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ABSTRACT Proteins are secreted throughout the mycelium of Aspergillus niger ex-
cept for the sporulating zone. A link between sporulation and repression of protein
secretion was underlined by the finding that inactivation of the sporulation gene
fIbA results in mycelial colonies that secrete proteins throughout the colony. How-
ever, AflbA strain hyphae also lyse and have thinner cell walls. This pleiotropic phe-
notype is associated with differential expression of 36 predicted transcription factor
genes, one of which, rpnR, was inactivated in this study. Sporulation, biomass, and
secretome complexity were not affected in the ArpnR deletion strain of the fungus.
In contrast, ribosomal subunit expression and protein secretion into the medium
were reduced when A. niger was grown on xylose. Moreover, the ArpnR strain
showed decreased resistance to H,O, and the proteotoxic stress-inducing agent di-
thiothreitol. Taking the data together, RpnR is involved in proteotoxic stress resis-
tance and impacts protein secretion when A. niger is grown on xylose.

IMPORTANCE Aspergillus niger secretes a large amount and diversity of industrially
relevant enzymes into the culture medium. This makes the fungus a widely used in-
dustrial cell factory. For instance, carbohydrate-active enzymes of A. niger are used
in biofuel production from lignocellulosic feedstock. These enzymes represent a ma-
jor cost factor in this process. Higher production yields could substantially reduce
these costs and therefore contribute to a more sustainable economy and less de-
pendence on fossil fuels. Enzyme secretion is inhibited in A. niger by asexual repro-
duction. The sporulation protein FIbA is involved in this process by impacting the
expression of 36 predicted transcription factor genes. Here, we show that one of
these predicted transcriptional regulators, RpnR, regulates protein secretion and pro-
teotoxic stress resistance. The gene is thus an interesting target to improve enzyme
production in A. niger.

KEYWORDS asexual development, aspergillus, fIbA, fungus, protein secretion,
proteotoxic stress

ungi in the genus Aspergillus feed on organic waste and can be opportunistic

pathogens of plants, animals, and humans (1). They secrete a large amount and
diversity of enzymes that are instrumental in these lifestyles and that also make
Aspergillus species, such as Aspergillus niger, important cell factories (2, 3). However, the
costs of these enzymes can still be high. For instance, they represent up to 28% of the
costs of biofuel production from lignocellulosic biomass (4). The biofuel industry,
therefore, is in need of reduced production costs.
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Asexual development in A. niger is initiated as a response to changing environmen-
tal conditions and as a result of an environment-independent differentiation program
(1). It results in conidiophores that form conidia. These spores are heterogeneous in
cellular composition and germination rate (5); are dispersed by wind, water, and insects;
and give rise to new mycelia. The mycelia, also known as colonies, consist of zones that
show heterogeneity in function and composition (3). For instance, the sporulation zone
within a colony does not secrete proteins, while the neighboring nonsporulating zones
do release proteins into the medium (6). Covering the mycelium with a porous
membrane prevents sporulation but does not affect spatial secretion within the my-
celium. Apparently, the capacity to sporulate, but not the sporulation process itself,
represses secretion.

FIbA was shown to control asexual reproduction, to repress protein secretion in the
sporulation zone, to activate mycotoxin production, to inhibit vegetative growth and
autolysis, and to impact cell wall architecture (6-9). It does so by activating the Ga
subunit FadA, which is at the start of a signaling pathway. A total of 36 predicted
transcription factor genes are differentially expressed when the AfIbA strain is grown on
xylose medium, 18 of which are downregulated and 18 upregulated (10, 11). The most
downregulated predicted transcription factor gene, fum21, is involved in production of
the mycotoxins fumonisin and pyranonigrin A, but it does not affect sporulation,
secretion, vegetative growth, autolysis, and cell wall architecture (9). Here, we show
that the predicted transcription factor rpnR, which is upregulated in the AfIbA strain
(10), is involved in proteotoxic stress resistance and impacts protein secretion when A.
niger is grown on xylose.

RESULTS

Inactivation of rpnR. The predicted transcription factor gene An08g06850 (12) is
upregulated 9-, 11-, and 6-fold in the central, middle, and outer concentric zones,
respectively, of AflbA strain colonies, making it the most upregulated transcription
factor in the strain (10). The protein encoded by An08g06850 showed a bidirectional hit
with Rpn4p of Saccharomyces cerevisiae (13) and Rpn4 of Neurospora crassa (14). The
former protein was shown to be an activator of 26S proteasome subunit expression.
The function of the N. crassa orthologue is not known, but it binds to the same DNA
sequences as Rpndp of S. cerevisiae (14). The proteins of A. niger, S. cerevisiae, and N.
crassa are 701, 531, and 714 amino acids long. The zinc finger C2H2 domains share 44%
and 77% identity, respectively, with that of An08g06850, while the overall identities are
16% and 45%. Based on these data, An08g06850 is now called rpnR. The gene was
inactivated in the wild-type strain MA234.1, resulting in the ArpnR strain. Deletion of the
gene was verified by PCR (see Fig. S1 in the supplemental material). Two independent
complemented strains showed restoration of the wild-type phenotype compared to the
ArpnR strain phenotypes described below.

Phenotypic analysis of the ArpnR strain. Growth of the ArpnR strain was assessed
using minimal medium with xylose as a carbon source (MM-X). The sugar was chosen
because differential expression of rpnR in the AfIbA strain was found on this carbon
source (10). On MM-X agar (MM-XA) plates, the ArpnR strain formed colonies with a
smaller diameter, but the total biomass was greater than that of the wild type. The
diameters of 7-day-old wild-type and ArpnR strain colonies were 6.08 + 0.20 cm and
511*+034cm (n = 6; P<0.05), whereas the biomasses were 27.4 = 7.5mg and
374*+45mg (nh = 8; P<0.05), respectively. When xylose was replaced with 1%
beechwood xylan, no difference in biomass was found, but the ArpnR strain diameter
was again smaller (3.96 = 0.05 versus 3.66 = 0.11 cm [n = 5; P < 0.05]). Together, these
data show that the ArpnR strain grows more compactly than the wild type. Both the
wild type and the ArpnR strain sporulated in the subperipheral zone and the centers of
the colonies (Fig. 1A and B), with similar production of spores per square centimeter
(Fig. 1Q).

Since Rpn4 of S. cerevisiae activates expression of 26S proteasome subunits, it was
hypothesized that the ArpnR strain would cope less well with unfolded proteins, i.e., its
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FIG 1 Spatial distribution of sporulation of wild-type strain MA234.1 (A) and the ArpnR strain (B) and
numbers of spores per square centimeter produced by MA234.1 and the ArpnR strain (C). Localization
and quantification of sporulation were monitored 48 h after removal of the upper membrane of
sandwiched colonies. n.s., not significant. The error bars indicate standard deviations.

proteotoxic-stress resistance would be affected. Indeed, germination of the ArpnR strain
in MM-X containing 1 mM the unfolded protein response-inducing agent dithiothreitol
(DTT) was delayed compared to the wild type, especially at a high concentration of
spores (Fig. 2A, D, and G). The growth rate of the ArpnR strain was also reduced at high
spore concentrations but did not differ from that of the wild type at lower spore
concentrations (Fig. 2A, D, and G). Germination of the ArpnR strain in MM-X containing
0.02% H,0, was also delayed at all spore concentrations and was even absent at low
spore concentrations. In addition, the growth rate was decreased at intermediate spore
concentrations, while the growth rate was not affected at high spore concentrations
(Fig. 2B, E, and H). Interestingly, germination of the ArpnR strain was also delayed when
no stressor was present. In fact, the differences between the ArpnR strain and the wild
type in germination timing and growth speed were equal in medium containing DTT
or H,0, and in medium without these stressors when a low or high spore concentra-
tion, respectively, was examined (Fig. 2C, F, and I).

SDS-PAGE revealed that protein secretion was not affected in shaken liquid cultures
of the ArpnR strain when maltose was used as a carbon source (data not shown).
However, it was reduced in the presence of xylose (Fig. 3A). Proteomics was performed
to examine whether secretome complexity was also affected. To this end, similar
amounts of total secreted protein from MA234.1 and the ArpnR strain were analyzed by
mass spectrometry (MS). A total of 316 proteins were identified in the medium of the
ArpnR strain, 223 of which were detected in at least 3 out of 4 replicates. These numbers
were 341 and 257, respectively, for the wild type. A signal peptide for secretion was
found in 194 and 222 of the secreted ArpnR and wild-type proteins, respectively, while
11 and 10 of the proteins that did not have a signal peptide are predicted to have an
intracellular localization. The wild-type secretome was relatively enriched for 28 pro-
teins compared to the ArpnR strain secretome (Table 1; see Table S1 in the supple-
mental material). Conversely, the ArpnR secretome was not enriched for proteins
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FIG 2 Growth curves of wild-type strain MA234.1 (squares) and the ArpnR strain (triangles) in wells with MM-X containing 1 mM DTT (A, D, and G), 0.02% H,0,
(B, E, and H), or no stressor (C, F, and I) with 103 (A, B, and C), 10* (D, E, and F), and 10° (G, H, and 1) conidia per well. The data points and lines for each strain
show the average of 3 measurements, while the light-gray shading shows the 95% confidence intervals. Dark-gray shading indicates overlap between the
confidence intervals of the two strains. Absence of overlap implies significant differences between the strains.

compared to the wild type. Of the proteins enriched in the wild type (i.e., relatively
reduced in the ArpnR strain), 11 could not be assigned to a Gene Ontology (GO) subset
(GO slim) term (process component), and 13 were associated with carbohydrate
metabolic process, 2 with developmental process, and 2 with response to stress. The
GO slim terms protein catabolic process, cellular amino acid metabolic process, cellular
protein modification process, asexual sporulation, and pathogenesis could each be
assigned to one protein (Fig. 3B; see Table S1). Closer inspection of the set of proteins
without a GO term showed that it contains the -1,3-glucanase BgxB (An02g13180)
(15), the orthologue of an XInR-regulated lipase of Aspergillus oryzae (An10g00790), a
putative muconate cycloisomerase (An01g14730), a glutamyl-tRNAG'™ amidotransferase
(An05g01860), and a putative a-1,6-mannanase (An07g07700). From the 16 proteins
involved in carbohydrate metabolism (the 13 associated with carbohydrate metabolic
process plus BgxB, An07g07700, and MsdS), 9 are involved in carbon source modifica-
tion, while 7 are (putatively) involved in remodeling of the cell wall (Table 1).

Gene expression analysis. RNAs of the ArpnR strain and its progenitor, MA234.1,
that had been transferred to MM-X for 4 h after pregrowth in nutrient-rich transforma-
tion medium (TM) were sequenced (see Materials and Methods). A total of 505 genes
were differentially expressed, 253 and 252 of which were down- and upregulated,
respectively, in the ArpnR strain (see Table S2 in the supplemental material). Expression
of rpnR was 0, thus confirming its proper deletion. Of the downregulated genes in the
ArpnR strain, 0 and 14 genes were also downregulated in the AflbA and Afum21 strains,
respectively (Table 2). Similarly, 2 and 4 of the upregulated genes in the ArpnR strain
were also upregulated in the AflbA and Afum?21 strains, respectively (Table 2). GO term
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FIG 3 Differences in the secretomes of the ArpnR strain and the wild type. (A) SDS-PAGE of medium proteins of shaken liquid
cultures of the wild type and the ArpnR strain pregrown in TM-G for 16 h and transferred to MM-X for 24 h. The gel was stained
with Coomassie brilliant blue R-250. (B) Pie chart of GO slim terms of the 28 relatively underrepresented secreted proteins of
the ArpnR strain. Proteins PepE, Bgt1, and An01g14960 occur in 2 categories and MsdS in 3.

enrichment analysis of the downregulated genes showed that GO terms related to
translation were overrepresented (see Fig. S2 in the supplemental material). In fact,
about 20% of the downregulated genes were 60S or 40S ribosomal subunits, while 7
out of 13 subunits of translation initiation factor 3 (elF3) (16) were also downregulated
(see Table S2). This was reflected in the overrepresentation of the KEGG annotation
terms ribosome, translation, genetic information processing, nucleotide metabolism,
and RNA transport (Table 3). In addition, the GO term alpha amino acid metabolic
process was overrepresented (see Fig. S2). Furthermore, small secreted proteins were

TABLE 1 Underrepresented secreted carbohydrate metabolism proteins in the ArpnR
strain medium compared to the wild type

Process Name or protein ID Function

Carbon source utilization AxeA Acetyl xylan esterase
Sucl Invertase
AguA a-Glucuronidase
An11g00390 Rhamnogalacturonan lyase
An04g03170 B-Glucosidase
An11g02100 B-Glucosidase
CbhB Cellobiohydrolase
An08g01900 Xylan B-xylosidase
An08g05230 Endoglucanase 4

Cell wall remodeling Bgt1 B-1,3-Glucanosyltransferase
AgnB a-1,3-Glucanase (53)
BgxB B-1,3-Glucanase
An08g08370 a-1,2-Mannosidase
An08g03060° a-Mannosidase (54)
An07g077007 a-1,6-Mannanase
MsdSe a-1,2-Mannosidase

aThe protein is likely active on the fungal cell wall (55) and might play a role in glycosylation of proteins like
those present in the cell wall.
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TABLE 2 Differentially expressed genes in the ArpnR strain that are also down- and upregulated in the AflbA or Afum21 strain and fold
changes in the strains compared to the wild type?

Fold change
Expression in the ArpnR strain  Protein ID  Functional annotation® Strain ArpnR strain  AflbA or Afum21 strain¢
Downregulated 1142051 No annotation Afum21 1310 192.7
1142053 Zinc finger transcription factor, C2H2 type  Afum21  106.7 1312.2
1166044 No annotation Afum21  37.2 126.6
1087288 Taurine catabolism dioxygenase TauD Afum21 161 16.5
1082505 Major facilitator superfamily transporter Afum21 157 223
1107461 Chitinase Afum21 7.9 4.8
1089440 Major facilitator superfamily transporter Afum21 49 11.6
1157348 UDP-glucose 4-epimerase Afum21 35 5,6
1150465 No annotation Afum21 3.2 42
45784 No annotation Afum21 2.8 14.8
1186369 No annotation Afum21 2.8 33.6
1109756 No annotation Afum21 2.7 8.5
1124492 Phosphoglycerate mutase Afum21 2.3 4.4
1184525 NRPS-like protein Afum21 2.1 8.0
Upregulated 1145520 Triacylglycerol lipase AfIbA 20.5 1.3
1152605 Acyl-coenzyme A dehydrogenase AfIbA 2.5 35
1183897 AnAFP Afum21 9.6 6.6
1184369 Carbohydrate esterase family 16 protein Afum21 3.4 4.5
1156756 No annotation Afum21 2.6 5.4
1184413 No annotation Afum21 2.4 4.0

aAll the strains were grown in TM-G for 16 h, followed by 4 h in MM-X. Differentially expressed genes in the AflbA and Afum21 strains can be found in references 9

and 10.

bWhen no function of the gene could be inferred from MycoCosm, GO/KEGG terms, and a blastp search, the functional annotation is given as “no annotation.” AnAFP,

Aspergillus niger antifungal protein.
<As indicated in the “Strain” column.

overrepresented, as well as genes of secondary-metabolism cluster 49 (4 out of 17
genes) (Table 3). Terms related to regulation of translation and regulation of the
ribosome were underrepresented (see Fig. S3 in the supplemental material). This
implies that RpnR specifically regulates constituents of the ribosome but not their
regulators. Other underrepresented terms were related to the nucleus, DNA binding,
and RNA synthesis (see Fig. S3), indicating that RpnR specifically affects proteins that act
outside the nucleus and does not regulate the ribosome at the RNA level. Terms related
to zinc ion binding were also underrepresented (see Fig. S3).

Among the upregulated genes in the ArpnR strain, GO terms related to arabinose
metabolism, oxidoreductive activity, and coenzyme binding were overrepresented (see
Fig. S4 in the supplemental material). More precisely, genes encoding the arabinofura-
nosidases AbfB, AbfC, and AbfE were upregulated in the ArpnR strain (see Table S2).
However, since no proteins were overrepresented in the proteome of the ArpnR strain
(see above), these arabinofuranosidases are apparently not upregulated at the protein
level. Many KEGG annotation terms were overrepresented (Table 3). Of these, the
2nd-level term amino acid metabolism represented 12% of the upregulated genes,
carbohydrate metabolism 11%, xenobiotics biodegradation and metabolism 10%, lipid
metabolism 10%, and metabolism of cofactors and vitamins 7%. Furthermore, 5 Pfam
domains were overrepresented (Table 3), including domains associated with lipid
metabolism (PF13561.1) and oxidoreductive activity (PF00106.20 and PF00107.21). Also,
genes encoding proteins with a transmembrane domain and genes belonging to
secondary-metabolism cluster 75 (5 out of 18) were overrepresented (Table 3). To-
gether, these data indicate that RpnR deficiency reduces expression of ribosomal
subunits, whereas it activates arabinose metabolism, lipid metabolism, coenzyme
metabolism, and oxidoreductase activity.

DISCUSSION
The transcription factor Rpn4 of S. cerevisiae is involved in regulation of DNA repair
(17, 18) and functions as a transcriptional activator of 26S proteasomal subunits (13, 19)
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TABLE 3 Overrepresented KEGG pathways, Pfam domains, and secondary-metabolism-related annotation terms among the down- and
upregulated genes of the ArpnR strain compared to the wild type?

Gene regulation Location

Overrepresented term in ArpnR strain

Downregulated KEGG pathways

Secondary-metabolism clusters

Upregulated KEGG pathways

Pfam domains

Secondary-metabolism clusters

Other terms

KEGG third level: ribosome

KEGG second level: translation

KEGG first level: genetic information processing
KEGG second level: nucleotide metabolism
KEGG third level: RNA transport

Part of secondary-metabolism cluster 49

KEGG first level: metabolism

KEGG second level: overview

KEGG third level: valine, leucine and isoleucine degradation

KEGG second level: xenobiotics biodegradation and metabolism
KEGG third level: fatty acid metabolism

KEGG second level: amino acid metabolism

KEGG third level: fatty acid biosynthesis

KEGG fourth level: K00059:fabG; 3-oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)
KEGG EC: acyl-carrier protein

KEGG third level: biosynthesis of unsaturated fatty acids

KEGG second level: lipid metabolism

KEGG second level: carbohydrate metabolism

KEGG third level: biotin metabolism

KEGG third level: propanoate metabolism

KEGG third level: chlorocyclohexane and chlorobenzene degradation
KEGG third level: benzoate degradation

KEGG third level: toluene degradation

KEGG EC: EC 1.1.1.65

KEGG fourth level: K05275:E1.1.1.65; pyridoxine 4-dehydrogenase (EC 1.1.1.65)
KEGG fourth level: KO1714:dapA; 4-hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7)
KEGG EC: EC 4.3.3.7

KEGG second level: metabolism of cofactors and vitamins

KEGG third level: metabolism of xenobiotics by cytochrome P450
KEGG third level: aminobenzoate degradation

KEGG third level: caprolactam degradation

KEGG third level: fatty acid degradation

KEGG third level: carbon metabolism

KEGG third level: vitamin By metabolism

KEGG third level: PPAR signaling pathway

KEGG third level: butanoate metabolism

KEGG third level: chemical carcinogenesis

PF13561.1 enoyl-(acyl carrier protein) reductase

PF08659.5 KR domain

PF00106.20 short-chain dehydrogenase

PF00107.21 zinc-binding dehydrogenase

PF00701.17 dihydrodipicolinate synthetase family

Part of secondary-metabolism cluster 75

Part of secondary-metabolism cluster: decorating

Transmembrane domain

aAll the strains were grown in TM-G for 16 h, followed by 4 h in MM-X.

by binding to PACE promoter sequences (13, 17, 20). Here, it is shown that the A. niger
orthologue of Rpn4, RpnR, functions differently than its S. cerevisiae counterpart.
Deletion of its encoding gene resulted in reduced proteotoxic- and oxidative-stress
resistance, which may well explain why expression of the ribosomal subunits and the
total amount of secreted proteins were also reduced when A. niger was grown on
xylose. Expression of genes encoding 26S proteasome subunits remained unchanged
(data not shown). This contrasts with the S. cerevisiae rpn4 deletion strain, in which 26S
proteasome subunit expression was decreased while ribosomal subunit genes were
unaffected (17, 21). It is, however, in line with results in N. crassa, where the majority of
proteasome genes do not contain the DNA sequences to which N. crassa Rpn4 binds
(14). It should be noted that reduced proteotoxic- and oxidative-stress resistance was
not found at low and high spore concentrations, respectively. How can this be
explained? With increasing spore concentrations, the amounts of stressor and nutrient

January 2019 Volume 85 Issue 2 e02282-18

aem.asm.org 7

1Y2a11N Y23Y101|qIgqsualSIaAIluN T8 020z ‘0T Areniga4 uo /Bio’wse’wae//:dny woly papeojumo


https://aem.asm.org
http://aem.asm.org/

Aerts et al.

per spore decrease. These amounts may impact the phenotype. For instance, the effect
of H,0, is expected to be lower at high spore concentrations because its effective
amount per spore is less.

There is a link between unfolded-protein levels in the cell and ribosomal gene
expression and RNA translation. Proteotoxic stress is counteracted by the unfolded-
protein response (UPR), which not only increases the abundance of chaperones and
heat shock proteins in the endoplasmic reticulum (ER), but also, importantly, reduces
the influx of new proteins into the ER through downregulating translation. Translation
attenuation in animals (22) and S. cerevisiae (21) is achieved by inhibition of translation
initiation factor elF2« activity by phosphorylation. In addition, S. cerevisiae downregu-
lates genes encoding ribosomal subunits (23, 24), which increases resistance to pro-
teotoxic stress (21, 25). Whether these processes also occur in filamentous fungi, such
as A. niger, is not known. It is known that activation of genes involved in the UPR occurs
via transcription factor Hac1 in S. cerevisiae (26, 27) and its homologue HacA in A. niger
(28). Hac1/HacA is activated by Ire1/IreA, a molecule that senses proteotoxic stress in
the ER. As a result, it removes an intron from Hac1 pre-mRNA, so that an active Hac1
protein is produced (29). On the other hand, downregulation of S. cerevisiae genes
encoding ribosomal subunits is regulated by deactivation of protein kinase A (30),
which in turn activates the general stress response regulator Msn4.

Colonies of A. niger that are transferred from a nutrient-rich medium to a defined
medium (i.e., TM to MM) with xylose as a carbon source induce genes encoding
secreted enzymes. This induction has been shown to induce a response reminiscent of
the UPR in A. niger (31), likely due to increased influx of proteins in the ER. The fact that
the ArpnR strain is more sensitive to proteotoxic stress agrees with the finding that
genes encoding ribosomal proteins are downregulated in this deletion strain. In
addition, 7 out of the 15 subunits of elF3 (16) were found to be downregulated in the
ArpnR strain. This might represent another way in which translation is inhibited,
analogous but not similar to elF2« activity inhibition in yeast and animals (see above).
Decreased translation would reduce the amount of unfolded proteins. This, apparently,
is effective, since protein secretion, but not biomass formation, is affected in the ArpnR
strain. The fact that protein secretion was not affected when the ArpnR strain was
grown in maltose-containing medium may be explained by the less complex secretome
that is found on this carbon source (32).

The biomass of the ArpnR strain was higher or not reduced in colonies grown on
agar medium. In all cases, the diameter was reduced, implying that the biomass per
surface area was increased. This was probably caused by increased hyphal branching,
but the underlying mechanism is not known. What also remains unexplained is why the
ArpnR strain is less tolerant of proteotoxic stress. UPR malfunction could be an
explanation. However, the fact that chaperones or heat shock proteins are not differ-
entially expressed in the ArpnR strain suggests that the rest of the UPR is induced
equally strongly as in the wild type. This is also reflected by the fact that both HacA and
IreA are not differentially expressed. Therefore, other factors make the ArpnR strain
more sensitive to proteotoxic stress. It is also unclear why 28 specific proteins have
lower abundance in the secretome of the ArpnR strain than in the wild type, in addition
to the overall secretion reduction. Their corresponding genes are not differentially
expressed, so the difference in the secreted protein level might arise from posttran-
scriptional events, such as high sensitivity to ribosome depletion.

What do these data mean for the function of RpnR in FIbA-mediated sporulation-
inhibited protein secretion? In wild-type colonies, FIbA is active in sporulating regions
of the colony, where it downregulates rpnR. Our results indicate that this leads to less
proteotoxic-stress resistance and lower ribosome abundance and thus to lower protein
secretion in sporulating regions than in the nonsporulating zones of the colony. Indeed,
this has been observed in wild-type colonies. Downregulation of ribosomal protein
genes has been shown to occur during sporulation in Aspergillus fumigatus (33), also
supporting this theory. The facts that this ribosomal protein downregulation is depen-
dent on BrlA (33) and that rpnR is also upregulated in zones of maltose-grown colonies
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TABLE 4 Primers used in this study

Primer

name 5'-3' sequence

1 AGTATTCCACTCAGCTCTGGACTAACCTCTTTAATGGGTCAGTCAATGCCTGGACTTATC
2 TGATGTGTGTGACGTGATGTGTATATCCTAGCAGGTATAGACACGGAATTTGCCAC

3 TGATGATGGATATATGGAAGCTGGAGGATGTCCAATTGAGAGGTAAGCCAGGG

4 TAGCAGGTGAGAACTCACTTGTACTCGACTCCTGCAGAAACCACAAAGGTACCACTACGTC
5 TAGGATATACACATCACGTC

6 CATCCTCCAGCTTCCATATATC

7 GGTTTAGCGGGTGCAGAAG

8 GGCGTCGGTTTCCACTATC

9 AAAGTTCGACAGCGTCTCC

10 GTTTGGGCTTCAATGTCTTAC

11 ATAGGGAGAGCGGCCCCGGAGATGCAGATCGAGTG

12 GAAGATCTGGCGGCCCCACCGTGACCCAATGAGAA

13 ATCCACTGCACCTCAGAGCC

14 CATGCATGGTTGCCTAGTGAA

lacking fluG (34) imply that downregulation of ribosomal proteins can be activated by
several genes in the sporulation pathway. Taken together, the data show that the
putative transcription factor RpnR of A. niger regulates proteotoxic-stress resistance
and, possibly as a consequence, protein secretion and may therefore be an important
target for improving A. niger as a cell factory for enzyme production.

MATERIALS AND METHODS

Strains and culture conditions. A. niger strain MA234.1 (transient kusA:amds; pyrG™*) (35) and its
derivative ArpnR strain (see below) were grown at 30°C on MM (36) with 25 mM xylose as a carbon source
and either containing (MM-XA) or not containing (MM-X) 1.5% agar. Alternatively, 1% (wt/vol) beech-
wood xylan was used instead of xylose. Liquid cultures were pregrown in TM (MM containing 0.5% yeast
extract and 0.2% Casamino Acids) (37) containing 25 mM glucose (TM-G). To this end, 100 ml medium
was inoculated with 5 X 108 freshly harvested conidia from 3-day-old MM-XA cultures and shaken in
250-ml Erlenmeyer flasks at 200 rpm. After 16 h, the mycelium was washed with 0.9% NaCl, and 10 g (wet
weight) was transferred to a 1-liter Erlenmeyer flask containing 150 ml MM-X. Growth was prolonged for
4 h (RNA sequencing) or 24 h (SDS-PAGE and proteomics) at 200 rpm. Biomass formation and sporulation
were assessed by growing colonies in a 0.45-mm-thick layer of 1.25% agarose between perforated
polycarbonate membranes (0.1-um pores; diameter, 76 mm; Profiltra, Almere, The Netherlands) (38). To
this end, the sandwiched cultures were inoculated in the center of the agarose layer with 10* conidia
contained in 2 ul H,O. The upper polycarbonate membrane was placed 24 h postinoculation to prevent
spreading of conidia. After 7 days, the diameter of the colony was measured and the dry-weight biomass
was determined by subtracting the average weight of a noninoculated agarose layer. Alternatively, the
upper membrane was taken off to enable the colony to sporulate during a 48-h period. Differences in
biomass, colony diameter, or spore production were calculated using an independent-samples t test.

Inactivation of rpnR and complementation of the deletion strain. The rpnR deletion construct
was made by amplifying the 5’ and 3’ flanks of rpnR (protein ID, An08g06850) (12) from genomic DNA
by PCR using primer pairs 1/2 and 3/4, respectively (Table 4). The hygromycin resistance gene hph was
amplified from the vector pAN7.1 (39) using primer pair 5/6 (Table 4). Split marker fragments of this
selection marker fused to the 3" and 5’ flanks were created by fusion PCR (40) using primer pairs 7/8 and
9/10 (Table 4) for the 5" and 3’ fragments, respectively.

The rpnR complementation construct was made by amplifying the genomic coding sequence of rpnR
together with its 1,017-bp promoter and 559-bp terminator sequences. To this end, MA234.1 genomic
DNA was used in combination with Phusion polymerase (Thermo Scientific, Wilmington, DE, USA) and
primer pair 11/12 (Table 4). The resulting fragment was inserted in the Notl site of vector pMA357 (9)
using an InFusion HD cloning kit (Clontech, Mountain View, CA, USA). This resulted in vector pDA2,
containing the amds selection cassette and the gene rpnR under the control of its own promoter and
terminator.

The split marker fragments and the complementation construct were transformed to strain MA234.1
and the ArpnR strain, respectively, as described previously (41). Transformants were purified twice on
MM-XA containing 100 ng ml~" hygromycin or 15 mM CsCl and 10 mM acetamide as a nitrogen source
for selection of deletion and complemented strains, respectively.

RNA sequencing and analysis. Mycelium from biological triplicates was taken up in TRIzol reagent
(Invitrogen, Bleiswijk, The Netherlands) after homogenization in a Tissue Lyzer Il (Qiagen, Venlo, The
Netherlands). After extraction with chloroform, total RNA was precipitated with isopropanol, washed with
ethanol, and resuspended in RNase-free water. RNA was purified using a NucleoSpin RNA kit (Macherey-
Nagel, Duren, Germany), and its concentration and purity were checked using a Nanodrop ND-1000
(Thermo Scientific).
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Library construction, cluster generation, and sequencing of cDNA were performed by ServiceXS
(Leiden, The Netherlands). Library construction and cluster generation were performed with the NEBNext
Ultra Directional RNA Library Prep kit for lllumina (New England Biolabs, Ipswich, MA, USA). Sequencing
of cDNA was performed using an lllumina NextSeq 500 with NextSeq control software 2.0.2 (lllumina, San
Diego, CA, USA), generating single reads of 75 bp. For image analysis, base calling, and quality checking,
the lllumina data analysis pipelines RTA v2.4.11 and Bcl2fastq v2.17 were used. The sequences were then
aligned to the A. niger ATCC 1015 genome assembly (version Aspni7) (42) obtained from MycoCosm (43)
using HISAT2 version 2.0.5 (44). Functional annotation of the predicted genes was obtained from
MycoCosm as described previously (5), which, in the case of the differentially expressed genes, was
manually approved by examining the GO and KEGG terms and by blastp search. However, ribosomal
subunits were named by homology with S. cerevisiae, as proposed by Nakamura et al. (45).

The expression levels of genes were normalized to fragments per kilobase of exon model per million
fragments (FPKM). Cuffdiff version 2.2.1 (46) was used to identify reads mapping to predicted genes and
to identify differentially expressed genes. The bias correction method was used while running Cuffdiff
(47). In addition to Cuffdiff's requirements for differential expression (including a false-discovery rate
[FDR]-adjusted P value of <0.05), we selected for a >2-fold change and a minimal expression level of 10
FPKM in at least one of the samples. The quality of the results was analyzed using CummeRbund (48).

Custom scripts were developed in Python and R to analyze over- and underrepresentation of
functional annotation terms in sets of differentially regulated genes using the Fisher exact test. The
Benjamini-Hochberg correction was used to correct for multiple tests using a P value of <0.05. Over- and
underrepresented GO terms were visualized using RamiGO (49). GO terms, KEGG pathways, potential
protein-degrading activity, presence of a secretion signal or a transmembrane domain, requirements for
terming a protein a small secreted protein, and a function in secondary metabolism were predicted as
described previously (5).

SDS-PAGE. Proteins were precipitated with acetone and taken up in a 5% volume of sample buffer
compared to the original volume of culture medium. Proteins were separated in 12.5% SDS-PAGE gels
using a Pierce prestained protein molecular weight marker (Thermo Scientific). Gels were fixed with 50%
methanol and 10% acetic acid; stained with 0.1% Coomassie brilliant blue R-250; and destained with 25%
methanol, 10% acetic acid. Protein bands were imaged using a Universal Hood Ill with Image Lab
software (Bio-Rad Laboratories BV, Veenendaal, The Netherlands).

Proteomics. Culture medium (4-ml samples of biological quadruplicates) was concentrated 100-fold
for 30 min at 4 000 X g and 4°C using an Amicon Ultra-4 centrifugal filter unit with a cutoff of 10 kDa
(Millipore, Billerica, MA, USA). The concentrated medium was washed twice by adding 2.5 ml phosphate-
buffered saline (PBS), followed by centrifugation steps. The protein concentrations of the samples were
estimated by SDS-PAGE analysis. Based on this, sample buffer was added to correct for protein
concentrations in the different samples. Samples were separated on a 12% Bis-Tris SDS-PAGE gel
(Bio-Rad). The gel was run for 2 to 3 cm and stained with colloidal Coomassie dye G-250 (Gel Code blue
stain reagent; Thermo Scientific), after which each lane was cut into two pieces to reduce complexity. The
gel pieces were reduced, alkylated, and digested overnight with trypsin at 37°C. The peptides were
extracted with 100% acetonitrile, dried in a vacuum concentrator, and resuspended in 10% (vol/vol)
formic acid. An ultrahigh-performance liquid chromatography (UHPLC) 1290 system (Agilent) coupled to
an Orbitrap Q Exactive HF Biopharma mass spectrometer (Thermo Scientific) was used for MS. Peptides
were trapped for 5 min in solvent A (0.1% formic acid in water) on a Dr Maisch Reprosil C,5 column (3 um
by 2 cm by 100 um) before being separated on an analytical column (Agilent Poroshell EC-C,g; 2.7 um
by 50 cm by 75 um) using a gradient of solvent A consisting of 13 to 44% in 95 min, 44 to 100% in 3 min,
100% for 1 min, 100 to 0% in 1 min, and finally 0% for 10 min. The flow was passively split to 300 nl
min~'. The mass spectrometer was operated in data-dependent mode. Full-scan MS spectra from m/z
375 to 1,600 were acquired at a resolution of 60,000 at m/z 200 after accumulation to a target value of
3E6. Up to 15 most intense precursor ions were selected for fragmentation. High-energy collisional
dissociation fragmentation was performed at a normalized collision energy of 27% after accumulation to
a target value of 1E5. Tandem MS (MS-MS) was acquired at a resolution of 15,000. Raw data files were
processed using Proteome Discover (version 1.4.1.14). A database search was performed against the A.
niger CBS 513.88 database (12) using Mascot (version 2.5.1; Matrix Science, London, UK) as a search
engine. Cysteine carbamidomethylation was set as a fixed modification and methionine oxidation as a
variable modification. Trypsin was specified as the enzyme, and up to two missed cleavages were
allowed. Filtering was done at a 1% false-discovery rate and an ion score of >20. For CRAPome analysis
(50), proteins with a SAINTexpress (51) probability score of =0.75 were considered differentially ex-
pressed. Differentially expressed proteins were mapped to GO slim terms using the GO slim mapper on
AspGD (12). SignalP 4.1 (52) was used to identify signal peptides for secretion.

Stress resistance assays. Resistance to H,0, and DTT was determined in biological triplicates by
inoculating 103 to 105 spores in 96-well plates filled with 200 ul MM-X per well and either supplemented
or not with 0.02% H,O0, or T mM DTT. The spores were incubated at 30°C for 7 days. Growth was
monitored using oCelloScope (BioSense Solutions, Farum, Denmark) and UniExplorer (BioSense) soft-
ware. The bicinchoninic acid (BCA) normalized algorithm was used to determine the total surface area
of the fungal mycelium.

Accession number(s). The RNA sequencing data have been deposited in NCBI GEO with accession
number GSE102899 (https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi).
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