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Early energy injection to the Cosmic Microwave Background (CMB) from dissipation of acoustic waves
generates deviations from the blackbody spectrum not only at second-order but also at third-order in
cosmological perturbations. We compute this new spectral distortion κ based on third-order cosmological
perturbation theory and show that κ arises as a result of mode coupling between spectral distortions and
temperature perturbations. The ensemble average of κ can be directly sourced by (integrated) primordial
non-Gaussianity. In particular, we roughly estimate the signal as κ ¼ flocNL ×Oð10−18Þ for local type scale-
independent non-Gaussianity. The signal is incredibly tiny; however, we argue that it carries a specific
frequency dependence different from other types of CMB spectral distortions. Also, it should be noticed
that κ is sensitive to extremely squeezed shapes of primordial bispectra that cannot be constrained by the
CMB anisotropies. Finally, we comment on other possible applications of our results.
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I. INTRODUCTION

Distortions to the blackbody spectrum of the Cosmic
Microwave Background (CMB) from dissipation of
acoustic waves have been intensely investigated to study
primordial density perturbations which provide us with rich
information on cosmic inflation [1–6]. The effect is known
to be second-order in the cosmological perturbations; there-
fore, the ensemble averages of the distortions directly arise
from the primordial power spectrum, and its anisotropy can
be related to the primordial bispectrum (i.e., primordial
non-Gaussianity) [7–18]. The CMB spectral distortions are
usually classified into two types: μ and y, the chemical
potential and the Compton y parameter, respectively (see
Refs. [19–21] for other types of spectral distortions). The
monopole of the μ- and the y-distortions from damping of
short wavelength acoustic waves can be estimated as 10−8

and 10−9 for almost scale-invariant Gaussian adiabatic
perturbations, and they are one of the targets of next gen-
eration of space missions [22,23]. Thus, the CMB spectral
distortions are known as a powerful tool for observations of
the primordial density perturbations on small scales. In this
paper, we point out another spectral distortion from
dissipation of acoustic waves at third-order in the cosmo-
logical perturbations, and that its ensemble average can be
directly sourced by primordial non-Gaussianity. Since it is

third-order in the cosmological perturbations, the signal can
be thought of as tiny. Still, in principle, we can distinguish
it from the other types of spectral distortions such as μ and y
because of its peculiar frequency dependence. In this paper,
we compute such a third-order spectral distortion in the
early Universe for the first time.

II. FORMALISM

A. Set up

The CMB radiation initially follows the local blackbody
spectrum due to frequent interactions. However, deviations
from the local blackbody spectrum are possible, e.g., for
the redshift z≲ 5 × 104. During this epoch, the Compton
scattering is too weak against Hubble expansion to estab-
lish local kinetic equilibrium states so that y-distortions are
generated [24]. One linearizes the photon Boltzmann
equations to find the evolution of the temperature pertur-
bations. The y-distortion is a deviation from the local
blackbody spectrum that appears at the next-to-leading
order in the cosmological perturbations. More generally, we
introduce the following ansatz for the photon Boltzmann
equation up to third-order [25]:

fðη;x; pnÞ ¼ 1

e
p
Trf

e−Θ − 1
þ yYðpÞ þ κKðpÞ; ð1Þ

where ðη;xÞ are comoving spacetime coordinates, p is the
magnitude of the photon comoving momentum, n is*a.ota@uu.nl
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photon’s direction, Trf ¼ 2.725 K is the temperature of the
comoving blackbody. The temperature perturbation Θ, the
y-distortion y, the new third-order distortion κ are functions
of ðη;x;nÞ: they are p independent. These parameters
can be expanded perturbatively as

Θ ¼ Θð1Þ þ Θð2Þ þ Θð3Þ þ � � � ; ð2Þ

y ¼ yð2Þ þ yð3Þ þ � � � ; ð3Þ

κ ¼ κð3Þ þ � � � ; ð4Þ

with superscripts being the order of the cosmological
perturbations. We have also defined the momentum basis

fð0ÞðpÞ≡ 1

e
p
Trf − 1

; ð5Þ

GðpÞ≡
�
−p

∂
∂p

�
fð0Þ; ð6Þ

YðpÞ≡
�
−p

∂
∂p

�
2

fð0Þ − 3G; ð7Þ

KðpÞ≡
�
−p

∂
∂p

�
3

fð0Þ − 3Y − 9G. ð8Þ

Then, all p dependences in Eq. (1) can be factorized by
these functions. This implies that we can in principle
distinguish κ from y thanks to the difference between K
and Y, which are both defined not to change the number of
photons (see Ref. [25] for the details of these functions.).
We have omitted the chemical potential, that is, the μ-
distortion μ because we only consider the late epoch out of
kinetic equilibrium for simplicity. The primary goal of this
Article is to derive the evolution equation of this κ.

B. Harmonic expansions and primordial
random fields

We introduce a harmonic coefficient of Aðη;x;nÞ as

Almðη;xÞ≡
Z

dnY�
lmðnÞAðη;x;nÞ: ð9Þ

The Fourier integral

Aðη;k;nÞ≡
Z

d3xe−ik·xAðη;x;nÞ; ð10Þ

is linear in the primordial curvature perturbation on the
uniform density slice ζk. We expand it by using the
Legendre polynomials as

Aðη;k;nÞ ¼
X
l

ð−iÞlð2lþ 1ÞPlðn · k̂ÞAlðη; kÞζk

¼ ð4πÞ
X
lm

ð−iÞlYlmðnÞY�
lmðk̂ÞAlðη; kÞζk; ð11Þ

where we call Alðη; kÞ a “transfer function” of A. Note that,
in this paper, Alm is always defined in real space. Similarly,
Al is given in Fourier space. We write the primordial power
spectrum and bispectrum of ζ calculated in inflationary
models as (see, e.g., [26–29])

hζk1
ζk2

i ¼ ð2πÞ3δð3Þðk1 þ k2ÞPζðk1Þ; ð12Þ

hζk1
ζk2

ζk3
i ¼ ð2πÞ3δð3Þðk1 þ k2 þ k3ÞBζðk1; k2; k3Þ:

ð13Þ

C. Liouville terms

Thanks to the parametrization (1), the Boltzmann equa-
tion for the photon distribution function translates into the
equations for the coefficients of G, Y, and K [25].
Expanding Eq. (1) up to third-order in cosmological
perturbations, one finds

f ¼ fð0Þ þ ½Θþ � � ��G

þ
�
yþ 1

2
Θ2 þ � � �

�
Y þ

�
1

3!
Θ3 þ κ

�
K; ð14Þ

where the dots imply the next-to-leading order corrections
to each part here and hereafter. We take a derivative of both
sides with respect to the conformal time to obtain

df
dη

¼
�
dΘ
dη

−
d lnp
dη

þ � � �
�
G

þ
�
dy
dη

þ Θ
�
dΘ
dη

−
d lnp
dη

�
þ � � �

�
Y

þ
�
dκ
dη

− y
d lnp
dη

þ 1

2
Θ2

�
dΘ
dη

−
d lnp
dη

�
þ � � �

�
K;

ð15Þ

where we used

dY
dη

¼ dp
dη

·
dY
dp

¼ −
d lnp
dη

·K; ð16Þ

and one can use similar techniques for G and fð0Þ. Note that
d lnp=dη starts with linear perturbations since p is the
comoving momentum; therefore, terms with a time deriva-
tive of K become fourth-order. The gravitational effects are
included in d lnp=dη, which does not have any explicit p
dependence even at nonlinear order (see, e.g., Ref. [30] for
the linear case). Thus, the p dependence of the Liouville
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term can be reduced to the linear combination of G, Y,
and K.

D. Collision terms for the Compton scattering

Next, let us consider the right hand side (RHS) of the
Boltzmann equation. For z≲ 5 × 104, the collision terms
for the Compton scattering can be expanded into the
following form up to third-order in the cosmological
perturbations [25]:

CT½f� ¼ AGþ BY þDK; ð17Þ

whereA ¼ Að1Þ þ � � �, B ¼ Bð2Þ þ � � � and D ¼ Dð3Þ þ � � �
are p independent. We may drop the other linear order
corrections with ð1þ zÞp=me, ð1þ zÞTrf=me and Te=me,
where z, Te and me are the redshift, the physical electron
temperature and electron mass, respectively. This is
because the ensemble average of the linear perturbations
are zero so that they do not affect our final expression [31].
Combining Eqs. (15) and (17), we obtain the following
Boltzmann equations for Θ, y and κ:

dΘ
dη

−
d lnp
dη

þ � � � ¼ A; ð18Þ

dy
dη

þ Θ
�
dΘ
dη

−
d lnp
dη

�
þ � � � ¼ B; ð19Þ

dκ
dη

− y
d lnp
dη

þ 1

2
Θ2

�
dΘ
dη

−
d lnp
dη

�
¼ D: ð20Þ

III. SOLVING THE BOLTZMANN EQUATIONS

A. y-distortion from acoustic damping

Before focusing on the third-order distortion, let us derive
the evolution equation for the second-order y based on
cosmological perturbation theory. This can be a useful
preliminary computation that provides a term of comparison
to the physics giving rise to κ. Equations (18) and (19) yield

dy
dη

¼ −ΘAþ B þ � � � : ð21Þ

The leading order terms of A are [30]

− _τ−1A ¼ Θ00ffiffiffiffiffiffi
4π

p − Θþ V þ 1

10

X2
m¼−2

Y2mΘ2m; ð22Þ

whereV ¼ n · vwith v being thevelocity of the baryon fluid.
τ is the optical depth, and its dot implies a derivative with
respect to the conformal time (_τ < 0). Those of B are [5]

−_τ−1B ¼ y00ffiffiffiffiffiffi
4π

p − yþ 1

10

X2
m¼−2

Y2my2m

þ ½Θ2�00
2 ·

ffiffiffiffiffiffi
4π

p −
1

2
Θ2 þ 1

20

X2
m¼−2

Y2m½Θ2�2m

þ Θ00ffiffiffiffiffiffi
4π

p V −
½VΘ�00ffiffiffiffiffiffi

4π
p þ 1

2
V2 þ ½V2�00

2 ·
ffiffiffiffiffiffi
4π

p

þ 1

10

X2
m¼−2

Y2m

�
VΘ2m − ½VΘ�2m þ 1

2
½V2�2m

�
:

ð23Þ
Then we obtain the following evolution equation for y up to
second-order:

−_τ−1
dy
dη

¼ y00ffiffiffiffiffiffi
4π

p − yþ 1

10

X2
m¼−2

Y2my2m −
Θ00ffiffiffiffiffiffi
4π

p Θ

þ Θ2 − VΘ −
1

10
Θ

X2
m¼−2

Y2mΘ2m þ ½Θ2�00
2 ·

ffiffiffiffiffiffi
4π

p

−
1

2
Θ2 þ 1

20

X2
m¼−2

Y2m½Θ2�2m þ Θ00ffiffiffiffiffiffi
4π

p V −
½VΘ�00ffiffiffiffiffiffi

4π
p

þ 1

2
V2 þ ½V2�00

2 ·
ffiffiffiffiffiffi
4π

p þ 1

10

X2
m¼−2

Y2m½VΘ2m

− ½VΘ�2m þ ½V2�2m�: ð24Þ
The isotropic part of the equation has a simple form:

−_τ−1
dy00
dη

¼ −
Θ2

00ffiffiffiffiffiffi
4π

p þ ½Θ2�00 − 2½VΘ�00 þ ½V2�00

þ 1

10 ·
ffiffiffiffiffiffi
4π

p
X2
m¼−2

jΘ2mj2: ð25Þ

Practically, we express the above formula by using the
transfer functions in Fourier space calculated by
Boltzmann codes. The theoretical prediction is given by
taking the ensemble average using Eq. (11) [5]:

d⟪y⟫
dη

¼ −_τ
Z

dk
k
k3PζðkÞ
2π3

�
9

2
Θ2

2 þ 3Θ2
1g

�
; ð26Þ

whereΘ1g ≡ Θ1 − V1 is the gauge invariant relative velocity
between photons and baryons, and we drop l ≥ 3 since the
higher order multipoles are less significant due to the
exponential damping of higher multipoles during free
streaming [5]. Note that ⟪ � � �⟫ implies that we take both
the ensemble average and the sky average of n. Thus, y is
related to the primordial power spectrum in a framework of
second-order Boltzmann equations. It is generated from
shear viscosity Θ2 and heat conduction Θ1g, which are both
gauge invariant at linear order.
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B. κ-distortion from acoustic damping

Similar steps are possible at third-order, and we naively
expect the third-order distortion is directly related to the
primordial bispectrum in analogy with Eq. (26). From
Eqs. (15), (18), (19) and (20) we obtain

d
dη

ðκ − ΘyÞ ¼ 1

2
Θ2A − yA − ΘB þD: ð27Þ

In contrast to Eq. (21), we find the total derivative
dðΘyÞ=dη. Since y ¼ 0 at the initial time, this term turns
into a product of Θ and y at present. In other words, this
part is automatically fixed by Θ and y. Therefore, it can be
thought of as an offset of κ, and the contribution of physical
processes in the early Universe is κ̄ ¼ κ − Θy. κ̄ also
enables us to pin down a gauge-invariant part of κ as we
will show below (see also Refs. [35–38] for gauge-
invariance of spectral distortions).
Let us evaluate the isotropic component of the ensemble

average of κ̄. Here we assume the separable form bispec-
trum for simplicity:

hζk1
ζk2

ζk3
i ¼

Z
d3x

X
j

Y3
i¼1

eiki·xfðijÞðkiÞ; ð28Þ

which includes, e.g., the “local” and “equilateral” shapes.
Hereafter, we frequently take the angle averages and then
the ensemble averages of triple products of perturbations
calculated in the following way:

Z
dn
4π

�Y3
i¼1

Aiðη;x;nÞ
�

¼ ð4πÞ2
Z

drr2
X
j

Y3
i¼1

�Z
dkik2i
2π2

X
limi

Ai;liðη; kiÞjliðkirÞ

× fðijÞðkiÞ
�
Gm1m2m3

l1l2l3
ðGm1m2m3

l1l2l3
Þ�

¼ ð4πÞ
X
j

Y3
i¼1

�Z
dkik2i
2π2

X
li

Ai;liðη; kiÞfðijÞðkiÞ
�

× Xl1l2l3Jl1l2l3ðk1; k2; k3Þ; ð29Þ

where we have used Eqs. (11), (28) and partial wave
expansion

eik·x ¼ 4π
X
LM

iLjLðkrÞYLMðk̂ÞY�
LMðx̂Þ; ð30Þ

jL being the spherical Bessel functions. Note that the Gaunt
integral is also introduced as

Gm1m2m3

l1l2l3
≡

Z
dn

Y3
i¼1

Ylimi
ðnÞ: ð31Þ

We derived the last line by defining

Jl1l2l3ðk1; k2; k3Þ≡
Z

∞

0

drr2jl1ðk1rÞjl2ðk2rÞjl3ðk3rÞ;
ð32Þ

Xl1l2l3 ≡ 4π
X

m1m2m2

Gm1m2m3

l1l2l3
ðGm1m2m3

l1l2l3
Þ�: ð33Þ

Then we use a shortcut notation to simply express the triple
product as

F̂
�Y3
i¼1

Ai;li

�
≡ ð4πÞ

X
j

Y3
i¼1

�Z
dkik2i ð2π2Þ−1fðijÞðkiÞAi;li

�

× Jl1l2l3ðk1; k2; k3Þ. ð34Þ

Xl1l2l3 can be concretely evaluated as follows up to the
quadruple moment:

fXl1l20;Xl1l21;Xl1l22g

¼

8>><
>>:

0
B@
1 0 0

0 3 0

0 0 5

1
CA;

0
B@
0 3 0

3 0 6

0 6 0

1
CA;

0
B@
0 0 5

0 6 0

5 0 50
7

1
CA
9>>=
>>;
: ð35Þ

Note that we drop higher order multipole moments through
out this paper for the same reason for Eq. (26). Using
Eqs. (29) and (35), let us compute the ensemble average of
the isotropic component of Eq. (27). The third-order
collision term D was derived in Ref. [25], but angular
dependence in Fourier space was not treated correctly. Then
we newly find the following expression:

_τ−1⟪D⟫ ¼ F̂ ½3Θ0Θ1gV1 þ 6Θ1Θ2V1� þ ⟪Vy⟫: ð36Þ

Equations (22), (29) and (35) yield

1

2
_τ−1⟪Θ2A⟫ ¼ F̂

�
9

2
Θ0Θ2

2 þ
45

14
Θ3

2

− 3Θ0Θ1gV1 þ
87

10
Θ2

1Θ2 − 6Θ1Θ2V1

�
:

ð37Þ
Employing Eqs. (29), (35) and (23), we also find

_τ−1⟪ΘB⟫ ¼ F̂
�
−3Θ0V2

1 − 6Θ2V2
1 þ

9

2
Θ0Θ2

2

þ 45

14
Θ3

2 þ 3Θ0Θ2
1 þ

87

10
Θ2

1Θ2

�
−

1

4π
hΘ00y00i

þ ⟪Θy⟫ −
1

10 · 4π

X2
m¼−2

hΘ�
2my2mi: ð38Þ
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Finally, the remaining part yA is

_τ−1⟪yA⟫ ¼ −
1

4π
hΘ00y00i þ ⟪Θy⟫

−
1

10 · 4π

X2
m¼−2

hΘ�
2my2mi − ⟪yV⟫: ð39Þ

Combining these expressions, we find

d⟪κ̄⟫
dη

¼ −2⟪yA⟫: ð40Þ

Thus, the triple products of Θ are canceled, and only
the mode coupling between y and A contributes to κ.
The absence of triple products of the temperature multi-
poles in Eq. (40) implies that y is necessary to produce κ. In
other words, κ appears as a result of multiple scattering.
Now it is manifest that a possible source of the RHS of
Eq. (40) is primordial non-Gaussianity.

C. Numerical estimation of κ

Full evaluation of Eq. (40) requires full nonlinear evolu-
tion of the second-order y [32], but this is beyond the scope
of this paper. Instead, we roughly estimate κ in a more
simplified way. First, we assume the local type configuration
for primordial non-Gaussianity,

Bζðk1; k2; k3Þ ¼
6

5
flocNLðPζðk1ÞPζðk2Þ þ 2 permsÞ: ð41Þ

Then, we assume that y has been already generated on
superhorizon in the earlier epoch and that the nonlinear
evolution in subhorizon is negligible; we linearly interpolate
free streaming of y by employing the evolution equation
without the source. This approximation can be justified as
long as we consider i) the local form non-Gaussianity
enhanced in the squeezed limit and ii) the late period
z ∼ 103 because y generation starts from z ∼ 5 × 104.
Here, we write the initial superhorizon y as ζyk, which is
obtained by integrating Eq. (25) up to z ∼ 103. Note that
hζyi ¼ ⟪y⟫ is satisfied in real space. Then, transfer functions
of y can be introduced as we do in Eq. (11):

yðη;k;nÞ ≈ ð4πÞ
X
lm

ð−iÞlY�
lmðnÞYlmðk̂Þylðη; kÞζyk; ð42Þ

where the initial condition on superhorizon is given as
yl ¼ δl0ðkη ≪ 1Þ. The statistics of ζy in Fourier space is
calculated as

hζyki ≈ ð2πÞ3δðkÞ⟪y⟫; ð43Þ

(a) (b)

FIG. 1. Hierarchy of the scales. The dashed arrow corresponds
to the Fourier momenta in the convolutions of Θ2

2 or Θ2
1g. The

solid and dotted arrows are those of the y and κ, respectively.
For the left squeezed shape, the superhorizon y is produced from
k1ð2Þ modes in the earlier stage. Then, y enters the horizon and
produces κ of kþ k0 modes. For the equilateral shape, y and κ are
produced from k1, k2 and k0 modes simultaneously. In this case,
our assumption behind Eq. (42) is no more available and we need
to account thoroughly for the nonlinear evolution of y. In any
case, we consider jkþ k0j → 0 limit when we calculate the
ensemble average of κ.

FIG. 2. Transfer functions for Θ1 − V1 (top left), Θ2 (top right),
y1 (bottom left) and y2 (bottom right). The horizontal axis is the
redshift. In contrast to the temperature multipoles, y multipoles
do not oscillate in the earlier epoch because y does not contribute
to the velocity of photons because of the frequency dependence
of Y.

FIG. 3. The Fourier space window functions for the spectral
distortions in units of flocNL⟪y⟫k

3PζðkÞ=2π3 (solid line) and
k3PζðkÞ=2π3 (dashed line).
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hζykζk0 i ≈ ð2πÞ3δðkþ k0Þ⟪y⟫ 12

5
flocNLPζðkÞ; ð44Þ

where this approximation is valid if jkj is much smaller
than jk1;2j, which are the Fourier momenta in the convolu-
tions of Θ2

2 and Θ2
1g. The relation between these momenta is

depicted in the left panel of Fig. 1. The transfer function of y
is obtained by solving the following hierarchy equation
without the source:

_yl þ
kðlþ 1Þ
2lþ 1

ylþ1 −
kl

2lþ 1
yl−1 ¼ _τð1 − δl0 − 1

10
δ2lÞyl:

ð45Þ

Up to l ¼ 2, Eqs. (22), (40) and (42) yield

⟪κ̄⟫ ≈ −flocNL⟪y⟫
Z

dk
k
k3PζðkÞ
2π3

×
24

5

Z
η0

ηi

dη_τ

�
9

2
Θ2y2 þ 3Θ1gy1

�
: ð46Þ

Thus, gauge invariant variables like shear and heat con-
duction produce κ̄. Figure 2 shows time evolution of Θ2,
Θ1g, y1 and y2 calculated by modifying the cosmic linear
anisotropy solving system (CLASS) [33]. y is erased in the
earlier epoch when the Universe is in kinetic equilibrium
since they are converted into μ. We similarly account for
such a thermalization effect for κ by inserting

Jy ¼ ð1þ ½ð1þ zÞ=ð6 × 104Þ�2.58Þ−1 ð47Þ

into Eq. (46), assuming the same discussions for y [34].
Then, we numerically integrate Eq. (46). Figure 3 shows
the estimation of the second line of Eq. (46). Though the
Fourier space window function for y picks modes on
kMpc≲ 102 up [4], the contribution to κ only comes from
the modes on kMpc < 0.5. This is because the phase
discrepancy between Θ and y cancels most of the energy
injection. Still, integration between 0.01 < kMpc < 0.5
results in non zero value

⟪κ̄⟫ ≈ −1.4 × 10−18flocNL

�
⟪y⟫

4 × 10−9

�
; ð48Þ

where we set k3Pζ=2π2 ¼ Aζðk=k0Þns−1 with Aζ10
9 ¼ 2.2,

k0Mpc ¼ 0.05 and ns ¼ 0.96. Thus, κ is directly related to
primordial non-Gaussianity.

IV. DISCUSSIONS

Even though the overall signal from primordial local
non-Gaussianity is expected to be tiny, such a signal
can, in principle, be distinguished from other types of
CMB spectral distortions due to the specific frequency
dependence of K. Note that we easily translate obser-
vational upper bounds on y into those for κ, usingR
dpp3K ¼ 4

R
dpp3Y. For example, the upper bound

given by a primordial inflation explorer like experiment
[22] is roughly estimated as flocNL < Oð108Þ. Notice that
this bound is for squeezed non-Gaussianity whose short
modes are on 1. < kMpc < 100. since y is produced on
those scales, which cannot be constrained by the CMB
temperature bispectra. Though the signal might be
extremely small, there are various aspects related to this
new signal for the future investigations. For example,
the right panel of Fig. 1 suggests that κ is also sensitive
to equilateral type non-Gaussianity, though this would
require us a more exact estimation since the approxi-
mation behind Eq. (42) is not valid. Anisotropy in κ would
also be a new window for the primordial higher-order
correlations. It is conceivable that the new cubic spectral
distortion in Eq. (40) could also receive nonprimordial
contributions (e.g., weakly nonlinear effects and projection
effects, similarly to [39]). Finally, we expect astrophysical
applications in the similar direction of multiple scattering
for the Sunyaev-Zel’dovich effect [40,41]. Our result
suggests that there exists a new type of spectral distortion
if incoming photon distribution deviates from the ideal
Planck distribution. Therefore it is foreseeable that this
process might also take place within clusters of galaxies.
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