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Abstract
Research that makes secondary use of administrative and clinical healthcare databases is increasingly influential for regu-
latory, reimbursement, and other healthcare decision-making. Consequently, there are numerous guidance documents on 
reporting for studies that use ‘real-world’ data captured in administrative claims and electronic health record (EHR) data-
bases. These guidance documents are intended to improve transparency, reproducibility, and the ability to evaluate validity 
and relevance of design and analysis decisions. However, existing guidance does not differentiate between structured and 
unstructured information contained in EHRs, registries, or other healthcare data sources. While unstructured text is conveni-
ent and readily interpretable in clinical practice, it can be difficult to use for investigation of causal questions, e.g., compara-
tive effectiveness and safety, until data have been cleaned and algorithms applied to extract relevant information to structured 
fields for analysis. The goal of this paper is to increase transparency for healthcare decision makers and causal inference 
researchers by providing general recommendations for reporting on steps taken to make unstructured text-based data usable 
for comparative effectiveness and safety research. These recommendations are designed to be used as an adjunct for existing 
reporting guidance. They are intended to provide sufficient context and supporting information for causal inference studies 
involving use of natural language processing- or machine learning-derived data fields, so that researchers, reviewers, and 
decision makers can be confident in their ability to evaluate the validity and relevance of derived measures for exposures, 
inclusion/exclusion criteria, covariates, and outcomes for the causal question of interest.
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Key Points 

Existing guidance for reporting on research using health-
care databases does not differentiate between structured 
and unstructured information contained in the electronic 
health records (EHRs), registries, or other healthcare 
data sources.

Context and supporting detail for natural language 
processing- and machine learning-derived fields is 
extremely important to allow causal inference research-
ers as well as decision makers (e.g., health technology 
assessment, payers, regulators) to evaluate whether 
derived phenotypes, outcomes, or other clinical events 
are relevant to the question they seek to address.

We provide recommendations on reporting to increase 
transparency about the process of making unstructured 
text-based data usable for causal inference, pharmaco-
economic evaluations, and utilization studies.

1 Introduction

There is widespread interest in making greater use of the rich 
clinical information contained in administrative claims and 
electronic health records (EHRs) to generate ‘real-world’ 
evidence (RWE) on the safety, effectiveness, or value (cost 
effectiveness) of medical interventions [1–11]. Insurance 
claims data provide longitudinal records of patient contact 
with the healthcare system via billing codes and are rou-
tinely used to generate RWE. Similarly, research conducted 
with EHR databases can leverage the rich clinical history 
contained in patient medical records (e.g., free-text notes, 
reports, laboratory results, problem lists, etc.). However, 
these data are collected for administrative and clinical pur-
poses, not research. Therefore, it is critically important to 
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use algorithms that validly capture patient phenotypes and 
clinical events when making secondary use of these data to 
generate evidence on the comparative safety and effective-
ness of medical interventions.

Because research that makes secondary use of administra-
tive and clinical healthcare databases is becoming increas-
ingly influential for regulatory, reimbursement, and other 
healthcare decision-making, numerous guidance documents 
on reporting for observational studies [12, 13] as well as 
specific reporting recommendations for studies that make 
secondary use of such data have been developed [14–18]. 
These guidance documents are intended to improve trans-
parency, reproducibility, and the ability to evaluate validity 
and relevance of design and analysis decisions. However, 
existing guidance for reporting on research using health-
care databases do not differentiate between structured and 
unstructured information contained in the EHR, registries, 
or other healthcare data sources. While unstructured text is 
convenient and readily interpretable in clinical practice, it 
can be difficult to use for investigation of causal inference 
questions regarding comparative effectiveness or safety, as 
well as pharmacoeconomics or utilization research, until the 
data have been cleaned and algorithms applied to extract 
relevant information to structured fields for analysis [19].

There is a growing body of research focused on develop-
ing natural language processing (NLP) and machine learning 
(ML) methods to facilitate classification and identification 
of computable phenotypes to define exposures, inclusion/
exclusion criteria, covariates, and outcomes from EHRs in a 
way that is accurate and reliable for research [20]. Many aca-
demic organizations, health systems, and commercial organ-
izations routinely use NLP- and ML-derived data from the 
EHR to support research and clinical practice. NLP and free-
text analysis approaches have been used for tasks including 
extraction of clinical concepts such as smoking status and 
other risk factors [21–23], identification of medication dis-
crepancies [24–26], detection of potential medicinal effects 
in spontaneous reporting systems [26–30], and evaluation of 
drug–disease [31] relationships.

Large distributed data networks such as PCORnet [32] 
and the US Food and Drug Administration’s (FDA) Senti-
nel program [33, 34], which focus on conducting compara-
tive effectiveness and safety research, are moving toward 
supplementing administrative claims data in their common 
data models with computable phenotypes and clinical events 
derived from unstructured data using NLP and ML [35–39]. 
Other distributed data networks such as EU-ADR and Asian-
DURG (Asian Drug Utilization Research Group) indepen-
dently implement common protocols across the network. 
These distributed networks have found that research results 
can vary due to underlying differences in data sources as 
well as processes for extracting information from unstruc-
tured data [40–42].

There are several important considerations when NLP or 
ML algorithms are reused to extract phenotypes or clinical 
events across data systems, time, and purposes. First, clinical 
documentation practices and jargon may vary across health-
care facilities. High-performing NLP and ML algorithms 
within one EHR system may use contextual information that 
is not applicable in other systems where clinical documen-
tation processes and norms differ. Second, while NLP and 
ML are extremely useful tools that facilitate measurement 
of exposure, exclusion criteria, covariates, and outcomes, 
additional design and analysis methods must be applied for 
causal inference. For example, while temporality of exclu-
sion/covariate assessment windows and follow-up relative to 
cohort entry is critical for causal inference research, timing 
with respect to cohort entry may not be a major considera-
tion for studies focused on developing NLP or ML algo-
rithms to classify patients, events, or notes. Context and sup-
porting detail for NLP- and ML-derived fields is extremely 
important for causal inference researchers as well as decision 
makers (e.g., health technology assessment, payers, regula-
tors) to evaluate whether derived phenotypes, outcomes, or 
other clinical events are relevant to the question they seek 
to address.

The general process to extract and validate information 
from the EHR is straightforward, typically starting with 
design of the study and establishing criteria for defining the 
reference standard. We deliberately use the term ‘reference 
standard’ rather than ‘ground truth’ or ‘gold standard’ to 
emphasize that determinations made by human reviewers 
are not the fixed truth; rather, they are the reviewer’s inter-
pretation based on inherently limited EHR data that were 
generated to document clinical care (usually in the context 
of an agreed upon standard such as a published case defini-
tion). After laying out the study design and criteria for the 
reference standard, researchers generally acquire access to 
EHR data, create a labeled corpus of data (where the ref-
erence standard is determined by human reviewers), then 
develop and evaluate NLP or ML algorithms. While the 
general process is straightforward, the details can be quite 
complex. Important scientific details are often not publicly 
reported [43]. Greater clarity at each step in this process 
would facilitate reviewer and decision-maker evaluation of 
the validity as well as relevance of NLP and ML outputs that 
are reused in different research investigations (e.g., a library 
of phenotypes).

The goal of this paper is to increase transparency for 
healthcare decision makers by providing general recommen-
dations for reporting on steps taken to make unstructured 
text-based data usable for causal comparative effective-
ness and safety research. Similar principles apply to audio 
or image-based information extraction but are beyond the 
scope of this article. These recommendations are intended 
to be used as an adjunct for existing reporting guidance such 
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as those produced by a joint task force between two profes-
sional societies focused on research using healthcare data-
bases, the European Network of Centres for Pharmacoepi-
demiology and Pharmacovigilance, the US FDA, RECORD 
(REporting of studies Conducted using Observational 
Routinely-collected health Data), TRIPOD (Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis), and others [14–18]. The level of 
detail recommended is intended to provide causal inference 
researchers reusing NLP- or ML-derived data fields as well 
as healthcare decision makers with sufficient context and 
supporting details for the derivation process that they can be 
confident in the validity and relevance of the derived meas-
ures for exposures, inclusion/exclusion criteria, covariates, 
and outcomes for their research questions. The recommenda-
tions focus on transparent reporting of NLP- and ML-related 
research, not on best practices for doing NLP or ML.

This paper was written by a wide range of stakeholders 
who generate or make decisions based on RWE involving 
information extracted from unstructured EHR text, including 
academics (pharmacoepidemiologists and informaticians), 
regulators, and industry and health technology assessors. We 
outline nine items that we would like to see in publications 
and other public reports of NLP- or ML-related research 
to effectively transfer knowledge about how the evidence 
was generated. These items are not all-encompassing; for 
example, reporting on research ethics, conflicts of interest, 
and Institutional Review Board approval is also important. 
We anticipate that greater transparency on the nine items 
outlined would increase our ability to evaluate the quality, 
relevance, and validity of information extracted from EHRs 
used to support generation of RWE. We note that greater  
transparency does not equate to study quality; rather, trans-
parency makes it possible for reviewers to assess study qual-
ity. We provide examples of transparent reporting in each of 
these areas from published studies (Table 1).

2  Reporting Recommendations

2.1  Data

2.1.1  Describe Characteristics of Data Acquired 
by Investigators (Including Sources and Types 
of Data)

Providing information on the types of data available and 
acquired by investigators provides context for the study, 
algorithm performance, and generalizability. For exam-
ple, are the data based on narrative reports only or do the 
researchers also utilize information from problem lists, labo-
ratory results, ordered or dispensed medications, and other 
structured fields?

EHR data may go through multiple transformations 
before reaching a human reviewer, being fed through an NLP 
system or to a ML algorithm. There can be loss of fidelity 
from the original EHR when reviewers see an extensible 
markup language (XML) export of the medical chart from 
the EHR or review scanned images of medical record reports 
that have been converted to a machine-readable format with 
optical character recognition software. De-identification 
software can also introduce noise. For example, de-identi-
fication software that scrambles names can scramble refer-
ences to diseases that appear to be names (e.g., Crohn’s, 
Parkinson’s, Hashimoto’s disease).

2.1.2  Describe Transformations Performed on Data 
Received by Investigators to Pre‑process or Clean 
Data

After acquiring access to EHR data for a research study, 
investigators may perform additional data transformations to 
clean or otherwise pre-process data prior to conducting the 
research of interest. Detailing the steps taken to create a cor-
pus of documents for human review or compatible with NLP 
or ML software would be helpful to understand the extent of 
data manipulation to pre-process and clean the EHR data. 
This may include information such as software used, and 
whether there was any validation of fidelity at each step of 
the transformation.

2.2  Methods

2.2.1  Provide Key Details of Study Design to Identify 
the Study Cohort and/or Sampling Frame

Clarity about the study cohort or sampling frame is neces-
sary to understand the context of NLP and ML performance 
metrics. For example, when developing algorithms for iden-
tifying outcome, it is critical that the events occur after the 
start of follow-up. It is important to describe which patients 
were included, the timeframe for the performance evalu-
ation, and how charts were sampled. The types of details 
to report are covered in reporting guidelines such as those 
produced by RECORD [15] and a joint task force between 
the International Society of Pharmacoepidemiology and the 
International Society of Pharmacoeconomics and Outcomes 
Research [14]. High-level details may be summarized in a 
design diagram [44].

2.2.2  Provide the Criteria Used by Chart Reviewers 
to Determine the Reference Standard for Health 
Events or Conditions of Interest

Chart reviewers are given criteria or annotation instructions 
that guide how they determine the reference standard, i.e., 
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whether a patient has or does not have a given phenotype 
or clinical event. Laying out these criteria is particularly 
important when the phenotype or clinical event is complex 
or documentation in the EHR may be ambiguous. Reporting 
these criteria, the level of training provided to reviewers, 
whether they are domain/clinical experts, and the process for 
adjudication when reviewers provide discordant assessments 
will provide important transparency on what exactly the ref-
erence standard is measuring. Clarity on the criteria used to 
determine the reference standard from EHR documentation 
is important for determining the relevance of the informa-
tion extracted by NLP or ML. The criteria used may be more 
relevant for some study questions than others.

Without clear reporting on the criteria to define the refer-
ence standard, the relevance of derived phenotypes for the 
question of interest and the degree of misclassification of 
important study variables (e.g., exposure, exclusion crite-
ria, covariates, outcomes) can be masked. For example, a 
researcher could use an algorithm that identifies ‘diabetic’ 
patients from free-text EHR notes for a comparative evalua-
tion of anti-diabetic drugs. However, without detail on how 
the phenotype was defined and possible limitations of this 
definition, it will not be apparent to reviewers or decision 
makers whether the algorithm is expected to be sensitive or 
specific, whether it identifies new-onset versus established 
diabetes mellitus, how the algorithm considers timing (if 
at all), or how it distinguishes between type 1, type 2, and 
gestational diabetes [45, 46]. Publishing the criteria used by 
chart reviewers would be an important step toward increas-
ing transparency.

2.2.3  Describe Which Data were Accessible to Human 
Reviewers Versus Software (If Different)

When EHR data viewable by human reviewers and software 
are comprehensive and aligned, this allows evaluation of the 
‘efficacy’ of the NLP system or ML algorithm at classify-
ing phenotypes or identifying clinical events in ideal condi-
tions. For example, when the reference standard and NLP are 
based on fully aligned data sources, the annotator agreement 
is viewed as the ceiling of the possible NLP system perfor-
mance. However, when human reviewers and software have 
access to a mix of overlapping and non-overlapping por-
tions of the EHR due to logistical or other considerations, 
evaluation focuses on the ‘effectiveness’ of the NLP or ML 
algorithms in practice. As an example of the latter, there are 
situations where a human reviewer may be able to access and 
review the entire medical record for presence or absence of a 
condition, whereas only structured data and a subset of notes 
from the EHR are accessible for the NLP or ML algorithm.

Providing information on the types of EHR data avail-
able to human reviewers versus software provides important 

context on the quality and completeness of data used to 
derive the reference standard. Incomplete access to the full 
patient record or misalignment of data available to human 
reviewers and/or software can inform assessment of per-
formance, validity, and generalizability of NLP or ML 
algorithms.

2.2.4  Provide Full Description of the Natural Language 
Processing or Machine Learning Algorithms, 
Including Details on Inputs and Outputs (for Primary, 
Secondary, and Sensitivity Analyses)

We expand on TRIPOD [18] recommendations for report-
ing on prediction model specification to address the addi-
tional layer of complexity that comes with use of unstruc-
tured data in NLP and ML algorithms.

For full analytic reproducibility, sharing of code and 
data is encouraged. However, there are often privacy and 
intellectual property considerations that prevent sharing 
of data, data derivatives, or code. Additionally, even if 
data and code can be shared, without supplemental meta-
data in clear, natural language, the complexity of NLP sys-
tems and ML algorithms may lack transparency for many 
decision makers and other stakeholders. In the absence of 
the ability to share data and code, key details to increase 
understanding about behind-the-scenes decisions built into 
NLP systems and ML algorithms can still be reported to 
facilitate evaluation of validity and appropriateness for a 
given research question.

We advocate for details of inputs and outputs, which 
can be provided in different formats, e.g., an input–output 
process diagram, a de-identified sample chart containing 
highlights for relevant portions at each step of the process, 
and/or a natural language summary of each step taken by 
the code. Some details that would be helpful for increas-
ing transparency and reproducibility of information extrac-
tion systems include the names and version of any software 
packages used, a citation or appendix with ontologies used 
to map clinical concepts (e.g., RxNorm, SNOMED-CT, 
homegrown), choices for the inputs and tuning parameters 
included in NLP systems (e.g., negation, pruning, word 
sense disambiguation, word order, conjunctions) or ML, as 
well as details of the outputs (e.g., algorithm, rule, model, 
coefficients, R objects). Naming the algorithm or software 
is a start, but describing or listing out specifications for the 
algorithm, configuration settings, and computing environ-
ments will be important for reviewers and other investigators 
to understand how variables are derived from unstructured 
data.
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2.3  Results

2.3.1  Describe the Study Population

The rationale for reporting on characteristics of the study 
population is described in numerous other reporting guid-
ance documents [14–18]. This includes items such as an 
attrition table (showing patient numbers as eligibility criteria 
are applied), baseline characteristics of the derived popula-
tion, as well as the number and timing of outcomes of inter-
est. It allows the investigator and reviewers to describe and 
assess whether the frequency of a derived variable is con-
sistent with expectation (e.g., that the outcome incidence or 
a covariate prevalence looks approximately correct). The 
same rationale applies in studies that develop or use derived 
information from NLP and ML algorithms.

2.3.2  Provide Concordance/Inter‑Rater Reliability 
Performance Metrics

Human review can be subjective and fallible. If human 
reviewers have poor agreement, this would appropriately 
lower confidence in the reliability of the reference standard 
used to train NLP systems and ML algorithms [47]. Meas-
ures of inter-rater reliability include kappa, intra-class cor-
relation coefficients, F-value, and others [48].

2.3.3  Provide Multiple Measures of Performance 
for Algorithms in Training and Test/Validation Data 
(for Primary, Secondary, and Sensitivity Analyses)

Providing performance metrics for how well NLP or ML 
algorithms correctly identify phenotypes of clinical events 
is necessary to evaluate the degree of anticipated misclas-
sification and whether the performance is fit-for-purpose 
in a given study. To make such assessments, in addition to 
reporting the positive predictive value (PPV; given the algo-
rithm assessed a condition is present, the probability that it 
actually is present, also known as ‘precision’), it is important 
to provide other metrics such as negative predictive value 
(NPV; given the algorithm assessed that a condition is not 
present, the probability it is actually not present), sensitivity 
(the proportion of true positives that are correctly identified 
by the algorithm, also known as ‘recall’), and specificity 
(the proportion of true negatives that are correctly identified 
by the algorithm) [49]. To avoid overly optimistic assess-
ments of performance, these metrics should be reported for 
a sample of test (validation) data that was not used to train 
the algorithms.

Both PPV and NPV are dependent on the prevalence of 
the condition being evaluated [49]. If the sampling frame 
from the underlying cohort is known, sampled cases and 
controls can be weighted by the sampling fraction when 

estimating performance metrics [50]. While sensitivity and 
specificity are not dependent on prevalence of the condition, 
these metrics could vary in different populations.

The importance of having high specificity versus high 
sensitivity for an algorithm can vary depending on how 
the measurement will be used. For example, when using 
an algorithm for ischemic stroke as an exclusion criterion, 
high sensitivity may be more important than a high PPV 
to ensure the study population does not include patients 
with prior stroke. In contrast, when conducting a compara-
tive study evaluating risk of ischemic stroke as an outcome 
using a relative measure of effect, a high specificity may 
take precedence.

Other metrics that may be relevant in classification stud-
ies include the c-statistic (area under the receiver operating 
characteristic curve) and integrated discrimination improve-
ment statistic [51]. Calibration measures may also be rel-
evant for prediction studies [52].

3  Discussion

New evidence is useful to decision makers when it reduces 
decision uncertainty. Confidence in the credibility, quality, 
and therefore impact of RWE that relies on information 
extracted from unstructured data would be improved with 
more transparent data provenance and research processes 
[14, 53]. Clear reporting on processes, protocols, and other 
scientific decisions would facilitate reproducibility of NLP 
and ML methods as well as assessment of validity and 
relevance when applied in other studies with different data 
sources and populations [14, 53].

We have highlighted the importance of reporting nine 
types of meta-data when computable phenotypes or clini-
cal events derived with NLP and ML are used in one-off 
research studies or stored as reusable structured elements 
in a data warehouse for research purposes. This informa-
tion could be publicly shared via internet links, citations, 
or appendices in peer-reviewed publications and reports. 
Future studies would be able to retain the chain of data 
provenance by citing relevant meta-data.

In this paper, we have not looked to address the issue 
of selecting which algorithm(s) to use when defining a 
phenotype or clinical event from unstructured data. Nor 
have we resolved an important question that may arise for 
distributed data networks or other multi-user data ware-
houses regarding the relative utility of (1) storing NLP 
and ML coded elements from unstructured data in rela-
tional tables as a shared resource versus (2) preserving 
the unstructured native data and storing a library of NLP 
and ML algorithms to derive desired elements. Although 
one-off research projects can develop, evaluate, and select 
algorithms that are tuned to perform well for their purpose, 
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when populating a data model for distributed data net-
works that are a shared resource for multiple researchers, 
it may be difficult to identify a one-size-fits-all algorithm 
for many clinical elements. The ‘best’ could vary depend-
ing on many factors, including the specific use case, the 
hospital system, and temporal changes.

For example, the high performance of an algorithm in 
one hospital system may not be readily transportable to 
another, and performance of an algorithm within the same 
system could deteriorate over time as practice patterns and 
the EHR system change. Multiple versions of algorithms 
for similar concepts could exist over time and in health 
systems within data warehouses used by multiple research-
ers. The algorithms applied by any member of a distributed 
data network to define phenotypes or clinical events may 
or may not perform well in EHR data held by other mem-
bers. Thus, it would be valuable for research conducted in 
distributed data networks to maintain clear documenta-
tion of the information extraction process and have date-
stamped evaluation of performance of these algorithms in 
the data systems in which they will be applied.

Subtle differences in NLP and ML algorithms and their 
performance in different populations could have substantive 
impact on research findings [54]. In a research environment 
that is increasingly focused on distributed data networks and 
reuse of derived data elements from previously developed 
NLP or ML algorithms, clarity on how these data elements 
were created and demonstration of validity in different data 
systems will be critical to the credibility and value of infor-
mation extracted from distributed EHR networks to generate 
RWE.

If the recommended meta-data were provided, it would 
reduce decision-maker uncertainty regarding reproducibility, 
generalizability, and robustness of evidence in different stud-
ies, data sources, and populations. For example, providing 
decision makers with clarity on which algorithms were used 
to identify outcomes across studies (or sites) and how the 
reference standard criteria for those outcomes were defined 
would allow them to determine whether they are comparing 
‘apples to apples’ or ‘apples to oranges’. Demonstrated value 
in decreasing decision uncertainty could increase accept-
ance of using evidence from unstructured healthcare data to 
inform decision-making. Furthermore, the availability of the 
recommended meta-data may circumvent the need for deci-
sion maker to have access to privacy-protected patient data.

4  Conclusion

Our reporting recommendations are designed to bolster trust 
and encourage appropriate use of information extracted from 
NLP or ML to support RWE generation. Given manuscript 

word limits, the information could be provided in detailed 
technical appendices or separate publication of a protocol. 
Indeed, some journals are already moving toward more strin-
gent requirements for reporting on data, analytics, design, 
and other elements of the research process [55]. It may be 
idealistic to expect all recommended items to be publicly 
reported for every study. Nevertheless, we hope to increase 
recognition of what is currently missing and what, if made 
transparent, would better support and inform decision-maker 
evaluation of quality of measurement, validity, and relevance 
of RWE from administrative and clinical healthcare data-
bases [38, 47, 48, 56–61].
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