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a b s t r a c t

Liquid hydrogen carriers are considered to be attractive hydrogen storage options because

of their ease of integration into existing chemical transportation infrastructures when

compared with liquid or compressed hydrogen. The development of such carriers forms

part of the work of the International Energy Agency Task 32: Hydrogen-Based Energy

Storage. Here, we report the state-of-the-art for ammonia-based and liquid organic

hydrogen carriers, with a particular focus on the challenge of ensuring easily regenerable,

high-density hydrogen storage.

© 2019 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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challenges associatedwith the implementation of a large-scale

hydrogen energy system have been divided into four main

areas: hydrogen production, distribution, storage and uti-

lisation [1]. In hydrogen storage, a wide range of hydrogen

carriers, particularly solid materials, have been explored as

alternatives to the compression or liquefaction of pure

hydrogen in the context of hydrogen fuel cell vehicles [2e8].

However, most of the explored materials only achieve revers-

ible, high-density hydrogen storage under reaction conditions

far from the operating parameters of a vehicle-based system

[9,10]. As a result, hydrogen storage in current and prototype

hydrogen fuel cell vehicles is almost exclusively based on

compression: 70 MPa hydrogen gas in the GM HydroGen3 [11],

ToyotaMirai [12], Honda Clarity [13], Hyundai ix35 [14], Audi h-

tron quattro [15], and Mercedes-Benz GLC-F-CELL [16], and

35 MPa hydrogen gas in the Riversimple Rasa [17].

Although the development of hydrogen storage technology

that meets the demanding requirements of on-board

hydrogen delivery [18] remains a key goal, it is not the only

use to which hydrogen storage can be applied. This diversity

of applications was recognised in the framing of International

Energy Agency Task 32 to include stationary energy storage

applications. In this article, we will articulate the potential for

liquid hydrogen carriers to be used as stationary energy stores

and in the distribution of hydrogen alongside their develop-

ment for vehicular use. In these other scenarios, the 70 MPa

compressed hydrogen storage option is prohibitively expen-

sive [19,20], and therefore alternative hydrogen storage ap-

proaches will be needed.

Some key characteristics of a selection of liquid hydrogen

carriers are shown in Table 1, alongside those of 70 MPa

compressed hydrogen gas and liquid hydrogen, for compari-

son. A survey of these properties quickly reveals some of the

key advantages of liquid carriers over the compression/

liquefaction of pure hydrogen. The volumetric hydrogen

densities (considering the material only) of these carriers

reach as high as 150% of the value for liquid hydrogen in the

case of liquid ammonia. Critically, these high hydrogen den-

sities are achieved under ambient or near-ambient storage

conditions. This is in contrast to the high pressures or low

temperatures required to achieve practically useful
Table 1 e Comparison of some key properties of a range of reve
hydrogen.

Storage method Storage
conditions

Hydrogen density
(kgH2/m

3)
H2

con

Compressed H2 70 MPa 42 Pressure

Liquid H2 20.28 K 70 Evapora

Liquid NH3 239.81 K

@ 0.1 MPa

1 MPa

@ 298 K

121

107

Catalyti

Methylcyclohexane

(MCH)

Ambient 47 Catalyti

Methanol Ambient 100 Catalyti

Formic acid Ambient 53 Catalyti

a Permitted Exposure Limit, Occupational Safety and Health Administra

concentrations [21,22].
volumetric hydrogen density with pure hydrogen. From a

safety perspective, the liquid carriers listed in Table 1 all have

narrower explosive limits in air than pure hydrogen, though

have toxicity issues which must be addressed to ensure safe

use.

A working energy network system requires energy storage

technologies at many different scales of energy, power and

storage duration. High volumetric energy density, under

modest storage conditions, makes liquid hydrogen carriers

attractive options for large-scale and longer-duration energy

storage. In these cases, the lower round-trip efficiency of

hydrogen production and storage relative to other energy-

storage technologies is compensated by its high energy den-

sity, transportability and low self-discharge rate [23,24]. This

type of energy storage may be required for the inter-seasonal

balancing of energy demand in areas with large seasonal var-

iations in energy use. For example, primary energy use in the

United Kingdom between the winter and summer has varied

on average by over 200 TWh over the past 20 years [25]. The

synthesis and storage of hydrogen during times of excess

electricity could then displace much of the large natural gas

consumption during the UKwinter, which accounts formost of

this seasonal variation [25]. In this example, 10e20 Mt of

hydrogenwould need to be stored across thewinter, depending

on the efficiency of the energy release technology. Although

geological hydrogen storage may be cheapest in locations

where it is available [19,20,26], in other cases, conversion to a

liquid carrier is likely to be the most effective means of storing

of hydrogen at large scale [19]. Chemical energy storage is also

considered to be a viable model for storing renewable energy

from “stranded” renewable power generation, where grid

connections are not economically viable [27e29].

The uses of hydrogen storage in stationary energy storage

outlined above are in addition to the well-documented po-

tential for hydrogen to contribute to the decarbonisation of

transport, which currently constitutes around 35% of all en-

ergy end use [30]. Infrastructure for the distribution of

hydrogen for transport is a key limiting step for the roll-out of

fuel cell vehicles, and requires significant capital investment

[31,32]. Liquid hydrogen stores have the potential to signifi-

cantly alleviate cost associated with the distribution of
rsible liquid hydrogen carriers with compressed and liquid

release
ditions

Explosive limits
(%vol in air)

PELa

(ppmv)
Vapor pressure
(MPa @ 298 K)

release 4e75 N/A e

tion 4e75 N/A e

c T > 400 �C 15e28 50 1.1

c T > 300 �C 1.2e6.7 (MCH)

1.2e7.1 (Toluene)

500

200

0.006

c T > 200 �C 6.7e36 200 0.017

c T > 50 �C 18e34 5 0.006

tion, U.S. Department of Labor. Given as 8-h time weighted average
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hydrogen because of their straightforward storage and appli-

cability to existing fuel transport methods. This allows larger

quantities of hydrogen to be transported in each truck/ship

load. This is particularly important when considering supply

models such as those in active development for Japan (Fig. 1),

where it is envisaged that hydrogen will be produced in re-

gions with low-cost renewable electricity (e.g. Australia and

the Middle East) and shipped to Japan for use as a fuel. The

hydrogen storage methods under active consideration are

liquid hydrogen, ammonia, methylcyclohexane and methane

[33]. In this way, liquid hydrogen carriers have the potential to

enable global hydrogen trade.

There are a number of different models for the involve-

ment of liquid carriers in future hydrogen infrastructures:

� Large stocks of carrier transported by ship could be dehy-

drogenated at ports or in other centralised facilities and

then distributed as pressurised or liquefied hydrogen.

� Dehydrogenationcouldbeperformedathydrogen refuelling

stations. It has been suggested that carriers couldbe tailored

to deliver hydrogen at elevated pressure [34e36], reducing

the reliance on compressors, which dominate the capital

cost of refuelling stations [37]. Metal hydrides are also being

explored for the production of compressed hydrogen [38].

� Liquid hydrogen carriers could be used for on-board de-

livery of hydrogen to a fuel cell, as has been the focus for

solid-state hydrogen stores. This application is currently

furthest from technical deployment due to the difficulties

associated with on-board dehydrogenation and the safety

issues associated with the carriers themselves.

In each of these applications, the requirements for

hydrogen storage and release in a liquid carrier may vary.

However, it is reasonable to state that achieving reversible

hydrogen storage under moderate conditions is a key goal in

the development of all liquid hydrogen carriers. Here, we will

focus on recent research highlights in realising the potential

of ammonia-based and liquid organic hydrogen carriers. The

review does not consider carriers where hydrogen release is

also accompanied by carbon dioxide release, of which formic

acid and methanol have been most widely discussed. The

reader is directed to several recent reviews in those areas

[36,39e41]. Likewise, the hydrolysis of sodium borohydride

and solution-based dehydrogenation of ammonia borane are

not considered here. While aqueous solutions of these mate-

rials have comparable hydrogen storage density to methyl-

cyclohexane [42], their hydrolysis results in the formation of a

heterogeneous mixture of products containing strong BeO
Fig. 1 e A schematic process diagram of the role of liquid hydro

storage.
bonds which require harsh conditions to regenerate the

starting materials [41,43,44]. Water must also be evaporated

from the hydrolysed product before regeneration, making use

of these solutions energy intensive and costly [45]. While

much research has focussed on catalyst development for

hydrogen release [46], relatively little work is published on the

issues of regeneration [45].
Ammonia

Ammonia is among the most important synthetic chemicals;

its industrial-scale production is credited with growing the

food required to feed roughly half the current human popula-

tion [47]. However, despite its very high volumetric hydrogen

density (see Table 1) and mature synthesis and distribution

infrastructure, ammonia has not featured prominently among

the discussion of likely hydrogen carriers in recent decades.

This partly relates to a U.S. Department of Energy decision in

2006 not to fund research into on-board hydrogen delivery

from ammonia due to stated concerns over the high temper-

ature of ammonia decomposition, the size and cost of catalytic

reactors, poisoning of Polymer Electrolyte Membrane (PEM)

fuel cells by residual ammonia, and safety issues [48].

Despite these concerns, the potential for ammonia to

contribute significantly to a hydrogen-based energy system

has been highlighted in a number of perspective articles in the

literature [49e53]. In recent years, interest in its use in energy

applications has become more widespread e some of this

interest is likely to be as a result of the aforementioned effort

by the Japanese government to establish a hydrogen trade

sector based on the synthesis of reversible liquid hydrogen

carriers in locations with abundant renewable power [33].

Indeed, the construction of two pilot ‘green’ ammonia pro-

duction facilities is planned in Australia over the next few

years, representing the first steps in the development of this

hydrogen export model [54,55].

Ammonia is attractive as a way of storing energy from re-

newables in part because of its flexibility. It can be used as a

hydrogen carrier, a direct fuel for combustion and fuel cells

[56e58], or sold in its current use as a fertiliser feedstock.

Indeed, recent modelling suggests that ammonia produced

from renewables is already cost-competitive with traditional

production [29,59], with the added incentive of reducing the

carbon footprint of an industry which is estimated to account

for around 1.5% of global greenhouse gas emissions [60]. In

considering here the use of ammonia as a hydrogen carrier,

the areas of concern outlined in the 2006 U. S. DOE report are a
gen carriers in facilitating the use of hydrogen for energy
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Fig. 2 e Volcano-type activity curve of ammonia synthesis.

Rate shown as a function of the nitrogen adsorption energy

on different transition metals, which implies there is an

optimum for the nitrogen adsorption energy. Reproduced

with permission from [65]. Copyright 2015 Elsevier.
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useful way of structuring the discussion of recent research

progress. We shall outline approaches to the development of

catalysts for the synthesis and decomposition of ammonia

under milder reaction conditions, efforts to address toxicity

concerns through the storage of ammonia in the solid state

and preventing the exposure of fuel cells to ammonia through

absorbent and membrane approaches.

Ammonia synthesis

The industrial production of ammonia through the conven-

tional Haber-Bosch process consumes 1e2% of the annual

global energy demand and generates about 2.9 metric tons of

CO2 per metric ton of NH3 produced [61]. While a majority of

these emissions arise from the synthesis of hydrogen,

ammonia production by the Haber-Bosch process requires

high reaction temperatures (350e500 �C) and pressures

(15e35 MPa of H2 and N2 with a ratio of 3:1) [62,63]. An

improvement in the rate of this process (i.e., the development

of ammonia synthesis catalysts), so that it could be operated

at lower temperatures (or pressures), could have significant

impact on both the economy and the environment. For

example, calculations on an industrial ammonia synthesis

process indicated that decreasing the equilibrium synthesis

temperature from 440 �C to 360 �C would save around 1 GJ/MT

of ammonia produced [64]. Enabling ammonia synthesis at

milder conditions may also facilitate small-scale ammonia

production linked to renewable power sources through more

flexible operation. In this section, we highlight recent in-

novations in catalyst materials as well as advances in alter-

native production process to the Haber-Bosch process,

specifically, electrochemical ammonia synthesis.

Thermal ammonia production
It has been reported that the activities of transition metals in

catalyzingNH3 synthesis exhibit a volcano-typedependenceof

the activity on the chemisorption energy of N (as shown in

Fig. 2) [65]. This dependency can be explained by the Brønsted-

Evans-Polanyi (BEP) and scaling relations, because a linear

correlation between theN2 dissociation energy and adsorption

energy of N has been clearly demonstrated [65,66]. This linear

relationship provides a theoretical guideline for the search for

efficient catalysts within the volcano-type plot; efficient NH3

synthesis requires a catalyst which strongly activates the re-

actants (N2 and H2), but also a relatively weak binding of the

intermediate species and products [65,67]. Therefore major

effort to achieve ammonia synthesis at low temperatures (i.e.,

150e400 �C) hasmainly focused onmitigating theNadsorption

energy, boosting the electron donation effect, and more

recently, new approaches to breaking the scaling relation. We

highlight these recent advances in the following section.

Fe and Ru are the best single-metal catalysts because of

their moderate adsorption energy for N2 [65]. Combining a

transition metal at the left side of the volcano-type plot with

another one at the right side could be an effective way to

approach the optimal N adsorption energy. In 2000, a report

proposed ternary nitrides (Fe3Mo3N, Co3Mo3N and Ni2Mo3N)

as a novel class of NH3 synthesis catalysts [68]. Especially, Cs

promoted Co3Mo3N gives higher activity than that of the in-

dustrial catalyst KM1 (Fe-based catalyst with promoters such
as K2O, CaO, Al2O3). Because Co adsorbs N2 too weakly andMo

adsorbs N2 too strongly, the outstanding performance of Coe

Mo alloys is attributed to themoderate adsorption energy of N

on CoeMo. Recently, Hargreaves et al. examined the role of

lattice nitrogen in Co3Mo3N using isotopic (14N/15N) experi-

ments and computational modelling, demonstrating the lat-

tice nitrogen (14N) in the ternary nitride exchanges with 15N in

the gas phase, and that NH3 synthesis using Co3Mo3N occurs

via a Mars-van Krevelen typemechanism (as shown in Fig. 3a)

[69e71]. Co3Mo3N was converted into Co6Mo6N under a

hydrogen flow at ambient pressure to generate NH3. Based on

this concept, a series of ternary nitrides have been studied as

nitrogen transfer agents to produce NH3 by directly reacting

with H2. Co-doped tantalum nitride was found to be highly

active, with 52% of the nitrogen in the nitride reacting with H2

to yield NH3 [72]. The addition of Co, Fe or K to manganese

nitride only promotes the lattice nitrogen depletion to form

N2. However, adding a small amount of Li can improve the

hydrogenation rate of lattice nitrogen in Mn3N2 at 300 �C [73].

Next to changing the strength of theN adsorption energy by

using alloys that form nitride compounds, the addition of

electronic promoters such as alkali or alkaline earth metal

oxides can weaken the N^N bond, and thus improve the ac-

tivity of transition metals [74]. However, the promotion is still

not sufficient to generate NH3 under mild conditions. Hosono

et al. employed an inorganic electride compound (C12A7:e�: a
crystal of Ca24Al28O64 with four cavity-trapped electrons

serving as anions) as a catalyst support. Because the work

function of C12A7:e� is 2.3 eV lower than that of Ru, this

electride can act as an efficient electron donor for Ru [75]. The

Ru/C12A7:e� catalyst with particle size of Ru around 8.5 nm

shows an activity that is two orders of magnitude larger than

that of the Cs promoted Ru/MgO catalyst. Kinetic analysis and

infrared spectroscopy revealed that C12A7:e� enhances the

electron back donation and N2 dissociation. As a result, the

https://doi.org/10.1016/j.ijhydene.2019.01.144
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Fig. 3 e (a), Ammonia synthesis using Co3Mo3N catalyst occurs via a Mars-van Krevelen type mechanism. Reproduced with

permission from [71]. Copyright 2013 American Chemical Society; (b), Ammonia formation mechanism over Ru/C12A7:e¡

catalyst. Reproduced with permission from [76]. Copyright 2015 Nature Publishing Group; (c), Relayed ammonia synthesis

mechanism for 3d-transition metal-LiH composite catalyst. Reproduced with permission from [67]. Copyright 2016 Nature

Publishing Group.
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hydrogenation of N atoms rather than the dissociative

adsorption of N2 over Ru is now the rate determining step [76].

Fig. 3b shows the proposed reaction mechanism over Ru/

C12A7:e�. NH3 can be formed in two ways: via the

LangmuireHinshelwood mechanism or by direct reaction of N

adatoms with H radicals. Because the electride C12A7:e� can

reversibly store hydrogen in the form of H�, poisoning of the

Ru surface by adsorbed hydrogen atoms was suppressed. In a

more recent work, a new electride Y5Si3 was also explored for

ammonia synthesis by Hosono's group [77]. 7.8 wt% Ru loaded

Y5Si3 catalyst exhibits an NH3 formation rate of 1.9 mmol/g/h

under the condition of 0.1MPa and 400 �C,which is evenhigher

than that of Ru/C12A7:e� (0.7 mmolg�1h�1). As with C12A7:e�,

the strong electron-donating ability of Y5Si3 to Ru promotes N2

dissociation and reduces activation energy of NH3 synthesis.

They showed that the performance of Ru/Y5Si3 did not

degrade, even if the support Y5Si3 was submersed into water

before use or if 3 vol% of water vapor pressure was introduced

into the reaction gas. This is unlike other catalysts, such as

nitride or hydride-based catalysts, where chemical stability

against air and water is a major problem. These features may

make Ru/Y5Si3 a promising candidate for practical application.

A relatively new class of NH3 synthesis catalysts is aimed

at breaking the scaling relationship by providing two different

active sites. Chen et al. proposed LiH as a second active centre

for N hydrogenation and subsequent NH3 desorption, so that

the NH3 formation rate would no longer solely dependent on

transition metals [67]. LiH can act as a strong reducing agent

and remove activated nitrogen atoms from the transition

metal or its nitride to form LiNH2. LiNH2 further splits H2 to
give off NH3 and thereby regenerates LiH. This subsequent

catalysis over two different active centers is depicted in

Fig. 3c. At 300 �C, catalytic activities of 3d-transitionmetals (V,

Cr, Mn, Fe, Co and Ni)eLiH composite catalysts are 1-4 orders

of magnitude higher than those of single transition metal

catalysts and some of the catalysts outperform the reference

CseRu/MgO catalyst. These composite catalysts have

apparent activation energies that are very close to the Ea value

(49 kJ mol�1) of the hydrogenation of LiNH2, suggesting that

the hydrogenation of LiNH2 is now the rate determining step.

A similar high activity was reported for CNTs supported

BaH2eCo catalysts [78], and Ca(NH2)2 supported Ru catalysts

[79]. The addition of barium-doped Ca(NH2)2 to Ru nano-

particles with a mean size 2.7 nm can improve the NH3 syn-

thesis activities significantly, which are 2 orders of magnitude

higher that of CseRu/MgO below 300 �C [80]. Nano sized Rue

Ba core-shell structures were formed during catalytic reac-

tion, which possibly account for the superior performance. A

recent paper discussed that alkali or alkaline earth hydrides,

including LiH, BaH2, KH, CaH2, and NaH, can increase the

catalytic activity of manganese nitride by several orders of

magnitude [81]. Alkali and alkaline earth metal imides can

function as nitrogen carriers that mediate ammonia produc-

tion via a two-step chemical looping process: Firstly, N2 is

fixed through the reduction of N2 by alkali or alkaline earth

metal hydrides to form imides; Secondly, the imides are hy-

drogenated to produce NH3 and regenerate the metal hy-

drides. This chemical loop process mediated by BaNH and

catalyzed by Ni produces NH3 at 100 �C and atmospheric

pressure [82]. These results demonstrate that the cooperation

https://doi.org/10.1016/j.ijhydene.2019.01.144
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of transition metals and alkali or alkaline earth hydrides cre-

ates an energy-efficient pathway that allows NH3 synthesis at

lower temperatures.

As discussed above, recent studies for ammonia synthesis

catalysts are dedicated to modifying the electronic structures

of transitionmetals under the governing of scaling relations or

break the scaling relation by providing two different active

sites. Ternary nitrides have a comparable activity with the

industrial catalysts and can even produce NH3 at ambient

pressure. Electride-supported Ru catalysts boost the N2 acti-

vation and surpass the H2 poisoning (an obstacle for industrial

Ru-based catalysts working under high H2 pressures). Transi-

tionmetal-hydridecatalysts can separate theN2 activation and

hydrogenation or desorption steps to achieve low temperature

catalysis. These encouraging results promote the search for

practical low-temperature ammonia synthesis catalysts.

Electrochemical ammonia production
Electrochemical reduction of dinitrogen into ammonia at near

ambient conditions represents a key enabling technology,

which would accelerate the transition to an energy and

chemical infrastructure based on electrical energy from

renewable sources. Small-scale decentralized plants could

accommodate the intermittency of, e.g., wind and solar en-

ergy, and produce ammonia for both fertiliser production and

for energy storage purposes [50]. Such devices could easily be

combined with safe storage solutions, where the produced

ammonia can be stored safely and reversibly at high density in

benign, low-cost metal halide salts [83,84], but until now,

efficient and selective electrocatalysts for the nitrogen

reduction reaction (NRR) have remained elusive.

It has been shown using density functional theory (DFT)

calculations that certain metal nitrides, e.g. vanadium and

zirconium nitride [85,86], can produce ammonia at potentials

as low as �0.5 V vs. RHE, but the stability of the nitrides under

reaction conditions and low Faradaic Efficiencies (FE) due

competing hydrogen evolution reaction (HER) remain a chal-

lenge [87]. DFT calculations have also shown that nano-

structuring the nitride catalysts can lead to improve perfor-

mance [88e90], which has recently been confirmed experi-

mentally for VN [91] and Mo2N [92] nanowires.

A large number of different materials and approaches for

electrochemical nitrogen reduction have been proposed, see

e.g. Ref. [93] and references therein, but common for all are the

low FE and ppb/ppm yields of ammonia, which makes quan-

titative ammonia detection a substantial challenge and the

need for 15N labelled control experiments to confirm the origin

of the nitrogen essential.
Fig. 4 e Indicative ammonia decomposition levels requ
Two lithium-mediated approaches have recently been

proposed; a lithium-ion conductor approach by Han et al.

[94] and a lithium-nitride cycling scheme by Nørskov et al.

[95], where the latter holds promise of economic viability;

in particular, if suitable and less thermodynamically stable

nitride species are identified. The use of aprotic electro-

lytes was also recently proposed by MacFarlane et al. to

limit the availability of protons and suppress HER [96,97]

and inspiration from secondary Zn-air batteries for sup-

pression of HER by synergistic doping [98], may also hold

promise.

To overcome the massive challenges involved, it is evident

that a close coupling between theory and experiment is

needed in order to identifymore efficient NRR electrocatalysts

[63].

Ammonia decomposition

The release of hydrogen from ammonia under modest reac-

tion conditions is one of the key challenges of the imple-

mentation of ammonia-based hydrogen storage. This

challenge requires a broadening of the traditional focus of

ammonia catalyst development e the synthesis of ammonia

at large scale in high-pressure reactors e towards the goal of

hydrogen production at high rates and moderate (<500 �C)
temperatures [99,100]. The precise application of ammonia

decomposition (e.g. forecourt decomposition, on-board

vehicular H2 production) and the extent of ammonia decom-

position required for the power generation technology (Fig. 4)

will determine the precise activity characteristics required for

the catalysts. This emphasises the requirement for the

development of a wide range of catalyst materials.

Transition metal catalysts
The decomposition of ammonia over transition metal based

catalysts has a history which goes back to the early times of

ammonia synthesis. Several reviews have been published

which cover all important aspects of catalyzed ammonia

decomposition and highlight potential new research fields

[100e103].

The discovery of the NH3 synthesis (Haber-Bosch process)

by Fritz Haber around one hundred years ago had a

tremendous influence on the development of the chemical

industry [104]. However, not only the synthesis but also the

decomposition of NH3 over iron and ruthenium based cata-

lyst, which in fact are used for the ammonia synthesis, has

been studied [105e108]. Most publications in the first decades

focus more on kinetic aspects of iron and ruthenium
ired for different power generation technologies.
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catalysts than on a systematic scan of additional potential

decomposition catalysts [109e114]. Later, the search for

efficient decomposition catalysts was extended to other

transition metals such as Ni, W, Mo, or Co, and also to sup-

ported precious metals [115,116].

Based on the excellent properties of Ru as an ammonia

synthesis catalyst, the performance of transition metals in

general for the decomposition reactionwas evaluated. Several

aspects were identified to be crucial for the activity of the

decomposition catalysts: type of (a) active metal and (b) sup-

port, (c) surface area and particle size, (d) catalyst dispersion,

and (e) the role of promotors. Choudhary et al. investigated

supported metal catalysts in ammonia decomposition and

observed a decrease of the ammonia conversion in the

following order Ru > Ir > Ni [117]. A comparison of the

behavior of Ru, Rh, Pt, Pd, Ni, and Fe as active components

identified Ru among othermetals asmost active catalyst [118].

Catalytic testing of Ru prepared on different supports (carbon

nanotubes (CNT), activated carbon (AC), Al2O3, MgO, ZrO2, and

TiO2) revealed that Ru on CNTs exhibits the highest conver-

sion of ammonia.

Whether a support has a positive effect on the ammonia

decomposition is strongly dependent on the nature and

structure of the support materials. CNTs and activated car-

bon (AC) facilitate a high dispersion of Ru on the surface and

prevent particle growth of the active catalyst [118,119]. High

dispersion has a positive influence on the stability of the

catalyst and therewith on the catalytic activity. Neverthe-

less, even though high catalyst dispersion is beneficial,

several studies showed that for very small Ru particles the

turn-over-frequency (TOF) is significantly lower than for

larger Ru particles [120,121]. Over-dispersed catalysts may

result in too small catalyst particles, which do not provide

enough space for the recombination of N atoms to N2 mole-

cules [122]. Furthermore, Li et al. investigated the importance

of the structure of different carbon supports such as CNTs,

AC, mesoporous carbon (CMK-3), graphitic carbon (GC), and

carbon black (CB). The catalytic activity decreases from Ru/

GC > Ru/CNTs > Ru/CB > Ru/CMK-3 > Ru/AC [122]. Within this

order the degree of graphitization is decreasing. Conductive

supports facilitate the electron transfer from promoter or

support to the active metal catalysts which explains changes

in catalytic activity. Yin et al. also related improved activities

of Ru catalysts to an increased basicity of the support ma-

terial [118]. The recombinative desorption of nitrogen from

the surface appears to be the rate-limiting step in ammonia

decomposition [122] but stronger basicity seems to support

N2 desorption [118]. The combination of basicity with good

electronic conductivity of the support appears to be essential

for the development of efficient catalysts for ammonia

decomposition.

Alkali, alkaline earth, or rare-earth ions added as pro-

moters can further enhance the decomposition of ammonia.

Among all studied promoters K, Cs, and Ba are the most

beneficial and therefore also the most studies ones [123e127].

Promoters may prohibit sintering of the active metal catalysts

as known for ammonia synthesis and the modification of

CNTs with KOHwas reported to decrease of the N2 desorption

temperatures [118]. Decomposition of ammonia on metals

occurs in a stepwise sequence starting with the adsorption of
ammonia on themetal followed by stepwise dehydrogenation

of NH3 and recombinative desorption of H2 and N2 [103]. On

precious metals, NeH cleavage is discussed as the rate-

determining step, while for non-precious metals, N2 desorp-

tion is the rate-limiting step. All modifications of the support

or the presence of additives may alter the desorption step of

N2 and change therewith the catalytic properties of the cata-

lyst system.

However, even though Ru-based catalysts are most prom-

ising for ammonia decomposition, high costs and limited re-

sources of precious metals require the development of more

economical alternatives as catalysts. As alternative catalysts

mainly Fe, Ni [128,129], Co, or Mo have been investigated,

either as pure phases or supported on carbon materials or

porous/non-porous oxides. Depending on reaction tempera-

tures, Fe and Mo form different types of nitrides during

decomposition, while Co reduces to metallic state which was

evidenced by in situ diffraction studies [130e133]. Recently,

reaction pathways of Mn catalysts (Mn nitrides) were studied

by in situ neutron diffraction [134].

Iron nanoparticles encapsulated into shells of porous silica

are considerablymore active in ammonia decomposition than

unsupported nanoparticles. The encapsulated catalyst is

much more stable since mainly sintering of particles is pre-

vented even at higher temperatures [135,136]. Coreeshell

nanostructures with SiO2, Al2O3, MgO as porous shell mate-

rials and encapsulated catalysts, such as Fe, Co, Ni, and Ru, are

interesting but complicated model systems. They may assist

with understanding fundamental processes, but compared to

pure metals or simple supported catalysts their reaction

temperatures are not significantly lower and such systems

may not be feasible for large scale industrial applications/

production.

In addition to transition metal nitrides, carbides could also

be interesting catalysts. The activity of WC and VC for

hydrogen generation was investigated by several groups and

some interesting properties were reported [137e139].

Metal amide/imide catalysts
Group I and II metal salts have rarely been considered as

candidates for ammonia decomposition catalysts outside of

their established use as promoters in transition metal sys-

tems. However, the catalytic activity of a Group I metal amide

was first reported in 1894 by Titherley, who observed contin-

uous decomposition of ammonia by sodium amide (NaNH2)

heated to “dull redness” [140]. Titherley proposed that the

decomposition was as a result of the concurrent decomposi-

tion and synthesis of sodium amide, two reactions which had

been observed in isolation:

NaNH2 / Na þ ½ N2 þ H2

Na þ NH3 / NaNH2 þ ½ H2

Despite this observation and the extensive recent interest

in light metal amides for solid state hydrogen storage ap-

plications [2,141e143], no further investigations of the

ammonia decomposition activity of sodium amide were re-

ported until 2014, when a more detailed study found that it

showed similar performance to 5% Ru on Al2O3 above 425 �C
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Fig. 5 e Variable-temperature ammonia decomposition performance of a) lithium and sodium amide compared with

supported nickel and ruthenium catalysts, measured in a 46.9 cm3 cylindrical stainless steel reactor (0.5 g catalyst, 60 sccm

NH3 flow), modified with permission from [146]. Copyright 2015 Royal Society of Chemistry; b) lithium imide-transition

metal (nitride) composites (filled points) compared with transition metal nitrides (Cr, Mn, Fe) and carbon nanotube

supported transition metals (Co, Ni, Cu) (open points), along with selected Ru-based catalysts, reproduced with permission

from [145]. Copyright 2015 Wiley-VCH.
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[144]. Parallel investigations focused on the synergy of

lithium imide (Li2NH) and 3d transition metals were pub-

lished later by Chen et al., in 2015 [145].

These results, together with the limitations on the practical

use of sodium amide due to its high volatility under operating

conditions [140,144], prompted a wider survey of light metal

amides and imides for active catalysts. Publications to date

have included lithiumamide/imide (LiNH2/Li2NH) [146], lithium

imide-3d transition metal composites [145,147], sodium/po-

tassium amide (Na/KNH2)-manganese nitride [148], lithium-

calcium imide (Li2Ca(NH)2) [149], ruthenium-magnesium/

calcium/barium amide (M(NH2)2, M ¼ Mg, Ca, Ba) [150] and

potassium/rubidium-manganese amide (M2 [Mn(NH2)4], M¼ K,

Rb) [151]. Of the systems studies thus far, lithium amide/imide-

containing materials appear to be the most active, showing

significantly superior catalytic activity to 5% Ru on Al2O3

[145,146] (Fig. 5a), and superior performance to carbon

nanotube-supported ruthenium [145,147], which iswidely seen

as one of the most active ammonia decomposition catalyst

formulations. These results, shown in Fig. 5b, contrastwith the

accepted promoter activity trends for other alkali metal salts

[152], which places lithium as the least active promoter [101].

This activity trend for metal amides points to a different

function compared with catalyst promoters. There have been
Fig. 6 e Proposed mechanisms for ammonia decompositi
a number of hypotheses as to the precise role of the metal

amide/imide in the reaction (Fig. 6). Of particular interest is

whether the amide/imide alone can catalyze the decomposi-

tion of ammonia. Many of the published studies report the

activity of composites of metal amides/imides with transition

metals and transition metal nitrides [145,147,148,150,153,154].

In these cases, it is proposed that the catalytic activity results

exclusively from the interaction of the amide/imide with the

transition metal, either via the ammonia-mediated formation

and decomposition of a ternary nitride (e.g. Li7MnN4, Li3FeN2,

Ca6MnN5) if possible (Fig. 6iii) [145,147,155], or else by elec-

tronic interaction between the metal and NHx species in the

metal amide/imide promoting the cleavage of NeH bonds

(Fig. 6ii) [150,153].

Catalytic activity has also been reported for metal amides/

imides without the formation of transition metal composites

[144,146,149]. For lithium amide-imide, the onset of ammonia

decomposition activity was correlated with destabilization of

lithium amide to form lithium imide [146]. Isotope studies of

the reaction were used to suggest an ammonia decomposition

pathway based on the cyclic formation and decomposition of

a lithium-richmaterial such as lithiumnitride-hydride (Li4NH,

Fig. 6i) [146]. In situ powder diffraction studies have identified

solid solutions of lithium amide and imide (Li1þxNH2-x,
on reactions involving lithium amide-lithium imide.

https://doi.org/10.1016/j.ijhydene.2019.01.144
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Fig. 7 e Storage volume for a range of different ammonia

storage methods, with a constant mass of ammonia. Solids

are assumed to be able to be pelletised to 95% of their

crystal structure volume [83].

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 4 ( 2 0 1 9 ) 7 7 4 6e7 7 6 77754
0 < x < 1) as a bulk phase present under ammonia decompo-

sition conditions (>500 �C under low flow of ammonia) for a

number of lithium imide-based catalyst formulations

[146,149]. Both lithium nitride-hydride [156] andmany ternary

lithium nitrides [157,158] are expected to be unstable under

ammonia/hydrogen, so it is more likely these species may be

observed on the surface or interfaces of catalysts than in the

bulk structure.

The studies of isolated metal amides and imides were per-

formed in stainless steel reactors because of concerns over the

reactivityof strongbasicNH2
�andNH2-anionswithconventional

quartz or glass reactors [140,159]. However, the use of stainless

steelmakes itdifficult to ruleout theeffectof thereactorwallson

the catalysis in these studies. Strong evidence exists for the in-

tegral involvement of the metal amide/imide in the ammonia

decomposition reaction (particularly given the activity observed

in combinationwith otherwise inactivemetals such as V and Cr

[145]), and for the enhanced ammonia decomposition activity of

metal amides and imides combined with transition metals and

their nitrides; whether this combination is necessary for catal-

ysis to occur remains an ongoing subject of investigation. In

either case, it is clear that there is scope for significant develop-

ment of this new family of ammonia decomposition catalysts,

which use abundant materials to produce hydrogen from

ammonia with very high catalytic activity.

Across all ammonia decomposition catalyst systems,

further systematic investigations are required to ensure

comparable experimental conditions for all materials. This is

mandatory to guarantee comparable and sound results.

Furthermore, in situ/operando studies have shown great po-

tential for a better understanding of catalytic ammonia

decomposition and future research will benefit substantially

from further experiments in these areas.

Solid-state ammonia storage

Although it is less flammable than hydrogen, ammonia does

have significant toxicity concerns, both to humans and,

particularly, to marine organisms. While some studies have

suggested that ammonia would pose similar risks to existing

transportation fuels [160,161], it is clear that advanced con-

trols may be necessary for the use of ammonia in energy

infrastructure, both for stationary storage solutions and for

applications in the transportation sector, e.g., for automotive

deNOx in diesel exhaust. In both cases, cost and safety aspects

are essential, while the density of accessible ammonia which

can be stored and released close to the operating tempera-

tures is crucial in the latter case.

Storage of ammonia in solids has been considered as a

means for safely storing ammonia, offering significantly

reduced ammonia vapor pressure [83,91,162]. While this adds

a requirement to thermally desorb ammonia from these ma-

terials, many such compounds achieve very high volumetric

ammonia density (Fig. 7) when compacted into solid tablets

[83], and so do not significantly compromise the storage ad-

vantages of ammonia. Much of the research on these systems

has focused on the relationship between structure, the iden-

tity of themetal cation/s and the resultant thermal stability of

the ammoniate. Some of the recent work in this area is

summarized below.
Metal halide ammines
One class of materials which offer a potential solution are

metal halide salts such as MgCl2, which can reversibly store

9.1 wt% hydrogen (material-only) in the form of ammonia in

Mg(NH3)6Cl2 [162]; albeit the ab-/desorption temperature for

automotive applications can be better matched with other

metal halide salts [83,163].

Through combined use of DFT calculations and evolu-

tionary algorithms, it has been possible to computationally

design novel metal halide ammines to exactly match a set of

required operating conditions and improvements in the

accessible storage capacity by >10% have been achieved using

a ternary metal halide [84,164]. These accelerated design

strategies are now implemented in the open source Atomic

Simulation Environment (ASE) [165] and can be used to design

mixed metal halide salts for specific storage solutions by

adapting the fitness function of the genetic algorithm to

match a specific constrain on, e.g., cost or energy density,

yielding excellent agreement with experimental observations

[166].

In the design of new metal halide ammines for practical

application of the storagematerials, both the surface [167] and

bulk [168] ab-/desorption kinetics of ammonia should be taken

into consideration, as should changes in the crystal structures

during ammonia ab-/desorption [169,170], as these may lead

to large stresses on the storage containers.

Ammine metal borohydrides
One recently-explored alternative to metal halide ammoniates

are amminemetal borohydrides. More than 45 ammoniametal

borohydrides have been synthesised and characterised in the

past few years and they represent a range of different structure

types [171,172]. Metal borohydrides, which themselves have

been extensively investigated as hydrogen storage materials

[6,8,172] often form 3D framework structures where BH4
�

complexes bridge two metal atoms by edge sharing (h2), e.g.

the structures of magnesium, calcium, strontium, manganese

and yttrium borohydride where the metals form tetrahedra,

[M(BH4)4], or octahedra, [M(BH4)6] [173]. Introduction of NH3
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molecules interrupts these frameworks; the ammine yttrium

borohydrides, Y(BH4)3,nNH3 are an illustrative example [174].

With one ammonia molecule in the formula unit, n ¼ 1,

the structure consists of two-dimensional layers, while with

n ¼ 2, the structure is chain-like, 1D. With n ¼ 4 and 5 the

structure is built from neutral molecular complexes, and with

n ¼ 6 and 7 from complex cations, [Y(NH3)n]
3þ with BH4

� com-

plexes as counter ion in the solids [174].

In these compounds the BH4
� complex contributes signifi-

cantly to the structural diversity of ammine metal borohy-

drides. The BH4
� tetrahedra coordinate to a metal in a flexible

manner with a range of M � B distances and varying haptic-

ities from h0 to h3, i.e. BH4
� can be either terminal or bridging

ligand or act as a counter ion in the solid state [171,173]. This

contrasts the ammonia molecule that coordinates more

strongly with less flexibility, always via the electron pair

donated by nitrogen, and acts as a terminal ligand [172].

Comparison of ammine metal borohydrides and ammine metal
halides. Structural analogies between ammine metal borohy-

drides and chlorides/bromides exist, considering only heavier

atoms, i.e. neglecting hydrogen atoms. For example,

M(BH4)2$6NH3 (M ¼ Mg, Mn and Ca) and MgX2∙6NH3 (X ¼ Cl

and Br) are isostructural [175,176], and Sr(BH4)2$2NH3 and

MCl2∙2NH3 (M ¼ Ca and Sr) are structurally similar [177]. The

borohydride complex, BH4
�, is a non-spherical anion in

contrast to the halide anions; therefore crystal structures of

amminemetal borohydrides often have lower symmetry than

their halide analogues, as usually observed when comparing

metal borohydrides and metal halides [171]. The structural

similarities are most pronounced for compounds with higher

number of coordinated ammonia molecules (n), where both

BH4
� and the halides X�, anions act as counter ions in the solid-

state with a predominantly ionic bonding, h0. Significant

structural differences of MgX2∙nNH3, X ¼ BH4
� or halides, are

observed for smaller number of NH3 ligands (low n) due to the

presence of di-hydrogen bonds and the non-spherical shape

of BH4
�.

Despite minor differences, the thermal stability for

ammine metal borohydrides and chlorides are similar when

comparing the peak temperature of NH3 release, e.g.

Y(BH4)3∙7NH3 (~80 �C) and YCl3$7NH3 (~100 �C), and

Mg(BH4)2$6NH3 and MgCl2$6NH3 have similar stability

(~150 �C), whereas Mn(BH4)2$6NH3 (~130 �C) is slightly more

stable than MnCl2$6NH3 (~105 �C).

Di-hydrogen bonds in the structures. All ammine metal boro-

hydride structures contain di-hydrogen Hd�
… Hdþ contacts

between partly positively charged hydrogen, Hdþ bonded to N

in NH3 and partly negatively charged hydrogen, Hd� bonded to

B in BH4
�. For Y(BH4)3∙nNH3 and Sr(BH4)2$4NH3 the shortest di-

hydrogen contacts are in the range 1.850e2.035 �A and are

intermolecular, either connecting layers, chains, molecular

clusters or connecting complex ions, while it is intramolecular

for Sr(BH4)2∙nNH3 (n ¼ 1 and 2) within a 2D layer [174,177]. In

comparison, the intramolecular hydrogen contacts between

Hd�,,,Hd� in a BH4
� complexes and Hdþ,,,Hdþ in NH3 mole-

cules are ~2.00 �A and 1.63 �A, respectively, while the shortest

di-hydrogen contact in NH3BH3 is 2.02 �A.
Trends in thermal decomposition. The thermal decomposition

of a large number of ammine metal borohydrides has been

investigated and revealed that ammonia absorption results in

the destabilization of metal borohydrides with low electro-

negativity metals (cp < 1.6), while metal borohydrides with

high electronegativity metals (cp > 1.6) are stabilized by NH3.

The stabilization is possibly due to shielding of metals with

high electronegativity by complex formation.

A characteristic of the ammine metal borohydrides which

does not occur formetal halides is the potential for gas release

either as hydrogen or ammonia. Tailoring which gas is

released could be useful in employing ammine metal boro-

hydrides in particular applications, especially as ammonia

must often be decomposed before use. The mechanism for

decomposition of ammine metal borohydrides remains not

fully understood. Strong di-hydrogen bonds have been

hypothesised to cause H2 elimination in the solid-state.

However, detailed analysis of experimental data disagree

with this hypothesis. For example, ammonia release is

observed for Y(BH4)3∙nNH3 (n ¼ 7 and 6), which has the

strongest di-hydrogen bonds (~1.85 �A) among the series of

compounds, Y(BH4)3∙nNH3 (n ¼ 7, 6, 5, 4, 2 and 1) [174]. Simi-

larly, NaBH4$2H2O does not directly release H2, but de-

composes into NaBH4 dissolved in the crystal water, despite

the presence of strong di-hydrogen bonds (1.77e1.95 �A) [178].

The NH3/BH4
� ratio (n/m) has also been suggested as an

important factor in determining the composition of the

released gas. The ratio (n/m) has been adjusted for the series

of M(BH4)m∙nNH3 (M ¼Mg, Mn and Y), leading to increased H2

content for lower n/m ratios. However, despite low n/m ratios,

LiBH4$NH3, Ca(BH4)2$NH3 and Sr(BH4)2$NH3 release NH3, and

not H2.

Alternatively, two other factors have also been suggested

that the composition of the released gasses [177]:

(i) The stability of the metal borohydride (Fig. 8). Ammine

metal borohydrides of relatively stable metal borohydrides

(cp < ~1.0), e.g. LiBH4∙NH3, Ca(BH4)2∙nNH3 and Sr(BH4)2∙nNH3

[177], release NH3 (with no H2) by thermolysis in open systems

and/or in a flow of an inert gas, i.e. p (NH3) ~ 0, even when the

NH3/BH4
� ratios (n/m) are low, �1. This may be due to the

significantly higher thermal stability of the respective metal

borohydrides [177].

Ammine metal borohydrides of less stable metal borohy-

drides, Al, Zn, or Zr release NH3/H2 gas mixtures, which may

be due to the lower decomposition temperature of the

respective metal borohydrides. Thus, the less stable metal

borohydrides react with NH3 upon decomposition and release

H2 (and in some cases also some NH3). As an example,

Al(BH4)3$6NH3 releases H2 and small amount of NH3 at ~165 �C,
and Al(BH4)3 decompose at significantly lower temperatures,

Tdec (Al(BH4)3) ~ 25 �C [10]. Zn(BH4)2$2NH3 releases 8.9 wt% H2

at T < 115 �C in contrast to LiZn2(BH4)5, which releases a

mixture of diborane and hydrogen via reduction of Zn2þ to Zn

[179,180].

(ii) The partial pressure of ammonia during decomposition.

In a closed system, the partial pressure of ammonia is

increasing upon ammonia release, p (NH3) > 0. Then,

LiBH4$NH3, Ca(BH4)2∙nNH3 and Sr(BH4)2∙nNH3 first release

some ammonia but release hydrogen exothermically at higher
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Fig. 8 e Decomposition temperatures, Tdec, for selected ammine metal borohydrides and the corresponding metal

borohydrides. Zn(BH4)2 is not experimentally observed and is considered unstable. Reprinted with permission from [177].

Copyright 2015 Wiley-VCH.

Fig. 9 e Variable-temperature equilibrium ammonia

concentration at 0.1 MPa. The acceptable level for PEM fuel

cells is shown as a dashed blue line, with the

corresponding equilibrium temperature indicated with a

red line. Thermodynamic data calculated from variable-

temperature heat capacity data from Ref. [184]. (For

interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this

article.)
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temperatures, possibly via a solid-gas hydrogen elimination

reaction between solid metal borohydrides and ammonia gas.

Thus, when the ammonia release temperature of ammine

metal borohydrides is significantly lower than the decompo-

sition temperature of the corresponding metal borohydride,

then initially ammonia is released, which react with themetal

borohydride at higher temperatures via solid-gas reactions,

when confined in a closed systems [177].

Using these characteristics governing the desorbed gas

composition from amminemetal borohydrides as design rules

may help develop systems with tailored gas compositions,

generating the various levels of ammonia decomposition

needed for different applications (Fig. 4).

Sorbent and membrane approaches to ammonia removal
Ammonia has been demonstrated to be irreversibly damaging

to PEM fuel cells at low-ppm concentration levels [181,182].

While advances in ammonia decomposition catalysts will

significantly assist in producing high-purity ammonia,

reaching the <0.1 ppm benchmark for PEM fuel cells is beyond

the thermodynamic limit for temperatures less than 725 �C, as
shown in Fig. 9. Ammonia emissions must also be avoided

even in the case of ammonia-tolerant power generation sys-

tems (e.g. alkaline fuel cells [183]) because of the toxicity of

ammonia. As such, if ammonia is to be used as a hydrogen

carrier, approaches to remove residual ammonia from the

hydrogen gas stream are required.

Sorbent materials have been proposed as a means to ach-

ieve ultra-low concentrations of ammonia in dynamic

hydrogen gas streams. Recently, lithium exchange type X

zeolite was used in a flow of simulated cracked ammonia
(1000 ppm inlet concentration) to give 0.01e0.02 ppm

ammonia in the purified hydrogen/nitrogen stream, up to a

maximum storage capacity of 5.7 wt% [185]. Similar studies

have also been reported for a number of metal halide sorbent

systems, reaching storage capacities in excess of 10 wt% [186].
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Scheme 1 e Dehydrogenation and hydrogenation of 12H-

NEC and NEC pair.
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Sorbent-based approaches such as these would function on

the use of a cartridge of sorbentwhich could be regenerated by

the application of heat to drive off the adsorbed ammonia.

There have also been recent advances in the use of mem-

branes to purify hydrogen from cracked ammonia. A recently

developed layered palladium-vanadium membrane offers

significant cost benefit over pure palladium membranes

[187,188]; while fragile membranes may not yet be suitable for

on-board hydrogen purification, they are strong candidates

for use in the production of pure hydrogen from cracked

ammonia at the forecourt or in centralised facilities. A key

advantage of membrane-based approaches is the simulta-

neous removal of nitrogen from the gas stream, avoiding the

need for the use of pressure-swing adsorption or other sec-

ondary purification techniques.
Reversible liquid organic hydrogen carriers
(LOHCs)

In the present review, formic acid and methanol as organic

hydrogen carriers are not included. Therefore, in the LOHCs

part, we only discuss cycloalkanes and their derivatives, such

as N-heterocycles, substituted alkanes and fused ring com-

pounds etc. LOHCs with hydrogen content of ~5e8 wt%,

reversibility, moderate dehydrogenation temperature, com-

mercial availability, production of COx-free hydrogen and

more importantly, the compatibility with existing gasoline

infrastructure, hold the promises as hydrogen carriers for

both onboard application and large-scale, long-distance H2

transportation [41,189e191]. However, the cycloalkanes, such

as cyclohexane, methylcyclohexane and decalin, usually

suffer from their high dehydrogenation enthalpy changes,

requiring high dehydrogenation temperature [192]. Therefore,

the development of new materials with favorable dehydro-

genation enthalpy change (DHd) is needed. On the other hand,

kinetic barriers exist in both dehydrogenation and hydroge-

nation processes, which need optimization on catalysts.

Therefore, the recent advances in these two aspects (ther-

modynamic and kinetic optimizations) will be summarized

and discussed in the present review.
Fig. 10 e Strategies for optimization of dehydrogenatio
Thermodynamic optimization

Early research on liquid organic hydrides for hydrogen storage

focused on cyclohexane-benzene pair, methylcyclohexane-

toluene pair, and decalin-naphthalene pair [192]. However,

the dehydrogenation of these cycloalkanes occurs at relatively

high temperature (usually higher than 300 �C) due to their high

dehydrogenation enthalpy changes. Taking methylcyclohex-

ane as an example, the calculated dehydrogenation enthalpy

change is around 73.6 kJ mol�1 H2, leading to a dehydrogena-

tion temperature of ca. 326 �C [193]. The strategies for opti-

mization of DHd from literature, including fused ring

compound, heteroatom replacement and electron-donating

substitution, are summarized in Fig. 10. It is shown that the

decalin-naphthalene pair exhibits lower enthalpy change

during dehydrogenation, hinting that the fused ring strategy is

an optional method to optimize the thermodynamic proper-

ties [41]. Pez. et al. from Air Products and Chemicals company

had predicted theoretically and demonstrated experimentally

in their patent that fused ring compounds possess lower

dehydrogenation enthalpy changes [194], in which the

hydrogen storage properties of several fused ring compounds

including pyrene, coronene and hexabenzocoronene were

tested, showing superb reversible hydrogen storage properties

compared with that of mono-ring counterpart (benzene-

cyclohexane pair).

In the following patent from Air Products and Chemicals

[190], it was demonstrated that better reversible hydrogen

storage properties can be obtained by using heteroatoms

(such as N, O, P, or B etc.) substituted hydrocarbons. Partic-

ularly, the dehydrogenation enthalpy changes are effectively

enhanced in the N-heterocycles (Fig. 10), among which the N-

ethylcarbazole (NEC) and dodecahydro-N-ethylcarbazole
n enthalpy change of cycloalkane in the literature.
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(12H-NEC) pair with DHd of 50.6 kJ mol�1 H2 exhibits superior

reversible de/hydrogenation properties as shown in Scheme

1. 12H-NEC is liquid at room temperature and has a theo-

retical material gravimetric capacity of 5.8 wt%, exhibiting a

potential candidate for liquid phase hydrogen storage appli-

cation. As such, much attention has been given to the

reversible NEC and 12H-NEC pair, especially in catalyst

development which will be introduced in the following sec-

tions. Independently, Clot, Eisenstein and Crabtree et al.

calculated the thermodynamic data and theoretical dehy-

drogenation temperature under 1 bar hydrogen of a series of

N-heterocycles and found that the dehydrogenation enthalpy

change can be effectively reduced by incorporation of N

atoms into the rings [193], which may be due to that the N

substituents can weaken a-CH bond in a saturated species.

Actually, in situ XPS and in situ FTIR studies on the dehydro-

genation of 12H-NEC indicated that the dehydrogenation

started from the five-membered ring by weakening the CeH

bond adjacent to N atom on Pde and Pt-based model cata-

lysts [195e197].

The calculation from Crabtree et al. also revealed that the

substituted N outside the ring can be evenmore effective than

a ring N in lowering DHd through comparison of benzene-

cyclohexane (DHd ¼ 17.6 kcal mol�1H2), pyrideine-piperidine

(DHd ¼ 16.1 kcal mol�1 H2) and aniline-cyclohexylamine

(DHd ¼ 15.7 kcal mol�1 H2) [193], which means the addition

of electron donating groups would lower the temperature at

which hydrogen can be easily released. Jessop and coworkers

found a correlation between the dehydrogenation enthalpy of

cycloalkane and Hammett parameter (s) of substitute group

as shown in Fig. 11 [198]. The Hammett parameter reflects

electron donating ability of substituent group. Their work

showed a linear correlation, i.e., the lower the Hammett

parameter (or the more electron-donating substituent) the

lower dehydrogenation enthalpy. Therefore, the electron-

donating strategy would be a promising way to optimize the

thermodynamic properties. However, the substituents

outside the ring would have the chance to detach from the

parent substance under harsh condition during dehydroge-

nation [198].
Fig. 11 e Calculated dehydrogenation enthalpies (DHrxn/n)

of mono-substituted cyclohexane and para-substituted

piperidine derivatives. Reprinted with permission from

[198]. Copyright 2008 Royal Society of Chemistry.
Kinetic optimization

Heterogeneous catalysts
Since the N-heterocycles exhibit reduced dehydrogenation

enthalpy changes, much attention has been given to these

systems, especially on the development of catalysts. Crabtree

and coworkers investigated several noble catalysts (Pd, Rh etc.)

for the dehydrogenation of indoline and achieved 100% con-

version using Pd/C catalyst only after half an hour in refluxing

toluene [199]. For the heterogeneous catalyst, support is one of

the key factors to the activity and stability. S�anchez-Delgado

found that the hydrogenation rate of quinoline increased

monotonically with the basicity of the support, i.e.,

MgO < CaO < SrO [200,201]. Therefore, they proposed mech-

anism for catalytic hydrogenation, which involved the het-

erolytic hydrogen splitting and ionic hydrogenation on the

metal/basic support interface due to the polarity of C]N bond

in quinoline [201,202]. By using this heterolytic hydrogen

splitting function of the basic support, covalent triazine

framework (CTF, a microporous support) supported Pd nano-

particles exhibited an improved activity in the hydrogenation

of N-heterocycles in comparison with active carbon support

[203]. Recently, Somorjai et al. used dendrimer-stabilized

noble metal nanoparticles for the dehydrogenation/hydroge-

nation of N-heterocycles (tetrahydroquinoline and indoline)

and achieved reversible hydrogen release and storage under

mild condition, i.e., 130 �C and 60 �C for dehydrogenation and

hydrogenation, respectively, which may be attributed to the

basic property of the dendrimer support [204].

Unfortunately, only the N-heterocyclic parts participated

in the dehydrogenation/hydrogenation in the above exam-

ples, meaning quite low usable hydrogen contents. As

mentioned above, NEC and 12H-NEC pair with suitable ther-

modynamic properties and high hydrogen capacity (5.8 wt%)

has drawn tremendous effort in the past decade. Table 2

summaries the recent development of heterogeneous cata-

lyst for this pair. The reversible NEC and 12H-NEC pair for

hydrogen storage was firstly proposed by Air Products

[190,194]. From the literature, it was found that Ru is the most

active catalyst for hydrogenation [205,206]. Pd, on the other

hand, appears to be highly active for dehydrogenation

[207e209]. In the Air Products’ patents, Ru and Pd on lithium

aluminate were employed as hydrogenation and dehydroge-

nation catalysts, respectively [190], where ca. 5.6 wt%

hydrogen can be reversibly stored and released. Smith and

coworkers found around 100% conversion at 170 �C over 5%

Pd/SiO2 catalyst for 12H-NEC dehydrogenation [205], showing

outstanding catalytic capability. However, the partially dehy-

drogenated intermediates, such as octa- and teterahydro-N-

ethylcarbazole (8H-NEC and 4H-NEC), were found in the

products. Similarly, Cheng et al. investigated the reversible

hydrogen storage properties of NEC and 12H-NEC pair and

found that the full hydrogenation of NEC was realized over a

5% Ru/Al2O3 catalyst at 180 �C and 8.0 MPa hydrogen [210].

However, the dehydrogenation underwent a three stage pro-

cess with a 5%Pd/Al2O3 catalyst, i.e., from 12H-NEC to 8H-NEC

to 4H-NEC and further to NEC with the initial reaction tem-

peratures of 128 �C, 145 �C, and 178 �C, respectively. Smith and

coworkers found the dehydrogenation activity and selectivity
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Table 2 e Heterogeneous catalysts for dehydrogenation/hydrogenation of NEC and 12H-NEC pair.

Catalysts De/hydrogenation Temperature
/pressure

Products Solvents Refs.

5%Ru/lithium aluminate Hydrogenation 160 �C/6.9 MPa 12-NEC e [190]

4%Pd/lithium aluminate Dehydrogenation 197 �C/0.1 MPa NEC e [190]

5%Ru/Al2O3 Hydrogenation 130e150 �C/7 MPa >95% 12-NEC decalin [205]

5% Pd/SiO2 Dehydrogenation 150e170 �C/- NEC, 4H-NEC, 8H-NEC decalin [205]

5% Pd/C Dehydrogenation 170 �C/- NEC decalin [207]

4%Pd/SiO2(9 nm) Dehydrogenation 170 �C/- NEC decalin [208,209]

Ru black Hydrogenation 130 �C/7 MPa 12H-NEC, 8H-NEC, 4H-NEC cyclohexane [211]

Pd black Hydrogenation 130 �C/7 MPa 12H-NEC, 4H-NEC cyclohexane [211]

Pt black Hydrogenation 130 �C/7 MPa 12H-NEC, NEC cyclohexane [211]

65%Ni/SiO2eAl2O3 Hydrogenation 130 �C/7 MPa 12H-NEC, NEC cyclohexane [211]

5%Ru/Al2O3 Hydrogenation 130 �C/7 MPa 98% 12H-NEC molten reaction mixture [212]

5% Ru/TiO2 Hydrogenation 130 �C/7 MPa 12H-NEC, 8H-NEC, 4H-NEC cyclohexane [213]

5t% Ru/Al2O3 Hydrogenation 130 �C/7 MPa 12H-NEC, 8H-NEC, 4H-NEC cyclohexane [213]

Ru black Hydrogenation 130 �C/7 MPa 12H-NEC, 8H-NEC, 4H-NEC cyclohexane [213]

Ru black Hydrogenation 130 �C/7 MPa 12H-NEC, 8H-NEC, 4H-NEC 1,4-dioxane [214]

Rue, Rhe, Pd-based catalysts Hydrogenation 130 �C/7 MPa 12H-NEC, 8H-NEC, 4H-NEC cyclohexane [206]

5%Ru/Al2O3 Hydrogenation 180 �C/8 MPa 12H-NEC, e [210]

5%Pd/Al2O3 Dehydrogenation 128 �C,145 �C,178 �C/- 8H-NEC, 4H-NEC, NEC e [210]
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were strongly dependent upon the Pd size, i.e., the maxima in

both activity and selectivity were obtained over a Pd/SiO2

catalyst with an average particle size of 9 nm [208,209].

Although Ru catalyst showed the best activity for the hydro-

genation of NEC, it suffered from lower selectivity to the

desired product. Rh-based catalysts, on the other hand,

exhibit a higher selectivity to 12H-NEC under comparable

conditions [206].
Fig. 12 e Over processes for the reversible catalytic
Homogeneous catalysts
Catalytic dehydrogenation of 12H-NECwas also reported using

homogeneous catalysts. In 2009, Jensen and coworkers found

that an Ir-PCP pincer complex was an efficient catalyst for the

dehydrogenation of 12H-NEC at 200 �C [215]. Meanwhile, they

found that this Ir-based homogeneous catalyst was also active

for the other organic hydrogen carriers, including perhy-

drodibenzofuran, perhydroindole, N-methyl perhydroindole,
dehydrogenation/hydrogenation of 2-MeTHQ.
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etc. [216] Fujita and Yamaguchi also developed a Cp*Ir complex

homogeneous catalyst bearing a 2-pyridonate ligand

(Cp* ¼ pentamethylcyclophentadienyl) exhibited excellent

activity in the reversible dehydrogenation/hydrogenation of 2-

methyl-1, 2, 3, 4-tetrahydroquinoline (2Me-THQ) [217]. The

author proposed a dehydrogenation/hydrogenation mecha-

nism according to their experiment (Fig. 12). Under hydrogen

pressure, the catalyst would convert to a hydride-bridged

dinuclear Cp*Ir complex (5 in Figure 12) that may catalyze the

hydrogenation reaction by transfer hydrides to quinoline.

However, the hydride would be liberated from the hydride-

bridged dinuclear Cp*Ir complex under Ar, forming 2c in

Fig. 12, which would have the ability to catalyze the dehydro-

genation of 2Me-THQ. However, only the N-heterocyclic part of

the bicyclic quinoline system participates in both trans-

formations and, consequently, the hydrogen gravimetric ca-

pacity of this system is quite low. Therefore, in the following

investigation, they achieved efficient homogeneous perdehy-

drogenation of 2,6dimertyldecahydro-1,5-naphthyridine with

release and uptake of five molecules of H2 catalyzed by Cp*Ir

complexes bearing functional bipyridonate ligands as a single

precatalyst, which increased the hydrogen capacity dramati-

cally [218]. Xiao and coworkers also reported a versatile

cyclometalated [Cp*IrIII]/imino complex for acceptorless

dehydrogenation of N-heterocycles [219,220].

Despite the recent progress with Ir-based catalysts

[215,217e221], the development of low-cost, non-noble

metal catalyst for the dehydrogenation or hydrogenation of N-

heterocycles is highly desirable. Jones and coworkers

synthesised a (iPrPNP)Fe(CO)(H) bifunctional catalyst

(iPrPNP ¼ iPr2PCH2CH2NCH2CH2P
iPr2), which exhibited excel-

lent performance in both dehydrogenation and hydrogenation

ofN-heterocycles [222]. Theoretical analyseson this Fe catalyst

showed that the dehydrogenationmechanism of saturated N-

heterocyclic substrates was highly dependent on the polarity

of the CeNbond, i.e., the relatively unpolarized CeN bonds are

dehydrogenated through a concerted proton/hydride transfer,

whereas, thepolarizedCeNbondsentail stepwise (proton then

hydride) bifunctional dehydrogenation [222,223]. Beside this

Fe-based catalyst, Co-[224] and Ni-based [225] non-noble ho-

mogeneous catalysts were also reported by Jones' group and

Crabtree's groups, respectively. Usually, these homogeneous

catalysts require more than 20 h reaction time at high tem-

perature. Li and coworker achieved acceptorless dehydroge-

nation of a series of N-heterocycles at ambient temperature by

merging visible-light photoredox catalysis [226], where

Co(dmgH)2Cl2 and Ru (bpy)3Cl2$6H2O were employed as cata-

lyst and photosensitizer, respectively. In spite of advances

were reported recently, the stability and reusability are main

issues for the homogeneous catalysts, which needs further

investigation in the future.
Conclusions and future opportunities

Hydrogen is likely to play a key role alongside electrification in

decarbonising global energy systems. The high volumetric

hydrogen density and ease of storage and transportation

make liquid hydrogen-containing carriers attractive for

reducing the infrastructure burden of implementing
hydrogen-based energy storage. Key opportunities exist

already for the use of liquid carriers in facilitating hydrogen

trade and inter-seasonal energy storage, with possible ex-

tensions towards on-board hydrogen storage for trans-

portation. While much of the required technology to

implement these carriers exists already, there are a number of

areas where further improvements can be made. Designing

lower cost, highly active catalysts which enable high round-

trip efficiencies and dehydrogenation at moderate tempera-

tures will always improve the economic viability of energy

storage. There are particular opportunities to develop new

catalysts which can integrate directly with intermittent

renewable electricity generation. Therefore, continuing work

in the development of electrocatalysts and catalysts which

can operate under more moderate and variable reaction con-

ditions, as well as thermochemical cycles for liquid carrier

production, will be central to broadening the application

liquid hydrogen carriers.
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Lu A-H, et al. High-temperature stable, iron-based core-
shell catalysts for ammonia decomposition. Chem Eur J
2011;17:598e605. https://doi.org/10.1002/chem.
201001827.

[137] Pansare SS, Torres W, Goodwin Jr JG. Ammonia
decomposition on tungsten carbide. Catal Commun
2007;8:649e54. https://doi.org/10.1016/j.catcom.2006.08.016.

https://doi.org/10.1016/j.apcatb.2017.12.039
https://doi.org/10.1016/j.apcatb.2017.12.039
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref104
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref104
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref104
https://doi.org/10.1126/science.77.1989.173-a
https://doi.org/10.1126/science.77.1989.173-a
https://doi.org/10.1021/ja01378a005
https://doi.org/10.1021/ja01378a005
https://doi.org/10.1021/ja01857a019
https://doi.org/10.1021/ja01256a005
https://doi.org/10.1021/ja01256a005
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref109
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref109
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref109
https://doi.org/10.1021/j100874a509
https://doi.org/10.1016/0021-9517(76)90395-X
https://doi.org/10.1016/0021-9517(76)90395-X
https://doi.org/10.1016/0021-9517(80)90403-0
https://doi.org/10.1016/0021-9517(80)90403-0
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref113
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref113
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref113
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref113
https://doi.org/10.1023/A:1019007024041
https://doi.org/10.1039/TF9615701410
https://doi.org/10.1039/TF9615701410
https://doi.org/10.1039/tf9656100765
https://doi.org/10.1016/S1385-8947(02)00110-9
https://doi.org/10.1016/S1385-8947(02)00110-9
https://doi.org/10.1016/j.jcat.2004.03.008
https://doi.org/10.1016/j.jcat.2004.03.008
https://doi.org/10.1016/j.apcatb.2003.10.013
https://doi.org/10.1016/S0008-6223(02)00393-7
https://doi.org/10.1016/S0008-6223(02)00393-7
https://doi.org/10.1016/j.jcat.2004.12.005
https://doi.org/10.1016/j.jcat.2004.12.005
https://doi.org/10.1016/j.apcata.2007.01.029
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref123
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref123
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref123
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref123
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref123
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref123
https://doi.org/10.1006/jcat.1997.1664
https://doi.org/10.1006/jcat.1997.1664
https://doi.org/10.1016/S0021-9517(03)00058-7
https://doi.org/10.1080/00986445.2014.923995
https://doi.org/10.1080/00986445.2014.923995
https://doi.org/10.1007/s11244-009-9203-7
https://doi.org/10.1007/s11244-009-9203-7
https://doi.org/10.1016/j.apcata.2015.07.020
https://doi.org/10.1016/j.apcata.2015.07.020
https://doi.org/10.1021/nl8011984
https://doi.org/10.1039/C7CP07613D
https://doi.org/10.1039/C7CP07613D
https://doi.org/10.1002/cctc.201800398
https://doi.org/10.1002/cctc.201800398
https://doi.org/10.1016/j.jcat.2013.05.011
https://doi.org/10.1016/j.jcat.2013.05.011
https://doi.org/10.1021/acs.jpcc.5b02932
https://doi.org/10.1039/C7CP07613D
https://doi.org/10.1039/C7CP07613D
https://doi.org/10.1016/j.catcom.2009.11.003
https://doi.org/10.1002/chem.201001827
https://doi.org/10.1002/chem.201001827
https://doi.org/10.1016/j.catcom.2006.08.016
https://doi.org/10.1016/j.ijhydene.2019.01.144
https://doi.org/10.1016/j.ijhydene.2019.01.144


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 4 ( 2 0 1 9 ) 7 7 4 6e7 7 6 7 7765
[138] Cui X, Li H, Guo L, He D, Chen H, Shi J. Synthesis of
mesoporous tungsten carbide by an impregnation-
compaction route, and its NH3 decomposition catalytic
activity. Dalt Trans 2008:6435e40. https://doi.org/10.1039/
b809923e.

[139] Choi J-G. Ammonia decomposition over vanadium carbide
catalysts. J Catal 1999;182:104e16. https://doi.org/10.1006/
jcat.1998.2346.

[140] Titherley AW. Sodium, potassium, and lithium amides. J
Chem Soc 1894;65:504e22. https://doi.org/10.1039/
CT8946500504.

[141] Chen P, Xiong Z, Luo J, Lin J, Tan KL. Interaction of hydrogen
with metal nitrides and imides. Nature 2002;420:302e4.
https://doi.org/10.1038/nature01210.

[142] Chen P, Xiong Z, Wu G, Liu Y, Hu J, Luo W. MetaleNeH
systems for the hydrogen storage. Scr Mater 2007;56:
817e22. https://doi.org/10.1016/j.scriptamat.2007.01.001.

[143] Xiong Z, Wu G, Hu J, Chen P. Ternary imides for hydrogen
storage. Adv Mater 2004;16:1522e5. https://doi.org/10.1002/
adma.200400571.

[144] David WIF, Makepeace JW, Callear SK, Hunter HMA,
Taylor JD, Wood TJ, et al. Hydrogen production from
ammonia using sodium amide. J Am Chem Soc
2014;136:13082e5. https://doi.org/10.1021/ja5042836.

[145] Guo J, Wang P, Wu G, Wu A, Hu D, Xiong Z, et al. Lithium
imide synergy with 3d transition-metal nitrides leading to
unprecedented catalytic activities for ammonia
decomposition. Angew Chemie Int Ed 2015;127:2993e7.
https://doi.org/10.1002/ange.201410773.

[146] Makepeace JW, Wood TJ, Hunter HMA, Jones MO,
David WIF. Ammonia decomposition catalysis using non-
stoichiometric lithium imide. Chem Sci 2015;6:3805e15.
https://doi.org/10.1039/C5SC00205B.

[147] Guo J, Chang F, Wang P, Hu D, Yu P, Wu G, et al. Highly
active MnNeLi2NH composite catalyst for producing COx

-free hydrogen. ACS Catal 2015;5:2708e13. https://doi.org/
10.1021/acscatal.5b00278.

[148] Chang F, Guo J, Wu G, Wang P, Yu P, Chen P. Influence of
alkali metal amides on the catalytic activity of manganese
nitride for ammonia decomposition. Catal Today
2017;286:141e6. https://doi.org/10.1016/j.cattod.2016.09.010.

[149] Makepeace JW, Hunter HMA, Wood TJ, Smith RI, Murray CA,
David WIF. Ammonia decomposition catalysis using
lithium-calcium imide. Faraday Discuss 2016;188:525e44.
https://doi.org/10.1039/C5FD00179J.

[150] Yu P, Guo J, Liu L, Wang P, Chang F, Wang H, et al. Effects of
alkaline earth metal amides on Ru in catalytic ammonia
decomposition. J Phys Chem C 2016;120:2822e8. https://
doi.org/10.1021/acs.jpcc.5b11768.

[151] Cao H, Guo J, Chang F, Pistidda C, Zhou W, Zhang X, et al.
Transition and alkali metal complex ternary amides for
ammonia synthesis and decomposition. Chem Eur J
2017;23:9766e71. https://doi.org/10.1002/chem.201702728.

[152] Aika KA, Kawahara TSM, Onishi T. Promoter effect of alkali
metal oxides and alkali earth metal oxides on active
carbon-supported ruthenium catalyst for ammonia
synthesis. Bull Chem Soc Jpn 1990;63:1221e5.

[153] Guo J, Chen Z, Wu A, Chang F, Wang P, Hu D, et al.
Electronic promoter or reacting species? The role of LiNH2

on Ru in catalyzing NH3 decomposition. Chem Commun
2015;51:15161e4. https://doi.org/10.1039/C5CC04645A.

[154] Bellosta von Colbe JM, Metz O, Lozano G a, Pranzas PK,
Schmitz HW, Beckmann F, et al. Behavior of scaled-up
sodium alanate hydrogen storage tanks during sorption. Int
J Hydrogen Energy 2012;37:2807e11. https://doi.org/10.1016/
j.ijhydene.2011.03.153.

[155] Yu P, Guo J, Liu L, Wang P, Wu G, Chang F, et al. Ammonia
decomposition with manganese nitride e calcium imide
composites as efficient catalysts. ChemSusChem
2016;9:364e9. https://doi.org/10.1002/cssc.201501498.

[156] Marx R. Preparation and crystal structure of lithium nitride
hydride, Li4NH, Li4ND. Z Anorg Allg Chem 1997;623:1912e6.
https://doi.org/10.1002/chin.199813003.

[157] Peikun W, Guo J, Chen P. The interactions of Li3FeN2 with H2

and NH3 ScienceDirect. Int J Hydrogen Energy 2016:1e7.
https://doi.org/10.1016/j.ijhydene.2016.05.108.

[158] Makepeace JW, Wood TJ, Marks PL, Smith RI, Murray CA,
David WIF. Bulk phase behavior of lithium imideemetal
nitride ammonia decomposition catalysts. Phys Chem
Chem Phys 2018. https://doi.org/10.1039/C8CP02824A.

[159] Wood TJ, Makepeace JW. Assessing potential supports for
lithium amide-imide ammonia decomposition catalysts.
ACS Appl Energy Mater 2018;1:2657e63. https://doi.org/
10.1021/acsaem.8b00351.

[160] Consultants Quest. Comparative quantitative risk analysis
of motor gasoline, LPG, and anhydrous ammonia as an
automotive fuel. 2009.

[161] Duijm NJ, Markert F, Paulsen JL. Safety assessment of
ammonia as a transport fuel. 2005.

[162] Christensen CH, Sørensen RZ, Johannessen T, Quaade UJ,
Honkala K, Elmøe TD, et al. Metal ammine complexes for
hydrogen storage. J Mater Chem 2005;15:4106. https://
doi.org/10.1039/b511589b.

[163] Vegge T, Sørensen RZ, Klerke A, Hummelshøj JS,
Johannessen T, Nørskov JK. Indirect hydrogen storage in
metal ammines. In: Walker G, editor. Solid-State hydrogen
storage. Woodhead Publishing; 2008. https://doi.org/
10.1533/9781845694944.4.533.

[164] Jensen PB, Lysgaard S, Quaade UJ, Vegge T. Designing mixed
metal halide ammines for ammonia storage using density
functional theory and genetic algorithms. Phys Chem Chem
Phys 2014;16. https://doi.org/10.1039/c4cp03133d.

[165] Hjorth Larsen A, JØrgen Mortensen J, Blomqvist J, Castelli IE,
Christensen R, Dułak M, et al. The atomic simulation
environment - a Python library for working with atoms. J
Phys Condens Matter 2017;29. https://doi.org/10.1088/1361-
648X/aa680e.

[166] Bialy A, Jensen PB, Blanchard D, Vegge T, Quaade UJ. Solid
solution barium-strontium chlorides with tunable
ammonia desorption properties and superior storage
capacity. J Solid State Chem 2015;221. https://doi.org/
10.1016/j.jssc.2014.09.014.

[167] Ammitzboll AL, Lysgaard S, Klukowska A, Vegge T,
Quaade UJ. Surface adsorption in strontium chloride
ammines. J Chem Phys 2013;138. https://doi.org/10.1063/
1.4800754.

[168] Tekin A, Hummelshøj JS, Jacobsen HS, Sveinbj€ornsson D,
Blanchard D, Nørskov JK, et al. Ammonia dynamics in
magnesium ammine from DFT and neutron scattering.
Energy Environ Sci 2010;3. https://doi.org/10.1039/
b921442a.

[169] Lysgaard S, Ammitzbøll AL, Johnsen RE, Norby P, Quaade UJ,
Vegge T. Resolving the stability and structure of strontium
chloride amines from equilibrium pressures, XRD and DFT.
Int J Hydrogen Energy 2012;37:18927e36.

[170] Johnsen RE, Jensen PB, Norby P, Vegge T. Temperature- and
pressure-induced changes in the crystal structure of
Sr(NH3)8Cl2. J Phys Chem C 2014;118. https://doi.org/10.1021/
jp508076c.

[171] Paskevicius M, Jepsen LH, Schouwink P, �Cerný R,
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Besenbacher F, et al. Ammine calcium and strontium
borohydrides: syntheses, structures, and properties.
ChemSusChem 2015;8:3472e82. https://doi.org/10.1002/
cssc.201500713.

[178] Filinchuk Y, Hagemann H. Structure and properties of
NaBH4$2H2O and NaBH4. Eur J Inorg Chem 2008:3127e33.
https://doi.org/10.1002/ejic.200800053.

[179] Gu Q, Gao L, Guo Y, Tan Y, Tang Z, Wallwork KS, et al.
Structure and decomposition of zinc borohydride ammonia
adduct: towards a pure hydrogen release. Energy Environ
Sci 2012;5:7590e600. https://doi.org/10.1039/c2ee02485c.

[180] Ravnsbœk D, Filinchuk Y, Cerenius Y, Jakobsen HJ,
Besenbacher F, Skibsted J, et al. A series of mixed-metal
borohydrides. Angew Chem Ed 2009;48:6659e63. https://
doi.org/10.1002/anie.200903030.

[181] Uribe FA, Gottesfeld S, Zawodzinski TA. Effect of ammonia
as potential fuel impurity on proton exchange membrane
fuel cell performance. J Electrochem Soc 2002;149:A293.
https://doi.org/10.1149/1.1447221.

[182] Ohi JM, Vanderborgh N, Gerald Voecks Consultants.
Hydrogen fuel quality specifications for polymer electrolyte
fuel cells in road vehicles. 2016.

[183] Kordesch K, Cifrain M. A comparison between the alkaline
fuel cell ( AFC ) and the polymer electrolyte membrane
( PEM ) fuel cell. In: Vielstich W, Lamm A, Gasteiger HA,
editors. Handb. Fuel cells e Fundam. Technol. Appl., vol. 4.
Chichester: John Wiley & Sons, Ltd; 2003. p. 789e93.

[184] Chase Jr MW. In: NIST-JANAF thermochemical tables. 4th
ed. American Institute of Physics; 1998.

[185] Miyaoka H, Miyaoka H, Ichikawa T, Ichikawa T, Kojima Y.
Highly purified hydrogen production from ammonia for
PEM fuel cell. Int J Hydrogen Energy 2018;43:14486e92.
https://doi.org/10.1016/j.ijhydene.2018.06.065.

[186] Van Hassel BA, Karra JR, Santana J, Saita S, Murray A,
Goberman D, et al. Ammonia sorbent development for on-
board H2 purification. Sep Purif Technol 2015;142:215e26.
https://doi.org/10.1016/j.seppur.2014.12.009.

[187] Dolan MD, Viano DM, Langley MJ, Lamb KE. Tubular
vanadium membranes for hydrogen purification. J Memb
Sci 2018;549:306e11. https://doi.org/10.1016/
j.memsci.2017.12.031.

[188] Lamb KE, Viano DM, Langley MJ, Hla SS, Dolan MD. High-
purity H2 produced from NH3 via a ruthenium-based
decomposition catalyst and vanadium-based membrane.
Ind Eng Chem Res 2018:8e13. https://doi.org/10.1021/
acs.iecr.8b01476.
[189] Crabtree RH. Hydrogen storage in liquid organic
heterocycles. Energy Environ Sci 2008;1:134e8. https://
doi.org/10.1039/b805644g.

[190] Pez GP, Scott AR, Cooper AC, Cheng H, Wilhelm FC,
Abdourazak AH. Hydrogen storage by reversible
hydrogenation of pi-conjugated substrates. 2003.
US7351395B1.

[191] Teichmann D, Stark K, Müller K, Z€ottl G, Wasserscheid P,
Arlt W. Energy storage in residential and commercial
buildings via liquid organic hydrogen carriers (LOHC).
Energy Environ Sci 2012;5:9044e54. https://doi.org/10.1039/
c2ee22070a.

[192] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride
materials for solid hydrogen storage: a review. Int J
Hydrogen Energy 2007;32:1121e40. https://doi.org/10.1016/
j.ijhydene.2006.11.022.

[193] Clot E, Eisenstein O, Crabtree RH. Computational structure-
activity relationships in H2 storage: how placement of N
atoms affects release temperatures in organic liquid storage
materials. Chem Commun 2007:2231e3. https://doi.org/
10.1039/b705037b.

[194] Pez GP, Scott AR, Cooper AC, Cheng H. Hydrogen storage by
reversible hydrogenation of pi-conjugated substrates. 2003.
US7101530B2.

[195] Amende M, Schernich S, Sobota M, Nikiforidis I,
Hieringer W, Assenbaum D, et al. Dehydrogenation
mechanism of liquid organic hydrogen carriers:
dodecahydro-N-ethylcarbazole on Pd(111). Chem Eur J
2013;19:10854e65. https://doi.org/10.1002/chem.201301323.

[196] Amende M, Gleichweit C, Werner K, Schernich S, Zhao W,
Lorenz MPA, et al. Model catalytic studies of liquid
organic hydrogen carriers: dehydrogenation and
decomposition mechanisms of dodecahydro-N-
ethylcarbazole on Pt(111). ACS Catal 2014;4:657e65.
https://doi.org/10.1021/cs400946x.

[197] Gleichweit C, Amende M, Schernich S, ZhaoW, Lorenz MPA,
H€ofert O, et al. Dehydrogenation of dodecahydro-N-
ethylcarbazole on Pt(111). ChemSusChem 2013;6:974e7.
https://doi.org/10.1002/cssc.201300263.

[198] Cui Y, Kwok S, Bucholtz A, Davis B, Whitney RA, Jessop PG.
The effect of substitution on the utility of piperidines and
octahydroindoles for reversible hydrogen storage. New J
Chem 2008;32:1027e37. https://doi.org/10.1039/b718209k.

[199] Moores A, Poyatos M, Luo Y, Crabtree RH. Catalysed low
temperature H2 release from nitrogen heterocycles. New J
Chem 2006;30:1675e8. https://doi.org/10.1039/b608914c.

[200] Fang M, S�anchez-Delgado RA. Ruthenium nanoparticles
supported on magnesium oxide: a versatile and recyclable
dual-site catalyst for hydrogenation of mono- and poly-
cyclic arenes, N-heteroaromatics, and S-heteroaromatics. J
Catal 2014;311:357e68. https://doi.org/10.1016/j.jcat.2013.
12.017.

[201] Rahi R, Fang M, Ahmed A, S�anchez-Delgado RA.
Hydrogenation of quinolines, alkenes, and biodiesel by
palladium nanoparticles supported on magnesium oxide.
Dalt Trans 2012;41:14490e7. https://doi.org/10.1039/
c2dt31533e.

[202] S�anchez A, Fang M, Ahmed A, S�anchez-Delgado RA.
Hydrogenation of arenes, N-heteroaromatic compounds,
and alkenes catalyzed by rhodium nanoparticles supported
on magnesium oxide. Appl Catal A Gen 2014;477:117e24.
https://doi.org/10.1016/j.apcata.2014.03.009.

[203] He T, Liu L, Wu G, Chen P. Covalent triazine framework-
supported palladium nanoparticles for catalytic
hydrogenation of N-heterocycles. J Mater Chem A
2015;3:16235e41. https://doi.org/10.1039/c5ta03056k.

[204] Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GA.
Dendrimer-stabilized metal nanoparticles as efficient

https://doi.org/10.1016/j.mattod.2014.02.015
https://doi.org/10.1016/j.mattod.2014.02.015
https://doi.org/10.1107/S2052520615018508
https://doi.org/10.1021/acs.inorgchem.5b00951
https://doi.org/10.1021/acs.inorgchem.5b00951
https://doi.org/10.1021/ic7023633
https://doi.org/10.1002/cssc.201500029
https://doi.org/10.1002/cssc.201500713
https://doi.org/10.1002/cssc.201500713
https://doi.org/10.1002/ejic.200800053
https://doi.org/10.1039/c2ee02485c
https://doi.org/10.1002/anie.200903030
https://doi.org/10.1002/anie.200903030
https://doi.org/10.1149/1.1447221
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref182
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref182
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref182
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref183
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref184
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref184
https://doi.org/10.1016/j.ijhydene.2018.06.065
https://doi.org/10.1016/j.seppur.2014.12.009
https://doi.org/10.1016/j.memsci.2017.12.031
https://doi.org/10.1016/j.memsci.2017.12.031
https://doi.org/10.1021/acs.iecr.8b01476
https://doi.org/10.1021/acs.iecr.8b01476
https://doi.org/10.1039/b805644g
https://doi.org/10.1039/b805644g
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref190
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref190
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref190
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref190
https://doi.org/10.1039/c2ee22070a
https://doi.org/10.1039/c2ee22070a
https://doi.org/10.1016/j.ijhydene.2006.11.022
https://doi.org/10.1016/j.ijhydene.2006.11.022
https://doi.org/10.1039/b705037b
https://doi.org/10.1039/b705037b
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref194
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref194
http://refhub.elsevier.com/S0360-3199(19)30276-9/sref194
https://doi.org/10.1002/chem.201301323
https://doi.org/10.1021/cs400946x
https://doi.org/10.1002/cssc.201300263
https://doi.org/10.1039/b718209k
https://doi.org/10.1039/b608914c
https://doi.org/10.1016/j.jcat.2013.12.017
https://doi.org/10.1016/j.jcat.2013.12.017
https://doi.org/10.1039/c2dt31533e
https://doi.org/10.1039/c2dt31533e
https://doi.org/10.1016/j.apcata.2014.03.009
https://doi.org/10.1039/c5ta03056k
https://doi.org/10.1016/j.ijhydene.2019.01.144
https://doi.org/10.1016/j.ijhydene.2019.01.144


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 4 ( 2 0 1 9 ) 7 7 4 6e7 7 6 7 7767
catalysts for reversible dehydrogenation/hydrogenation of
N-heterocycles. J Am Chem Soc 2017;139:18084e92. https://
doi.org/10.1021/jacs.7b10768.

[205] Sotoodeh F, Zhao L, Smith KJ. Kinetics of H2 recovery from
dodecahydro-N-ethylcarbazole over a supported Pd
catalyst. Appl Catal A Gen 2009;362:155e62. https://doi.org/
10.1016/j.apcata.2009.04.039.

[206] Eblagon KM, Tam K, Tsang SCE. Comparison of catalytic
performance of supported ruthenium and rhodium for
hydrogenation of 9-ethylcarbazole for hydrogen storage
applications. Energy Environ Sci 2012;5:8621e30. https://
doi.org/10.1039/c2ee22066k.

[207] Sotoodeh F, Huber BJM, Smith KJ. The effect of the N atom
on the dehydrogenation of heterocycles used for hydrogen
storage. Appl Catal A Gen 2012;419e420:67e72. https://
doi.org/10.1016/j.apcata.2012.01.013.

[208] Sotoodeh F, Huber BJM, Smith KJ. Dehydrogenation kinetics
and catalysis of organic heteroaromatics for hydrogen
storage. Int J Hydrogen Energy 2012;37:2715e22. https://
doi.org/10.1016/j.ijhydene.2011.03.055.

[209] Sotoodeh F, Smith KJ. Structure sensitivity of dodecahydro-
N-ethylcarbazole dehydrogenation over Pd catalysts. J Catal
2011;279:36e47. https://doi.org/10.1016/j.jcat.2010.12.022.

[210] Yang M, Han C, Ni G, Wu J, Cheng H. Temperature
controlled three-stage catalytic dehydrogenation and cycle
performance of perhydro-9-ethylcarbazole. Int J Hydrogen
Energy 2012;37:12839e45. https://doi.org/10.1016/j.ijhydene.
2012.05.092.

[211] Eblagon KM, Tam K, Yu KMK, Tsang SCE. Comparative
study of catalytic hydrogenation of 9-ethylcarbazole for
hydrogen storage over noble metal surfaces. J Phys Chem C
2012;116:7421e9. https://doi.org/10.1021/jp212249g.

[212] Eblagon KM, Rentsch D, Friedrichs O, Remhof A, Zuettel A,
Ramirez-Cuesta AJ, et al. Hydrogenation of 9-ethylcarbazole
as a prototype of a liquid hydrogen carrier. Int J Hydrogen
Energy 2010;35:11609e21. https://doi.org/10.1016/j.ijhydene.
2010.03.068.

[213] Eblagon KM, Tam K, Yu KMK, Zhao S-LL, Gong X-Q, He H,
et al. Study of catalytic Sites on ruthenium for
hydrogenation of N -ethylcarbazole: implications of
hydrogen storage via reversible catalytic hydrogenation.
J Phys Chem C 2010;114:9720e30. https://doi.org/10.1021/
jp908640k.

[214] Eblagon KM, Tsang SCE. Structure-reactivity relationship in
catalytic hydrogenation of heterocyclic compounds over
ruthenium black-Part A: effect of substitution of pyrrole
ring and side chain in N-heterocycles. Appl Catal B Environ
2014;160e161:22e34. https://doi.org/10.1016/j.apcatb.
2014.04.044.

[215] Wang Z, Tonks I, Belli J, Jensen CM. Dehydrogenation of N-
ethyl perhydrocarbazole catalyzed by PCP pincer iridium
complexes: evaluation of a homogenous hydrogen storage
system. J Organomet Chem 2009;694:2854e7. https://
doi.org/10.1016/j.jorganchem.2009.03.052.
[216] Wang Z, Belli J, Jensen CM. Homogeneous dehydrogenation
of liquid organic hydrogen carriers catalyzed by an iridium
PCP complex. Faraday Discuss 2011;151:297. https://doi.org/
10.1039/c1fd00002k.

[217] Yamaguchi R, Ikeda C, Takahashi Y, Fujita K-I.
Homogeneous catalytic system for reversible
dehydrogenation-hydrogenation reactions of nitrogen
heterocycles with reversible interconversion of catalytic
species. J Am Chem Soc 2009;131:8410e2. https://doi.org/
10.1021/ja9022623.

[218] Fujita K, Tanaka Y, Kobayashi M, Yamaguchi R.
Homogeneous perdehydrogenation and perhydrogenation
of fused bicyclic N-heterocycles catalyzed by iridium
complexes bearing a functional bipyridonate ligand. J Am
Chem Soc 2014;136:4829e32. https://doi.org/10.1021/
ja5001888.

[219] Wu J, Talwar D, Johnston S, Yan M, Xiao J. Acceptorless
dehydrogenation of nitrogen heterocycles with a versatile
iridium catalyst. Angew Chem Ed 2013;52:6983e7. https://
doi.org/10.1002/anie.201300292.

[220] Talwar D, Gonzalez-De-Castro A, Li HY, Xiao J.
Regioselective acceptorless dehydrogenative coupling of N-
heterocycles toward functionalized quinolines,
phenanthrolines, and indoles. Angew Chem Int Ed
2015;54:5223e7. https://doi.org/10.1002/anie.201500346.

[221] Manas MG, Sharninghausen LS, Lin E, Crabtree RH. Iridium
catalyzed reversible dehydrogenation - hydrogenation of
quinoline derivatives under mild conditions. J Organomet
Chem 2015;792:184e9. https://doi.org/10.1016/
j.jorganchem.2015.04.015.

[222] Chakraborty S, Brennessel WW, Jones WD. A molecular iron
catalyst for the acceptorless dehydrogenation and
hydrogenation of N-heterocycles. J Am Chem Soc
2014;136:8564e7. https://doi.org/10.1021/ja504523b.

[223] Bellows SM, Chakraborty S, Gary JB, Jones WD, Cundari TR.
An uncanny dehydrogenation mechanism: polar bond
control over stepwise or concerted transition states. Inorg
Chem 2017;56:5519e24. https://doi.org/10.1021/
acs.inorgchem.6b01800.

[224] Xu R, Chakraborty S, Yuan H, Jones WD. Acceptorless,
reversible dehydrogenation and hydrogenation of N-
heterocycles with a cobalt pincer catalyst. ACS Catal
2015;5:6350e4. https://doi.org/10.1021/acscatal.5b02002.

[225] Luca OR, Huang DL, Takase MK, Crabtree RH. Redox-active
cyclopentadienyl Ni complexes with quinoid N-heterocyclic
carbene ligands for the electrocatalytic hydrogen release
from chemical fuels. New J Chem 2013;37:3402e5. https://
doi.org/10.1039/c3nj00276d.

[226] He K-H, Tan F-F, Zhou C-Z, Zhou G-J, Yang X-L, Li Y.
Acceptorless dehydrogenation of N-heterocycles by
merging visible-light photoredox catalysis and cobalt
catalysis. Angew Chem Int Ed 2017;56:3080e4. https://
doi.org/10.1002/anie.201612486.

https://doi.org/10.1021/jacs.7b10768
https://doi.org/10.1021/jacs.7b10768
https://doi.org/10.1016/j.apcata.2009.04.039
https://doi.org/10.1016/j.apcata.2009.04.039
https://doi.org/10.1039/c2ee22066k
https://doi.org/10.1039/c2ee22066k
https://doi.org/10.1016/j.apcata.2012.01.013
https://doi.org/10.1016/j.apcata.2012.01.013
https://doi.org/10.1016/j.ijhydene.2011.03.055
https://doi.org/10.1016/j.ijhydene.2011.03.055
https://doi.org/10.1016/j.jcat.2010.12.022
https://doi.org/10.1016/j.ijhydene.2012.05.092
https://doi.org/10.1016/j.ijhydene.2012.05.092
https://doi.org/10.1021/jp212249g
https://doi.org/10.1016/j.ijhydene.2010.03.068
https://doi.org/10.1016/j.ijhydene.2010.03.068
https://doi.org/10.1021/jp908640k
https://doi.org/10.1021/jp908640k
https://doi.org/10.1016/j.apcatb.2014.04.044
https://doi.org/10.1016/j.apcatb.2014.04.044
https://doi.org/10.1016/j.jorganchem.2009.03.052
https://doi.org/10.1016/j.jorganchem.2009.03.052
https://doi.org/10.1039/c1fd00002k
https://doi.org/10.1039/c1fd00002k
https://doi.org/10.1021/ja9022623
https://doi.org/10.1021/ja9022623
https://doi.org/10.1021/ja5001888
https://doi.org/10.1021/ja5001888
https://doi.org/10.1002/anie.201300292
https://doi.org/10.1002/anie.201300292
https://doi.org/10.1002/anie.201500346
https://doi.org/10.1016/j.jorganchem.2015.04.015
https://doi.org/10.1016/j.jorganchem.2015.04.015
https://doi.org/10.1021/ja504523b
https://doi.org/10.1021/acs.inorgchem.6b01800
https://doi.org/10.1021/acs.inorgchem.6b01800
https://doi.org/10.1021/acscatal.5b02002
https://doi.org/10.1039/c3nj00276d
https://doi.org/10.1039/c3nj00276d
https://doi.org/10.1002/anie.201612486
https://doi.org/10.1002/anie.201612486
https://doi.org/10.1016/j.ijhydene.2019.01.144
https://doi.org/10.1016/j.ijhydene.2019.01.144

	Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress
	Introduction
	Ammonia
	Ammonia synthesis
	Thermal ammonia production
	Electrochemical ammonia production

	Ammonia decomposition
	Transition metal catalysts
	Metal amide/imide catalysts

	Solid-state ammonia storage
	Metal halide ammines
	Ammine metal borohydrides
	Comparison of ammine metal borohydrides and ammine metal halides
	Di-hydrogen bonds in the structures
	Trends in thermal decomposition

	Sorbent and membrane approaches to ammonia removal


	Reversible liquid organic hydrogen carriers (LOHCs)
	Thermodynamic optimization
	Kinetic optimization
	Heterogeneous catalysts
	Homogeneous catalysts


	Conclusions and future opportunities
	Acknowledgments
	Author contributions
	Appendix A. Supplementary data
	References


