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Abstract

Today, inflammatory rheumatic disorders are effectively treated, but many patients still suffer from residual

fatigue. This work presents pathophysiological mechanisms of fatigue. First, cytokines can interfere with

neurotransmitter release at the preterminal ending. Second, a long-term increase in serum concentrations

of proinflammatory cytokines increase the uptake and breakdown of monoamines (serotonin, noradren-

aline and dopamine). Third, chronic inflammation can also decrease monoaminergic neurotransmission via

oxidative stress (oxidation of tetrahydrobiopterin [BH4]). Fourth, proinflammatory cytokines increase the

level of enzyme indoleamine-2, 3-dioxygenase activity and shunt tryptophan away from the serotonin

pathway. Fifth, oxidative stress stimulates astrocytes to inhibit excitatory amino acid transporters. Sixth,

astrocytes produce kynurenic acid that acts as an antagonist on the a7-nicotinic acetylcholine receptor to

inhibit dopamine release. Jointly, these actions result in increased glutamatergic and decreased mono-

aminergic neurotransmission. The above-described pathophysiological mechanisms negatively affect brain

functioning in areas that are involved in fatigue.
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Rheumatology key messages

. Inflammation can produce different forms of fatigue in chronic inflammatory diseases (CIDs).

. In CIDs, inflammation negatively affects neurotransmitter functioning in various areas in the CNS.

. Inflammation in CIDs alters the brain, leading to an overlap in fatigue, pain and depression.

Introduction

Inflammatory rheumatic disorders, by definition, all pro-

duce chronic inflammation in joints and/or in other tissues.

Severe fatigue is present in patients with spondyloarthritis,

psoriatic arthritis, RA, Sjögren syndrome, SLE, sclero-

derma, osteoarthritis and fibromyalgia [1�3]. All these dis-

orders are linked to sickness behaviour that is associated

with fatigue [4], disturbed sleep [1, 2], cognitive deficits [5],

anxiety [6], pain, and depression-like symptoms [1, 7�9].

The pathophysiological mechanisms underlying these dif-

ferent symptoms have a huge overlap and often occur

together, making it difficult to determine whether they

are dependent or independent of each other [1, 10].

Another factor that increases the complexity of fatigue is

the fact that it is a subjective feeling [11]. Severe inflam-

mation-induced fatigue is strongly associated with a much

poorer quality of life [12, 13].

Severe fatigue is detrimental to the patient, family and

friends, and society. Thus, unravelling of the underlying

pathophysiological mechanisms of fatigue and developing

effective treatments is a top priority in rheumatologic re-

search. Here, we will focus on how the activated immune

system can change neural chemistry and brain functioning

to produce central fatigue. Coming from studying fatigue

in different research fields, e.g. rheumatology, neurosci-

ence, psychology, immunology, and pharmacology, elem-

ents that were previously considered to be domains of

one discipline are now discovered in the other. There is

a rapidly growing amount of evidence demonstrating a

strong bi-directional signalling between the immune

system and the brain that plays a role in the development

of severe fatigue [14, 15]. To find an effective treatment of

fatigue in inflammatory rheumatic disorders we need a
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multidisciplinary approach, in which rheumatologists are

indispensable.

But first, we will discuss the evolutionary aspects

of inflammation-induced sickness, including fatigue.

Furthermore, a conceptual framework is provided to

enable rheumatologists to better understand how the ac-

tivation of the immune system can produce different forms

of fatigue during different infectious challenges and

diseases.

Evolutionary aspects of
inflammation-induced sickness
behaviour

In 1975, Matthew Kluger and coworkers were the first to

demonstrate that fever as part of sickness behaviour in-

creases host survival, rather than being a simple bypro-

duct of infection [16]. In 1988, Benjamin Hart was the first

to suggest that sickness behaviour is an adaptive re-

sponse that ensures vertebrates increase clearance of

pathogens by directing energy to immune responses, in-

stead of spending energy on behaviour that is not of im-

mediate vital importance, such as foraging, territorial

defence, mating or parental care [17].

Today, it is generally accepted that proinflammatory

cytokines, such as IL-1b, TNF-a and IL-6, are responsible

for producing sickness behaviour, including fatigue, leth-

argy, malaise, numbness, fever and feeling ‘cold’, hyper-

algesia, loss of appetite, more sleep but often fragmented,

changes in cognition, decreased libido, changes in motiv-

ation, anhedonia (loss of pleasure), depressive mood,

social withdrawal, isolation, and confinement to a safe

place, as part of an adaptive program positively selected

for to increase survival [17�26].

Recently, it became clear in wild mice that sickness

behaviour not only had positive effects on host survival.

There is also limitation of disease spread because of

reduced social connections due to behavioural withdrawal

and isolation after infection. Consequently, the disease is

contained to very few individuals [27]. In contrast, it has

long been known that immune defences have high costs

in terms of calories and proteins [28], slow growth [29],

reduced reproductive output [30�32], and higher suscep-

tibility to predation or further parasitism due to sickness

behaviour [33]. Thus, from an evolutionary perspective,

there is a trade-off between benefits and costs of strong

and/or long immune defences and associated sickness

behaviour, that is controlled and orchestrated by a com-

plex network connecting immune system, endocrine sys-

tem and nervous system [14, 15, 19, 34, 35].

More recently, we suggested that sickness behaviour

becomes maladaptive in systemic chronic inflammatory

diseases when not adequately treated, partly because of

long-term changes in energy availability of single cells and

energy distribution between organs in the body [20, 22,

23, 26].

In summary, sickness behaviour is not an accident of

chronic inflammatory diseases but an adaptive program

used during immune activation. Unfortunately, this

program is switched-on considerably too long, during

chronic conditions, sometimes lifelong [25]. In such

cases, like chronic inflammatory rheumatic disorders,

symptoms of severe fatigue, anhedonia and depression

are more frequently observed.

Immune system meets brain

Early reviews demonstrated classical cytokine pathways

from the peripherally active immune system to the brain

[36, 37]. Cytokines can enter the brain via several path-

ways: the blood brain barrier is not an iron wall. Besides

pathways through the bloodstream, we recognize path-

ways through sensory afferent nerve fibres. Early experi-

ments showed that the vagus nerve provides a track from

the periphery to the brain [38, 39].

Others showed a pathway through the glossopharyn-

geal nerve that innervates the pharynx [40]. In the gastro-

intestinal tract, sensory afferents in many parts of the gut

are key to the gut-brain axis that also transfers inflamma-

tory signals to the brain [41]. Newer work shows that sen-

sory afferents from joints through spinal pathways

transmit peripheral inflammation to the central nervous

system [42]. These afferents are one anatomical substrate

for joint inflammation-driven changes of brain function.

The platform for signal transmission through afferent

nerve fibres is a wonderfully equipped afferent nerve ter-

minal with many receptors that signal inflammation [43].

There are receptors for lipopolysaccharides from bacterial

cell walls, for other toll-like receptor ligands, for cytokines,

bradykinin, protons (hypoxia produces protons through

lactate), neuropeptides such as substance P, neuro-

trophic growth factors, higher tissue temperature, purines

released from dying cells, histamines, prostaglandins, and

others [43, 44]. Again, we realize an evolutionarily posi-

tively selected program that allows transmission of inflam-

mation and pain to the brain in order to start a ‘take care

program’ for the affected tissue.

We can summarize that immune activation can be easily

transmitted to the brain. Importantly, peripheral immune

activation starts microglia activation in the brain [45], and

this phenomenon can be the forerunner of sickness beha-

viour, including fatigue.

Relevant brain regions and pathways

The localization of the brain areas with different neuro-

transmitters involved in fatigue and the relevant pathways

are shown in Fig. 1 [46�49].

From sensing inflammation to feelings

The awareness of the internal state of the body (i.e. inter-

oception) is central to survival. Peripheral inflammation is

sensed, and the immune signals are relayed from the

body to specific sub-regions in the brain [50, 51]. For in-

stance, afferent immune signals from the vagus nerve pro-

ject to the nucleus tractus solitarius and parabrachial

nucleus [52]. Then, the signal is relayed to the ventro-

medial basal nucleus of the thalamus. Then, it goes to
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FIG. 1 The localization of the brain areas with different neurotransmitters involved in fatigue and the relevant pathways

Red: glutamate neurons in dlPFC, vmPFC. Grey: acetylcholine neurons in the MS, NB, PTN. Green-blue: dopamine

neurons in VTA, SNpc. Yellow: serotonin neurons in DR, MR. Purple: melatonin pinealocyte in the pineal gland. Blue:

noradrenaline neurons, LC. (a) Corticostriatal glutamatergic projection. (b, c) Cholinergic projections to prefrontal cortex/

hippocampus. (d) Cholinergic projection to dorsal striatum. (e, f) Serotonergic projections to prefrontal cortex, OFC, ACC.

(g) Dopaminergic projection from VTA to nucleus accumbens (mesolimbic pathway). (h) Dopaminergic projection from

SNpc to dorsal striatum (nigrostriatal pathway). (i, j) (green-blue) Dopaminergic projection from VTA to cortex (meso-

cortical pathway). (i, j) (blue) Noradrenergic projection from LC to dlPFC and ACC. dlPFC: dorsolateral prefrontal cortex;

vmPFC: ventromedial prefrontal cortex; MS: medial septal nucleus; NB: nucleus basalis of Meynert; PTN: pontome-

sencephalotegmental nuclei; VTA: ventral tegmental area; SNpc: substantia nigra pars compacta; DR: dorsal raphe

nucleus; MR: median raphe nucleus; LC: locus coeruleus; OFC: orbitofrontal cortex; ACC: anterior cingulate cortex.
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the posterior insula for primary interoceptive representa-

tion. Form here, it goes to the mid-insula for integration of

homeostatic conditions (hypothalamus and amygdala)

and hedonic conditions (nucleus accumbens and orbito-

frontal cortex). Now, it runs to the anterior insula for inte-

gration of motivational, social and cognitive conditions

(anterior cingulate cortex, ventromedial and dorsolateral

prefrontal cortex, subgenual cortex (Fig. 1 shows some

locations) [50, 51].

Thus, the insular cortex is an integration hub that re-

ceives sensory inputs from all modalities from inside and

outside the body, via cortical and subcortical brain areas,

serving sensory, emotional, motivational and cognitive

functions [53�55]. The anterior insular cortex and anterior

cingulate cortex get often jointly activated, suggesting

close cooperation. In this teamwork, the anterior insular

cortex is the probable site for awareness based on its

afferent representation of the ‘feelings from the body’.

The anterior cingulate cortex is the probable site for the

initiation of behaviours [52]. Remarkably, the insular

cortex receives strong neuromodulator input in the form

of cholinergic afferents from the basal nucleus, dopamin-

ergic input from the ventral tegmental area, serotonergic

input from the raphe nuclei, and noradrenergic input from

the locus coeruleus, all related to different forms of fatigue

(see next section) [53].

Different types of fatigue and locations in
the brain

Central fatigue can be divided into motivational, physical

and cognitive fatigue [14, 56]. Different brain areas are

involved in the three types of fatigue, that will be explained

below (Fig. 2).

Motivational fatigue

Patients express this feeling of fatigue as ‘I do not want to

do anything’ fatigue [56]. This fatigue is dominated by

decreased wanting or decreased motivation [57, 58],

and therefore, it is coined as motivational fatigue [59].

Central in this neural network is the mesolimbic pathway

(Fig. 2), consisting of dopamine neurons in the ventral teg-

mental area projecting to the nucleus accumbens located

in the ventral striatum [60, 61]. Under normal conditions,

this circuit controls behavioural responses to natural re-

wards, such as food, sex and social interactions, and is

therefore an important determinant of incentive drive [47].

The ventral striatum projects to both orbitofrontal cortex

and anterior cingulate cortex, enabling reward and cost

valuation [62�64] (Fig. 2). Also, serotonin neurons in the

raphe nuclei innervate the same cortical areas [65]. A

cost-benefit analysis is made depending on the incoming

internal and external environmental stimuli that affects

wanting and its frequency, duration and effort [66] (Fig. 2).

Physical fatigue

Patients express this feeling of fatigue as ‘I have difficul-

ties doing physical tasks’ [56]. Therefore, it is coined as

physical fatigue [56]. Central in this neural network is the

nigrostriatal pathway (Figs 1 and 2), consisting of dopa-

mine neurons in the substantia nigra pars compacta pro-

jecting to the putamen located in the dorsal striatum [67].

Under normal conditions, this circuit controls physical ac-

tivity: the dorsal striatum projects to both globus pallidus

pars interna and the subthalamic nucleus, globus pallidus

pars externa, enabling respectively ‘GO’ and ‘STOP’ of

motor activity [68] (Fig. 2). To what degree the frequency,

duration and effort of motor activity is affected depends

on the incoming internal and external environmental sti-

muli [69].

Cognitive fatigue

Patients express this feeling of fatigue as ‘I have difficul-

ties concentrating’ [56]. Often a failure to focus and/or

sustain in attentional tasks is observed, that is associated

with impaired cognitive performance [70]. Therefore, we

call it cognitive fatigue, formerly also known as mental

fatigue [56]. Central in this neural network is the mesocor-

tical pathway (Figs 1 and 2), consisting of dopamine neu-

rons located in the ventral tegmental area projecting to the

dorsolateral prefrontal cortex [71] and anterior cingulate

cortex [72]. Also, noradrenaline neurons located in the

locus coeruleus innervate the same cortical areas [73]

and the hippocampus [74] (Fig. 2). The hippocampus is

needed for novelty gating to detect the change in envir-

onmental contextual representation between two percep-

tions (short-term memory) [74]. The dorsolateral prefrontal

cortex is involved in sustained attention, while the anterior

cingulate cortex is involved in selective attention [48].

Furthermore, dopamine can reduce the signal-to-noise

ratio, whereas noradrenaline can increase signal strength

in the processing of sensory stimuli [48, 75]. Depending on

the incoming internal stimuli, the ability to concentrate

(frequency, duration, effort) is affected by the noradrener-

gic and dopaminergic system [48, 73, 76].

Pathophysiological mechanisms of
inflammation-induced changes in neural
chemistry

Inflammation-induced interference with
neurotransmitter release

Cytokines like TNF can interfere with secretion of nor-

adrenaline (Fig. 3) from neonatal rat superior cervical

ganglia [77]. TNF blocks noradrenaline release under cer-

tain experimental conditions [77]. Similarly, TNF can alter

cellular functions of sympathetic neurons via modulating

ionic conductance, e.g. calcium currents [78]. Others have

shown that IL-1b and IL-2 can inhibit noradrenaline re-

lease from spleen sympathetic nerve fibres [79, 80]. The

influence of cytokines on noradrenaline release was obvi-

ous in myenteric plexus or myenteric nerve varicosities in

the jejunum. Here, IL-1b together with IL-6 suppressed

noradrenaline release [81]. Another inflammatory mol-

ecule, nitric oxide, can similarly interfere with noradren-

aline release [82]. The question remains whether or not

there are similar cytokine influences on neurotransmitter

release in the brain.
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For example, IL-2 can inhibit dopamine release from rat

cultured mesencephalic neurons at high concentrations

but potentiate its release at low concentrations [83].

Others have shown IL-2 inhibition of noradrenaline release

from hypothalamic tissue slices of rats [84]. A pro-secre-

tory function of IL-2 was discovered for dopamine release

in the rat striatum [85]. Moreover, TNF can inhibit nor-

adrenaline release from the isolated rat median eminence

[86], and this can be responsible for a diminished release

of noradrenaline-dependent corticotropin releasing hor-

mone (CRH) secretion. TNF inhibits noradrenaline release

from rat hippocampal brain slices [87]. Furthermore, TNF

and other cytokines can directly interfere with pituitary

hormone release [88].

Inflammation-induced increased uptake and
breakdown of monoamines in brain

Inflammatory rheumatic disorders have an increased

expression of several proinflammatory cytokines, such

as IL-1, IL-6, TNF-a, IL-23 and IL-17 [89]. Inflammation

or proinflammatory cytokines can lower serotonin, nor-

adrenaline and dopamine via increase of monoamine

transporter (i.e. serotonin, noradrenaline, dopamine trans-

porters) trafficking and function via, among others,

p38MAPK- and MEK (MAP-Erk-kinase)-dependent mech-

anisms [90�94] (Fig. 3). Moreover, another mechanism has

been described that can inhibit dopamine release.

Inflammation increases kynurenic acid production in

astrocytes that can inhibit dopamine release by antago-

nizing the a7-nicotinic acetylcholine receptor [95].

Inflammation-induced inhibition of tetrahydrobiopterin
(BH4)

Inflammation can also decrease monoaminergic neuro-

transmission via the reduction of tetrahydrobiopterin

(BH4) (Fig. 3) [96]. This enzymatic cofactor is necessary

for some important rate-limiting amino acid monooxy-

genases. These are phenylalanine hydroxylase, L-tyrosine

hydroxylase (TH), and tryptophan hydroxylase that are

needed for the conversion of amino acids such as

L-phenylalanine to L-tyrosine, L-tyrosine to L-DOPA (levo-

dopa), and L-tryptophan to 5-hydroxytryptophan. L-DOPA

and 5-hydroxytryptophan are the forerunner molecules for

anti-depressive catecholamines and serotonin, respect-

ively [96�98]. Due to inflammatory and oxidative/nitrosa-

tive stress, the cofactor BH4 decreases. In macrophages,

IFN-g triggers high output of reactive oxygen species,

which can destroy the oxidation-labile BH4 [97, 98].

Activated T-helper lymphocytes that produce IFN-g or

TNF strongly stimulate the activity of guanosine triphos-

phate cyclohydrolase I (GTP-CH1) [96]. GTP-CH1 is the

rate-limiting enzyme of BH4 biosynthesis from guanosine

FIG. 2 The different types of fatigue in chronic

inflammation

Brain monoamines (orange: serotonin neurons in raphe

nuclei; green-blue: dopamine neurons in ventral tegmental

area or substantia nigra pars compacta; and blue: nor-

adrenaline neurons in locus coeruleus play an important

modulatory role in (i) motivational fatigue; (ii) physical fa-

tigue; (iii) cognitive fatigue. The anatomical relations are

given in figure1.
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triphosphate and the intermediate 7, 8-dihydroneopterin-

triphosphate (Fig. 3). In humans, however, IFN-g stimu-

lates GTP�CH1 enzyme activity in monocyte-derived

macrophages, dendritic cells and astrocytes to increase

neopterin production at the expense of BH4 formation

(Fig. 3) [99, 100]. Thus, inflammation lowers BH4 activity

that will ultimately result in decreased levels of noradren-

aline, dopamine and serotonin (and melatonin) in the brain

(Fig. 3). The above-mentioned changes are very important

for the development of all three types of fatigue (Fig. 2).

Inflammation forces tryptophan into the kynurenine
route

Proinflammatory cytokines increase both tryptophan 2, 3-

dioxygenase in hepatocytes and indoleamine-2, 3-dioxy-

genase (IDO) activity and shunt tryptophan away from the

serotonin route into the kynurenine route (Figs 3 and 4)

[101, 102]. Kynurenine, via different routes, is metabolized

into either 3-hydroxykynurenine and quinolinic acid in

microglia or kynurenic acid in astrocytes [103, 104].

Interestingly, quinolinic acid is an N-Methyl-D-aspartate

(NMDA) receptor agonist [104], whereas kynurenic acid

is an antagonist at NMDA and a7-nicotinic acetylcholine

receptors [104] (Figs 3 and 4). Both 3-hydroxykynurenine

and quinolinic acid activate oxidative pathways, which

cause mitochondrial dysfunctions and neuroexcitatory/

neurodegenerative effects [105, 106]. Remarkably, it has

been shown that stress (read glucocorticoids) can en-

hance tryptophan 2, 3-dioxygenase function [105].

Inflammation and glucocorticoids

Glucocorticoid resistance may be the result of impaired

glucocorticoid receptor function secondary to chronic ex-

posure to inflammatory cytokines as may occur during

chronic medical illness or chronic stress [105, 107].

Long-term glucocorticoid resistance produces allostatic

load and may be responsible for cognitive disturbances,

but also depression-like symptoms due to a decrease in

neuroplasticity [21, 108]. The above-mentioned changes

are very important for the development of both cognitive

fatigue and motivational fatigue.

FIG. 3 Pathophysiological mechanisms how inflammation changes brain chemistry

(1) Inhibition of noradrenaline release by cytokines. (2) Increased uptake of monamines into the nerve ending reduces

neurotransmitters in the synaptic cleft. Monamine transporters are activated by cytokines. (3) Changes in phenylalanine

hydroxylase and tyrosine hydroxylase (TH) reduce catecholamine synthesis. (4) Changes in tryptophan metabolism lead to

reduced serotonin through inhibition of TPH, through activation of IDO, and through activation of KMO. (5) Reactive oxygen

and nitrogen species inhibit glutamate transporters, especially EAAT2 on astrocytes. Consequently, glutamate increases in

the synaptic cleft. (6) Reactive oxygen/nitrogen species also increase kynurenic acid from astrocytes. Finally, cytokines

stimulate activity of GTP-CH1 to increase neopterin but to decrease BH4. Because BH4 is important for generation of

monamines, the lack of BH4 supports fatigue and depression. SERT: serotonin transporter; DAT: dopamine transporter;

NET: noradrenaline transporter; TPH: tryptophan hydroxylase; IDO: indoleamine-2, 3-dioxygenase; KMO: kynurenine-3-

monooxygenase; EAAT2: excitatory amino acid transporter 2; GTP-CH1: guanosine triphosphate cyclohydrolase I; BH4:

tetrahydrobiopterin.
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Inflammation increases glutamatergic instability in the
brain

Oxidative stress may stimulate astrocytes to inhibit

glutamate transporters, especially excitatory amino

acid transporter 2 located on astrocytes [109�111].

Consequently, an accumulation of glutamate appears

based on higher release and reduced reuptake from the

synaptic cleft (Fig. 4) [112]. Such increased glutamatergic

neurotransmission and increased glutamatergic instability

may decrease brain-derived growth factor concentrations

and neuroplasticity [113]. The above-mentioned changes

are also very important for the development of cognitive

fatigue and the decrease in neuroplasticity involved in mo-

tivational fatigue.

Acute experimental inflammation and
different forms of fatigue

There is a large body of literature describing the effects of

an activated immune system on the brain. Much of this

evidence originates from studies in healthy volunteers

acutely administered with immune stimuli like lipopolysac-

charide or vaccination against Salmonella typhi (typhoid

vaccination) (see meta-analysis [114]). Some studies in

patients showed that IFN-� used as therapy for some can-

cers and infectious diseases like hepatitis C increase the

plasma levels of CRP and proinflammatory cytokines [15,

115�117]. These experiments show specific effects on

motivational, physical and/or cognitive fatigue.

A recent meta-analysis of 24 human neuroimaging stu-

dies of brain regions and networks associated with this

type of acute peripheral inflammation show overlap with

known intrinsic brain networks, such as the limbic net-

work, default mode network and ventral attention net-

work, as well as corticostriatal loops implicated in

sensory, emotional, physical, motivational and cognitive

functions (Figs 1 and 2) [114].

Although most studies describe the effects of acute in-

flammation, it clearly shows that inflammation alters brain

functioning that facilitates the reorganization of priorities

[118]. In motivational terms, inflammation affects internally

or externally driven motivational states (for example, ma-

ternity care, exploration, food intake, sex) in favour of sur-

vival [119]. For instance, lipopolysaccharide-treated

lactating mice did not engage in nest building in a 22�C

environment, but they built a near perfect nest when

exposed to a 6�C environment [119].

Motivational fatigue

In humans, IFN-a therapy reduced motivation and

increased anhedonia (loss of pleasure) and fatigue

[120�122]. In the first two weeks of therapy especially fa-

tigue, anorexia and pain are prevalent, whereas symp-

toms of depressed mood, anxiety and cognitive

dysfunction appear later. Inflammation affects neural rep-

resentations of reward and so-called punishment predic-

tion errors using the ventral striatum and anterior insula.

Consequently, potential rewards are less attractive and it

may lead to decreased approach motivation, while poten-

tial punishments become aversive and may increase

avoidance motivation [58, 123, 124].

From an evolutionary point of view this motivational

shift, due to lower phasic activity in dopaminergic striatal

system [125], may be beneficial in the context of infection

when metabolic resources are re-distributed to overcome

infection. During chronic inflammation, however, this mo-

tivational shift may predispose to developing chronic mo-

tivational fatigue similar to major depression [120]. Indeed,

inflammation leads to avoidance and to social withdrawal

in general. This can be explained by the fact that IFN-a

FIG. 4 Inflammation-induced changes in neurotransmission in different areas and different cell types

mGlu2 receptor, metabotropic glutamate receptor 2 (autoreceptor for glutamate, that upon activation, inhibits the

emptying of vesicular contents at the presynaptic terminal of glutamatergic neurons). SERT: serotonin transporter;

DAT: dopamine transporter; NET: noradrenaline transporter.
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therapy reduced the activity of the basal ganglia, and

decreased dopamine synthesis/release and ventral striatal

responses to reward [121, 126]. Inflammation-induced

changes in neuroplasticity may also be involved. IFN-a
therapy stimulated motivational fatigue that was predicted

by earlier changes in striatal microstructure [127].

Typhoid vaccination increases inflammation that was

associated with higher insula activity and fatigue [128].

Furthermore, typhoid vaccination enhanced punishment

sensitivity but not reward sensitivity, through distinct ac-

tions within the ventral striatum and anterior insula [124,

129].

Physical fatigue

In rodents, inflammation alters the packing, release and

reuptake of dopamine in the nigrostriatal system (Fig. 1),

that is associated with motor retardation or psychomotor

slowing [130]. In particular, animal models of Parkinson’s

disease have shown that inflammation affects dopamine

neurons in the nigrostriatal pathway and impair motor

control [131]. In agreement, peripheral administration of

both IL-1 and IL-6 suppressed motor activity [132�134].

In rhesus monkeys, IFN-a administration reduces dopa-

minergic activity in basal ganglia, including dorsal stri-

atum, which also correlated with decreased locomotor

activity [116, 135]. In humans, typhoid vaccination im-

paired the motor response to stimuli in different specific

motor tasks, whereas there was no correlation between

subjective ratings of mood or illness symptoms [117].

Furthermore, typhoid vaccination strongly increased cir-

culating IL-6 that was associated with attenuated bilateral

reactivity of substantia nigra to stimulus novelty [136].

Cognitive fatigue

In rodents, a growing body of evidence suggests that

proinflammatory cytokines IL-1, IL-6 and TNF are involved

in the molecular and cellular mechanisms underlying cog-

nition deficits [137�139]. It is a hypothesis that an inflam-

mation-induced decrease in brain-derived growth factor in

the hippocampus causes these cognitive deficits.

Treatment with the TNF inhibitor infliximab prevented the

cognitive impairments and the reduction of hippocampal

brain-derived growth factor [140]. Another route that may

be involved in inflammation-induced cognitive deficits is

the stimulation of the kynurenine pathway that increases

the levels of kynurenic acid (Figs 3 and 4). This molecule

can also act as a7-nicotinic acetylcholine receptor antag-

onist and, thereby, produce spatial working memory def-

icits [141].

In humans, cognitive fatigue or ‘brain fog’ appears in

patients suffering from chronic inflammatory diseases

characterized by a diminished ability to concentrate,

learn and remember [142]. In a recent review, authors pre-

sented effects of bacterial endotoxin and hepatitis B vac-

cination on cognitive function [143]. Acute experimental

inflammation caused mixed changes in attention, execu-

tive functioning and memory. Disturbed cognitive function

was especially related to increased social disconnected-

ness, reduced perception of emotions, increased

avoidance of punishment or loss experiences and

increased social disconnectedness [143]. It cannot be

excluded that the effects of acute inflammation on cogni-

tion are less pronounced in humans because of the rela-

tive short duration of inflammation.

Chronic inflammation in rheumatic
disorders and fatigue

Unfortunately, in most clinical studies, different forms of

fatigue were not always labelled as such, but recent stu-

dies suggest that the various forms of fatigue do exist in

inflammatory rheumatic disorders: for example, for cogni-

tive fatigue : ‘I have difficulties concentrating’ ([144�148]);

physical fatigue: ‘I have difficulties doing physical tasks’

[148�154]; motivational fatigue: ‘I do not want to do any-

thing’ [148, 155�158].

Chronic inflammation in rheumatic disorders does not

only affect fatigue but also other symptoms of sickness

behaviour. Remarkably, immunosuppressants do not

always equally affect these different symptoms. In spon-

dyloarthritis (SpA) patients, TNF inhibitor therapy had a

much stronger effect on pain than on fatigue [159]. This

is in agreement with findings in psoriatic arthritis patients,

where biological disease modifying drugs (certolizumab

pegol, secukinumab, ustekinumab) and apremilast had a

small effect on fatigue, but a much stronger effect on pain

[160]. Similarly, in RA patients both anti-TNF and non-anti

TNF biologic treatments led to a small to moderate reduc-

tion of fatigue [161].

In rodents with adjuvant-induced arthritis, decreased

brain-derived growth factor levels were observed in the

hippocampus (�50%) and in the prefrontal cortex (�60%)

[162]. In the same animal model, enrichment of microglia

in the hippocampus and aberrant insulin-growth factor

signalling has been observed that was associated with

reduced hippocampal neurogenesis and a smaller hippo-

campus [163].

In children with juvenile arthritis suffering from chronic

inflammation and fatigue, an increased activity of both

IDO and GTP-CH1 pathways and a decreased BH4 effi-

cacy were observed (see also Fig. 3) [164]. This can affect

neurotransmitter concentrations of serotonin, dopamine

and noradrenaline and increased levels of glutamate and

quinolinic acid (NMDA-receptor agonist) (Figs 3 and 4)

[164]. Similar changes in activity of IDO and GTP-CH1

pathways have been observed in low-grade inflammation

in the elderly that was associated with general fatigue and

reduced motivation, sleep alterations, reduced appetite

and digestive symptoms [165].

In RA patients, functional MRI showed an increase in

grey matter content in the basal ganglia, mainly in the

nucleus accumbens and caudate nucleus [166]. Others

showed that high levels of peripheral inflammation in RA

patients were associated with more positive connections

between the inferior parietal lobule, medial prefrontal cor-

tex and multiple brain networks, as well as reduced infer-

ior parietal lobule grey matter, and these patterns of

connectivity predicted fatigue, pain and cognitive
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dysfunction [167]. In addition, TNF inhibitor therapy

decreased MRI bold activity in thalamus, in primary and

secondary somatosensory cortices that were involved in

pain, but also decreased MRI activity in cingulate and in-

sular cortex that were responsible for affective-motiv-

ational fatigue [168]. We cannot exclude, however, that

fatigue�associated structures are also influenced by in-

flammation-induced phenomena such as sleep disturb-

ance, depression, loss of mobility, or others, which

reflects the complexity of fatigue research [169].

Psoriatic arthritis patients suffer from different disease

symptoms such as obesity (BMI> 30) in 33.6% and de-

pression 27.7% [170]. Remarkably, TNF inhibiting therapy

in psoriasis and psoriatic arthritis patients was associated

with a significant reduction in serotonin transporter avail-

ability [171]. This may explain the higher incidence of de-

pression in psoriatic arthritis.

In SpA patients treated with TNF inhibitor therapy, 60%

of the SpA patients had significant relief of pain, whereas

only 22% of patients had significant relief of both pain and

fatigue [159]. Functional MRI clearly showed the involve-

ment of different brain areas in pain reduction and fatigue

reduction. Pain intensity reduction was associated with

cortical thinning of the secondary somatosensory cortex

[159]. In contrast, fatigue reduction correlated with cortical

thinning of the insula, primary sensory cortex and inferior

parietal sulcus, and superior temporal polysensory areas.

These findings indicate different brain mechanisms in pain

and fatigue [159].

Another study of the same investigators showed that

individual fatigue scores were negatively correlated with

the amount of grey matter in areas of the dorsal and ven-

tral attention network, the somatosensory cortices and the

caudate nucleus, but were positively correlated with grey

matter within the executive control network and putamen

(Fig. 1) [172]. Moreover, in patients with high fatigue

scores, the functional MRI data indicated decreased

white matter tract integrity in the tracts connecting the

different networks [172].

This indicates that fatigue in SpA involves sensory sali-

ence and attention brain networks and TNF inhibitor ther-

apy produces changes in brain areas implicated in motor,

affective/motivational, and cognitive functions. It seems

that salience networks or the underlying white matter

tracts produce symptoms associated with fatigue, such

as lack of motivation but also distractibility, while the cor-

tical thinning in somatosensory areas may lead to the

pathogenesis of cognitive fatigue [172].

The above-described effects of chronic inflammation on

the brain are in agreement with the earlier reported brain

regions affected by acute inflammation, suggesting the

involvement of intrinsic brain networks that play a role in

motivational, cognitive and physical fatigue.

Difference between depression and
fatigue

From a practitioner’s perspective it is important to make a

difference between depression and fatigue, because

depression can be a life-threatening disorder and medical

treatment is often possible and necessary, whereas

severe fatigue in itself is not life-threatening; however, it

greatly lowers the quality of life. Remarkably, fatigue can

be a symptom of a depression. Unfortunately, there are no

proven effective therapies to combat severe fatigue. The

Diagnostic and Statistical Manual of Mental Disorders

(DSM-5) is often used to make a diagnosis of major de-

pressive disorder, including severe depression [173].

Accordingly, a depressed individual must be experiencing

at least one of the symptoms, either feeling sad or having

a depressed mood, or loss of interest or pleasure (i.e.

anhedonia) in all, or almost all activities once enjoyed,

both are experienced most of the day, nearly every day

and during at least a 2-week period. In addition, people

with depression must have five or more other symptoms

in the same period, such as: fatigue or loss of energy;

difficulty thinking, concentrating or making decisions; a

slowing down of thought; a reduction of physical move-

ments (observable by others) or restlessness; sleeping

more or less; a change in appetite or weight loss or gain

unrelated to dieting; feelings of worthlessness or exces-

sive or inappropriate guilt; recurrent thoughts of death or

suicide, or suicide attempt.

The strength and main purpose of the DSM-5 is that can

be used to make the correct diagnosis of mental dis-

orders, the weakness of the DSM-5 is that it is not

based on differences in pathophysiological mechanisms.

Here it is hypothesized that there is an overlap between

the mechanisms underlying some of the symptoms of

depression and the different forms of fatigue: e.g. anhe-

donia:motivational fatigue; difficulty thinking and concen-

trating: cognitive fatigue; and reduction of physical

movements: physical fatigue. This does not come as a

surprise because there is increasing evidence that a sig-

nificant proportion of people with depression also have

increased levels of inflammation [171, 174] and vice

versa, that proinflammatory cytokines can cause depres-

sion [175]. It is therefore not surprising that in people with

rheumatic inflammatory diseases there is an increased

risk of getting a depression ([176, 177], and depressive

symptoms may significantly improve by anti-cytokine

[178]. Previously, it has been shown that inflammation is

associated with decreased functional connectivity both

within ventral corticostriatal circuitry (between ventral stri-

atum and ventromedial prefrontal cortex) [179], and within

subgenual cingulate cortex and mesolimbic circuitry, that

are known for their role in depressive mood and anhedo-

nia [180]. Recently, it has been suggested that, in depres-

sion, prolonged dysregulation in tonic dopamine signalling

can lead to striatal dysfunction and motivational anhedo-

nia [181].

Fatigue can persist even after successful
treatment of inflammation

Paradoxically, there is evidence that inflammation is

involved in the onset of fatigue, while fatigue can persist

even after successful treatment of inflammation in
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rheumatic disorders. Here it is speculated that this differ-

ence is caused by an inflammation-induced decline in

nerve growth factors (e.g. brain-derived neurotrophic

factor (BDNF)), that produce long-term changes in brain

morphology, functional connectivity in different neuronal

networks and sensitization. Indeed, several studies show

that peripheral inflammation lower the concentrations of

BDNF, that consequently decreased neuroplasticity [182].

In agreement, in a rat model of adjuvant-induced arthritis,

BDNF is significantly reduced in both cortical and hippo-

campal brain areas [162]. Also, in humans, chronic inflam-

mation or proinflammatory cytokines are known to change

striatal microstructure that predicted fatigue [183].

Interestingly, recently it was shown that fatigue was pre-

dicted by central sensitization, independently of the pres-

ence of pain [184]. Previously, it has also been suggested

that altered BDNF levels in fibromyalgia are involved in

neuronal plasticity and the central sensitization process

[185]. Despite these interesting findings, more research

is needed to further investigate the causal role of nerve

growth factors (e.g. BDNF) in relation to neuroplasticity,

brain morphology, sensitization and functional connectiv-

ity in different neuronal networks and fatigue.

Fibromyalgia and inflammatory
rheumatic disorders share similarities in
symptoms, including fatigue

Fibromyalgia is a heterogeneous disorder that more likely

develops in women than in men, that is characterized by

widespread musculoskeletal pain accompanied by fa-

tigue, sleep, memory and mood disturbances (e.g. anxiety

and/or depression) [186]. Here it is hypothesized that in

some patients with fibromyalgia, including fatigue, periph-

eral inflammation is the driving force, because a diagnosis

of endometriosis, RA or IBD (such as Crohn’s disease and

ulcerative colitis) are associated with later onset of fibro-

myalgia [187, 188]. Furthermore, increased levels of proin-

flammatory cytokines have been observed in patients with

endometriosis, RA or IBD [126, 189, 190]. Due to the fun-

damental differences in the immune systems of females

and males, females have a higher prevalence of a number

of autoimmune diseases (e.g. RA, IBD), suggesting that

gonadal hormones may have a role in this higher preva-

lence of autoimmunity in women [191]. Indeed, in RA pa-

tients, it has been shown that women experience both

higher disease activity and more fatigue [192]. In agree-

ment, it has been shown that co-occurrence of endomet-

riosis and fibromyalgia (including fatigue) in women is

associated with a high burden of autoimmune disease,

anxiety and/or depression, and healthcare resource util-

ization. The above suggests that it is important to take into

account the female factor in the development of fatigue.

Conclusions

Together, the present review provides evidence that in-

flammation distorts neural chemistry, brain function and

functional connectivity across a broad range of brain

networks. Future studies will need to disentangle how

local or global changes in network function, probably

due to a widespread disturbed monoamine/glutamate bal-

ance in the brains of patients with inflammatory rheumatic

disorders contribute to different forms of fatigue.
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