through 
PRODRG [41], as customary implemented in the HAD-
DOCK webserver. The weight of the intermolecular van 
der Waals energy used in it0 was increased to 1.0 (from 
the default value of 0.01), and RMSD-based clustering 
was selected with a cutoff of 1 Å. Docking was guided 
by ambiguous distance restraints defined for the residues 
of the binding site and the ligand.

3. Autodock with pose refinement and rescoring (her-
after Autodockrr; receipt ID nstab): This approach is 
the same as in 1, with an additional step consisting in 
the relaxation of the top 10 docking poses by means of 
a multi-step optimization performed with AMBER18 
[29]. Namely, the systems were optimized in vacuum 
through three consecutive cycles of restrained structural 
relaxation (1000 cycles of steepest descent followed by 
up to 24,000 cycles of conjugate gradients) followed by 
an unrestrained optimization (2000 cycles of steepest 
descent followed by up to 8000 cycles of conjugate gra-
dients). During restrained relaxation harmonic forces of 
0.3, 0.2, and 0.1 kcal mol−1 Å−1 respectively for the 
first, second and third cycles were applied on all non-
hydrogenous atoms of the system. Long-range electro-
statics was evaluated directly using a cutoff of 99 Å, 
as for the Lennard–Jones potential. The AMBER-FB15 
[30, 31] force field was used for the protein, while the 
parameters of the ligands were derived from the GAFF 
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force field [42] using the antechamber module of 
AmberTools18. In particular, bond-charge corrections 
(bcc) charges were assigned to ligand atoms following 
structural relaxation under the Austin Model 1 (AM1) 
approximation. Note that, as for HADDOCK, the defini-
tion of a topology involving permanent bonding interac-
tions allows for keeping the correct cycle connectivity 
during refinement, while including some flexibility (e.g. 
by moving torsional angles and permitting the formation 
of H-bonds). Finally, the poses were rescored using the 
same scoring function of AutoDock employed to rank 
the original docking poses.

4. HADDOCKall-Hs (receipt ID apue7): this approach is the 
same as in 2, except for the inclusion of all hydrogens 
(and not only the polar ones) in atomic models.

In addition to ensemble-docking calculations using recep-
tor structures generated in silico, during stage 1b we also 
performed self-docking calculations (only with AutoDock), 
using for each ligand the conformation of the receptor 
extracted from the corresponding holo experimental struc-
ture released by the organizers at the beginning of stage 1b 
(protocol Autodockself, receipt ID qb4hg). All the remain-
ing parameters were identical to those employed within the 
Autodock protocol.

Note that we also submitted predictions using the same 
template-based protocol described in [16] (HADDOCKtb; 
receipt ID nwm5a). Those led to the best performance from 
all our submissions but will not be discussed here.

Druggability calculations

Following our previous study [13] we used the package 
f-pocket [43] to assess the druggability of the binding site 
within the ensembles of BACE-1 conformations generated 
by MD simulations. For each conformation, we evaluated the 
druggability score D [44] ranging from 0 to 1 with higher 
values identifying more druggable geometries. It is custom-
ary to associate scores > 0.5 to putative binding sites [44].

Results and discussion

In the following we report the performance of our protocols 
in predicting near-native binding poses of BACE-1 ligands 
(stage 1a). Next we report the performance of Autodock 
in self-docking calculations of the same ligands onto the 
experimental structure of the receptor released at stage 1b. 
Evaluations were performed according to the data down-
loaded from the D3R website (https ://drugd esign data.org/
about /grand -chall enge-4-evalu ation -resul ts). The accuracy 
of the poses was evaluated by calculating the RMSD of each 
ligand with respect to its experimental reference structure 
(considering only heavy atoms), after superposition of the 
binding interface areas. First, we discuss the performance 
in terms of both global and per ligand descriptors. Next, 
to identify possible sources of errors, we analyze the accu-
racy of our EDES-like approach in sampling holo-like and 
druggable conformations of BACE-1, and the performance 
of the template-based algorithm to generate accurate ligand 
conformers [16]. We conclude by summarizing the possible 
drawbacks of the methodology and its unique features, and 
by listing possible routes of future development.

Stage 1a

Table 1 provides an overview of the performance of our 
methodologies in finding near-native poses of the 20 
BACE-1 ligands. The best results were obtained with 
AutoDock [20] coupled to a multi-step structural optimiza-
tion and rescoring of the top 10 poses (Autodockrr). Using 
this approach, we found median and average values of the 
RMSD calculated on the top pose of each ligand (hereafter 
RMSD1

med
 and ⟨RMSD⟩1 ) lower than 2 Å and 3 Å, respec-

tively. Moreover, these values were lower than 1.5 Å and 
2 Å when calculated on the nearest-native poses (hereafter 
RMSDmin

med
 and ⟨RMSDmin⟩ , respectively). The AMBER-

based refinement led to significant improvements with 
respect to the “standard” Autodock protocol, for which we 

Table 1  Overall performance of 
our protocols in retrieving near-
native ligands conformations 
of BACE-1 ligands (rows 
4–8) during stage 1a, and 
performance of the Autodockself 
protocol in stage 1b (last row; 
data from https ://drugd esign 
data.org)

All values are expressed in Å

Protocol Averages Median

⟨RMSDmin⟩ ⟨RMSD1⟩ ⟨RMSD⟩ RMSDmin
med

RMSD1
med

RMSDmed

Stage 1a
Autodockrr 1.73 ± 0.88 2.86 ± 2.71 4.24 ± 1.77 1.38 1.78 3.89
Autodock 2.48 ± 1.82 3.10 ± 2.57 4.41 ± 2.10 2.07 2.25 4.28
HADDOCK 2.28 ± 0.99 4.12 ± 2.73 4.64 ± 1.53 2.06 3.12 4.23
HADDOCKall-Hs 3.19 ± 2.26 4.83 ± 3.50 5.96 ± 2.18 2.66 3.10 5.76
Autodockapo 3.78 ± 2.94 5.67 ± 3.72 5.17 ± 3.34 2.47 3.51 3.49
Stage 1b
Autodockself 2.24 ± 2.13 2.93 ± 2.78 3.59 ± 2.73 1.60 2.03 2.30

https://drugdesigndata.org/about/grand-challenge-4-evaluation-results
https://drugdesigndata.org/about/grand-challenge-4-evaluation-results
https://drugdesigndata.org
https://drugdesigndata.org
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obtained values of RMSDmin
med

 and ⟨RMSDmin⟩ lower than 
2.5 Å. A very similar performance was achieved by HAD-
DOCK when using standard settings, while the explicit con-
sideration of non-polar hydrogen atoms of the ligand during 
docking led to an appreciable drop in the accuracy. While a 
clear-cut explanation of this behavior would require a more 
systematic study that is out of the scope of this manuscript, 
it seems reasonable that the tiny Van der Waals volumes of 
nonpolar hydrogens have a large impact on the ability of 
HADDOCK to place the ligands within the buried binding 
site of BACE-1.

The ⟨RMSDmin⟩ and ⟨RMSD1⟩ metrics place our methods 
in the middle-left and middle-right regions of the histogram 
plot summarizing performances of all applicants (Fig. 2). 
An inspection of the protocols employed in this compe-
tition that performed better than any of ours (in terms of 
⟨RMSD1⟩ ) revealed that our methodology is (among those 
for which these details were disclosed) the only one based 
on ensemble-docking calculations using protein conforma-
tions generated in silico starting from an apo experimental 
structure of BACE-1. Thus, no information on the structures 
of its complexes with similar ligands was exploited to bias 

the conformation of the binding site towards holo-like geom-
etries. In order to investigate more in detail the performance 
of our method, and possibly to correlate the accuracy of 
our results to one or more relevant parameters, we report 
the results for each of the 20 BACE ligands in Table 2, as 
well as in Fig. 3a–d for Autodock, Autodockrr, HADDOCK, 
and HADDOCKall-Hs, respectively. The Table reveals that 
the aforementioned approaches gave at least one pose with 
 RMSDlig < 2.5 Å respectively in 15, 16, 17, and 10 out of 
20 cases, corresponding to success rates of 75%, 80%, 85%, 
and 50%.  

In the following, we will discuss in more detail only 
the top three approaches: Autodock, Autodockrr, and HAD-
DOCK. Inspection of Table 2 reveals that the most challeng-
ing ligand was  BACE02, which is the only compound for 
which we obtained poses featuring an RMSD > 3 Å from the 
native conformation with all approaches. Additional chal-
lenging ligands include  BACE10, for which the best RMSD 
value was 2.8 Å (obtained with Autodockrr), and to a minor 
extent  BACE07,  BACE09,  BACE14,  BACE16, and  BACE18, 
for which one out of the three protocols was unable to find 
poses with RMSD values lower than 2.5 Å.

Fig. 2  Overall performance of 
the protocols employed in this 
study, as measured by the values 
of ⟨RMSD

min⟩ and ⟨RMSD
1⟩
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Inspection of Fig. 3a–d reveals the large variability in the 
orientation of docking poses for almost all of the ligands 
investigated. Such behavior, resulting in several poses dis-
playing large RMSD values and in high standard deviations 
of the averages, was somewhat expected because of the 
(desired) tendency of our protocol to maximize the confor-
mational diversity of the binding site of the protein structures 
used in docking calculations (vide infra). Clearly, consider-
ing the average RMSD over all poses would intrinsically 
penalize approaches like ours. Nonetheless, the best overall 
performing method (Autodockrr) demonstrated its ability to 
reproduce at least one near-native pose among the top 5 for 
virtually all ligands but  BACE02. In addition to using an 
ensemble of receptor structures, allowing some degree of 
flexibility of the ligands (e.g. by activating torsional angles 
in AutoDock) could in principle improve results for this and 
the most challenging cases, although improvements were 
reported to be system-dependent [45, 46]. This is confirmed 
by the comparison with results obtained using HADDOCK, 
which includes by default flexibility of both docking partners 
by means of short MD runs in the space of the torsional 
angles.

Finally, we compared our predictions with docking cal-
culations performed with Autodock on the experimental 
apo structure of BACE-1 (hereafter Autodockapo). Table 1 

confirms that, as expected, the lack of inclusion of protein 
flexibility has a major impact on the accuracy of near-native 
pose predictions [45–47]. In a further effort to identify most 
likely sources of errors we assessed the accuracies of our 
protocols in sampling near-native conformations of the pro-
tein and the ligands prior to docking calculations.

Sampling of holo‑like (and druggable) 
conformations of BACE‑1

The ability of our enhanced-sampling protocol to gener-
ate holo-like conformations of BACE-1 was evaluated 
in terms of the distributions of the RMSD calculated for 
the non-hydrogenous atoms of the binding site (hereafter 
 RMSDBS) with respect to each of the 20 BACE-1 experi-
mental structures (provided at stage 1b) for  MDapo,  EDES3w 
and the ensemble of 200 cluster structures used in docking 
calculations.

Figure 4 shows that both  MDapo and, to a larger extent, 
 EDES3w, were able to generate a significant fraction of 
receptor conformations displaying  RMSDBS values lower 
than 2 Å with respect to every ligand/BACE-1 experimen-
tal structure. In particular,  EDES3w performs better than 
 MDapo in generating holo-like structures, as testified by 
the sizeable shoulder seen in the middle panel of Fig. 4, 

Table 2  Summary of the docking results obtained with the four methods described in this work for each of the 20 BACE-1 ligands (data from 
https ://drugd esign data.org)

All values are expressed in Å. RMSDmin values larger than 2.5 Å are bolded

Target ligand Autodock Autodockrr HADDOCK HADDOCKall-Hs

RMSDmin RMSD1 ⟨RMSD⟩ RMSDmin RMSD1 ⟨RMSD⟩ RMSDmin RMSD1 ⟨RMSD⟩ RMSDmin RMSD1 ⟨RMSD⟩

BACE01 1.7 2.2 3.7 ± 2.9 1.2 1.2 1.8 ± 0.5 1.5 2.0 2.8 ± 1.7 3.1 3.1 4.7 ± 2.7
BACE02 4.2 4.2 6.5 ± 2.7 4.5 4.5 7.9 ± 2.9 3.9 4.4 4.3 ± 0.3 10.2 10.5 11.0 ± 0.7
BACE03 2.8 2.8 5.3 ± 3.4 1.8 2.6 3.8 ± 3.4 2.5 3.5 4.2 ± 2.7 3.2 3.5 5.7 ± 3.2
BACE04 1.5 1.5 2.9 ± 1.3 1.1 1.1 2.2 ± 1.0 2.2 9.6 6.6 ± 4.0 2.3 9.7 7.1 ± 3.6
BACE05 2.1 2.1 3.8 ± 3.3 1.4 1.6 5.3 ± 4.9 1.4 3.1 3.8 ± 3.1 8.7 9.8 10.0 ± 0.9
BACE06 1.1 1.1 1.7 ± 0.7 1.5 1.6 2.1 ± 0.8 1.8 2.3 3.6 ± 3.3 2.3 2.3 5.8 ± 4.6
BACE07 2.1 2.5 2.5 ± 0.3 2.6 2.6 3.4 ± 0.9 2.4 2.6 4.5 ± 3.2 3.5 3.6 6.2 ± 3.5
BACE08 1.2 1.7 3.3 ± 4.0 1.0 1.0 4.9 ± 5.0 1.3 1.6 2.0 ± 1.1 1.4 1.5 5.0 ± 4.7
BACE09 2.2 2.2 4.5 ± 2.9 2.4 3.1 4.1 ± 3.1 3.3 10.0 8.4 ± 3.0 2.2 2.9 5.3 ± 3.8
BACE10 9.3 9.4 9.4 ± 0.1 2.8 10.0 8.2 ± 3.0 5.5 5.8 6.6 ± 2.0 3.5 9.5 6.5 ± 2.9
BACE11 1.5 2.8 2.3 ± 0.8 1.0 1.2 3.6 ± 4.3 2.0 4.5 3.7 ± 1.0 1.7 1.7 5.4 ± 3.9
BACE12 1.4 1.5 1.8 ± 0.5 1.2 10.3 6.8 ± 4.7 1.2 1.9 3.5 ± 3.4 1.4 1.9 4.8 ± 4.3
BACE13 1.5 2.2 2.1 ± 0.5 0.9 1.4 3.6 ± 4.2 1.5 1.5 3.9 ± 3.2 1.8 1.8 2.2 ± 0.4
BACE14 4.2 10.8 8.2 ± 3.6 1.3 2.5 4.9 ± 3.3 2.1 9.4 6.9 ± 3.8 2.9 3.1 4.7 ± 3.5
BACE15 2.2 2.2 4.4 ± 3.8 1.1 1.8 2.4 ± 1.0 2.2 3.0 3.7 ± 1.6 3.4 9.4 8.5 ± 2.9
BACE16 2.5 2.5 4.2 ± 3.6 2.6 2.6 4.4 ± 2.9 2.5 3.1 4.5 ± 3.5 3.0 3.3 6.0 ± 4.0
BACE17 1.8 1.9 4.8 ± 2.7 1.4 1.7 3.1 ± 2.4 1.9 5.7 5.2 ± 1.9 1.7 2.3 3.0 ± 1.9
BACE18 2.6 2.6 5.3 ± 2.5 1.8 1.8 4.7 ± 2.5 2.0 3.9 4.0 ± 1.4 1.9 2.4 3.5 ± 2.0
BACE19 1.8 2.3 6.8 ± 4.4 1.3 1.5 3.4 ± 3.0 2.3 2.3 5.1 ± 3.3 2.4 9.6 8.1 ± 3.2
BACE20 2.1 2.1 4.9 ± 3.4 1.6 8.5 4.0 ± 3.0 2.0 2.0 5.3 ± 4.0 3.2 3.2 5.9 ± 3.6

https://drugdesigndata.org
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raising the percentage of structures with  RMSDBS < 1.5 Å 
as compared to the upper one. The good performance of 
 MDapo is consistent with the relatively small conforma-
tional rearrangements undergone by BACE-1 upon bind-
ing of all ligands (Fig. 1c), corresponding to a decrease of 

 RoGBS in the range 9.10–9.44 Å from the initial value of 
9.79 Å found in 1SGZ.

Notably, among the 200 cluster representatives selected 
for docking calculations and corresponding to values of 
 RoGBS in the range 9.10–9.44 Å, a larger fraction derived 

Fig. 3  Performance of the Autodock (a),  Autodockrr (b), HADDOCK 
(c) and  HADDOCKall-Hs (d) protocols in reproducing the near-native 
conformations of the 20 BACE-1 ligands. Green and grey panels refer 
to targets for which we obtained at least one pose within the top 5 

featuring a value of the ligand RMSD ≤ 2.5 Å and ≤ 3 Å respectively, 
while orange boxes indicate cases for which no such poses were 
found among the top 5 ones
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from  EDES3w (Fig. S1). In addition, there are several struc-
tures corresponding to  RoGBS values close to or even larger 
than 9.79 Å. Thus, while improving the sampling of rela-
tively closed protein conformations, our protocol still allows 
for sampling of open ones. Moreover, our multi-step cluster 
analysis confirmed its tendency to select a large (even larger 
than that sampled along the MD trajectories) fraction of low-
RMSDBS geometries with respect to all the experimental 
reference structures (Fig. 4 and Table 3). It is worth pointing 
out that for all targets we obtained some conformations of 
the binding site that are virtually identical to the experimen-
tal structures, as testified by the lowest  RMSDBS values, all 
around 1 Å (Table 3).

We also evaluated the performance of our method in gen-
erating druggable conformations of BACE-1 [44]. Table 4 
shows the results of this analysis on the 200 receptor confor-
mations used for ensemble-docking calculations, compared 
with the values obtained for the targets investigated in [13]. 
It clearly appears that also the approach used in this work 
can generate a consistently relevant fraction of structures 
associated with a large druggability score D.

Generation of near‑native ligand conformers

The performance of our template-based similarity protocol 
in generating near-native conformations of the 20 BACE-1 
ligands is summarized in Table 3. This Table reports the 
statistics of the RMSD calculated on heavy atoms of each 
ligand after structural alignment on the reference confor-
mation extracted from the experimental structure of the 
corresponding complex (hereafter indicated as  RMSDlig-fit, 
to be distinguished from the same value calculated in the 

complex after alignment of the protein interface region). 
In all cases the minimum  RMSDlig-fit values are lower than 
2 Å, confirming the accuracy of the approach reported in 
[16] in reproducing at least one near-native conformation 
of all the macrocycle ligands considered in this work. 
Overall, these values are slightly larger than those obtained 
for the sampling of holo-like conformations of the receptor 
(2nd and 3rd columns in Table 3). Moreover, in 4 (1) out 
of 20 cases we obtained an average  RMSDlig-fit > 2 (2.5) Å, 
and in 6 out of 20 cases we obtained values of 
RMSDmin

lig − fit
 > 1.5  Å, and these ligands are (except for 

 BACE03 and  BACE15) exactly those for which we obtained 
the less accurate docking results. Note that, in virtually all 
cases the value of  RMSDlig-fit reported in Table 3 for the 
10 conformers used in docking calculations is very mar-
ginally larger than that calculated over the up to 500 con-
formers generated with OpenEye OMEGA (the only 
exception being  BACE18, see Fig. S2). Therefore, the issue 
with the generation of the “correct” conformers of the 
macrocyclic ligands considered here is not related to the 
selection of a few representative conformers, but to the 
sampling process itself, as already documented by others 
[48–50]. A closer look to Fig. S2 reveals that a large frac-
tion of the 10 conformers displayed  RMSDlig-fit values 
lower than 1.5 Å only for  BACE01,  BACE03,  BACE04, 
 BACE05,  BACE06,  BACE08,  BACE11,  BACE12,  BACE13, 
 BACE17 and  BACE19, which grossly correspond to the 
systems for which both the most successful approaches 
(Autodockrr and HADDOCK) were able to find near-native 
binding poses (Table  2). In contrast, ligands such as 
 BACE02,  BACE07,  BACE10,  BACE14,  BACE15 and  BACE16 

Fig. 4  Normalized distributions 
(bin size = 0.1 Å) of  RMSDBS 
calculated with respect to the 
20 experimental structures 
of ligands in complex with 
BACE-1 for  MDapo (upper 
panel) and  EDES3w (middle 
panel) trajectories, as well 
as for the ensemble of 200 
BACE-1 structures used in 
ensemble docking calculations 
(lower panel, see "Materials 
and Methods" for details on the 
cluster analysis). The insets in 
the upper and middle panels 
represent enlargements of the 
left-hand region of the cor-
responding graphs
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featured most conformations significantly distorted from 
the structure of the ligand in complex with BACE-1. This 
analysis further confirms previous findings on the impor-
tance of sampling not only the correct conformations of 
the protein but also that of the ligands, as well as the expo-
nential impact on accuracy arising from the combination 
of even minimal displacements from the correct structures 
in both partners [16].

Stage 1b

This is a self-docking stage at which the participants could 
employ the bound protein structures—but not those of the 
compounds—released by the organizers. The comparison 
between the data obtained at stages 1a and 1b is instructive 
to evaluate the performance of the docking protocol in the 
presence of the correct structures of the receptor. This ena-
bles to highlight drawbacks likely unrelated to the protein 
flexibility problem, as well as to confirm the importance of 
using a relevant fraction of correct conformers of the ligand 
in ensemble-docking calculations. We performed this exer-
cise using AutoDock; namely, we docked, for each ligand, 
the 10 conformers used in stage 1a on the corresponding 
experimental structure of the receptor.

Table 3  Performances of our methodology evaluated separately for 
the generation of protein and ligand conformations similar to those 
found in the ligand/BACE-1 experimental structures

The 2nd column reports the lowest  RMSDBS calculated across the 
200 receptor conformations with respect to each experimental struc-
ture. The 3rd column reports the percentage of conformations dis-
playing an  RMSDBS lower than 1.5  Å. The last column reports the 
minimum and maximum RMSD values (calculated on the non-
hydrogenous atoms with respect to the structure of each ligand in the 
experimental structure), as well as the average and standard deviation 
within parentheses. Values of RMSDmin

lig−fit
 larger than 1.5 Å and aver-

age values of  RMSDlig-fit larger than 2  Å are italicized and bolded, 
respectively

System Protein Ligands

RMSDmin
BS

[Å] % 
 RMSDBS < 1.5 Å

RMSDlig−fit [Å]

BACE01 1.13 16 1.11–1.71 (1.44 ± 0.24)
BACE02 1.08 15 1.16–3.08 (2.70 ± 0.63)
BACE03 1.07 15 0.95–1.44 (1.25 ± 0.15)
BACE04 1.08 19 1.03–2.05 (1.55 ± 0.44)
BACE05 1.07 15 0.82–3.05 (1.50 ± 0.73)
BACE06 1.19 15 0.58–1.38 (0.98 ± 0.23)
BACE07 1.10 17 1.62–2.77 (2.08 ± 0.45)
BACE08 1.07 17 0.57–1.51 (0.92 ± 0.29)
BACE09 1.17 17 1.52–2.38 (1.96 ± 0.38)
BACE10 1.13 17 1.54–2.33 (1.98 ± 0.33)
BACE11 1.06 17 1.03–2.24 (1.64 ± 0.48)
BACE12 1.07 17 0.68–1.79 (1.13 ± 0.44)
BACE13 1.06 16 0.52–1.00 (0.75 ± 0.16)
BACE14 0.98 16 1.37–3.34 (2.48 ± 0.81)
BACE15 1.16 14 1.53–2.23 (1.95 ± 0.33)
BACE16 1.17 14 1.83–3.53 (2.39 ± 0.59)
BACE17 1.13 14 1.08–1.58 (1.34 ± 0.18)
BACE18 1.14 14 1.53–2.01 (1.81 ± 0.11)
BACE19 1.07 16 1.17–1.51 (1.33 ± 0.10)
BACE20 1.20 15 1.49–3.26 (1.83 ± 0.52)

Table 4  Performance of our approach in generating druggable con-
formations of the binding site

The percentages of structures featuring druggability scores D larger 
than 0.5–0.9 are reported in columns 2–6, respectively. The corre-
sponding values for the benchmark systems considered in the original 
EDES publication are reported for comparison
BGT T4 phage β-glucosyltransferase, RIC recombinant ricin, ABP 
allose binding protein
*From Ref. [13]

% structures with D 
greater than

0.5 0.6 0.7 0.8 0.9

BACE-1 12.5 8.0 6.5 2.5 1.0
BGT* 15.8 10.2 6.8 4.6 1.4
RIC* 3.2 2.4 1.6 0.4 0.2
ABP* 7.6 5.2 3.0 1.8 0.4

Table 5  Summary of the self-docking results obtained with the Auto-
dockself protocol for each of the 20 BACE-1 ligands

All values are expressed in Å. RMSDmin values larger than 2.5 Å are 
bolded

Target ligand RMSDmin RMSD1 ⟨RMSD⟩

BACE01 1.5 1.7 4.8 ± 4.5
BACE02 1.7 3.5 5.1 ± 3.1
BACE03 1.8 2.4 2.0 ± 0.3
BACE04 1.0 1.1 1.1 ± 0.1
BACE05 0.9 0.9 1.2 ± 0.5
BACE06 1.1 1.1 1.4 ± 0.4
BACE07 2.3 2.3 2.4 ± 0.1
BACE08 0.8 1.1 0.9 ± 0.2
BACE09 9.7 10.1 10.2 ± 0.5
BACE10 3.2 9.9 8.6 ± 3.0
BACE11 1.0 1.0 2.4 ± 1.3
BACE12 0.8 1.1 1.2 ± 0.3
BACE13 0.7 0.9 0.9 ± 0.1
BACE14 1.9 1.9 5.7 ± 3.4
BACE15 3.3 3.3 5.4 ± 1.8
BACE16 3.3 3.8 6.6 ± 4.2
BACE17 1.7 2.0 2.1 ± 0.3
BACE18 5.6 5.6 5.7 ± 0.1
BACE19 1.2 2.0 2.0 ± 0.4
BACE20 1.5 2.3 2.2 ± 0.5
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Table 5 reports the overall performance of Autodockself, 
while Fig. 3e shows a more detailed analysis of the top 5 
poses for each BACE-1 ligand. Interestingly, a marginal 
improvement was seen with respect to the results obtained 
with the Autodock protocol at stage 1a, while the success rate 
evaluated as the number of ligands for which at least one 
pose featured a value of the RMSD ≤ 2.5 Å remained 75%. 
This result was in part expected, in view of the good sam-
pling of holo-like protein conformations obtained with our 
modified EDES protocol (Table 3). Moreover, also in this 
case the most challenging ligands include those featuring the 
largest values of RMSDlig−fit and/or RMSDmin

lig−fit
 in Table 3. 

In particular, wrong poses were found for  BACE09,  BACE10, 
 BACE15,  BACE16, and  BACE18, while for  BACE07 all poses 
have RMSD values close to 2.5 Å. While further relaxation 
and rescoring of these poses is expected to increase the suc-
cess rate, we note that a very minor conformational change 
towards the correct geometry of the binding site was suffi-
cient to find at least one pose with RMSD lower than 2 Å for 
 BACE02.

Conclusions and perspectives

We report the performance of our hybrid ensemble-docking 
approach in its first participation to a D3R Grand Challenge 
competition. The approach is founded on a template-based 
algorithm to select proper ligand conformers, and on our 
recently published EDES protocol (implemented here with 
small modifications with respect to the original version) to 
sample holo-like protein conformations starting from the 
apo one. With regard to the generation of holo-like pro-
tein conformations, EDES was able to sample near-native 
BACE-1 conformations (particularly at the binding site) for 
all of the 20 complexes formed between the protein and the 
congeneric ligands subject of this study. This points to the 
general applicability of this approach in sampling holo-like 
conformations for systems exploiting different kinds of rear-
rangements upon ligand binding, including minor flap move-
ments such as in the case of BACE-1. A very good accuracy 
in reproducing near-native ligand conformers was achieved 
also by our template-based approach. These performances 
reflected in the relatively high accuracy in the prediction 
of near-native binding poses. Independently of the docking 
program used, our method was able to find near-native poses 
among the top 5 ones for at least 75% of the 20 complexes 
selected for the pose prediction sub-challenge. While HAD-
DOCK found near-native poses for more targets than Auto-
Dock, the latter featured the best overall performance when 
coupled to a computationally cheap post-docking relaxation 
of the poses. Performing docking calculations on the apo 
experimental structure of BACE-1 resulted in significantly 

less accurate predictions, due to the unaccounted rearrange-
ments of the protein flap occurring upon ligand binding. 
Finally, the good performance of our approach was testified 
by the only slight overall improvement obtained when per-
forming self-docking calculations on the 20 experimental 
holo receptor structures.

Note that in this Grand Challenge we also submitted pose 
predictions following the template-based protocol described 
in [16] (HADDOCKtb) in which an ideal choice of both 
ligand and receptor conformations is made based on ligand 
similarity to known PDB entries. As in GC3, this approach 
led to an excellent performance with ⟨RMSDmin⟩ , ⟨RMSD1⟩ 
and ⟨RMSD⟩ respectively of 1.4 Å, 1.66 Å and 1.95 Å, 
which demonstrates that a template-based approach remains 
the best strategy when 3D structures of related complexes 
are available in the PDB. However, when this is not the case, 
our EDES approach appears to be an attractive alternative. 
Moreover, it has been proposed that including MD-generated 
receptor conformations (such as those obtained from EDES) 
in the virtual screening protocol could promote the discover 
of new active chemotypes, especially for flexible receptors, 
in which entirely new pocket conformations may be revealed 
for potential ligand binding [51–53].

Further developments of the method will include 
improved identification of putative binding sites and of their 
key residues, coupling of EDES with the use of co-solvents, 
and exploitation of different cluster methodologies.
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