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Abstract. Fluvial flood events are a major threat to people
and infrastructure. Typically, flood hazard is driven by hy-
drologic or river routing and floodplain flow processes. Since
they are often simulated by different models, coupling these
models may be a viable way to increase the integration of
different physical drivers of simulated inundation estimates.
To facilitate coupling different models and integrating across
flood hazard processes, we here present GLOFRIM 2.0, a
globally applicable framework for integrated hydrologic–
hydrodynamic modelling. We then tested the hypothesis that
smart model coupling can advance inundation modelling in
the Amazon and Ganges basins. By means of GLOFRIM, we
coupled the global hydrologic model PCR-GLOBWB with
the hydrodynamic models CaMa-Flood and LISFLOOD-FP.
Results show that replacing the kinematic wave approxima-
tion of the hydrologic model with the local inertia equation
of CaMa-Flood greatly enhances accuracy of peak discharge
simulations as expressed by an increase in the Nash–Sutcliffe
efficiency (NSE) from 0.48 to 0.71. Flood maps obtained
with LISFLOOD-FP improved representation of observed
flood extent (critical success index C = 0.46), compared to
downscaled products of PCR-GLOBWB and CaMa-Flood
(C = 0.30 and C = 0.25, respectively). Results confirm that
model coupling can indeed be a viable way forward towards
more integrated flood simulations. However, results also sug-

gest that the accuracy of coupled models still largely depends
on the model forcing. Hence, further efforts must be un-
dertaken to improve the magnitude and timing of simulated
runoff. In addition, flood risk is, particularly in delta areas,
driven by coastal processes. A more holistic representation
of flood processes in delta areas, for example by incorporat-
ing a tide and surge model, must therefore be a next devel-
opment step of GLOFRIM, making even more physically ro-
bust estimates possible for adequate flood risk management
practices.

1 Introduction

Globally, the number of exposed population and assets as
well as casualties and economic damage due to flooding in-
creased greatly in recent decades (Hirabayashi et al., 2013;
Jongman et al., 2012; Ward et al., 2013; Winsemius et al.,
2016). To better predict and understand current and future
flood hazard as well as to plan mitigation and adaption mea-
sures, several numerical models, so-called global flood mod-
els (Trigg et al., 2016; Ward et al., 2015) were developed to
provide current and future estimates.
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Current global flood models, however, are tailor-made for
certain applications and excel at, for instance, their repre-
sentation of hydrologic processes, computationally efficient
routing, or hydrodynamic surface flow processes. Depend-
ing on model structure and workflow, each model therefore
has specific advantages and shortcomings. Also, there are
marked differences between the spatial resolutions, affect-
ing both the range of physical processes to be simulated and
the applicability of model output maps (Beven et al., 2015;
Bierkens et al., 2015).

Additionally, different physical processes may be govern-
ing at different spatial scales. For instance, 1-D hydrodynam-
ics may be appropriate for large-scale or even global applica-
tions, explicitly modelling floodplain flow with 1-D and 2-D
models can be vital for more local assessments. Depending
on the envisaged application, modelling set-ups must thus be
able to reflect the importance of various flood triggers by in-
tegrating across the relevant physical processes and spatial
scales. Answering the question of how much complexity is
needed can have benefits in avoiding not only under-fitting
but also over-fitting of the problem (Neal et al., 2012b).
For instance, applying higher-order approximations of the
shallow water equations may be disproportionate for high-
gradient regions where channel flow is the main physical pro-
cess to consider while it is very much needed if inundation
patterns in flat delta areas are simulated.

For simulating physical processes and hazards across spa-
tial scales without adding just another new model, flexible
computational frameworks are viable means as they can be
designed depending on envisaged application. One example
is the “plug-and-play” model coupling tool pyMT (Python
Modeling Tool; https://csdms.colorado.edu/wiki/PyMT, last
access: 23 July 2019) developed by the CSDMS (Commu-
nity Surface Dynamics Modelling System; Syvitski et al.,
2014), which, however, focusses on the whole range of Earth-
surface models. By providing the flexibility to couple models
depending on the application, fit-for-purpose coupled models
can be created. For instance, one can address different pro-
cesses that govern at different spatial (and temporal) resolu-
tions by nesting local high-resolution 2-D models in large-
scale 1-D models only where these processes are relevant.
This is in contrast to other approaches aiming at combining
floodplain runoff with river channel routing via predefined
lateral inflows (Biancamaria et al., 2009; Felder et al., 2017;
Lian et al., 2007).

To our knowledge, the development and application of
flexible model coupling frameworks specifically designed
for large-scale coupled hydrologic and hydrodynamic mod-
elling is very limited. For example, GLOFRIM, a framework
for integrated hydrologic–hydrodynamic modelling, was de-
veloped and applied recently (Hoch et al., 2017b, 2018).
Both studies coupled the coarse-resolution global hydro-
logic model PCR-GLOBWB (Sutanudjaja et al., 2018) with
the fine-resolution hydrodynamic models Delft3D Flexible
Mesh (Kernkamp et al., 2011) and LISFLOOD-FP (Bates et

al., 2010) set up for a fraction of the studied basin only. These
studies showed that coupling hydrologic processes with more
advanced hydrodynamic processes improves both represen-
tation of inundation along reaches as well as the simulation
of flood wave propagation.

As the coupling framework was, however, still limited to
large-scale hydrologic models and local 1-D–2-D hydrody-
namic models covering the floodplains, flood-triggering pro-
cesses outside the domain of the hydrodynamic models might
be hampered because of the simplified routing still executed
by the hydrologic models.

Adding a river routing component to the model coupling
framework allows for potentially improved flood wave prop-
agation throughout the entire domain (Zhao et al., 2017) and
makes it possible to focus the computationally heavy 2-D
hydrodynamics on even smaller domains. Consequently, it
would be possible to create various coupled models with
different levels of complexity depending which model and
model types are combined for which fraction of the study
area.

To assess whether and under which circumstances model
coupling is beneficial for yielding improved discharge and
inundation extent and how additional layers of complexity
may benefit output accuracy, we tested different coupling
designs of different complexity. Hence, the overarching re-
search objectives of this study are to gain insights into the
opportunities as well as challenges of (a) establishing a mod-
ular and flexible model coupling framework and (b) applying
coupling configurations of different complexity to two case
studies.

To this end, GLOFRIM was evolved by creating a more
modular framework, extending the models contained, provid-
ing a plug-and-play tool allowing for spatially explicit cou-
pling of hydrologic and hydrodynamic models. To enhance
process and scale integration, we added the global river rout-
ing model CaMa-Flood (Yamazaki et al., 2011) to improve
runoff routing over entire catchments. In addition, we added
the wflow hydrologic modelling platform (Schellekens et al.,
2019) to give the end-user a greater choice which hydrologic
model to use and at which spatial resolution.

With its revised concept, we envisage two applications as
the core of the new GLOFRIM 2.0 framework: (a) fast rout-
ing of runoff over large domains and (b) detailed local inun-
dation modelling for smaller “spatially nested” areas such as
river deltas. In addition, GLOFRIM can also be applied for
benchmarking hydrologic and hydrodynamic models.

In the remainder of this article, we will first describe
GLOFRIM and the models contained briefly. The benefit of
applying a flexible model coupling framework for large-scale
inundation modelling is then tested by two applications in
the Amazon and Ganges–Brahmaputra basins. We conclude
with recommendations and an outlook for future applications
in integrated flood hazard modelling and assessment.
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2 The coupling framework and its component models

2.1 GLOFRIM 2.0

GLOFRIM 2.0 continues and extends the online and spa-
tially explicit model coupling approach of the previously
published framework GLOFRIM 1.0 (Hoch et al., 2017b).
With GLOFRIM 1.0 it was possible to couple the global hy-
drologic model PCR-GLOBWB (Sutanudjaja et al., 2018)
with the hydrodynamic models Delft3D Flexible Mesh
(Kernkamp et al., 2011) and LISFLOOD-FP (Bates et al.,
2010) by employing the Basic Model Interface (BMI; Peck-
ham et al., 2013). In the new GLOFRIM version, the mod-
els CaMa-Flood (CMF; Yamazaki et al., 2011) and wflow
(WFL; Schellekens et al., 2019) have been added. In its cur-
rent version, GLOFRIM has been tested for one-way cou-
pling only; that is, model output can be exchanged from one
model to another but not interchangeably. While this is en-
tirely sufficient for the presented showcases documenting the
advances of GLOFRIM, the full potential of online coupling
will only be tapped if two-way coupling is also fully sup-
ported.

For further information on the motivation, design, and
technical implementation of the BMI itself and within
GLOFRIM, we refer to the mentioned articles as well as the
online documentations of the BMI (https://csdms.colorado.
edu/wiki/BMI_Description, last access: 23 July 2019)
and GLOFRIM (https://glofrim.readthedocs.io, last access:
23 July 2019).

We decided to employ the BMI concept since it is
non-invasive, avoiding entanglement of code from differ-
ent models. In addition, the coupling workflow and design
can be designed flexibly and altered easily. Flexible cou-
pling via interfaces allows for other models to be added to
GLOFRIM once the BMI is implemented and homogenised
with CSDSM BMI standards (https://bmi-spec.readthedocs.
io/en/latest/, last access: 23 July 2019). The BMI standard
was expanded by adding a step to the initialisation of the
models. In this step, prior to the actual model initialisation,
only the configuration is initialised, which allows for chang-
ing parameters of the individual models. Furthermore, a com-
mon time definition between all models was adopted. In addi-
tion to the BMI, a submodule was added which interprets the
model grid type and spatial domain. Using this sub-module, a
spatial index of the 2-D domain (and 1-D network if present)
is constructed, which allows for straightforward spatially ex-
plicit coupling of models.

2.2 The supported models

Hereafter, the three models used for the two test cases are
briefly outlined. For a complete overview of all five available
models currently included in GLOFRIM as well as for a more
detailed description of the models, we refer to the Supple-
ment “GLOFRIM 2.0 and description of supported models”,

the GLOFRIM online documentation, and the model-specific
description papers.

2.2.1 PCR-GLOBWB

PCR-GLOBWB (PCR; Sutanudjaja et al., 2018) is a global
hydrologic model solving the water balance for the entire
global terrestrial surface at a daily time step. It is forced with
meteorological data such as precipitation, evaporation, and
temperature, which drive hydrologic processes in two ver-
tically stacked soil layers as well as a bucket-type ground-
water module. For all applications, we employed PCR at
30 arcmin spatial resolution, which is equivalent to around
50 km× 50 km at the Equator.

By default, resulting surface runoff can be routed solving
the kinematic wave approximation. To allow for a fair com-
parison and at least minimum simplistic interaction between
channel and floodplain volumes, the “DynRout” extension of
PCR was used.

2.2.2 CaMa-Flood

CaMa-Flood (CMF; Yamazaki et al., 2011) simulates the
floodplain hydrodynamics of continental-scale rivers glob-
ally employing an adaptive time stepping scheme. Since it
solves the 1-D local inertial equation (Bates et al., 2010;
Yamazaki et al., 2013) and only changes in water storage
are prognosticated, simulations are computationally efficient.
Another advantage is that CMF is a global model and there-
fore model data exist for the entire terrestrial surface, reduc-
ing the need to manually set up the model. Yet, this possi-
bility is also provided in case more accurate local data are
available. Output is provided at 0.25◦ spatial resolution, but
inundation depth can be downscaled to 0.005◦ for more ac-
curate assessments.

2.2.3 LISFLOOD-FP

LISFLOOD-FP (LFP; Bates et al., 2010) solves the local in-
ertia equations for both channels and floodplains using a sub-
grid channel scheme (Neal et al., 2012a) and adaptive time
stepping, allowing for simulating flow not only in longitudi-
nal but also lateral directions. By explicitly simulating flood-
plain flow, inundation dynamics such as velocity and dura-
tion as well as channel–floodplain interactions such as return
flows can be captured.

LFP can be discretised at any spatial resolution but is typ-
ically employed for fine-resolution assessment of inundation
dynamics. The required input data can be produced using
common GIS programmes and do not require extensive pre-
processing.

2.3 Possible coupling realisations

We envision GLOFRIM as a plug-and-play tool where the
user can design the coupled model depending on required
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Figure 1. Supported and tested coupling configuration and sup-
ported models of GLOFRIM 2.0. We distinguish between hydro-
logic (purple), routing (yellow), and floodplain (2-D) hydrodynamic
models (red).

model complexity. With the increased number of models
contained by GLOFRIM 2.0, the number of possible combi-
nations increased too; see Fig. 1. We define three categories
of models: (i) hydrologic models computing runoff from me-
teorological data (PCR and WFL; purple in Fig. 1); (ii) rout-
ing models focussing on simulating water transport along a
1-D river network (CMF; yellow in Fig. 1); and (iii) hydro-
dynamic models determining discharge for both 1-D river
networks and 2-D floodplain areas (DFM and LFP; red in
Fig. 1).

3 Model runs

While combination (1) in Fig. 1 was already applied and
assessed in previous work (see Hoch et al., 2017a, b), we
merely focus on possibilities (2) and (3) in this study. To
test the combinations, we designed two separate test cases
to achieve the research objectives: while in test A we assess
the opportunities and challenges for advancing the simula-
tion of flood wave propagation by coupling large-scale hy-
drology with a routing model, test B aims at investigating the
benefit of nesting a high-resolution 1-D–2-D hydrodynamic
model into large-scale models for improved local inundation
mapping.

3.1 Test A: improving large-scale routing and
benchmarking hydrology

3.1.1 Model set-up

One possible application of GLOFRIM is routing hydro-
logic output over large distances, using more sophisticated
flow solvers than implemented in global hydrologic models.
To assess the value added, the routing scheme of CMF re-
placed the kinematic wave approximation as implemented in
PCR-DynRout with the local inertia equations in the Ama-

zon River basin. In addition to the more advanced solver, the
channel network of CMF is resolved at a finer spatial resolu-
tion than PCR (Fig. 2).

Both CMF and PCR are models with global extent. Con-
sequently, we did not have to create basin-specific discreti-
sations but could use the already existing default model set-
up after clipping to the needed extent. PCR contains only a
Manning’s roughness coefficient for channels which was set
to 0.03 s m−1/3. The channel roughness coefficient of CMF
was aligned with PCR, and the floodplain roughness coef-
ficient was set to 0.10 s m−1/3. No a priori calibration was
performed but roughness coefficients were selected merely
based on previous model applications. For spatially explicit
model coupling, simulated surface runoff per PCR cell was
provided to CMF using BMI functions and subsequently in-
terpolated within CMF using model-internal routines.

3.1.2 Model validation

We separately ran PCR-DynRout and CMF coupled to PCR
(PCR→CMF hereafter) for the period 2007 until 2009, pre-
ceded by 2 years of spin-up for both models. As a test basin
we focussed on the Amazon River basin as it is characterised
by pronounced flood wave propagation and long travel dis-
tance. To validate our runs and obtain information on a wide
range of time series properties, we used observed discharge
from ORE-HYBAM (http://www.ore-hybam.org/index.php/
eng, last access: 23 July 2019) at Óbidos and calculated
the total Kling–Gupta efficiency (KGE) and its individual
components (linear correlation KGE_r , bias ratio KGE_β,
and variability KGE_α) as well as the Nash–Sutcliffe Effi-
ciency (NSE) for extra emphasis on peak flow simulations.
For all time series analyses we used the hydroGOF pack-
age for R (Zambrano-Bigiarini, 2017). Also, we compared
the average time difference between observed and simulated
peak discharge (τ ) by averaging the annual time gap between
observed and simulated peak discharge.

3.1.3 Results and discussion

Results show that, although the identical runoff volumes are
routed, obtained discharge estimates vary greatly, particu-
larly with respect to the timing of peak discharge (Table 1)
and the hydrograph smoothness (Fig. 3). In general, both
set-ups have skill as expressed by both KGEs being greater
than 0.7. While differences in total KGE are marginal, PCR-
DynRout only shows better performance when assessing
KGE_α, indicating that simulated variability represents ob-
servations better. PCR→CMF, in turn, is less biased (it is
in fact not biased at all as indicated by a KGE_β of 1) com-
pared to PCR-DynRout. The difference in KGE_β, indicat-
ing a difference in simulated flood volume of 6 % between
the models, is to some extent caused by the coarse model res-
olution of PCR, which results in an overestimation of 1 % of
the catchment area compared to CMF, which determines the
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Figure 2. The PCR drainage network (LDD) of the Amazon River basin at 30 arcmin spatial resolution (a) as well as the 1-D channel network
of CMF (b). The upstream area of the drainage network is shown in shades of blue and the location of the Óbidos gauge in red.

Figure 3. Simulated discharge by PCR-DynRout and PCR→CMF as well as observed discharge at Óbidos.

Table 1. Assessment of performance of PCR-DynRout and
PCR→CMF runs at Óbidos; the bold values indicate better per-
formance.

KGE KGE_r KGE_β KGE_α NSE Avg. τ

PCR-DynRout 0.72 0.74 1.06 0.91 0.48 89 d
PCR→CMF 0.71 0.85 1.00 0.75 0.71 4 d

catchment boundary at a sub-grid level. As a result, a greater
volume is routed with PCR-DynRout than with the coupled
CMF model. Quantifying the effect of other factors such as
the role of evaporation and groundwater infiltration as sim-
ulated by PCR-DynRout but not PCR→CMF was outside
the scope of this study, yet previous work indicates that these
hydrologic processes may impact both discharge volume and
flood extent (Hoch et al., 2018).

Also, the correlation KGE_r of PCR→CMF with obser-
vation is better than with PCR-DynRout, most likely due

to the ruggedness of the hydrograph simulated by PCR-
DynRout. This ruggedness, we suspect, stems from the faster
response of the kinematic wave approximation in combina-
tion with the derived river slopes of PCR-DynRout compared
to the local inertia approximation of CMF. In addition, the
first-order routing and volume distribution scheme of PCR-
DynRout may have impacted model results.

It is particularly the difference in NSE that is of inter-
est for flood hazard modelling as this measure is most sen-
sitive towards bias of peak discharge. Here, we see that
the coupled model PCR→CMF greatly outperforms PCR-
DynRout. This finding is in line with previous research show-
ing that the kinematic wave approximation applied by most
GHMs (global hydrologic models) is not suitable for peak
flow simulations (Hoch et al., 2017a, b; Yamazaki et al.,
2011; Zhao et al., 2017). Particularly for catchments with
low gradients such as the Amazon River basin, the absence of
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local acceleration and advection terms results in lower peak
discharge accuracy.

Related to this finding is that a marked difference can be
found in the average time difference between simulated and
observed peak discharge. While PCR-DynRout, on average,
predicts peak discharge more than 2 months earlier than ob-
served, adding the CMF routing reduces this to 4 d. As it is
particularly the correct timing of peak discharge that is im-
portant for operational flood forecasting, results show that
the higher model complexity of CMF with respect to river
routing may be beneficial for more actionable model results.

3.2 Test B: the benefit of local floodplain
hydrodynamics

Employing explicit floodplain flow solvers may be par-
ticularly essential for low-lying and flat delta areas, but
not throughout the entire basin as runtimes would increase
greatly. Thus, GLOFRIM allows for spatially nested mod-
elling; that is, the local hydrodynamic model is embedded in
the basin-wide hydrologic and routing models.

3.2.1 Model set-up

In test B, we assess the impact of adding hydrody-
namic models for both the river routing as well as flood-
plain inundation processes. We compared three model
coupling configurations with increasing complexity: PCR-
DynRout, PCR→CMF (see configuration 2 in Fig. 1), and
PCR→CMF→LFP (see configuration 3 in Fig. 1) for the
Ganges–Brahmaputra basin. While PCR still provides the
runoff forcing for CMF for the entire catchment, various
boundary conditions apply for the hydrodynamic model; that
is, upstream discharge from CMF, local runoff from CMF,
and downstream water level dynamics as prescribed within
LFP itself (in this case 0 m).

Similar to test A, we used the global default model
set-ups of PCR and CMF and clipped them to the ex-
tent of the Ganges–Brahmaputra basin. What is different
to test A is, however, that we had to perform a calibra-
tion of CMF floodplain roughness coefficients and channel
depth due to initially insufficient accuracy of discharge by
PCR→CMF. Therefore, we applied a Manning’s coefficient
of 0.03 s m−1/3 for PCR as well as for both river and flood-
plains in CMF. Channel depth was also increased by chang-
ing the first factor from its default value 0.14 to 0.20 in the
subsequent equation:

B =max
[
0.14R0.40

up ,2.00
]
, (1)

where B is channel depth (m) and Rup is the annual maxi-
mum of 30 d moving average of upstream runoff (m3 s−1).

For the LFP model, we made use of the underlying sur-
face elevation and channel dimension raster data of CMF at
18 arcsec and created a LFP discretisation for a small domain
at the river delta at identical spatial resolution (Fig. 4).

Figure 4. (a) CMF channel network in the Ganges–Brahmaputra
basin as well as locations of observation stations Hardinge Bridge
and Bahadurabad for validating model output from both PCR and
CMF; (b) zoom to LFP extent showing LFP DEM and channel net-
work as well as gauging stations where output from PCR, CMF, and
LFP is compared.

3.2.2 Model validation

To assess the quality of discharge simulations, we calculated
the KGE and its components as well as the NSE based on
simulated and observed values for two locations: Hardinge
Bridge in the Ganges River and Bahadurabad in the Brahma-
putra River (see Fig. 4). Observed values were kindly pro-
vided by the Institute of Water Modeling, Bangladesh, and
the Bangladesh Water Development Board. As both loca-
tions lie outside the LFP domain, we could only validate
the PCR-DynRout and PCR→CMF at those two locations
and therefore had to perform a separate analysis of the
PCR→CMF→LFP run. For this, we qualitatively com-
pared the model results from all three model settings at a
(arbitrarily chosen) location close to the river mouth (see
Fig. 4), setting simulated discharge from all three set-ups into
relation. In contrast to test A, we desisted from determining
τ as there is more than one peak per flood season, which
complicates an unambiguous analysis.

Additionally, the simulated inundation maps were com-
pared with observed imagery. Therefore, PCR and CMF
maps were first downscaled to a resolution of 1 km and
500 m, respectively, making use of their model-specific
downscaling routines. As validation data, 8 d composite
MODIS imagery of 2007 was used (see Kotera et al., 2016)
as this year was characterised by strong monsoon-induced
inundations (Islam et al., 2010).

We compared simulated results from 18 August 2007, the
day of maximum total flood extent in the CMF model, of all
models with the corresponding 8 d composite MODIS im-
age. The motivation for this approach was threefold: first, to
not use LFP output as its output validation should be unaf-
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Figure 5. Simulated discharge by PCR-DynRout and PCR→CMF as well as observed discharge at both Hardinge Bridge (Ganges) and
Bahadurabad (Brahmaputra).

fected by previous decisions, second, because downscaled
CMF output has a higher resolution than PCR, and third,
to be able to assess differences in both timing and magni-
tude of simulated inundation extent. To guarantee compara-
bility, maps of both observed and simulated flood extent were
clipped to the LFP model domain and resampled to 500 m
spatial resolution applying the nearest neighbour approach.

Inundation extent was validated for all set-ups following
the approach of Fewtrell et al. (2008). Thereby, the hit rateH ,
the false alarm ratio F , and the critical success index C were
determined for each inundation map with respect to observed
MODIS extent. H , F , and C were computed with the subse-
quent equations where Nobs and Nsim indicate the number of
inundated cells according to observations and the simulation
result under consideration, respectively.

H =
Nsim ∩Nobs

Nobs
(2)

F =
Nsim\Nobs

Nsim ∩Nobs+Nsim\Nobs
(3)

C =
Nsim ∩Nobs

Nsim ∪Nobs
(4)

All parameters can vary between 0 and 1. While H = 1
shows that all inundated cells in the benchmark data are also
inundated in the comparison data, F = 1 indicates that the
inundated cells in the comparison are entirely false alarms
with respect to the benchmark. The critical success rate C, in
turn, should be 1 for perfect agreement, thereby penalising
for both under- and overestimation.

Table 2. Assessment of performance of PCR, PCR→CMF, and
PCR→CMF→LFP runs at both Hardinge Bridge (Ganges) and
Bahadurabad (Brahmaputra); the coloured boxes indicate best per-
formance compared to other set-ups.

KGE KGE_r KGE_β KGE_α NSE

Hardinge Bridge (Ganges)

PCR-DynRout 0.71 0.89 1.15 0.78 0.77
PCR→CMF 0.63 0.83 1.15 0.70 0.66

Bahadurabad (Brahmaputra)

PCR-DynRout 0.46 0.84 0.79 0.52 0.55
PCR→CMF 0.44 0.86 0.79 0.50 0.54

3.2.3 Results and discussion

Simulated discharge

Validating discharge simulated by PCR-DynRout and
PCR→CMF at Hardinge Bridge (Ganges River) and Ba-
hadurabad (Brahmaputra River) shows slightly opposite be-
haviour than the previous test A. For both the Ganges and
the Brahmaputra, PCR unexpectedly outperforms the cou-
pled set-up, with results generally being more accurate for
the Ganges River (Fig. 5, Table 2).

These results show that added models with higher com-
plexity do not always yield actually better results, as in this
case the local inertia equations solved by CMF did not out-
perform the kinematic wave approximation of PCR. The lo-
cal inertial equation is derived by neglecting only the advec-
tion term in the shallow water equations as advection is in-
significant for many natural river and floodplain flow con-
ditions with low gradients (de Almeida and Bates, 2013;
Hunter et al., 2007; Yamazaki et al., 2013). The kinematic
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Figure 6. Simulated discharge from PCR-DynRout, PCR→CMF, and PCR→CMF→LFP at the common observation point as depicted
in Fig. 4.

Figure 7. (a) Observed flood extent by MODIS; overlay of observed and modelled flood extent for (b) downscaled PCR, (c) downscaled
PCR→CMF, and (d) PCR→CMF→LFP where blue indicates model only, red indicates observation only, and green indicates agreement
between model and observations.

wave approximation, however, only accounts for channel and
friction slope. While the reduced physics are less impacting
for high-gradient areas, such as mountainous areas, or areas
with clearly incised river channels, the Ganges–Brahmaputra
basin is characterised by its large and flat floodplains. From
a theoretical point of view, models applying the local in-
ertia equations should therefore outperform simpler routing
schemes in this study area. Yet, this is not the case and thus
points to one of the key structural challenges with such cas-
cading one-directional model coupling: while the most ad-
vanced hydrodynamic schemes can be added, the overall
model accuracy still depends greatly on model data and pa-
rameter uncertainties, calibration, and both the meteorologi-
cal and hydrologic forcing. Recent research showed, for in-
stance, that the meteorological data set used can be a key
control of discharge accuracy (Towner et al., 2019). Note
also that PCR-DynRout and CMF use different topography
and river bathymetry data as well as different river network
concepts (i.e. flexible location of waterways (FLOW; Ya-

mazaki et al., 2009) in CMF compared to eight directions
toward neighbouring cells (D8) in PCR DynRout) to derive
the routing schematisation. The differences in modelled dis-
charge can therefore not only be attributed to the difference
in approximation of the shallow water equations.

Benchmarking simulated discharge from PCR,
PCR→CMF, and PCR→CMF→LFP corroborates
that including 2-D floodplain flow processes reduced the
volume routed along the main river channel whereas the
timing of peak discharge does not deviate markedly between
the coupled set-ups (Fig. 6). In combination with the
simulated flood extent of PCR→CMF→LFP (Fig. 7d),
the difference in discharge rate in the main channel can
be attributed to the additional flow through a smaller side
channel, which is only possible if 2-D flow is explicitly
modelled. Even though no validation is possible due to the
lack of observed data within the LFP domain, the already
prevailing underestimation of discharge by PCR→CMF
lets one speculate that PCR→CMF→LFP is less accurate
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Table 3. Hit rate, false alarm ratio, and critical success index for the
three model set-ups.

PCR PCR→CMF PCR→CMF→LFP

Hit rate 0.38 0.30 0.70
False alarm ratio 0.44 0.40 0.42
Critical success index 0.30 0.25 0.46

in resembling discharge magnitude. Since CMF and LFP
use the same underlying data for deriving river geometry
and floodplain topography, we assume that model-internal
input-data-independent factors result in the deviations be-
tween the CMF and LFP. At the current stage, unfortunately,
an unambiguous explanation cannot be made yet as a further
investigation exceeds the scope of this study.

Inundation extent

Simulating inundation maps can benefit greatly from
adding 2-D hydrodynamic floodplain flow computa-
tions. Validating the downscaled inundation maps from
PCR and PCR→CMF with the modelled results of
PCR→CMF→LFP shows significant deviations between
model set-ups (Fig. 7). In fact, results insinuate that accept-
able representation of inundation patterns as expressed by
the critical success index C can only be achieved by also
accounting for floodplain flow and discharge through side
channels (Table 3).

Table 3 furthermore shows that, despite having compa-
rable false alarm ratios, the hit rate H is much higher for
PCR→CMF→LFP and, in turn, so is the critical success
index C. The differences in hit rate largely result from sim-
ulated inundations along smaller water bodies, especially
compared to PCR→CMF, and from simulating the extent
across the entire river floodplain, which is particularly not
the case for PCR (Fig. 7). It is for those areas, which may not
necessarily be directly adjacent to the main river stem, that
downscaling procedures based on volume or water depth dis-
tribution curves may not suffice to represent the actual locally
relevant flood-triggering processes, leading to a low hit rate.

It is interesting to see that PCR→CMF does not show any
inundation for a part of the main river reach of the Ganges–
Brahmaputra. This is the result of the combination of the unit
catchment scheme used in CMF where different river reaches
may have different geometry and the static downscaling ap-
proach. The deviations to PCR→CMF→LFP are hence a
function of model-internal specifications as the underlying
input data are identical. Consequently, this comparison hints
at a positive impact of models with higher complexity explic-
itly modelling floodplain flow instead of downscaling, and
that the threshold for LFP to predict excess channel volume
may be lower than for CMF.

Despite all efforts to make the validation as fair as pos-
sible, there are still some limitations that must be kept

in mind. For example, inundation patterns of the Ganges-
Brahmaputra delta are largely affected by tide and surge dy-
namics (Ikeuchi et al., 2015). Since we discretised all models
with a steady 0 m water level boundary, it must be acknowl-
edged that a perfect fit between observations and simulations
would not be possible. In addition, the downscaling routines
of PCR and PCR→CMF employ different approaches and
data, resulting in locally marked differences in results. Align-
ing the routines was, however, outside of the scope of this
study. The arising issues of different inundation extent due to
different model routines and data was already discussed by
other studies and remains subject to ongoing debate on how
to minimise the gap between models (Bernhofen et al., 2018;
Hoch and Trigg, 2019; Trigg et al., 2016). Last, it is impor-
tant to state that no calibration of the models with respect
to simulated flood extent was performed. While this gives a
fair picture of what a model is capable of under genuine con-
ditions, the values presented here do not reflect that actual
potential of each model.

4 Conclusions, recommendations, and outlook

We developed GLOFRIM 2.0, a globally applicable frame-
work for integrated hydrologic–hydrodynamic modelling, to
evaluate the added value of model coupling and applying
models with varying complexity for discharge and flood ex-
tent simulations, testing it in two case studies. By combining
hydrology and hydrodynamics in a plug-and-play way, it is
possible to integrate across a suite of flood hazard drivers and
design different coupled models, each having another level
of varying complexity while maintaining identical spatially
varying model forcing.

In this context, the main conclusions are as follows.

– For discharge simulations, applying models with higher
complexity is beneficial. By replacing the kinematic
wave approximation with the local inertia equations, ob-
tained results can be improved given the model schema-
tisation and runoff forcing itself are accurate. Including
more complex 1-D and 2-D hydrodynamic processes
does not further improve discharge simulations com-
pared to 1-D simulations.

– For inundation extent simulations, employing a model
capable of explicitly simulating floodplain flow and
channel–floodplain interactions at a fine spatial reso-
lution outperforms less complex models, particularly
those using a downscaling approach. Using a 1-D or 2-
D model can be of added value for those areas where no
river network is present.

Results therefore suggest that including additional layers of
complexity can indeed benefit model accuracy, yet this de-
pends on the output variable under consideration. This means
that for some applications opting for less complex model
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compositions suffices to obtain accurate results, possibly
even at shorter runtimes.

In addition, the findings lead to several important con-
clusions concerning wider implications of coupling different
models and model components.

– (Re-)calibration of coupled model may be needed when
replacing a native process from one model, for instance
the kinematic wave routing in PCR, with the same pro-
cess in another model, for instance routing based on the
local inertia equations. While we did calibrate the Man-
ning coefficient and channel depth parameters of CMF
in the present study, new strategies for the calibration of
coupled models might be required before yielding im-
proved results.

– Before full use can be made of adding models with
higher complexity, it should be ensured that the model
forcing (here runoff) is accurate. Wrongly timed runoff
routed with simplistic routing schemes can still yield the
right results for the wrong reasons; runoff simulated by
hydrologic models needs to be validated before employ-
ing in a modelling cascade.

Our evaluation furthermore shows that including floodplain
flow and discharge through secondary channels is paramount
for accurately simulated inundation maps. Notwithstanding
the best performance of this set-up, a critical success index
of 0.46 indicates that only around half of the actual extent
is correctly captured by the model, leaving much room for
improvement. For example, a thorough analysis of the used
DEM may help to reveal whether water is trapped in local
depressions, hampering return flows and therefore increas-
ing the flood extent unnecessarily. Possible problems could
be solved by hydraulic conditioning (Yamazaki et al., 2012)
or by updating the model data with the newly developed
MERIT-DEM (Yamazaki et al., 2017). It is hence worth not-
ing that in this study, we did not optimise the schematisations
of the models involved for the sake of an untarnished evalua-
tion of the impact of their complexity. Yet, GLOFRIM 2.0
can also be applied for more bespoke studies where opti-
mised schematisations may be used, and thus overall evalu-
ation scores will most likely increase strongly. Furthermore,
as the river networks for CMF and PCR-DynRout are set up
following a different conceptualisation, it was not possible to
eliminate the effect of river schematisation from the shallow
water equation approximation.

Despite the progress made in integrating various drivers of
flood hazard, this is still limited to fluvial processes. Despite
the predicted increase in fluvial flood hazard, most low-lying
delta regions are under even greater threat from coastal flood
events (Tessler et al., 2015; Visser et al., 2012). Additionally,
compound events of simultaneous high discharge and high
sea level will have to be included in future flood hazard es-
timates in many delta regions (Ikeuchi et al., 2017; Ward et
al., 2018). Thus, it will be necessary to integrate fluvial and

coastal flood hazard too. One avenue would be to use dy-
namic sea level boundaries. Another, more advanced, option
would be to include surge and tide models into GLOFRIM
such as the Global Tide and Surge Reanalysis product (Muis
et al., 2016) once they are equipped with a Basic Model In-
terface. In addition to increasing the number of representable
processes, future work will also focus on testing and fur-
ther developing a two-way coupling scheme which would al-
low for more complex integrations and a mutual update of
prognostic variables between models. By linking hydrologic,
routing, and hydrodynamic models, we can establish a model
cascade which can simulate the inundation-driving processes
from the mountains to the coast. As such, GLOFRIM 2.0 can
be a key tool for more holistic future modelling studies re-
searching the effect of the interplay of meteorology and hy-
drology, river routing, and floodplain dynamics on flood haz-
ard and risk. Being designed as a plug-and-play tool, flexible
coupling frameworks could thus provide scientific evidence
supporting decision-making and risk management for a wide
range of conditions.

Data availability. GLOFRIM 2.0 code is stored online and free
to use, spread, and modify under the GNU GPL 3.0 license at
https://doi.org/10.5281/zenodo.3364388 (Hoch et al., 2019). The
model input data as well as schematisations and scripts used for the
analysis can be found at https://doi.org/10.5281/zenodo.3346803
(Eilander and Hoch, 2019) under the MIT license. For further in-
formation regarding GLOFRIM v2.0 and the currently supported
models, we refer to the relevant papers as well as to the supplement.
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