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(Communicated by Mark Behrens)

Abstract. Let M f
n be the localization of the ∞-category of spaces at the

vn-periodic equivalences, the case n = 0 being rational homotopy theory. We

prove that M f
n is for n ≥ 1 equivalent to algebras over a certain monad on

the ∞-category of T (n)-local spectra. This monad is built from the Bousfield–
Kuhn functor.

1. Introduction

We fix a prime p and work p-locally throughout this introduction. A map f : X →
Y between simply-connected p-local spaces is a rational homotopy equivalence if
π∗(X)[ 1p ] → π∗(Y )[ 1p ] is an isomorphism. Rational homotopy theory concerns itself

with the localization of the ∞-category of (simply-connected) spaces at the rational
homotopy equivalences. Quillen provided both a coalgebraic model of rational
homotopy theory (via cocommutative coalgebras in rational chain complexes) and
an algebraic model (via Lie algebras in rational chain complexes). Under finite
type assumptions, one can also dualize the coalgebra model to a cochain model in
commutative differential graded algebras, an approach pursued by Sullivan.

From the point of view of chromatic homotopy theory, rational homotopy is only
the first step in a sequence of ‘telescopic’ localizations. Such localizations have been
studied by Mahowald [Mah82], Thompson [Tho90], Davis [Dav95], and Bousfield
[Bou01], to name just a few. Given a finite type n complex V with vn self-map
v : ΣdV → V , for some natural number d > 0, one defines the v-periodic homotopy
groups of a pointed space X with coefficients in V , denoted

v−1π∗(X;V ),

by inverting the action of v on the homotopy groups of the space of pointed maps
Map∗(V,X). Maps inducing isomorphisms in v-periodic homotopy groups are called
vn-equivalences ; the asymptotic uniqueness of vn self-maps [HS98] implies that this
notion depends only on n and not on V or v. Localizing the ∞-category of p-local
pointed spaces at the vn-equivalences results in an ∞-category for which we write
M f

n . It was first studied by Bousfield [Bou01] (although with different notation).
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It is an unstable analogue of the category of T (n)-local spectra SpT (n), where T (n)

denotes the mapping telescope of a vn self-map on a finite type n spectrum (rather
than space).

Bousfield and Kuhn [Kuh08] constructed a functor

Φ: S∗ → SpT (n),

where S∗ denotes the ∞-category of pointed spaces, with the property that
π∗(Φ(X)V ) ∼= v−1π∗(X;V ). A map of pointed spaces is then a vn-equivalence
if and only if it is sent to an equivalence of spectra by Φ (see Corollary 2.2), and
therefore Φ factors through the localization M f

n . Usually Φ is denoted by Φn to
stress its dependence on n, but we will suppress the index to avoid cluttering later
on.

Behrens and Rezk [BR17a,BR17b] relate Φ(X) to the topological André–Quillen
cohomology of the nonunital E∞-algebra SX

K(n), where SK(n) denotes the K(n)-

localization of the sphere spectrum. The assignment X �→ SX
K(n) can be thought of

as a ‘cochain model’, which is analogous to the Sullivan model in rational homotopy
theory. We will study the Bousfield–Kuhn functor directly and show that it provides
an algebraic model for M f

n which is closely related to Quillen’s Lie model of rational
spaces. By [Bou01] and [Heu18], the Bousfield–Kuhn functor is the right adjoint of
an adjunction

M f
n

Φ
�� SpT (n)

Θ��

between ∞-categories. This adjunction in particular gives a monad ΦΘ on the
∞-category SpT (n), to which one associates a category of algebras AlgΦΘ(SpT (n)).
Our main result is the following:

Theorem 1.1. The Bousfield–Kuhn functor Φ exhibits M f
n as monadic over

SpT (n), that is,

M f
n � AlgΦΘ(SpT (n))

as ∞-categories.

The main step in the proof is to show that Φ commutes with geometric real-
izations. In [Heu18, Theorem 4.13], the second author identifies the monad ΦΘ
with the free Lie algebra monad (in a sense appropriate to the present context),
which proves that M f

n is equivalent to the ∞-category of Lie algebras in T (n)-local
spectra. This is the parallel between our approach here and Quillen’s Lie algebra
model for rational homotopy theory.

Our plan for this paper is as follows. In Sections 2 and 3 we give some background
on the ∞-category M f

n and the ∞-categorical Barr–Beck monadicity theorem. In
Section 4 we prove our main theorem.

Throughout this paper, we will work in the language of ∞-categories. In particu-
lar, colim means an ∞-categorical colimit, |−| means an ∞-categorical colimit over
a simplicial diagram, etc., although we will sometimes add the word ‘homotopy’ for
emphasis. We call a space finite if it is weakly equivalent to a finite CW-complex.

2. The category M f
n

In this section we summarize the basics of unstable telescopic homotopy the-
ory, following Bousfield [Bou01] and [Heu18]. We will follow the notation of the
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latter and use, in particular, the notation M f
n for the ∞-categorical analogue of

Bousfield’s UN f
n. Everything we do is implicitly localized at a fixed prime p.

As in the stable case, one may approximate a pointed space X at a prime p by a
tower {Lf

nX}n≥0 of left Bousfield localizations away from finite p-local type n+ 1
spaces Vn+1. To be precise, a finite space E is of type n when the ith Morava K-
theory of it is trivial for i < n, but nontrivial for i = n. We choose for every n ≥ 0
a finite p-local type n+1 suspension space Vn+1 and write Lf

n for the left Bousfield
localization with respect to the map Vn+1 → ∗. The localization Lf

n depends only
on the connectivity of the Vn+1.

Recall that a space Y is m-connective when πkY � ∗ for all k < m; for Y
arbitrary, we write Y 〈m〉 to be the (m+ 1)-connective cover of Y . Suppose Vn+1

(our finite p-local type n + 1 suspension space) is dn+1-connective. We denote
by Lf

nS∗ 〈dn+1〉 the ∞-category of Lf
n-local pointed spaces that are (dn+1 + 1)-

connective. These localizations are related by natural transformations Lf
n → Lf

n−1,
provided we arrange our choices so that the connectivity of Vn+1 is greater than or
equal to the connectivity of Vn. Bousfield [Bou01] chooses the Vn+1 so that their
connectivity is as low as possible, but we will not make this restriction.

The map X → Lf
nX is a vi-equivalence for i ≤ n. Moreover, the vi-periodic

homotopy groups of Lf
nX vanish for i > n, making the tower of Lf

n-localizations of
X analogous to a Postnikov tower. The homotopy fiber Mf

nX of the map Lf
nX →

Lf
n−1X then has the same vn-periodic homotopy groups as X, but its vi-periodic

homotopy vanishes for i �= n.

Definition 1. The∞-category M f
n is the full subcategory of Lf

nS∗ 〈dn+1〉 on spaces
that are of the form Mf

nX 〈dn+1〉, for X a pointed space.

Bousfield’s work [Bou01] then yields the following characterization of M f
n as a

localization (see [Heu18, Theorem 2.2]):

Theorem 2.1. The ∞-category M f
n is the localization of the ∞-category of pointed

spaces S∗ at the vn-periodic equivalences. More precisely, precomposition with the
functor

S∗ → M f
n : X �→ Mf

nX 〈dn+1〉
gives, for any ∞-category C , an equivalence of ∞-categories,

Fun(M f
n ,C ) → Funvn(S∗,C ).

Here Funvn denotes the full subcategory of the functor category Fun(S∗,C ) consist-
ing of those functors sending vn-equivalences to equivalences.

It is important to note that while the embedding of M f
n into S∗ depends on the

choice of Vn+1, the ∞-category M f
n itself is well-defined up to equivalence. Indeed,

this follows from the universal property of the preceding theorem. The localization
M f

n turns out to have good formal properties. In particular, [Heu18, Theorem
2.3] guarantees that it is a compactly generated (and in particular presentable)
∞-category, so that M f

n has all colimits. Moreover, those colimits are preserved
by the inclusion

M f
n → Lf

nS∗ 〈dn+1〉 .
The following is a consequence of Corollary 5.10(i) of [Bou01]. We include an

argument for the reader’s convenience.
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Corollary 2.2. The Bousfield–Kuhn functor factors through a functor

Φ : M f
n → SpT (n)

that we will notationally not distinguish from the original Bousfield–Kuhn functor
S∗ → SpT (n). This functor is conservative; i.e., a map ϕ in M f

n is an equivalence

if and only if Φ(ϕ) is an equivalence.

Proof. This is a consequence of the fact that ϕ is a vn-equivalence if and only if
Φ(ϕ) is an equivalence. To see this, one uses first that a map of T (n)-local spectra
E → F is an equivalence if and only if EV → FV is an equivalence, with V a finite
type n complex with vn-self map v : ΣdV → V ; this follows as T (n) can be described
as the mapping telescope of v. The result follows by the natural identification

π∗(Φ(X)V ) ∼= v−1π∗(X;V )

mentioned before. �

In fact, the spectrum Φ(X)V can be described in a rather explicit way, which
also makes the identification of its homotopy groups as in the preceding proof clear.
One defines a spectrum Φv(X) by setting

Φv(X)0 = Map∗(V,X), Φv(X)d = Map∗(V,X), . . . ,Φv(X)kd = Map∗(V,X), . . . ,

and using the maps

Φv(X)kd = Map∗(V,X)
v∗
−→ Map∗(Σ

dV,X) ∼= ΩdΦv(X)(k+1)d

as structure maps. The weak homotopy type of Φv(X) is completely determined
by this description, but for definiteness’ sake one could complete this description
by setting Φv(X)kd−r = ΩrMap∗(V,X) for 0 ≤ r < d, with the obvious choice of
structure maps compatible with those above. Then Φv is the telescopic functor as-
sociated to the self-map v. There is an equivalence of spectra (see [Kuh08, Theorem
1.1]),

Φ(X)V � Φv(X).

Bousfield shows (Theorem 5.4(i),(ii) of [Bou01]) that on the level of homotopy
categories the functor of the previous corollary admits a left adjoint Θ. In fact (in
Section 12 of [Bou01]) he constructs Θ at the level of simplicial categories before
passing to homotopy categories. An equivalent construction of Θ is also discussed
by Kuhn in Section 6 of [Kuh08]. We will use the following ∞-categorical version
of their statements (which can be found as part of Theorem 2.3 of [Heu18]).

Proposition 2.3. The functor Φ admits a left adjoint

Θ : SpT (n) → M f
n .

3. Monads and the Barr–Beck–Lurie theorem

For background on modules over monads in an ∞-categorical setting, the reader
can consult [RV16] or [Lur16].

Definition 2 ([Lur16, Definition 4.7.0.1]). Let C be an ∞-category. A monad M
on C is an algebra object of Fun(C ,C ) with respect to the composition monoidal
structure. IfM is a monad on C , we let AlgM (C ) denote the associated ∞-category
of (left) M -modules in C .
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Definition 3 ([Lur16, Definition 4.7.4.4.]). Let G : D → C be a functor between
∞-categories. Assume that G has a left adjoint F , so that there is a corresponding
monad M � G ◦ F on C . We will say that D is monadic over C if the induced
functor G : D → AlgM (C ) is an equivalence of ∞-categories.

Next we state Lurie’s version of the Barr–Beck theorem, also known as the
monadicity theorem. We state only a special case that we need here.

Theorem 3.1 ([Lur16, Theorem 4.7.0.3]). Suppose we are given a pair of adjoint
functors

C
F ��

D
G

��

between ∞-categories where D admits geometric realizations of simplicial objects.
Assume that

(i) G is conservative and
(ii) G preserves geometric realizations of simplicial objects.

Then D is monadic over C .

4. The Bousfield–Kuhn functor is monadic

In this section we establish that the Bousfield–Kuhn functor Φ: M f
n → SpT (n)

satisfies the hypotheses of the Barr–Beck–Lurie monadicity theorem stated in the
previous section. Corollary 2.2 states that Φ is conservative. To apply the Barr–
Beck–Lurie theorem, what remains is to establish the following:

Proposition 4.1. Φ : M f
n → SpT (n) commutes with geometric realizations.

Proof. Consider a simplicial object X• ∈ (M f
n )

Δop

. We should check that the map

|Φ(X•)| → Φ(|X•|)
is an equivalence of T (n)-local spectra. Choose a finite type n space W with a vn
self-map w : ΣdW → W . Then it suffices to check that

|Φ(X•)|W → Φ(|X•|)W � Φw(|X•|)
is an equivalence. On the left we may commute the exponent W past geometric
realization (becauseW is finite), so that the left-hand side is equivalent to |Φw(X•)|.
In other words, it suffices to check that

Φw : M f
n → SpT (n)

preserves geometric realizations.
Recall that the inclusion M f

n → Lf
nS∗ 〈dn+1〉 preserves colimits, so that the

colimit of any diagram X in M f
n may be computed as follows:

colimMf
n

X � colimLf
nS∗〈dn+1〉 X � Lf

n(colimS∗〈dn+1〉 X ).

It follows that there is an equivalence

Φw(colimMf
n

X ) � Φw(colimS∗〈dn+1〉 X ),

since Y → Lf
nY is a vn-equivalence for any space Y . Thus we have reduced to

showing that
Φw : S∗ 〈dn+1〉 → SpT (n)

preserves geometric realizations.
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The definition of Φw implies the formula

ΦwX � colim(Σ∞Map∗(W,X) → ΩdΣ∞Map∗(W,X) → · · · ).
Since Σ∞ and Ωd preserve colimits, it is sufficient to check that the functor

Map∗(W,−) : S∗ 〈dn+1〉 → S∗

preserves geometric realizations.
Recall that the localization Lf

n involved the choice of a finite type n+1 suspension
space Vn+1, which can be chosen freely (as long as its connectivity is at least that
of Vn). In particular, we may choose Vn+1 so that its connectivity is at least the
dimension of W . We have now reduced to showing that Map∗(W,−) commutes
with geometric realizations of diagrams of spaces all of which have connectivity at
least the dimension of W . This follows from some rather classical homotopy theory,
which we summarize in the proof of Proposition 4.2 below. �
Proposition 4.2. Let W be a finite CW complex and let X• ∈ SΔop

∗ be a simplicial
space such that Xn is dim(W )-connective for all n. Then the natural map

χW : |Map∗(W,X∗)| → Map∗(W, |X∗|)
is an equivalence.

To prove Proposition 4.2 we will make use of the following lemma. Compare
[BF78, Theorem B.4] or [Rez, Proposition 5.4].

Lemma 4.3. For a diagram of simplicial spaces

X• ��

��

E•

��
Y• �� B•

which is a levelwise homotopy pullback and where Bn is connected for every n, the
natural map

|X•| → |E•| ×|B•| |Y•|
is an equivalence.

The idea is to use the lemma and skeletal induction on W .

Proof of Proposition 4.2. Fix a simplicial space X• such that each Xn is d-connec-
tive. First, recall that realization commutes with finite products and

Map∗(A ∨B,X) � Map∗(A,X)×Map∗(B,X).

Therefore χA∨B is an equivalence if χA and χB are equivalences.
We consider the collection C of pointed spaces V such that the natural map χV is

an equivalence. The previous paragraph implies that C is closed under finite wedge
sums. We claim that any finite CW complex W of dimension ≤ d belongs to C.

To see this, we use induction on n = dimW . Clearly S0 ∈ C, so the fact that C
is closed under finite wedges covers the case n = 0. For n > 0, we can write W as
a homotopy pushout

∨
Sn−1 ��

��

skn−1 W

��
∗ �� W.
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This leads to a homotopy cartesian diagram of simplicial spaces:

Map∗(W,X•) ��

��

Map∗(skn−1 W,X•)

��
∗ �� Map∗(

∨
Sn−1, X•).

Our assumptions on n and d guarantee that the simplicial space Map∗(
∨
Sn−1, X•)

is (levelwise) connected, so that the realization of the square above is still homotopy
cartesian by Lemma 4.3. Consider the following cube, of which the left and right
face are homotopy cartesian:

|Map∗(W,X•)|
χW ��

��

�����
����

����
���

Map∗(W, |X•|)

�����
����

����
���

��

|Map∗(skn−1 W,X•)|
χskn−1W ��

��

Map∗(skn−1 W, |X•|)

��

∗ χ∗ ��

�����
����

����
����

�� ∗

�����
����

����
����

��

|Map∗(
∨
Sn−1, X•)|

χ∨
Sn−1

�� Map∗(
∨
Sn−1, |X•|).

The horizontal maps χ∗, χ∨
Sn−1 , and χskn−1W are equivalences by the inductive

hypothesis, so that χW is an equivalence as well. �
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