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Abstract: Epidemiological studies identified raw cow’s milk consumption as an important
environmental exposure that prevents allergic diseases. In the present study, we investigated
whether raw cow’s milk has the capacity to induce tolerance to an unrelated, non-milk, food allergen.
Histone acetylation of T cell genes was investigated to assess potential epigenetic regulation. Female
C3H/HeOuJ mice were sensitized and challenged to ovalbumin. Prior to sensitization, the mice were
treated with raw milk, processed milk, or phosphate-buffered saline for eight days. Allergic symptoms
were assessed after challenge and histone modifications in T cell-related genes of splenocyte-derived
CD4+ T cells and the mesenteric lymph nodes were analyzed after milk exposure and after challenge.
Unlike processed milk, raw milk decreased allergic symptoms. After raw milk exposure, histone
acetylation of Th1-, Th2-, and regulatory T cell-related genes of splenocyte-derived CD4+ T cells was
higher than after processed milk exposure. After allergy induction, this general immune stimulation
was resolved and histone acetylation of Th2 genes was lower when compared to processed milk.
Raw milk reduces allergic symptoms to an unrelated, non-milk, food allergen in a murine model for
food allergy. The activation of T cell-related genes could be responsible for the observed tolerance
induction, which suggested that epigenetic modifications contribute to the allergy-protective effect of
raw milk.
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1. Introduction

Allergic diseases are a growing public health concern. In the previous decades, their prevalence
has increased to such an extent that, nowadays, 20 to 30% of the world’s population is suffering from
some form of allergic disease [1]. With a severe impact on quality of life and extensive healthcare costs,
the vast prevalence of allergic diseases has major socio-economic consequences [2]. Unfortunately,
to date, there is neither a cure nor an effective and safe treatment. Allergy management focuses on
allergen avoidance and symptomatic treatment with the self-administration of epinephrine in the case
of systemic anaphylaxis upon accidental exposure.
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Even though there are no effective preventive approaches for allergic diseases, there seems to
be a natural solution. Several epidemiological studies have shown that children growing up on a
farm have a reduced risk of developing asthma and allergies compared to children living in the same
rural area but not growing up on a farm [3–7]. This protective ‘farm effect’ was demonstrated in
many populations and it persisted into adult life [8]. Farm exposures that were associated with this
allergy-protective effect appeared to be contact with livestock and animal feed, exposure to stables and
barns, and consumption of raw, unprocessed, cow’s milk [9–11]. Especially, the consumption of raw
cow’s milk is of importance, since its protective effect was found to be independent of farm status,
giving it the potential to confer protection for a general, non-farming, population [9,10,12,13]. Recently,
these epidemiological findings were confirmed by showing a causal relationship between raw cow’s
milk consumption and the prevention of allergic asthma in a murine model [14].

How raw cow’s milk can be allergy protective is currently still unclear. Neither the protective raw
milk constituents nor the underlying mechanisms are known. Heat-sensitive milk components, like
immunoglobulins, lactoferrin, alkaline phosphatase, TGF-β, microRNAs, etc., are likely candidates,
since epidemiological as well as preclinical studies have shown that milk processing, and particularly
heating, abolishes the allergy-protective effect of raw cow’s milk consumption [13–16]. However,
the actual bioactive component(s) involved remain to be elucidated. Regarding the underlying
mechanisms, several of the bioactive components that are present in raw milk are theoretically able to
create a tolerogenic environment by, for example, promoting regulatory T cell development, enhancing
epithelial barrier function and modulating the gut microbiome, however, none of these effects were
actually investigated after drinking raw milk [17,18].

An emerging field is the contribution of epigenetic modifications in regulating the development
of allergic diseases. Allergic diseases are the result of a complex interplay between the genes and
environmental factors. These environmental factors can influence gene expression via epigenetic
mechanisms, such as DNA methylation and histone modifications [19,20]. Epigenetic modifications
are reversible and they affect the accessibility of the DNA to transcription enzymes, thereby regulating
gene expression [19]. Environmental factors and components recently gaining interest in this regard
are microbes, obesity, stress, and tobacco smoke, but it has also been suggested that nutrients might
exert their effects through epigenetic mechanisms [19,21]. This indicates that epigenetic regulation
might also be involved in the allergy-protective effect of raw cow’s milk consumption.

Before certified raw cow’s milk (raw cow’s milk obtained from a farm that is legally allowed to
sell raw milk [22]) can become part of a preventive approach for allergic diseases, compelling evidence
that thoroughly investigates components and mechanisms that are involved is needed. As a first step,
the many epidemiological studies showing an allergy-protective effect of raw cow’s milk consumption
need to be strengthened by causal evidence. In a previous study, we were able to show causality in a
murine house dust mite-induced asthma model [14]. With the current research, we aimed to assess
whether raw cow’s milk has the capacity to induce tolerance to an unrelated, non-milk, food allergen.
Besides, we studied the contribution of epigenetic regulation by assessing histone acetylation of T
cell-related genes, as a potential mechanism underlying the protective effects.

2. Materials and Methods

2.1. Animals

Specific pathogen-free, three- to five-week-old, female C3H/HeOuJ mice were purchased (Charles
River Laboratories, Sulzfeld, Germany) and were randomly allocated to the control or experimental
groups. The mice were housed in filter-topped makrolon cages (one cage/group, n = 6–8/cage) with
standard chip bedding, Kleenex tissues, and a plastic shelter on a 12 h light/dark cycle with unlimited
access to food (‘Rat and Mouse Breeder and Grower Expanded’; Special Diet Services, Witham, UK) and
water at the animal facility of Utrecht University (Utrecht, The Netherlands). All animal procedures
were approved by the Ethical Committee for Animal Research of the Utrecht University and were
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complied with the European Directive on the protection of animals used for scientific purposes (DEC
2014.II.12.107 & AVD108002015346).

2.2. Experimental Design—Tolerance Induction, Sensitization and Challenges

After an acclimatization period of one week, the mice were orally treated (i.e., intragastrically (i.g.)
by using a blunt needle) with 0.5 mL certified raw, unprocessed, cow’s milk (Hof Dannwisch, Horst,
Germany), processed shop milk (full fat milk, 3.5%; EDEKA, Germany), or phosphate-buffered saline
(PBS; as a control) for eight consecutive days (days −9 to −2). Following this oral tolerance induction
period, mice were sensitized i.g. once a week for five weeks to the hen’s egg protein ovalbumin (OVA;
20 mg/0.5 mL PBS; grade V; Sigma-Aldrich, Zwijndrecht, The Netherlands) while using 10 µg cholera
toxin (CT; List Biological Laboratories, Campbell, CA, USA) as an adjuvant (days 0, 7, 14, 21, 28;
n = 8/group). Sham-sensitized control mice (n = 6) received CT alone (10 µg/0.5 mL PBS). Five days
after the last sensitization (day 33), all of the mice were intradermally (i.d.) challenged in both ear
pinnae with 10 µg OVA in 20 µL PBS to determine acute allergic symptoms. Mice were subsequently
i.g. challenged (7 h after the i.d. challenge) with 50 mg OVA in 0.5 mL PBS. Sixteen hours later (day 34),
blood samples were taken via cheek puncture and mice were killed by cervical dislocation. The spleens
were then collected for ex vivo analysis. Additional groups of mice (n = 6/group) were used in a
follow-up experiment to assess the involvement of epigenetic regulation. These mice were killed by
cervical dislocation either one day after the oral tolerance induction period (day −1) or one day after
both challenges (day 34). Figure 1 shows a schematic representation of the experimental timeline.
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Figure 1. Schematic representation of the experimental timeline. For epigenetic measurements,
additional groups of mice were killed after the tolerance induction period (day −1) and after both
challenges (day 34; as indicated by †). PBS, phosphate-buffered saline; OVA, ovalbumin; CT, cholera
toxin; i.d., intradermal; i.g., intragastric.

2.3. Assessment of the Acute Allergic Response

The acute allergic skin response, anaphylactic shock symptoms, and body temperature were
evaluated by a researcher blinded to treatment upon i.d. challenge with OVA (10 µg OVA/20 µL PBS) in
the ear pinnae of both ears to determine the severity of the acute allergic symptoms. The acute allergic
skin response was measured as ∆ ear swelling (µm) by subtracting the mean ear thickness before i.d.
challenge from the mean ear thickness 1 h after i.d. challenge. Ear thickness at both of the timepoints
was measured in duplicate for each ear using a digital micrometer (Mitutoyo, Veenendaal, The
Netherlands). The mice were anesthetized using inhalation of isoflurane to perform the i.d. challenge
as well as the ear measurements (Abbott, Breda, The Netherlands). The severity of anaphylactic shock
symptoms was determined 30 min after i.d. challenge by using a previously described, validated,
scoring table [23]. Body temperature was also measured 30 min after i.d. challenge (using a rectal
thermometer) to monitor the anaphylactic shock-induced drop in body temperature.
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2.4. Detection of OVA-Specific IgE and mMCP-1 in Serum

Blood was collected via cheek puncture 16 h after i.g. challenge, centrifuged at 10,000 rpm for
10 min, and the serum was stored at −20 ◦C until the analysis of OVA-specific IgE and mouse mast cell
protease-1 (mMCP-1) levels by means of ELISA. OVA-specific IgE titers were detected, as described
previously [24]. Levels are expressed in arbitrary units (AU), which were calculated based on a titration
curve of pooled sera serving as an internal standard. The concentrations of mMCP-1 were determined
while using a mMCP-1 Ready-SET-Go!® ELISA (eBioscience, Breda, The Netherlands), according to
the manufacturer’s protocol.

2.5. Ex Vivo OVA-Specific Stimulation of Splenocytes for Cytokine Measurements

Spleens were collected and homogenized while using a syringe and a 70 µm nylon cell strainer.
The obtained single cell splenocyte suspensions were incubated with lysis buffer (8.3 g NH4Cl,
1 g KHC3O and 37.2 mg EDTA dissolved in 1 L demi water, filter sterilized) to remove the red
blood cells and then resuspended in RPMI 1640 medium (Lonza, Verviers, Belgium), supplemented
with 10% heat-inactivated fetal bovine serum (FBS; Bodinco, Alkmaar, The Netherlands), penicillin
(100 U/mL)/streptomycin (100 µg/mL; Sigma-Aldrich), and β-mercaptoethanol (20 µM; Thermo Fisher
Scientific, Paisley, Scotland). The splenocytes (8 × 105 cells/well) were cultured in U-bottom culture
plates (Greiner, Frickenhausen, Germany), either with medium or with 50 µg/mL OVA for four days at
37 ◦C, 5% CO2. The supernatants were collected and stored at −20 ◦C until cytokine analysis. The
concentrations of IL-5 and IL-13 were measured by means of ELISA, as described elsewhere [25].
The concentrations of IFNγ, IL-10, and IL-17 were measured using a Cytometric Bead Array (CBA)
Mouse Th1/Th2/Th17 Cytokine Kit (BD Biosciences, Alphen aan de Rijn, The Netherlands), according
to the manufacturer’s instructions. The results were obtained using FACS Canto II and analyzed with
FCAP Array Software, version 3.0 (BD Biosciences, Alphen aan de Rijn, The Netherlands). Cytokine
concentrations measured after medium stimulation were subtracted from cytokine concentrations
measured after OVA stimulation to determine the OVA-specific cytokine response. A zero was entered
when this resulted in a negative value.

2.6. Chromatin Immunoprecipitation to Determine Histone Acetylation Status in Splenocyte-Derived CD4+ T
Cells and Mesenteric Lymph Nodes (MLN)

At day −1 (after the tolerance induction period) and at day 34 (after both challenges), CD4+ T
cells were isolated from splenocytes of raw milk- and shop milk-treated mice using MACS, according
to the manufacturer’s instructions (Miltenyi Biotec, Leiden, The Netherlands).

Isolated CD4+ T cells were frozen with 15% dimethyl sulphoxide (DMSO; Sigma-Aldrich) in
heat-inactivated FBS (Bodinco) and then stored in liquid nitrogen until further analysis. For the MLN,
the entire tissue, containing a full population of the MLN cells, was frozen in 15% DMSO-FBS and stored
in liquid nitrogen until further analysis. Detailed methodology of chromatin immunoprecipitation,
followed by real-time polymerase chain reaction (ChIP-qPCR), along with its thoughtful validations,
were previously described in detail [26]. In brief, the MLN tissues were first smashed through a
mesh, washed with 1 mL of PBS (Sigma-Aldrich), and centrifuged at 8000 rpm for 5 min. at 4 ◦C. The
pellet was then resuspended in 1 mL of warm PBS. The cross-linking of the cells was performed by
incubating the cells with paraformaldehyde (PFA; Carl Roth GmbH, Karlsruhe, Germany) to a final
concentration of 1% for 8 min at room temperature. The reaction was quenched by adding glycine to a
final concentration of 125 mM (Carl Roth GmbH). After centrifugation at 8000 rpm for 5 min at 4 ◦C
and washing with cold PBS, the samples were subjected to 20 min of incubation with lysis buffer I
(Table S1) at 4 ◦C. Lysis buffer II (Table S1) was added with 1% sodium dodecyl sulfate (SDS; Carl Roth
GmbH) for 5 min at 4 ◦C. Shearing of the DNA-protein complexes with the Bioruptor (Diagenode,
Liège, Belgium) was conducted afterwards while using 30 cycles (30 s on, 30 s off) for CD4+ T cells and
40 cycles (40 s on, 40 s off) for MLN cells. Finally, the interfering debris was removed by centrifugation
at 15,000 rpm for 15 min at 4 ◦C. Sepharose beads (GE Healthcare Bio-Sciences, Uppsala, Sweden) were
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first washed with lysis buffer II with 0.1% SDS. Following centrifugation at 3000 rpm for 2 min at room
temperature, the beads were blocked with 1 mg/mL bovine serum albumin (BSA; Sigma-Aldrich) and
40 µg/mL salmon sperm DNA (Sigma-Aldrich) overnight at 4 ◦C. After washing the prepared beads
with lysis buffer II with 0.1% SDS and centrifugation at 3000 rpm for 5 min at 4 ◦C, 30 µL of beads slurry
per immunoprecipitation (IP) per number of samples were stored at 4 ◦C for the next day. To perform
chromatin preclearing, 20 µL of beads slurry per antibody were added to the previously cross-linked
chromatin samples, incubated with rotation for 2 h at 4 ◦C, and then centrifuged at 8000 rpm for 5 min
at 4 ◦C. To the rest of the beads, 500 µL of lysis buffer II with 0.1% SDS and 1 µg of unspecific IgG
(Abcam, Cambridge, UK) per sample were added and then incubated with rotation for 1 h at 4 ◦C.
After washing three times with lysis buffer II with 0.1% SDS, 20 µL of the IgG-coupled beads were
added to the precleared chromatin, incubated with rotation for 2 h at 4 ◦C, and then centrifuged at
8000 rpm for 5 min at 4 ◦C. Ten percent of the resulting supernatant containing chromatin were stored
as the input control. The rest was divided into equal parts, to which 4 µg of either H3 or H4 (Millipore,
Darmstadt, Germany) or 0.5 µg of IgG (Abcam) were added. The samples were then incubated at 4 ◦C
overnight. Thirty microliter of the blocked beads slurry kept aside before, were added to each IP, and
incubated for 2 h at 4 ◦C. After centrifugation at 8000 rpm for 5 min at 4 ◦C, the beads were washed
twice with wash buffer I, twice with lysis buffer II, three times with wash buffer III (Table S1), and then
twice with TE buffer with pH 8.0 (Table S1). The elution of the chromatin was performed by adding
500 µL of elution buffer (Table S1) to the sepharose beads, vortexing and incubating with rotation for
30 min After centrifugation at 8000 rpm for 2 min at 4 ◦C, the supernatants containing each IP, as well
as the input controls, were mixed with 20 µL of 5 M NaCl, 10 µL of 0.5 M EDTA (Sigma-Aldrich),
20 µL of 1 M Tris-HCl (pH 7.2), 1 µL of Protease K (20 mg/mL; Sigma-Aldrich), and 1 µL of RNAse
A (10 mg/mL; Sigma-Aldrich) per sample. All of the samples were incubated at 55 ◦C for 3 h and
then at 65 ◦C overnight. Afterwards, DNA was purified while using the QIAquick PCR purification
kit (Qiagen, Hilden, Germany). The purified DNA was subjected to qPCR that was performed with
specific mouse gene promoter primers (Table S2) and Rotor-Gene SYBR Green PCR Kit (Qiagen),
performed on Rotor-Gene Q (Qiagen). We were unfortunately unable to successfully amplify RORγ
from H4-immunoprecipitated MLN DNA despite of two rounds of repetition, most probably due to
the presence of a specific inhibition of this PCR in this batch of the samples. Percent enrichment to the
input was calculated using the following formula: % enrichment = 100 × 2[(CT input−3.3)−CT sample].
Subsequently, the % enrichment of the isotype (IgG) control was subtracted from % enrichments that
were obtained for specific antibodies. For final normalization, to further eliminate the variation caused
by sample handling, such value obtained for each specific gene was divided by that of the positive
control gene ribosomal protein L32 (RPL32) [26,27].

2.7. Statistical Analysis

Experimental results are expressed as mean ± standard error of the mean or as individual data
points or box-and-whisker Tukey plots when the data were not normally distributed and analyzed using
GraphPad Prism software (version 7.03, GraphPad Software, San Diego, CA, USA). Differences between
pre-selected groups were statistically determined using one-way ANOVA, followed by Bonferroni’s
multiple comparisons test. Square root transformation was applied to mMCP-1 concentrations prior
to ANOVA analysis. Anaphylactic shock scores and OVA-specific IgE levels were analyzed using
the Kruskal–Wallis test for non-parametric data, followed by Dunn’s multiple comparisons test for
pre-selected groups. For histone acetylation and cytokine concentrations, differences between groups
were statistically determined with an unpaired two-tailed Student’s t-test. Welch’s correction was used
when the group variances were not equal. When data did not obtain normality, a Mann–Whitney test
was performed. The results were considered to be statistically significant when p < 0.05.
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3. Results

3.1. Raw Milk Reduces OVA-Induced Allergic Symptoms

Mice were orally treated for eight consecutive days with raw, unprocessed, cow’s milk before
being sensitized and challenged with OVA to assess whether raw cow’s milk has the capacity to
induce tolerance to an unrelated, non-milk, food allergen. Upon i.d. challenge with OVA, acute
allergic symptoms were, as expected, increased in OVA-sensitized allergic mice when compared to
PBS-sensitized control mice. An increased acute allergic skin response, increased anaphylactic shock
symptoms, and an anaphylactic shock-induced drop in body temperature illustrated this (Figure 2A–C).
Treating mice with raw milk prior to OVA-sensitization reduced acute allergic symptoms when
compared to PBS-treated allergic mice. The allergic skin response and anaphylactic shock symptoms
were decreased and the body temperature of these mice remained high (Figure 2A–C). Mice were
also treated with a processed, shop, milk to determine whether this allergy-suppressive effect is
abolished upon milk processing. Treatment with this shop milk did not confer protection against
allergic symptoms (Figure 2A–C).
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Figure 2. Reduced acute allergic symptoms upon ovalbumin (OVA) challenge in mice treated with
raw milk. (A) The acute allergic skin response measured as ∆ ear swelling 1 h after intradermal
(i.d.) challenge. (B) Anaphylactic shock scores and (C) body temperature determined 30 min after i.d.
challenge. Data are presented as mean ± standard error of the mean for the acute allergic skin response
and body temperature and as individual data points for anaphylactic shock scores, n = 6 in PBS group
and n = 8 in all other groups. * p < 0.05, *** p < 0.001, **** p < 0.0001, as analyzed with one-way ANOVA
followed by Bonferroni’s multiple comparisons test for pre-selected groups (A,C) or Kruskal–Wallis
test for non-parametric data followed by Dunn’s multiple comparisons test for pre-selected groups (B).
PBS, phosphate-buffered saline; OVA, ovalbumin; raw, raw cow’s milk; shop, shop milk.

3.2. OVA-Specific IgE Levels and Mucosal Mast Cell Degranulation Are Not Affected by Raw Milk Exposure

The effect of raw and shop milk on serum OVA-IgE levels was investigated since food allergens
mainly induce type I hypersensitivity reactions, which are characterized by the production of
allergen-specific IgE antibodies. Serum OVA-IgE levels were elevated in OVA-sensitized mice
when compared to PBS-sensitized mice (Figure 3A). Even though OVA-IgE levels were not significantly
affected by exposure to both milk types, they did follow a similar pattern as the acute allergic symptoms,
with low OVA-IgE levels in the raw milk group and higher levels in the shop milk group (Figure 3A).
In addition, serum mMCP-1 concentration, as a marker for mucosal mast cell degranulation, was
measured. mMCP-1 concentrations were increased in the OVA-sensitized mice when compared to
PBS-sensitized mice, but were unaffected by treatment with raw or shop milk (Figure 3B).



Nutrients 2019, 11, 1721 7 of 15

Nutrients 2019, 11, 1721  7  of  15 

 

 

Figure 3. Raw milk treatment did not affect ovalbumin (OVA)‐specific IgE levels and mouse mast cell 

protease‐1  (mMCP‐1) concentrations.  (A) OVA‐specific  IgE  levels and  (B) mMCP‐1 concentrations 

measured in serum 16 h after intragastric challenge. Data are expressed as box‐and‐whisker Tukey 

plot  (in which outliers are shown as separately plotted points)  for OVA‐specific  IgE  levels and as 

mean ± standard error of the mean for mMCP‐1 concentrations, n = 6 in PBS group and n = 8 in all 

other groups.  * p < 0.05,  ** p < 0.01 as analyzed with Kruskal–Wallis  test  for non‐parametric data 

followed  by Dunn’s multiple  comparisons  test  for  pre‐selected  groups  (A)  or  one‐way ANOVA 

followed  by Bonferroni’s multiple  comparisons  test  for pre‐selected  groups  (B). PBS,  phosphate‐

buffered saline; OVA, ovalbumin; AU, arbitrary units; raw, raw cow’s milk; shop, shop milk; mMCP‐

1; mucosal mast cell protease‐1. 

3.3. Raw Milk Treatment Initially Increases Histone Acetylation of Several T Cell Subset Genes, While After 

Both Challenges it Specifically Reduces Th2‐Related Gene Acetylation 

Environmental factors might interact with genes that are involved in allergy development via 

epigenetic regulation. Histone acetylation (associated with higher gene expression) at selected Th1‐, 

Th2‐,  Th17‐,  and  regulatory  T  cell  (Treg)‐specific  genes  of  splenocyte‐derived CD4+  T  cells was 

assessed to determine whether epigenetic modifications contribute to the allergy‐protective effect of 

raw cow’s milk consumption. Surprisingly, histone H4 acetylation of Th2‐related genes (GATA3, IL‐

4, IL‐5, and IL‐13) was higher after eight days of raw milk exposure when compared to shop milk 

exposure (day −1; Figure 4A). Raw milk exposure also increased the histone acetylation of T‐bet and 

tended  to  increase  the  histone  acetylation  of  FoxP3  (day  −1), which  indicated  a  type  of  general 

immune stimulation (Figure 4D). After both challenges (day 34),  this general immune stimulation 

that was induced by raw milk was resolved and the histone acetylation of Th2 genes was lower as 

compared to shop milk (Figures 4B,E). Furthermore, the histone acetylation pattern of Th2‐related 

genes is visualized by the raw milk/shop milk ratio, which shifted from in favor of raw milk after 

tolerance to in favor of shop milk after challenge (Figure 4C). A similar pattern was observed for IL‐

17, whereas the raw milk/shop milk ratio for Th1‐ and Treg‐specific genes remained in favor of raw 

milk  throughout  the  experiment  (Figure  4F).  For  histone  H3,  the  acetylation  patterns  were 

comparable (Figure S1). 

Figure 3. Raw milk treatment did not affect ovalbumin (OVA)-specific IgE levels and mouse mast cell
protease-1 (mMCP-1) concentrations. (A) OVA-specific IgE levels and (B) mMCP-1 concentrations
measured in serum 16 h after intragastric challenge. Data are expressed as box-and-whisker Tukey
plot (in which outliers are shown as separately plotted points) for OVA-specific IgE levels and as mean
± standard error of the mean for mMCP-1 concentrations, n = 6 in PBS group and n = 8 in all other
groups. * p < 0.05, ** p < 0.01 as analyzed with Kruskal–Wallis test for non-parametric data followed
by Dunn’s multiple comparisons test for pre-selected groups (A) or one-way ANOVA followed by
Bonferroni’s multiple comparisons test for pre-selected groups (B). PBS, phosphate-buffered saline;
OVA, ovalbumin; AU, arbitrary units; raw, raw cow’s milk; shop, shop milk; mMCP-1; mucosal mast
cell protease-1.

3.3. Raw Milk Treatment Initially Increases Histone Acetylation of Several T Cell Subset Genes, While after
Both Challenges It Specifically Reduces Th2-Related Gene Acetylation

Environmental factors might interact with genes that are involved in allergy development via
epigenetic regulation. Histone acetylation (associated with higher gene expression) at selected Th1-,
Th2-, Th17-, and regulatory T cell (Treg)-specific genes of splenocyte-derived CD4+ T cells was assessed
to determine whether epigenetic modifications contribute to the allergy-protective effect of raw cow’s
milk consumption. Surprisingly, histone H4 acetylation of Th2-related genes (GATA3, IL-4, IL-5, and
IL-13) was higher after eight days of raw milk exposure when compared to shop milk exposure (day −1;
Figure 4A). Raw milk exposure also increased the histone acetylation of T-bet and tended to increase
the histone acetylation of FoxP3 (day −1), which indicated a type of general immune stimulation
(Figure 4D). After both challenges (day 34), this general immune stimulation that was induced by
raw milk was resolved and the histone acetylation of Th2 genes was lower as compared to shop milk
(Figure 4B,E). Furthermore, the histone acetylation pattern of Th2-related genes is visualized by the
raw milk/shop milk ratio, which shifted from in favor of raw milk after tolerance to in favor of shop
milk after challenge (Figure 4C). A similar pattern was observed for IL-17, whereas the raw milk/shop
milk ratio for Th1- and Treg-specific genes remained in favor of raw milk throughout the experiment
(Figure 4F). For histone H3, the acetylation patterns were comparable (Figure S1).
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Figure 4. Increased histone acetylation of several T cell subset genes directly after raw milk exposure,
while only Th2-related gene acetylation was reduced in raw milk-treated mice after both challenges. (A)
Histone H4 acetylation at Th2 loci after the tolerance induction period (day −1), (B) after both challenges
(day 34) and (C) the raw milk/shop milk ratio. (D) Histone H4 acetylation at Th1/Treg/Th17 loci after the
tolerance induction period (day −1), (E) after both challenges (day 34) and (F) the raw milk/shop milk
ratio. Histone H4 acetylation status was determined by means of chromatin immunoprecipitation in
CD4+ T cells derived from splenocytes of raw milk and shop milk-treated mice. Results are expressed
as relative enrichment after normalization to ribosomal protein L32 (RPL32) as mean ± standard error
of the mean, n = 6/group. * p < 0.05 as analyzed with an unpaired two-tailed Student’s t-test. A
Mann–Whitney test was used for T-bet, IFNγ, FoxP3, RORγ (after tolerance), T-bet, IL-17 (after model),
and T-bet, IFNγ, RORγ (ratio raw/shop) since data did not obtain normality. Raw, raw cow’s milk;
shop, shop milk; AT, after tolerance; AC, after challenge.

3.4. Systemically Observed Acetylation Profile of Th2-Related Genes Induced by Raw Milk also Visible Locally

MLN were analyzed to determine whether the systemically observed alterations in histone H4
acetylation of T cell genes induced by raw milk are also visible locally. Despite being less strong,
the shift in acetylation of Th2-related genes was also evident in the MLN (Figure 5A–C). Raw milk
exposure for eight days led to higher acetylation of Th2-related cytokine genes (IL-4, IL-5, and IL-13)
when compared to shop milk (day −1), while a lower acetylation of these genes was observed after both
challenges (day 34; Figure 5A,B). For GATA3, histone acetylation was lower in the raw milk group after
tolerance, as well as after the challenges (Figure 5A,B). The general immune stimulation, as observed
after tolerance in CD4+ T cells derived from the spleen of raw milk-treated mice, was not observed in
the MLN. No significant differences were found between raw milk and shop milk in histone acetylation
levels at Th1, Th17, and Treg loci (Figure 5D). After the challenges, histone acetylation of T-bet was
increased in shop milk-treated mice when compared to raw milk-treated mice (Figure 5E), which
resulted in a shift in the raw milk/shop milk ratio towards more favorable in shop milk after challenge
(Figure 5F). A similar shift was observed for IL-10 (Figure 5F). Histone H3 acetylation was also assessed
for MLN, but no significant differences between the groups were observed (Figure S2).
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Figure 5. Raw milk-induced acetylation pattern of Th2-related genes observed in splenocyte-derived
CD4+ T cells also visible locally in mesenteric lymph nodes (MLN). (A) Histone H4 acetylation at Th2
loci after the tolerance induction period (day −1), (B) after both challenges (day 34) and (C) the raw
milk/shop milk ratio. (D) Histone H4 acetylation at Th1/Treg/Th17 loci after the tolerance induction
period (day −1), (E) after both challenges (day 34) and (F) the raw milk/shop milk ratio. Histone H4
acetylation status was determined by means of chromatin immunoprecipitation in MLN of raw milk-
and shop milk-treated mice. The results are expressed as relative enrichment after normalization
to ribosomal protein L32 (RPL32) as mean ± standard error of the mean, n = 4–6/group. * p < 0.05,
** p < 0.01 as analyzed with an unpaired two-tailed Student’s t-test. A Mann–Whitney test was used
for GATA3, IL-10 (after tolerance), IL-10 (after model) and GATA3 (ratio raw/shop) since data did not
obtain normality. Raw, raw cow’s milk; shop, shop milk; AT, after tolerance; AC, after challenge; MLN;
mesenteric lymph nodes.

3.5. Cytokine Production by OVA-Stimulated Splenocytes Corresponds to Histone Acetylation

Cytokine production upon ex vivo stimulation of splenocytes with OVA was measured since
differences in histone acetylation levels of cytokine genes do not necessarily result in differences in
actual cytokine production. To be able to look at the OVA-specific cytokine response, the concentrations
were only measured after both challenges (day 34). Concentrations were low for the Th2-related
cytokines IL-5 and IL-13 (Figure 6A,B). However, the tendency towards a reduced IL-5 production
in raw milk-treated mice is of interest when compared to shop milk-treated mice (Figure 6A), which
corresponds to the lower IL-5 acetylation in splenocyte-derived CD4+ T cells that were observed in
histones H4 and H3 (Figure 4B and Figure S1B). IFNγ and IL-17 concentrations also correspond with
the observed acetylation patterns, although no significant difference between the milk groups was
observed (Figures 4E and 6C,E). In the case of IL-10, the cytokine concentration did not resemble
gene acetylation, since the reduced IL-10 production in raw milk-treated mice was not observed in
IL-10 gene acetylation (Figures 4E and 6D). Ex vivo stimulation of MLN with OVA did not result in
measurable cytokine production.
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Figure 6. Cytokine concentrations produced by ovalbumin (OVA)-stimulated splenocytes corresponded
with observed histone acetylation. (A) IL-5, (B) IL-13, (C), IFNγ, (D) IL-10 and (E) IL-17 concentrations
measured in supernatant after ex vivo stimulation of splenocytes with OVA for four days (37 ◦C, 5%
CO2). Data are presented as box-and-whisker Tukey plot (in which outliers are shown as separately
plotted points) for IL-5 and IL-13 concentrations and as mean ± standard error of the mean for IFNγ,
IL-10 and IL-17 concentrations after subtracting baseline cytokine levels, n = 8/group. * p < 0.05
as analyzed with a Mann-Whitney test (A,B) or an unpaired two-tailed Student’s t-test (C–E). OVA,
ovalbumin; raw, raw cow’s milk; shop, shop milk.

4. Discussion

After showing causality in a murine house dust mite-induced asthma model [14], the present study
demonstrates that raw, unprocessed, cow’s milk is also protective in a murine model for food allergy.
Raw milk induced oral tolerance to a non-milk, food allergen, by reducing acute allergic symptoms
after intradermal challenge with OVA. This protective effect was not observed when a processed, shop
milk was used to treat the mice. Looking at epigenetic modifications, raw milk exposure for eight
days prior to sensitization led to higher histone acetylation of Th1-, Th2-, and Treg-related genes of
splenocyte-derived CD4+ T cells when compared to shop milk exposure. At the end of the study,
after the induction of allergic symptoms, this general immune stimulation was resolved and histone
acetylation of Th2-related genes was lower when compared to shop milk. A similar, but less strong,
pattern was locally visible, in the MLN. These results suggest that epigenetic regulation plays a role in
the allergy-protective effect of raw milk.

Food allergies are thought to occur due to the failure to develop or the loss of oral tolerance [28].
Oral tolerance is the phenomenon of local and systemic immune hyporesponsiveness to ingested food
proteins [29]. Actively inducing or restoring oral tolerance is an interesting approach for preventing or
treating food allergies. For this, research has mainly focused on specific immunomodulation while
using the allergen. Both inducing oral tolerance by allergen exposure in early life and restoring oral
tolerance via various types of allergen-specific immunotherapy are frequent topics of immunological
research [30,31]. However, using the intact allergen for oral tolerance induction might also trigger
sensitization or allergic symptoms in high-risk patients [32,33].

Instead of specific immunomodulation, generic immunomodulation does not use the allergen to
induce oral tolerance, preventing the risk of severe side effects. Generic immunomodulation is based
on using beneficial immunomodulatory components that can create an environment that favors oral
tolerance induction [34]. Mainly dietary components, such as, probiotics, prebiotics, synbiotics, and
n-3 polyunsaturated fatty acids (PUFAs) have proven to be beneficial in this respect [35].

Several epidemiological studies already suggested that raw, unprocessed, cow’s milk may have the
capacity to prevent allergic diseases by inducing tolerance via generic immunomodulation. Raw cow’s
milk consumption was, for example, shown to be inversely associated with asthma, which indicated
protection in the absence of the allergen [13]. In a murine house dust mite-induced asthma model, we
confirmed these findings by showing a causal relationship between raw cow’s milk consumption and
the prevention of allergic asthma [14]. In the current study, raw cow’s milk induced tolerance to OVA,
an unrelated, non-milk, food allergen, which further substantiates this hypothesis.

Strikingly, processed, shop milk was not able to induce tolerance to OVA. This confirms earlier
findings, which showed that milk processing abolishes the allergy-protective effect of raw milk [13–16].
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The milk processing chain consists of various steps to preserve milk along the supply chain. Each of
these steps (e.g., machine milking, skimming, homogenization, heat treatment, storage, and packaging)
induces changes in the composition of the milk, which makes it hard to pinpoint one particular raw milk
constituent that is responsible for the protective effects [36]. Even though comparing a raw milk with a
shop milk (consumed by most people) was a logical first step in our opinion, future research should
focus on testing milk from the same milk source that only differs in one processing step (skimmed
milk, pasteurized milk, ultra-high temperature processing milk, etc.). Besides elucidating the raw milk
component(s) involved, this will give the opportunity to look into the cellular mechanisms inducing
tolerance in more depth.

Epigenetic regulation might be one of the mechanisms by which raw cow’s milk exerts its
allergy-protective effect. Since environmental factors are known to be able to modulate gene expression
through epigenetic mechanisms, we wondered whether this also applied to raw milk. Epigenetic
mechanisms can modify the accessibility of genes for transcription without altering the DNA nucleotide
sequence which means that they can modulate the phenotype without affecting the genotype [19]. In
this way, epigenetic mechanisms are key in the plasticity of gene expression. They are essential for
developmental processes, like cellular differentiation, contributing, for example, to the flexibility among
CD4+ T cell subsets [37]. The classical epigenetic mechanisms comprise DNA methylation and histone
modifications, including histone acetylation, methylation, phosphorylation, and ubiquitination [20].

We assessed histone acetylation at the promoter regions of Th1-, Th2-, Th17-, and Treg-related
genes of splenocyte-derived CD4+ T cells and MLN to determine the role of epigenetic mechanisms
in the allergy-protective effect of raw milk. During histone acetylation, an acetyl group is added
to a lysine residue at the N-terminal tail of a histone (mainly histones H3 and H4). This removes
the positive charge on the histones that are involved, resulting in a decreased interaction with the
negatively charged DNA. Consequently, the DNA is less tightly wrapped around the histones, which
makes it more accessible to the transcriptional machinery. Therefore, higher histone acetylation usually
results in higher gene transcription, while the opposite is true for reduced histone acetylation [19].

In line with the protective effects that were observed on acute allergic symptoms and IgE, histone
acetylation of Th2-related genes (GATA3, IL-4, IL-5, and IL-13) of splenocyte-derived CD4+ T cells after
allergy induction was lower in raw milk-treated mice than in shop milk-treated mice. The strongest
effects were observed on histone H4 acetylation at Th2 cytokine genes. Since histone acetylation
substantially contributes to and is an important marker for an open chromatin structure [19,20], we
assessed whether the acetylation levels positively correlated with cytokine production. Unfortunately,
Th2 cytokine concentrations were low, but the tendency towards a reduced IL-5 production in raw
milk-treated mice as compared to shop milk-treated mice suggests that there is indeed a positive
correlation. Several other studies already confirmed that differences in H4 acetylation levels at Th2
cytokine genes indeed correlate with cytokine production [26,38]. Affecting epigenetic marks on Th2
cytokine genes might be an interesting preventive approach since type 2 cytokines play a predominant
role in allergic diseases by directing the effector phase of an allergic response [39].

After allergy induction, the histone acetylation of Th1-, Th17-, and Treg-related genes did not
differ between raw milk- and shop milk-treated mice. Although, here, histone acetylation patterns were
reflected in cytokine production. The only cytokine for which the production did not correspond to
gene acetylation was IL-10, which suggested that histone H3/H4 acetylation is not a main driver of IL-10
synthesis. Furthermore, we observed that IL-10 production was reduced in raw milk-treated mice as
compared to shop milk-treated mice. This seems to be in contrast with the observed allergy protection,
since IL-10 is known as a regulatory cytokine. However, in a murine model for OVA-induced food
allergy, it was shown that IL-10 could also have proinflammatory effects. IL-10 was demonstrated
to be essential for the development of food allergy by inducing mucosal mast cell expansion and
activation [40]. This indicates that lowering IL-10 concentrations in a murine OVA-induced food
allergy model might be beneficial. Besides systemically looking at splenocyte-derived CD4+ T cells,
we also locally assessed histone acetylation in the MLN. Here, similar effects were observed, although



Nutrients 2019, 11, 1721 12 of 15

less strong. This might have to do with the fact that the whole tissue was used for ChIP analysis,
rather than the isolated T cells. This may have resulted in weaker effects, as other cell types might also
express the genes measured.

In addition to looking at histone acetylation patterns at the end of the study (after allergy induction),
we also directly assessed histone acetylation after the eight days of milk exposure. Surprisingly, histone
acetylation of the Th2-related genes of splenocyte-derived CD4+ T cells was higher in the raw milk
group as compared to the shop milk group. However, histone acetylation of T-bet and FoxP3
was also increased, which suggested a kind of general immune stimulation. Whether this general
immune stimulation induced by raw milk is responsible for the observed allergy protection at the
end of the study we do not know yet. Previously, however it has been demonstrated that acquiring
tolerance in food allergic children involves epigenetic regulation of the FoxP3 gene [41]. Furthermore,
epidemiological studies have shown that raw cow’s milk consumption was associated with increased
DNA demethylation of FoxP3 and increased numbers of Tregs [42]. Unfortunately, we did not look
at Treg numbers in our study, but since active suppression by Tregs is considered to be one of the
main effector mechanisms for oral tolerance [43], the observed increase in histone acetylation of the
FoxP3 gene might contribute to the allergy-protective effect. Inhibiting de novo histone acetylation
with histone acetyltransferase inhibitors might be an interesting approach for further investigating the
role of histone acetylation in the allergy-protective effect of raw milk.

How raw milk affects epigenetic marks on T cell-related genes is currently unclear, but there are
some indications. Microbes that were derived from farm dust, known to prevent allergic asthma, were,
for example, shown to operate via epigenetic mechanisms [44], which suggested that microbes that are
present in raw milk might have similar effects. Furthermore, raw milk contains higher levels of n-3
PUFAs than industrially processed milk [15]. These n-3 PUFAs reduce the risk of developing allergic
diseases and they have been shown to lower the acetylation of IL-13 genes [45,46]. In addition, raw milk
contains components, like lactoferrin, which can promote the growth of Bifidobacteria and Lactobacilli in
the gut [17,18]. These bacteria are potent producers of short-chain fatty acids and these short-chain fatty
acids are known for their capacity to inhibit histone deacetylases, thereby increasing gene transcription.
Whether the above-mentioned components in the concentrations present in raw milk can influence
epigenetic mechanisms and subsequently contribute to the allergy-protective effect of raw milk should
be clarified in future studies. The possible involvement of the epigenetic mechanisms should also be
investigated in the case of the anti-allergic effects of human breast milk consumption [47].

5. Conclusions

In conclusion, we show the potency of raw cow’s milk to induce tolerance to a non-milk, food
allergen. This allergy-protective effect was abolished by industrial milk processing, emphasizing the
importance of minimally processed milk. The allergy-protective constituents of raw milk remain
elusive and it should be investigated in follow-up studies. In addition, we showed that raw milk is
able to modulate gene expression through epigenetic mechanisms. Raw milk might have induced oral
tolerance by targeting histone marks on T cell-related genes. Whether this is a cause–effect relationship
and whether effects are more pronounced with longer raw milk exposure should be assessed in
future research. Nevertheless, our data suggest that the consumption of certified raw cow’s milk can
contribute to allergy prevention and epigenetic regulations, especially histone modifications, might be
one of the underlying mechanisms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/8/1721/s1,
Figure S1: Acetylation patterns of histone H3 were comparable to histone H4 in splenocyte-derived CD4+ T cells,
Figure S2: No differences between groups observed for histone H3 acetylation in MLN, Table S1: Buffers used for
ChIP, Table S2: Primers used for qPCR.
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