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Abstract

Incorporating the dynamic nature of biomolecules in the modeling of their complexes is

a challenge, especially when the extent and direction of the conformational changes tak-

ing place upon binding is unknown. Estimating whether the binding of a biomolecule to

its partner(s) occurs in a conformational state accessible to its unbound form (“conforma-

tional selection”) and/or the binding process induces conformational changes (“induced-

fit”) is another challenge. We propose here a method combining conformational

sampling using ClustENM—an elastic network-based modeling procedure—with docking

using HADDOCK, in a framework that incorporates conformational selection and

induced-fit effects upon binding. The extent of the applied deformation is estimated

from its energetical costs, inspired from mechanical tensile testing on materials. We

applied our pre- and post-docking sampling of conformational changes to the flexible

multidomain protein-protein docking benchmark and a subset of the protein-DNA dock-

ing benchmark. Our ClustENM-HADDOCK approach produced acceptable to medium

quality models in 7/11 and 5/6 cases for the protein-protein and protein-DNA com-

plexes, respectively. The conformational selection (sampling prior to docking) has the

highest impact on the quality of the docked models for the protein-protein complexes.

The induced-fit stage of the pipeline (post-sampling), however, improved the quality of

the final models for the protein-DNA complexes. Compared to previously described

strategies to handle conformational changes, ClustENM-HADDOCK performs better

than two-body docking in protein-protein cases but worse than a flexible multidomain

docking approach. However, it does show a better or similar performance compared to

previous protein-DNA docking approaches, which makes it a suitable alternative.

K E YWORD S

biomolecular complexes, conformational flexibility, elastic network modeling

1 | INTRODUCTION

The dynamic nature of biomolecules enables them to fulfill their func-

tions in the cell such as catalysis, signaling, and regulation, while

interacting with other bioentities. Understanding their structure and

dynamics is therefore key to elucidate biological mechanisms, identify

the underlying causes of diseases at molecular level and develop new

therapeutical strategies. The extent of biomolecular flexibility can
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range from local side chain rotations of a few angstroms to global dis-

placements like domain motions in the order of nanometers.1

Although experimental methods like X-ray crystallography, Nuclear

Magnetic Resonance (NMR) and cryo-Electron Microscopy

(EM) reveal biomolecular structures at atomic resolution, information

about their mobility and flexibility is challenging to assess, especially

for highly flexible biomolecules or supramolecules. Therefore, there is

a need for complementary computational techniques to reveal the

flexible properties and dynamics of such systems.2-4

In regard to molecular recognition mechanisms, the puzzle still

exists whether a biomolecule binds to a pre-existing conformer out of

the pool of conformers existing in solution for a given partner (“con-

formational selection”) or rather conformational changes are induced

upon binding (“induced-fit”).5,6 There is increasing evidence showing

that different states are indeed accessible in the absence of the part-

ner6,7 but it is also likely that both mechanisms play a role in molecular

recognition.8,9 A study on a set of complexes with rather limited con-

formational changes10 has addressed the ability of current computa-

tional techniques to capture the conformational changes upon binding

and concluded that current “conformational selection” methods can

capture 22% of unbound-bound transitions, “induced-fit” methods

about 57%; but backbone motions (21%) are not yet adequately cov-

ered by any technique.

Previously, ClustENM has been developed as an iterative and

unbiased conformer generation technique, combining global modes

from Elastic Network Model (ENM), with energy minimization and

clustering.11,12 ClustENM was applied to systems of different sizes

and oligomeric states including ribosome,11,13 highly flexible proteins

like adenylate kinase and calmodulin,11,12 and to protein-small ligand

docking.12 The generated conformers were in good agreement with

experimental structures and conformations from molecular dynamics

simulations. This illustrated the efficiency of ClustENM especially for

large systems where molecular dynamics could become computation-

ally time-consuming and encounter difficulties in sampling large con-

formational changes. The method also has the potential to capture

induced-fit effects upon binding, as demonstrated for calmodulin

where a peptide was docked onto an intermediate state between the

unbound and bound forms: The conformational sampling applied to

the docked complex indeed allowed to sample the bound state.12

Following this observation, we propose here a method combining

molecular docking with conformer generation by ClustENM, to

account both for conformational selection and induced-fit binding

mechanisms. For this, we combine conformational sampling of the

individual partners (pre-docking sampling) with that of the docked

models (post-docking sampling). As molecular docking tool we use

HADDOCK,14-16 an information-driven approach for the modeling of

biomolecular complexes, which has demonstrated sustained perfor-

mance in CAPRI - the blind modeling experiment for the prediction of

complexes,17,18 and is a widely used method for integrative modeling

of biomolecular complexes.19 HADDOCK can handle mixed systems

of proteins, nucleic acids and small molecules.

To assess the performance of our ClustENM-HADDOCK

approach, we apply it to the protein-protein flexible multidomain

docking benchmark20 and to a subset of the protein-DNA bench-

mark.21 Both datasets were used in previous studies focusing on

modeling conformational changes, which allows us to make perfor-

mance comparisons. Notably, we apply our method without prior

knowledge of the extent and direction of the conformational changes.

2 | MATERIALS AND METHODS

2.1 | Dataset

We applied our method on two different datasets:

i. The flexible multidomain docking benchmark (FMD)20 (Table 1A),

where the ligands (smaller partner) are mainly rigid (0.5-1.7 Å)

while the receptors undergo varying degrees of conformational

change (between 1.6-19.6 Å) corresponding mainly to domain-

domain motions. In this case, in order to concentrate on the con-

formational change aspects, we assume we have an ideal

interface information.

ii. A subset of the protein-DNA benchmark21 for which experimen-

tal information about interfaces is available (Table 1B). Both

TABLE 1 List of protein-protein (A) and protein-DNA complexes
(B) used for benchmarking

A. Protein-protein flexible multidomain dataset20

Complex ID Receptor ID Ligand ID

Backbone conformational
changes [Å]

Receptor Ligand

1IRA37 1G0Y_R38 1ILR_139 19.6 0.7

1H1V40 1D0N_B41 1IJJ_B42 13.8 1.6

1Y6443 1UX5_A44 2FXU_A45 10.3 1.1

1F6M46 1CL0_A47 2TIR_A48 7.3 0.9

1FAK49 1QFK_HL50 1TFH_B51 6.3 1.0

1ZLI52 2JTO_A53 1KWM_A54 4.0 0.6

1E4K55 3AVE_AB56 1FNL_A57 2.9 1.7

1IBR58 1F59_A59 1QG4_A60 2.9 1.1

1KKL61 1JB1_A62 2HPR63 2.2 0.5

1NPE64 1KLO_A65 1NPE_A64 1.9 -

1DFJ66 2BNH_A67 9RSA_B68 1.6 0.7

B. Protein-DNA dataset

Complex ID Difficulty Receptor ID

Conformational
changes [Å]

Receptor DNA

1BY469 Easy 1RXR70 2.2 1.5

3CRO71 Easy 1ZUG72 1.2 2.7

1AZP73 Medium 1SAP74 2.8 3.8

1JJ475 Medium 1F9F_A75 2.2 3.3

1A7476 Difficult 1EVX_A77 1.4 7.2

1ZME78 Difficult 1AJY79 8.6 4.7
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protein and DNA (“ligand”) undergo conformational changes, but

we focused here on the flexibility of the DNA.

Both datasets have been previously used in benchmarking studies

with HADDOCK. In the first case a multibody docking approach was

followed in which the protein showing rigid-body motion conforma-

tional changes was cut into domains with connectivity restraints

between them,20 while in the second case a two steps docking strat-

egy was followed in which DNA conformations from the first docking

run were used to generate an ensemble of pre-bent DNA conforma-

tions for a second, ensemble-based docking stage.21

2.2 | ClustENM method

ClustENM is an unbiased, iterative conformational sampling method

combining ENM, energy minimization and clustering.11,12 In

ClustENM, first the initial structure is energetically minimized in

implicit solvent, then a modified version of ENM (mixed resolution

ENM)22 is applied to it to extract low frequency normal modes. The

modified version of ENM employed in ClustENM involves placing the

nodes at the residue centroids where node pairs within a cut-off dis-

tance of 10 Å are connected by elastic springs, thereby representing

the residues as low-resolution nodes. The spring constant connecting

the node pairs is proportional to the total number of interacting atom

pairs between the connected residues (bonded or nonbonded) within

the specified cut-off. Based on the sudden break in the smooth pro-

gression of eigenvalues in the eigenvalue spectrum, we define the

number of modes “m” which are to be linearly combined using coeffi-

cients −1, 0 and 1 to obtain deformation vectors (3m vectors in total).

The minimized structure is deformed in the direction of the deforma-

tion vectors with a fixed deformation RMSD d, where the deformation

vector of a residue centroid is applied to all the atoms of that residue.

The resulting structures are clustered based on mutual RMSD of

heavy atoms with a cut-off equal to d. The cluster containing the par-

ent structure is discarded and a representative structure from each

cluster is selected. Minimization-ENM-deformation-clustering steps

are applied on each representative structure for k generations.

2.2.1 | Energy minimization

For proteins, the energy minimization in implicit solvent was per-

formed using NAMD v2.1023 with the CHARMM22 force field.24 A

generalized Born implicit solvent model was used with a 16 Å cut-off

for non-bonded interactions and a 14 Å cut-off for Born radius. The

ion concentration was set to 0.3 M. 4000 steps of conjugate gradient

were applied.

The DNA structures and protein-DNA complexes were minimized

in implicit solvent using AMBER14 with the ff14SB force field param-

eters.25 The pairwise generalized Born model26,27 was used with a

16 Å cut-off for non-bonded interactions. We used the modified

F IGURE 1 Tensile test on ribonuclease inhibitor structure along the direction of normal modes. Based on eigenvalue spectrum shown on top,
the first four slowest modes are selected for application of tensile testing. The structure is first minimized (“Start”), then deformations of 1-5 Å are
introduced in both negative and positive directions along each mode. To visualize the type of motions, the first and second slowest modes are
also shown in the right panel. The energy of the structure increases as the deformation along an individual mode increases. The stable region
corresponds to the deformations that keep the energy level below the reference state: For the first and second modes the energy starts
increasing after 3 Å, for the third mode after 2 Å and the fourth mode after 1 Å in both directions. The consensus of the four modes hints to a
maximum deformation of 1-2 Å for this structure [Color figure can be viewed at wileyonlinelibrary.com]
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generalized Born theory-based Debye-Huckel limiting law for ion

screening of interactions.28 The concentration of 1-1 mobile counter-

ions in solution was set to 0.1 M. Steepest descent was applied for

500 steps followed by conjugate gradient with a maximum number of

steps of 4000 and a convergence criterion of 0.01 kcal/mol/Å.

2.2.2 | Deformation Parameter d Estimation

The advantage of ClustENM is its computational efficiency in yielding

conformers at atomic resolution and its reduction in the redundancy

of the sampled conformations due to clustering. However, the degree

of conformational change is usually arbitrarily defined by the user. To

overcome this problem and inspired from mechanical tensile testing

on material, we deformed the structures in the direction of the slow

modes to assess the extent of flexibility. First, we determined the rele-

vant low frequency modes based on the sudden break in eigenvalue

spectrum; then we deformed the structure constantly in their direc-

tion and determined the energy of the deformed state by energy-min-

imization. Based on the energy vs strain (deformation) curve and the

reference energy state of the initial, non-deformed structure, we

assessed the maximum deformation the system could handle. The

results of such energy-deformation curves for the ribonuclease inhibi-

tor structure (1DFJ) are shown in Figure 1. According to the consen-

sus of four modes, the structure can handle a RMSD deformation of

1-2 Å, which actually covers the observed 1.6 Å RMSD conforma-

tional change upon binding to its partner. This prediction scheme is

applied to all receptors in the flexible multidomain protein docking

benchmark and the DNA structures in the protein-DNA dataset to

determine the deformation RMSD d used in ClustENM. The same pro-

cedure is then applied to the docked complexes, to estimate d for

post-docking ClustENM using these complexes as starting point.

The ClustENM parameters used for the conformer generation in

the pre- and post-sampling stages are listed in Table 2A and B for the

FMD and protein-DNA datasets, respectively.

2.3 | HADDOCK settings

We used the HADDOCK2.2 webserver16 for all dockings in this study.

For the FMD benchmark, the docking was performed with “ideal”

interface information, that is, the interface residues from one subunit

within a 5 Å distance from any atom of the partner were selected as

active. No passive residues were defined. This effectively brings the

interfaces together during the docking without predefining their rela-

tive orientation since no specific contacts are defined. Random

removal of ambiguous interface restraints (AIR) was switched off.

Since we use ensembles of conformations, the sampling was increased

to 10 000/400/400 structures for rigid (it0), semi-flexible(it1) and

water stages, respectively. Clustering was performed using the frac-

tion of common contacts (FCC)29 with a cut-off of 0.75 and a mini-

mum cluster size of 4.

For protein-DNA docking, the experimental restraints described in

the study by van Dijk and Bonvin, 201021 were used to drive the

docking. Since we do not use the ideal interface information here,

random removal of AIRs was switched on. The sampling was increased

to 10 000/400/400 for the it0/it1/water stages, respectively.

Because of the high charge of DNA, the value for the dielectric con-

stant was set to 78. FCC clustering was used with 0.75 cut-off and a

minimum cluster size of 4.

Details on the data used to drive the docking for both protein-

protein and protein-DNA systems are given in Tables S1 and S2 of

the Supporting Information in Data S1.

2.4 | HADDOCK scoring

The HADDOCK score was used to select the top pose of the top two

cluster for the post-docking sampling stage and also to score the

models resulting from that post-docking sampling. The HADDOCK

scoring function (HS)17,30 is a linear weighted sum of energetic terms:

TABLE 2 ClustENM pre- and post-sampling parameters

A. Protein-protein complexes of the FMD benchmark

Sampling prior to docking
(receptor only)

Sampling after docking
(on complex structure)a

Complexes
Deformation
RMSD [Å]

Number
of modes

Deformation
RMSD [Å]

Number
of modes

1IRA 3 3 1 5

1H1V 2 3 1 4

1Y64 4 3 2/3 3

1F6M 2 3 1 5/4

1FAK 2 3 1 3

1ZLI 1 3 1 5

1E4K 1 4 2/3 3

1IBR 2 5 1 5

1KKL 2 5 1/2 3

1NPE 3 4 1/2 3

1DFJ 2 4 1 4/5

B. Protein-DNA dataset

Sampling prior to
docking (DNA only)

Sampling after
docking (on complex
structure)a

Complexes
Deformation
RMSD [Å]

Number
of modes

Deformation
RMSD [Å]

Number
of modes

1BY4 1 3 2 3/5

3CRO 1 3 1 5

1AZP 1 4 1 5

1JJ4 2 3 1 5

1A74 2 3 2/1 3

1ZME 1 3 3/2 3/5

aThe presence of two different values indicates the use of different

parameters for the complexes. The first value was used for the complex

from the best cluster and the second value for the second-best cluster.

Single value means same parameters were used for both complex.
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HS=1:0Evdw + 0:2Eelec + 1:0Edesolv + 0:1EAIR,

where Evdw, Eelec, Edesolv, and EAIR stand for van der Waals, Coulomb

electrostatics, desolvation and restraint energies, respectively. The

non-bonded components of the score (Evdw, Eelec) were calculated

with the OPLS forcefield,31 the desolvation energy is a solvent acces-

sible surface area-dependent empirical term32 which estimates the

energetic gain or penalty of burying specific sidechains upon complex

formation. The restraint energy term was only used for ranking the

docking poses but was excluded for the scoring of the post-docking

sampling models.

2.5 | Quality assessment

The quality of the modeled complexes was assessed based on the

well-established CAPRI criteria33:

i. Interface RMSD (i-RMSD): Backbone RMSD of the interface resi-

dues, defined as all residues having at least one atom within 10 Å

of an atom on the other partner

ii. Ligand RMSD (l-RMSD): Backbone RMSD of the ligand (smaller part-

ner in the complex) after fitting on the backbone of the receptor

iii. Fraction of native contacts (fnat): The number of correct residue-

residue contacts in the predicted complex divided by the number

of residue-residue contacts in the target complex. Two residues

are defined to be in contact if they have any atom within 5 Å dis-

tance to each other.

Using i-RMSD, l-RMSD and fnat, the quality of models is

defined as:

• High (three-stars): fnat ≥0.5 with l-RMSD ≤1 Å or i-RMSD ≤1 Å

• Medium (two-stars): fnat ≥0.3 with 1 Å < l-RMSD ≤5 Å or 1 Å < i-

RMSD ≤2 Å

• Acceptable (one-star): fnat ≥0.1 with 5 Å < l-RMSD ≤10 Å or

2 Å < i-RMSD ≤4 Å

• Incorrect (zero-star): fnat <0.1

2.6 | General workflow

The modeling pipeline combines conformational selection and

induced-fit mechanisms using conformational sampling prior and after

complexation, respectively. Pre-sampling was applied to the receptor

TABLE 3 RMSD values from the bound conformation for the
receptors in FMD benchmark

Complex ID

Receptor
RMSD [Å]
unbound

Receptor
RMSD [Å]
closest
generated

Receptor
RMSD [Å]
range in
ensemble

Number of
conformers
inensemble

1IRA 19.6 19.1 19.1-20.4 8

1H1V 13.8 13.2 13.2-14.0 11

1Y64 10.3 6.98 6.98-17.0 16

1F6M 7.32 6.40 6.40-10.0 17

1FAK 6.33 5.57 5.57-7.58 16

1ZLI 4.04 3.73 3.73-5.06 15

1E4K 2.91 2.85 2.85-3.53 6

1IBR 2.96 1.55 1.55-6.26 20

1KKL 2.64 2.72 2.72-3.34 8

1NPE 1.91 1.52 1.52-4.86 22

1DFJ 1.55 1.09 1.09-4.61 20

F IGURE 2 Pipeline for ClustENM-HADDOCK [Color figure can be viewed at wileyonlinelibrary.com]
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in the case of protein-protein docking, and to the DNA for the

protein-DNA dataset. The pipeline consists of the following steps

(also shown in Figure 2):

1. The initial structure is energetically minimized and subjected to

elastic network modeling to define the parameters for ClustENM.

The eigenvalue spectrum is extracted to decide on the number of

modes (“m”) to be used. The deformation test is applied to specify

the deformation RMSD (“d”) in ClustENM.

2. Conformers are generated using ClustENM with the parameters

defined in Step 1. For the proteins in the FMD dataset the number

of generations is set to two for each system. For the DNA structures

in the protein-DNA dataset we increased the number of generations

to four since DNA conformational sampling is computationally much

cheaper due to the DNA's smaller size. During the generation, clus-

ters containing the parent structures are discarded.

3. A maximum of 20 conformations are selected based on the mini-

mization energy, to be used in ensemble docking. The initial struc-

ture is included in the ensemble regardless of its energy value.

4. Ensemble semi-flexible docking is performed in HADDOCK.

5. The best scoring docked model from the best two scoring clusters

are selected for the second round of ClustENM (post-sampling).

6. Parameters for ClustENM are determined for each structure (same

as in Step 1)

7. ClustENM is applied to each selected docked complex for two

generations using parameters from Step 6 resulting in the final

models.

F IGURE 3 Ensembles of receptor conformers generated by ClustENM for protein-protein docking. The starting structure is shown in blue,
the bound conformation in red and the ClustENM generated conformers in green [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 RMSD values from the bound conformation for the
DNA structures in the protein-DNA dataset

Complex ID
RMSD [Å]
B-DNA

RMSD [Å]

Closest
generated

RMSD

range [Å]
Ensemble

Number of

conformers
inensemble

1BY4 1.63 1.71 1.63-4.01 20

3CRO 2.66 1.69 1.79-4.06 20

1AZP 3.95 2.90 2.90-4.12 20

1JJ4 3.66 2.00 2.00-7.80 20

1A74 8.34 4.98 4.98-9.18 20

1ZME 4.77 2.58 2.58-5.82 20
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8. The final models are scored using HADDOCK scoring and their

quality is assessed.

3 | RESULTS AND DISCUSSION

3.1 | Sampling prior to docking

3.1.1 | Protein-protein cases from the FMD
benchmark

Starting from the unbound state of the receptors in the FMD bench-

mark, two generations of ClustENM sampling were applied prior to

docking. The RMSDs (closest and range) of the receptor conformers

to the reference bound state are given in Table 3 and the resulting

ClustENM ensembles are shown in Figure 3. The RMSD range for the

ensemble reflects the blind sampling of ClustENM: Some of the sam-

pled conformations get closer to the bound state and others move

further away from it. The number of conformers at the end of two

generations of sampling is not so large thanks to the clustering steps

in ClustENM. Two generations of ClustENM is clearly not sufficient to

reach bound-like conformations, especially for the challenging cases

like 1IRA and 1H1V, where the RMSD of the closest structure to the

bound state is almost the same as the unbound state (less than 1 Å

deviation from unbound). Figure 3 shows the generated ensemble for

each case, which also reveals the expected-to-fail cases of 1IRA,

1H1V, 1Y64, 1FAK where the large domain motions could not be

sampled in two generations. The remaining cases however do not

reflect this issue.

3.1.2 | Protein-DNA dataset

A standard B-DNA conformation built using our 3D-DART

webserver34 was the starting conformation for all protein-DNA cases.

We applied four generations of ClustENM on the DNA structures.

The RMSD ranges of the resulting ensemble are given in Table 4. As

in the case of the protein FMD benchmark, both close-to-bound and

further-away DNA conformations were sampled. Figure 4 shows the

sampled DNA conformers for each case.

3.2 | Docking

After the pre-docking conformational sampling, the resulting ensem-

bles of conformers were used for ensemble docking with HADDOCK

following the settings specified in Materials and Methods. This dock-

ing phase corresponds to the “conformational selection” part of our

pipeline (with some induced fit as well since the flexible stage of

HADDOCK allows for limited conformational changes). In this stage,

ideally, HADDOCK should select the best conformers in its docking

workflow from rigid body to final flexible refinement in explicit sol-

vent. The best scoring docking pose from the top 2 ranked clusters

were subsequently selected for the post-docking induced-fit part of

the pipeline. The selected poses and their i-RMSD, l-RMSD, fnat and

CAPRI quality metrics are shown in Figures 5 and 6 for the FMD and

protein-DNA docking, respectively.

In the FMD dataset, we were able to obtain models of at least

acceptable quality in 7/11 cases. The failed cases are, as expected,

1IRA, 1H1V, 1Y64, and 1FAK, which all undergo large domain

motions. As already explained in the “Sampling prior docking” section,

the conformational sampling using only two generations was clearly

not sufficient to model such large conformational change in these

cases.

As for the protein-DNA complexes, HADDOCK was able to obtain

at least acceptable quality structures in 4/6 cases as shown in

Figure 6. The binding mode in 1AZP is reverted (180� rotation), which

already nullifies its chance to be a successful case at the end of the

pipeline. In this particular case, however, near native poses were gen-

erated during docking but did not end up in the top 2 clusters.

3.3 | Post-docking sampling

We applied a second round of ClustENM to the best ranking model of

the top 2 ranked clusters obtained from docking to perform the

“induced-fit” stage of our pipeline. The resulting models were ranked

using the HADDOCK score calculated after a short energy minimiza-

tion of each model.17 The results for protein-protein and protein-

DNA systems are presented in the following sections.

F IGURE 4 Ensembles of DNA conformers generated by
ClustENM for protein-DNA dockings. Starting structures are shown in
blue, bound structure in red and the generated conformers in orange
[Color figure can be viewed at wileyonlinelibrary.com]
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3.3.1 | Protein-protein cases from the FMD
benchmark

The quality of the starting and final conformers is summarized in Table 5,

together with the rank of the best generated conformer. Additionally, we

show the change in i-RMSD, l-RMSD and fnat through the “generations”

of post-sampling ClustENM in Figures S1–S3 in Data S1, respectively.We

were able to obtain acceptable/medium quality (1-2-star) poses ranked

within the top 20 in 7/11 cases, 4 of which were ranked as top 1. Unsur-

prisingly, the failed cases are no other than 1IRA, 1H1V, 1Y64 and 1FAK.

Figures S1–S3 in Data S1 indicate that the quality of the starting docked

model (which is the result of pre-sampling followed by docking) is the lim-

iting factor for the final complex structures. Indeed the “induced-fit” sam-

pling phase does not dramatically change the quality of the final

conformers for the FMD benchmark. Conformational sampling prior to

docking is thus contributing more to the quality of the final complexes

than post-sampling in the case of the protein-protein FMD benchmark.

The final complex structures are shown in Figure 7.

3.3.2 | Protein-DNA cases

Table 6 shows the quality of the starting and final conformers with

the rank of the best conformer for the protein-DNA dataset. The

change in i-RMSD, l-RMSD and fnat through the ClustENM genera-

tions are shown in Figures S4–S6 in Data S1, respectively. We

obtained 1-2 star poses for 5 out of 6 cases, 3 of which were ranked

as top 1 and one as top 2 and the last one as 21st. As expected, there

is no successful conformation generated for 1AZP.

Different from the protein-protein FMD benchmark, sampling

after docking for induced-fit increases the quality of the models for

the protein-DNA cases as shown in Figures S4–S6 in Data S1. For

example, in the case of 1ZME, we were able to obtain 1-star quality

structures by starting from zero quality docking poses. Nevertheless,

the quality of the starting structures has again the most impact on the

quality of the final conformers (shown in Figure 8).

3.4 | Comparison with previous studies

3.4.1 | FMD benchmark: ClustENM-HADDOCK vs
Multidomain Flexible docking and Two-Body Docking

We compared the performance of our pipeline with that of the multi-

domain flexible docking and two-body docking approaches reported

in the study of Karaca and Bonvin20 (Table 7). For multidomain flexible

docking, the possible hinge regions were predicted using HingeProt35;

the proteins were cut at those hinges and connectivity restraints were

F IGURE 5 Protein-protein docking top pose from the best two clusters of HADDOCK (green receptor/blue ligand) superimposed onto bound
structure (red) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Protein-DNA docking top pose from the best two clusters of HADDOCK (green receptor/orange DNA) superimposed on bound
structure (gray) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Quality and rank of the
sampled conformers after the docking—
FMD benchmark

Quality—Number of conformers Quality/Rank

Complex ID

Starting docked

models

All -post-docking
ClustENM generated

complex models

Best

conformer

First
acceptable or

better model

1IRA 0*,0**,0***—2 0*,0**,0***—58 — —

1H1V 0*,0**,0***—2 0*,0**,0***—17 — —

1Y64 0*,0**,0***—2 0*,0**,0***—31 — —

1F6M 1*,0**,0***—2 22*,0**,0***—72 */15 */15

1FAK 0*,0**,0***—2 0*,0**,0***—30 - -

1ZLI 1*,1**,0***—2 20*,7**,0***—30 **/1 **/1

1E4K 1*,0**,0***—2 13*,0**,0***—28 */1 */1

1IBR 1*,0**,0***—2 27*,0**,0***—63 */1 */1

1KKL 0*,1**,0***—2 12*,3**,0***—30 **/20 */16

1NPE 1*,1*,0***—2 17*,17**,0***—34 **/15 */1

1DFJ 0*,2**,0***—2 0*,18**,0***—18 **/1 **/1
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defined between the domains, allowing rigid-body motion conforma-

tional changes during docking. The two-body docking was only allowing

for limited conformational changes in the interface. The results indicate

that the ClustENM-HADDOCK approach performs much better than

two-body docking but worse than the multidomain flexible docking

approach of Karaca and Bonvin.20 The latter is especially advantageous

F IGURE 7 Final protein-
protein complexes for the
protein-protein FMD benchmark.
The receptor is shown in green,
the ligand in blue and the
reference bound structure in red.
The quality of the best conformer
(listed in Table 5) together with
its i-RMSD [Å], l-RMSD [Å] and
fnat is given for each protein-
protein complex. In cases where
no acceptable or better model is
present, the quality of best
scoring complex is given [Color
figure can be viewed at
wileyonlinelibrary.com]

TABLE 6 Quality and rank of the
sampled conformers after the docking—
protein-DNA dataset

Quality—Number of conformers Quality/Rank

Complex ID
Starting
docked models

All post-docking
ClusENM generated
complex models

Best
conformer

First acceptable
or better model

1BY4 1*, 1**, 0***—2 59*,15**,0***—75 **/1 **/1

3CRO 1*,1**,0***—2 84*,74**,0***—158 **/1 **/1

1AZP 0*,0**,0***—2 0*,0**,0***—174 — —

1JJ4 1*,1**,0***—2 235*,52**,0***—287 **/2 */1

1A74 2*,0**,0***—2 34*,0**,0***—53 */1 */1

1ZME 0*,0**,0***—2 5*,0**,0***—91 */21 */21
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to effectively incorporate rigid-body hinge motions compared to our

elastic network-based conformational sampling, where two generations

of ClustENM are clearly insufficient for the systems undergoing

extremely large conformational changes (e.g. 1IRA, 1H1V, 1Y64). This

might however depend on the type of motions since, in a previous

study,11 for the adenylate kinase system undergoing conformational

change of 7 Å for example, we were able to observe full closing and

opening of the domains when we applied ClustENM for 5 generations.

3.4.2 | Protein-DNA dataset: ClustENM-HADDOCK
vs unbound-unbound docking using canonical B-DNA
models and unbound-unbound docking using custom-
build B-DNA models

We compared our protein-DNA results with those reported by van

Dijk and Bonvin21 to assess our performance against (i) one round of

unbound docking starting from canonical B-DNA models (“Unbound

flex”) and (ii) two-rounds of unbound docking where the second round

F IGURE 8 Final ClustENM-
HADDOCK models for protein-
DNA complexes (green
protein/orange DNA), aligned on
bound structure (red). The quality
of the best conformer (listed in
Table 6) together with its i-RMSD
[Å], l-RMSD [Å] and fnat is given
for each protein-DNA complex

TABLE 7 Comparison of ClustENM-HADDOCK with previous protocols for FMD benchmark

ClustENM-HADDOCK Flexible Multidomain Docking results20 2-Body Docking results20

Complex Quality/Rank i-RMSD [Å] Fnat Quality/Rank i-RMSD [Å] Fnat Quality/Rank i-RMSD [Å] Fnat

1IRA — 17.5 0.08 */1 3.9 0.55 — 17.5 0.04

1H1V — 9.3 0.21 */11 4.6 0.49 — 11.9 0.08

1Y64 — 11.1 0.45 */5 3.9 0.48 — 10.3 0.07

1F6M */15 5.2 0.36 */1 3.5 0.69 — 14.1 0.00

1FAK — 5.9 0.27 **/37 2.8 0.55 — 11.4 0.01

1ZLI **/1 2.9 0.48 **/1 2.1 0.74 — 14.8 0.02

1E4K */1 3.9 0.48 **/5 2.3 0.70 */1 4.1 0.58

1IBR */1 3.6 0.35 **/1 2.3 0.63 — 9.6 0.11

1KKL **/20 2.1 0.57 **/1 2.2 0.67 */1 3.1 0.56

1NPE **/15 1.4 0.80 **/16 1.2 0.95 **/1 1.7 0.85

1DFJ **/1 1.9 0.69 **/5 2.0 0.68 **/116 1.8 0.63
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uses an ensemble of custom-built bent B-DNA models obtained from

an analysis of the conformations obtained during the first docking

stage (“DNA lib”). The results in Table 8 indicate that ClustENM-

HADDOCK approach performs better than “Unbound flex” in 4/6

cases, the same in 1 case (1AZP) and worse in one case (1ZME) when

the top 10 best scoring structures are considered. Generated accept-

able quality solutions for 1ZME from ClustENM-HADDOCK were not

scored in the top 10 unfortunately (rank of first acceptable model is

21st). The “DNA lib” approach on the other hand was able to obtain

at least acceptable quality models in all cases. One thing to note is

that for both “Unbound flex” and “DNA lib” approaches, a multi-

domain flexible docking method (ie, cutting from the hinge(s) and

using connectivity restraints) was used for the protein in the 1ZME

case, which prevents a one-to-one comparison.

Based on the quality of the modeled complexes generated by our

ClustENM-HADDOCK approach, our pipeline offers a nice alternative

for protein-DNA docking cases.

4 | CONCLUSIONS

We applied our ClustENM-HADDOCK pre- and post-sampling

method to protein-protein and protein-DNA complexes to incorpo-

rate dynamics and simulate conformational selection and induced-fit

effects upon binding. The method does not use any prior knowledge

on the direction and extent of the conformational changes. The extent

of the applied deformation is estimated from its energetical costs,

inspired from mechanical tensile testing on material. Our pre-

sampling/docking/post-sampling approach was able to produce

acceptable to medium quality models in 7 out of 11 cases for the

protein-protein complexes and 5 out of 6 for the protein-DNA

complexes. We observed that the conformational selection (“pre-

sampling” and also docking) has the highest impact on the quality of

the final models especially in the case of protein-protein complexes.

For protein-DNA complexes, in contrast, the induced-fit stage of the

pipeline (post-sampling) significantly improves the quality of the final

models.

Comparison of our method with previous studies showed that the

previously proposed flexible multidomain docking remains the best

performing approach, provided that reliable hinge region information

is available. In the absence of such information, our approach could

however be a good alternative to incorporate flexibility. As for the

protein-DNA cases, our ClustENM-HADDOCK approach does per-

form better than standard flexible docking and shows a comparable

performance with a two-stage docking approach in which a library of

pre-bent DNA conformation is used in a second docking stage. This

makes ClustENM-HADDOCK a suitable alternative for modeling con-

formational changes in protein-DNA binding.

We also observed that 2-generations of ClustENM for pre-

sampling was not sufficient in the cases of large conformational

changes (eg, 1IRA, 1H1V, 1Y64). For these cases, the number of

ClustENM generations could be increased further to obtain large

domain motions. Additionally, here we considered only the best two

scoring clusters from the docking as starting points for post-sam-

pling. Instead of two, we could select more clusters from docking

and apply post-sampling. This would have increased our chance of

success for the 1AZP case for example (although near native poses

were generated during the docking, these did not end up in the top

2 clusters).
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DATA ACCESSIBILITY

The information (AIRs) used to drive the docking together with

i-RMSD, l-RMSD and fnat figures for the protein-protein, protein-

DNA systems in post-sampling are available as supplementary mate-

rial (Data S1). All models generated for the various complexes

together with their statistics are available for download from the

SBGrid data repository36 (https://data.sbgrid.org/labs/32/, https://

doi.org/10.15785/SBGRID/707).

TABLE 8 Comparison of the performance of ClustENM-HADDOCK with the previous protocols by van Dijk and Bonvin21 for the protein-
DNA dataset

ClustENM-HADDOCK Unbound flex21 DNA lib21

Complex Quality i-RMSD [Å] Fnat Quality i-RMSD [Å] Fnat Quality i-RMSD [Å] Fnat

1BY4 7*,3**,0*** 4.55 (0.70) 0.47 (0.05) 5*,0**,0*** 5.87 (1.71) 0.17 (0.05) 4*,3**,0*** 4.91 (2.32) 0.27 (0.09)

3CRO 8*,2**,0*** 3.19 (0.60) 0.50 (0.01) 6*,2**,0*** 3.29 (0.68) 0.27 (0.07) 3*,7**,0*** 2.62 (0.73) 0.40 (0.06)

1AZP 0*,0**,0*** 6.25 (0.52) 0.37 (0.06) 0*,0**,0*** 6.68 (2.26) 0.04 (0.04) 5*,0**,0*** 4.00 (0.45) 0.10 (0.04)

1JJ4 5*,5**,0*** 2.39 (0.18) 0.51 (0.03) 6*,0**,0*** 4.55 (0.58) 0.16 (0.07) 9*,1**,0*** 3.62 (0.38) 0.21 (0.07)

1A74 10*,0**,0*** 3.81 (0.40) 0.45 (0.02) 8*,0**,0*** 6.30 (0.46) 0.14 (0.04) 9*,1**,0*** 3.37 (0.37) 0.24 (0.05)

1ZME 0*,0**,0*** 8.08 (0.70) 0.50 (0.01) 4*,0**,0*** 5.29 (0.59) 0.12 (0.06) 8*,0**,0*** 4.63 (0.80) 0.15 (0.04)

Note: Values between parenthesis correspond to standard deviations.
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