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Abstract Surface temperature data sets for, or including, the Arctic have been derived from various
thermal infrared sensors. However, a combined, all surface temperature data set for the Arctic has not
been generated previously. Here we present the first combined land, ocean, and ice surface temperature data
set for the Arctic produced from Along‐Track Scanning Radiometer ‐ 2 and the Advanced Along‐Track
Scanning Radiometer satellite sensors: the Along‐Track Scanning Radiometer Arctic combined Surface
Temperature data set. Separate products, produced independently for each sensor and containing quantified
uncertainties, together cover the period August 1995 to April 2012. Product validation, utilizing a more
extensive in situ database than previous studies, shows that Along‐Track Scanning Radiometer Arctic
combined Surface Temperature surface temperatures generally agree with in situ data and are similar to
previous validation of input surface temperature retrievals. Biases range from −1.74 to 0.23 K over open
ocean, sea ice, snow over land, and the Greenland ice sheet with higher variability over snow/ice. However,
there are noticeable outliers in the validation results, particularly over Arctic land in boreal summer for
Along‐Track Scanning Radiometer ‐ 2, which are likely due to cloud contamination resulting from a
climatologically static snow field being used for that sensor. This study suggests that the Along‐Track
Scanning Radiometer Arctic combined Surface Temperature data set presented here is a useful tool for
assessment of models in the Arctic. Further work would have clear benefits including improvements to snow
cover and cloud clearing to achieve a fully consistently processed, climate quality combined surface
temperature data set for the Arctic region.

1. Introduction

Surface temperature (ST) changes in the polar regions are predicted to be more rapid than either global
averages or responses in lower latitudes. Model studies (Bracegirdle & Stephenson, 2012; Dufresne et al.,
2013; Koenigk et al., 2013) consistently suggest that the polar regions have the largest climate sensitivity
to greenhouse gas increases, resulting from climate amplification processes (Serreze & Barry, 2011).
Observations of STs (Overland et al., 2016; Timmermans, 2016) and other changes associated with climate
change (Derksen et al., 2016; Hinzman et al., 2005; Perovich et al., 2016; Tedesco et al., 2016) increasingly
confirm these predictions. The impacts of this Arctic warming are not confined to this region alone; for
example, they may contribute to midlatitude weather events (Cohen et al., 2014). It is, therefore, particularly
important to monitor Arctic climate change.

ST changes are traditionally observed using near‐surface (or 2 m) air temperatures (hereafter T2 m) at
meteorological stations. However, in situ sampling of STs is sparse both temporally and spatially.
Furthermore, in the Arctic surface type varies both spatially and temporally. For example, land may be
covered by permanent ice (glaciers, ice caps, and the Greenland ice sheet), seasonal snow cover, spatially
varying vegetation type (mostly forest and tundra), and temporally varying fractional vegetation cover.
These aspects make quantification of temperature changes over the Arctic a challenging problem but an
urgent one requiring progress (Cowtan & Way, 2014; Dodd et al., 2015; Karl et al., 2015).

The polar regions are well covered by polar orbiting satellite instruments, which can provide estimates of ST
at the “skin” of the Earth's surface (hereafter Ts). Satellite sensor measurements in the Thermal InfraRed
(TIR) can be used to derive consistent, continuous, and detailed observations of Ts (Merchant et al., 2014).
Although clouds limit TIR satellite observations of the surface to clear‐sky conditions with an associated
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requirement for cloud detection, microwave observations are of lower spatial resolution and very sensitive to
emissivity as well as other surface parameters (Mätzler, 1994; Prigent et al., 2006; Yan et al., 2008) while in
situ observations are much more sparse. Furthermore, same series TIR sensor records are also now reaching
sufficient lengths to record decadal variations with good spatial coverage (Veal et al., 2013). Ts data sets for,
or which include, the Arctic have been produced for ocean (Kilpatrick et al., 2015; Merchant et al., 2014;
Petrenko et al., 2014), land (Ghent et al., 2017; Wan, 2014), and ice (Hall et al., 2004). The only combined
analyses of Arctic surface temperature currently available are those derived from the advanced very high
resolution radiometer (AVHRR); Comiso &Hall, 2014; Dybkjær et al., 2012), and indeed, the second of these
(the Metop AVHRR Arctic Surface Temperature product known as MAST) is for ocean and sea ice Ts only.
This paper reports a publically available all surface (land, ocean, and ice) Ts data set for the Arctic which is
the first to be produced for the Along Track Scanning Radiometers (ATSRs). It will benefit regional tempera-
ture evaluations by allowing data set intercomparisons, which are important for assessing spatial disagree-
ments between Ts data sets (Guillevic et al., 2014), and model evaluations alongside Moderate Resolution
Imaging Spectroradiometer (MODIS) ice temperatures and AVHRR sea ice temperatures, as well as for
future Ts observations from the Sea and Land Surface Temperature Radiometer (SLSTR) and Visible
Infrared Imaging Radiometer Suite instruments. This is not only useful but could be argued to be a necessity
for polar studies. There is an urgent need for satellite‐based Ts data sets to document, make available, and
improve Arctic temperature records for assessing models, providing model boundary conditions, and inves-
tigating temperatures across surface type boundaries (such as themarginal ice zone), for climate monitoring,
climate change detection, and attribution studies.

The ATSRs were a series of TIR satellite radiometers designed explicitly for climate standard observations
with a consistent approach from sensor to sensor (Veal et al., 2013). They are notable for their remarkable
stability in local crossing times and calibration, high accuracy, and dual‐view design which allows for more
accurate atmospheric correction (Llewellyn‐Jones & Remedios, 2012; Veal et al., 2013). However, it should
be noted that the ATSR sensors have a narrower swath (around 500 km) compared to sensors such as
MODIS (around 2,030 km) which can limit data coverage. Furthermore, there is a data gap between the loss
of contact with the Advanced Along‐Track Scanning Radiometer (AATSR) sensor on Envisat in 2012 and the
launch of the SLSTR sensor on Sentinel 3A in 2016, which is a continuation of the ATSR series. Yet the
ATSRs are well qualified to provide an accurate satellite derived data set of Arctic Ts over ocean, land,
and ice. A summary of instrument details for the ATSRs is provided in Table S1 in the supporting informa-
tion. Of the three ATSRs, ATSR‐2 and AATSR are the most suitable; ATSR‐1 data will be analyzed in due
course but has additional challenges associated with it because of stratospheric aerosol contamination of
radiances for ATSR‐1 and some degradation in channel availability and quality. There are challenges for
all sensors when producing such a combined data set over a number of years. At some point in a time series,
observations require harmonization to understand differences between sensors, even those of the same sen-
sor series, primarily due to calibration differences. Different input products to the combined data set may
have inconsistencies in their land, sea, and ice masking as well as differences in their retrieval and cloud
masking algorithms. Also, validation is required across different surface types and ideally should include
pixels which contain a mixture of surface types.

In this work we describe the methodology, construction, and evaluation of the first combined land, ocean,
and ice Ts data set for the Arctic from ATSR‐2 and AATSR: the ATSR Arctic combined Surface
Temperature (AAST) data set v2.1. We provide results from validation of the AAST product across different
surface types, excluding mixed pixels. We define the Arctic as the area at, or north of, 60°N which encom-
passes the Arctic Circle and the Greenland ice sheet as well as many other definitions of the boundary of
the Arctic (Przybylak, 2003). The method of surface type identification and cloud clearing, the input Ts
retrievals used for each surface type, and the production of gridded mean Ts and their uncertainties are
described in section 2. Results from validation of AAST data sets are described in section 3. A discussion
and conclusions are provided in sections 4 and 5, respectively.

2. Materials and Methods

In producing the AAST data set our aim is to use the most accurate, physically based retrieval algorithms
available. To this end, we divide the Arctic surface into four surface types and choose the most suitable Ts
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input for each. The four surface types defined are open land (land free of snow or ice), open ocean (ocean free
of sea ice), land ice (land with snow or ice cover), and sea ice (sea ice with or without snow cover).

We use a masking algorithm (illustrated in Figure 1 and described in section 2.1) to determine surface type
and detect cloud at each input Level 2 ATSR pixel. Level 2 (L2) data refers to geophysical variables which are
derived from radiometrically calibrated and geometrically corrected radiances or brightness temperatures
and provided on the orbit swath at native spatiotemporal resolution. Different L2 Ts retrieval algorithms
(outlined in section 2.2) are employed for each surface type based on the masking algorithm. The AAST pro-
cessor is described in section 2.3 and the output AAST Level 3 products are described in section 2.4. Level 3
(L3) data are L2 data provided at nonnative spatiotemporal resolution in a gridded map projection format.
The AAST product is provided as a Level 3 Super collated (L3S) product, which is L3 data produced from
L2 data from multiple instruments or sensor data sets.

2.1. Surface Type Identification and Cloud Detection
2.1.1. Land Sea Mask
The first step in determining surface type is to establish whether the pixel is land or ocean. For AAST we use
the land sea mask from the standard European Space Agency (ESA) ATSR Level 1b product. The same land
sea mask is used for sea surface temperature (SST) retrieval in the ATSR Sea Surface Temperature 1‐km L2P
v3.0 product (European Space Agency, 2014a, 2014b; hereafter SST L2P), which provides input Ts over open
ocean for AAST (section 2.2.2). The GlobTemperature (GT) Land Surface Temperature (LST) 1‐km L2 v2.1
product (hereafter GT LST), used for Ts over open land, land ice, and sea ice (section 2.2.1), employs a variant
of the 2006 GlobCover product (Arino et al., 2007; Ghent et al., 2017) as its land seamask to determine where
to retrieve LSTs. This means that a few Ts values may be missing in AAST products due to inconsistencies
between the land sea information utilized for AAST and GT LST. Pixels where Ts is provided from both input
ST products will be an average of the LST and SST data available.
2.1.2. Ice Detection
After a pixel is identified as land or ocean, we determine whether a pixel is ice covered (snow or ice covered)
or ice free (snow or ice free). The most difficult aspect of this is distinguishing between surface ice and cloud;
clouds can have temperatures close to those of the ice surface below. In addition, the AAST product requires

Figure 1. The masking algorithm employed in the production of the ATSR Arctic combined Surface Temperature (AAST) data set. The masking algorithm first
determines surface type, thereby allowing selection of the best Ts retrieval type, and second detects the presence of cloud.
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amasking algorithm that will work on both nighttime and daytime data. This is due to the high‐latitude phe-
nomenon of polar day and polar night when the Sun is above, or below, the horizon for more than 24 hr and
correspondingly nighttime, or daytime, data are not available. As a result of these factors, for ice and snow
detection in AAST we utilize the surface classification information included in GT LST v2.1 which is pro-
vided by auxiliary data.

Permanent snow and ice extent over land is provided by a variant of the 2006 GlobCover product (Arino
et al., 2007; Ghent et al., 2017). Seasonal snow and ice information in the Arctic is provided by 4‐km
Interactive Multisensor Snow and Ice Mapping System Northern Hemisphere (IMS) snow maps (available
from 2004 onward) for land pixels (Ramsay, 1998) and the Operational Sea Surface Temperature and Sea
Ice Analysis (OSTIA) over ocean pixels (Donlon et al., 2012). Preprocessing of these data sets is as described
in Ghent et al. (2017). The decision was made to use 4‐km IMS data because visual inspection showed it to be
a much improved representation compared with the 24‐km product. When IMS 4‐km data are not available
(prior to start of data set production) a daily climatology across all years of IMS 4‐km data are used for snow
detection. A climatology was used instead of lower resolution data to minimize potential step changes from
moving between resolutions. In earlier years when the climatology is employed, we expect locally correlated
uncertainties to be increased by 1.5 K on average in regions where snow cover may disappear based on
assessments of the effects of changing the surface type of the retrieval.

Determination of the presence of ice can be done relatively successfully for daytime ATSR data using a com-
bination of reflectance and brightness temperature thresholds, ratios, and normalized difference indices
(Bulgin et al., 2015; Istomina et al., 2010). However, this task is more difficult at night when only thermal
data are available from ATSR resulting in increased false flagging of cloud as ice. This is the justification
for employing auxiliary ice extent data from the spatially complete daily analyses provided by OSTIA
and IMS.

It should be noted that the sea ice masking information utilized in SST L2P is not the same as that employed
in AAST. SST L2P sea ice information is provided by European Centre forMedium‐RangeWeather Forecasts
Interim Reanalysis data with an additional test based on the Normalized Difference Snow Index during day-
time. Therefore, some Ts data may be missing in AAST products due to differences in sea ice extent informa-
tion between AAST and SST L2P.
2.1.3. Cloud Detection
The final step in the masking algorithm is the detection of cloudy pixels. AAST utilizes the cloud masking
information provided in the input Ts data sets, which are produced using different algorithms. Where pixels
are designated a surface type of open ocean we use the Bayesian clear‐sky probability data that are part of the
SST L2P (Embury et al., 2012; Mackie et al., 2010; Merchant et al., 2005). A pixel is labeled cloudy if the clear‐
sky probability is less than or equal to 90%. For all other pixels (surface types of open land, land ice, or sea
ice) the University of Leicester version 3.0 (UOL v3) cloud masking data, provided as part of the GT LST pro-
duct, are used (Ghent et al., 2017). UOL v3 is a restricted Bayesian infrared cloud detection scheme which
relies on simulated radiances and specifications of the emissivity of the surface determined by biome type
(Bulgin et al., 2014).

2.2. Input Surface Temperature Products

Different surface types have different emissivities and topography, and therefore require different Ts retrie-
val algorithms. The open ocean has fairly uniform emissivity and level topography so a dual‐view retrieval is
the most accurate (Embury et al., 2012; Merchant et al., 2014). It allows for more accurate atmospheric cor-
rection especially in the presence of aerosol. Open land has a range of emissivities depending on biome (type
of vegetation cover) and areal vegetation extent. Land surface topography is also spatially varying. A nadir
view only retrieval with different coefficients for each surface type or biome has been identified as the most
suitable for LST (Coll et al., 2006; Ghent et al., 2017).
2.2.1. Open Land, Land Ice, and Sea Ice
Where the surface type is designated as open land, land ice, or sea ice by the masking algorithm, the Ts uti-
lized for AAST are those from the GT LST v2.1 product at 1‐km resolution, which is an update to the v1.0
data set described in Ghent et al. (2017). GT LST v1.0 is available from the GlobTemperature data
portal (http://data.globtemperature.info/).
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The GT LST product (Ghent et al., 2017) employs the Leicester ATSR and SLSTR Processor for LAnd Surface
Temperature, which utilizes a nadir‐only split window algorithm employing retrieval coefficients which are
dependent on surface type, fractional vegetation cover, atmospheric precipitable water, and satellite view
angle. Land surface emissivity is dealt with implicitly through the radiative transfer simulations used to
determine the coefficients (Ghent et al., 2017). The input land surface emissivity (including land ice and
snow) for these simulations is derived from the monthly 0.05° CIMMS Baseline Fit Emissivity Database
(Seemann et al., 2008) while an emissivity of 0.99 (Dybkjær et al., 2012) is assumed for sea ice in
coefficient production.

The pixel‐level LST uncertainties are a combination of three different components representing the uncer-
tainty from effects whose errors have distinct correlation properties: random, locally correlated, and large‐
scale systematic (Ghent et al., 2017). In GT LST v1.0, sea ice was retrieved using land ice coefficients. An
initial validation of Ts retrievals over sea ice suggested that separate retrieval coefficients should be defined
for sea ice in order to better represent this surface type. Retrieval coefficients for the sea ice surface type are
included in the GT LST v2.1 data set utilized for AAST. The coefficients are determined as described for other
surface types in Ghent et al. (2017). Additionally, the locally correlated uncertainties in v1.0 are provided as
separate atmospheric and surface components in v2.1 and higher‐resolution IMS data are employed for
snow detection as noted previously in section 2.1.2.

GT LST v1.0 Ts retrievals were validated outside the Arctic and found to have good agreement with in situ
data. The mean absolute biases were 1.00 and 1.08 K for daytime and nighttime, respectively, against in situ
observations from 10 stations providing high quality in situ observations (Ghent et al., 2017). The robust
standard deviations (RSDs) were 1.23 and 0.54 K on average across the 10 stations. Results from validation
of GT LST v2.1 Ts retrievals in the Arctic are presented in this paper.
2.2.2. Open Ocean
For pixels designated as open ocean, Ts are provided by the SST L2P at 1‐km resolution (European Space
Agency, 2014a, 2014b), which is available from the Centre for Environmental Data Archival and uses meth-
ods based on those from the ARC L2P data set (Merchant et al., 2012). The retrieval scheme for SST is a linear
combination of two (11 and 12 μm) or three (11, 12, and 3.7 μm; nighttime only) channels in either nadir or
dual‐view mode. Uncertainty information is provided in this data set in a similar form to those provided in
the GT LST product. SST L2P retrievals have been validated globally and the median differences for AATSR
and ATSR‐2 dual‐view retrievals were found to be less than 0.15 K with RSDs of less than 0.35 K
(Corlett, 2016).

2.3. The AAST Processor

The AAST processor uses the masking algorithm described in section 2.1 to combine L2 Ts across all Arctic
surfaces into L3S Ts for AATSR and ATSR‐2. Separate products are produced for each sensor as both the GT
LST and SST L2P products are not harmonized between sensors. This also allows users to intercalibrate the
products as they wish. Yet analysis of the overlap period between 2002 and 2003, when both AATSR and
ATSR‐2 were operating, suggests a median bias in the ST of only 0.3 K between AAST products. The proces-
sor can provide Ts at various temporal and spatial resolutions on various spatial grids.

2.4. AAST Level‐3 Super Collated Products

AAST products comprise daily Ts and their estimated uncertainties from descending and ascending ATSR
overpasses (when the satellite is moving south or north, respectively) on a 0.05° longitude by 0.05° latitude
grid for the area above 60°N for AATSR and ATSR‐2 separately. Due to the orbits and swath of the ATSRs,
coverage is limited to below 84°N. It was decided to provide the Ts on a 0.05° grid (Dodd et al., 2018) as this
grid is commonly used for L3 LST and SST products and follows user requirements for LST products (Ghent
et al., 2016).

AAST products are spatial averages of 1 km descending or ascending overpass Ts from the input Ts products
(see section 2.2). L2 Ts from descending and ascending overpasses are averaged, weighted by the proportion
of swath pixels included in the output pixel, and gridded onto separate 0.05° grids for each orbit type. Where
Ts from different surface types are present within a 0.05° pixel the output pixel will be a mixture of all avail-
able input L2 Ts. If more than one descending or ascending overpass has Ts data available during a day, the
output 0.05° pixel providing the observation nearest nadir, determined using the satellite zenith angle, is
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chosen. An example of Ts from the standard AAST L3S daily product is provided in Figure 2. A composite of
the standard AAST L3S daily product over a month is given in Figure 3. Uncertainty information is
propagated from L2 Ts to daily L3S Ts (section 2.4.1). AAST products are stored in GlobTemperature
Harmonised format (Ghent et al., 2018), which provides the data in netCDF‐4 format and uses CF
metadata conventions.

The justification for producing ascending and descending overpass products rather than the more traditional
daytime and nighttime products is twofold. First, this allows the complete seasonal cycle to be represented in
both daily products for the Arctic (due to the phenomenon of polar day and night). Second, this will provide
more temporally consistent view times in AAST products as (for example) the descending overpass at a given
location is the same local solar time each day. The use of ascending and descending orbit products can result
in different retrieval methods being combined within the same product. The LST retrieval method used for
the GT LST product is the same for day and night, although different retrieval coefficients are used. The SST
retrieval in SST L2P uses different channel sets for daytime and nighttime so we provide SST retrieval type as
auxiliary information in AAST products.
2.4.1. Calculation and Propagation of Uncertainties
Estimates of Ts uncertainty in AAST products (0.05° grid) are propagated from the uncertainties on the
input L2 surface temperature products (1‐km resolution). We follow the approaches and concepts of
Bulgin et al. (2016) and Ghent et al. (2017), which are equally applicable across different domains. This sec-
tion provides a summary of all quantified contributory effects. Further information on the calculation and
propagation of uncertainties for AAST products is given in Text S1 in the supporting information and in the
cited literature.

In AAST, a four‐component uncertainty model is utilized. The total uncertainty is the sum in quadrature of
the random uncertainty, locally correlated atmospheric uncertainty, locally correlated biome or surface
uncertainty, and large‐scale systematic uncertainty. This is similar to the three‐component model utilized
by Ghent et al. (2017) with the locally correlated uncertainty split into two uncertainty components due to
their differing correlation length scales. The four components of the uncertainty model are provided sepa-
rately and also combined into a total uncertainty.

Random uncertainties, which are uncorrelated on all spatial and temporal scales, and large‐scale systematic
uncertainties, which are correlated on all spatial and temporal scales, are propagated using the equations of

Figure 2. Example of Ts and Ts total uncertainty from the daily AAST AATSR sensor descending orbit product for 1
January 2010. This image highlights the narrow swath (around 500 km) of ATSR sensors compared to sensors such as
MODIS which has a 2,030‐km swath. Grey indicates areas of missing data over land (dark grey) or ocean and sea ice (light
grey), either because it was not observed by the sensor or because it has been masked as cloud.
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Bulgin et al. (2016). Locally correlated atmospheric uncertainties are assumed to be correlated for the daily
AAST L3S product and are propagated as such. This is because it has been recently suggested that water
vapor (the main source of atmospheric uncertainty) may only be correlated on scales of a few kilometers
and a few minutes (Steinke et al., 2015; Vogelmann et al., 2015), and each 0.05° pixel in AAST products is
a spatial average of 1‐km resolution Ts from a single swath (observed within seconds of each other).
Similarly, the biome or surface correlated uncertainties are assumed to be correlated for each biome or
surface type within an AAST pixel. These uncertainties are propagated as correlated uncertainties
separately for each biome or surface type separately within a 0.05° pixel.

Sampling uncertainties are calculated for each 0.05° pixel, following the methods employed by the ESA
GlobTemperature and EUSTACE projects (EUSTACE, 2017; GlobTemperature, 2017), using

Figure 3. A composite of Ts from the daily AASTAATSR sensor descending orbit product over an examplemonth for each
season from 2010 (January, April, July, and October). Grey indicates areas of missing data over land (dark grey) or
ocean and sea ice (light grey), either because it was not observed by the sensor or because it has beenmasked as cloud in all
daily products comprising the composite.
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U2
sampling ¼

NCloud×VarTS
NClear þ NCloud−1

(1)

where Usampling is the sampling uncertainty, NCloud and NClear are the integer number of cloudy/clear
pixels contributing to the output pixel, and VarTS is the Ts variance for clear‐sky pixels contributing to
the output pixel. In cases where there is no cloud and all data in a grid box are present NCloud is 0, so S
is 0 and there is no sampling uncertainty.

If there are not enough clear‐sky pixels to calculate VarTS, then a daily climatology value produced on a
0.05° grid is used. A few pixels do not represent enough data across a sensor record to produce a climatology
variance. In these cases a daily Arctic average of the climatology variance from well‐sampled pixels is
assumed. Sampling uncertainties are considered part of the random uncertainty component and added in
quadrature to the propagated random uncertainty to produce the total random uncertainty.

3. Product Validation

The AAST products were validated against in situ Ts data derived from
broadband radiometric observations over Arctic land and sea ice, and
observations of SSTs at depth over open ocean areas in the Arctic. The
validation method and results are described in this section.

3.1. Site Selection

Reference data for validation were obtained from sites and sensors, both
drifting and stationary, situated in the areas of the Arctic observed by
ATSR satellites (60°N to 84°N) during the period of interest (August
1995 to April 2012). Stationary platforms (over land and the Greenland
ice sheet) were only chosen if the surrounding area was relatively homo-
genous in surface type and topography. A large number of measurements
is required across a validation site in order to characterize it (Guillevic
et al., 2012; Guillevic et al., 2014), which was not available for spatially
heterogeneous sites in the area of interest. As a result, spatially homoge-
nous sites are generally recommended for the temperature‐based valida-
tion used here (Guillevic et al., 2012; Guillevic et al., 2014; Guillevic
et al., 2018; Schneider et al., 2012). The in situ Ts at spatially homogenous
sites are more likely to be representative of the instrument footprint, and
thus, the impact of unresolved spatial and temporal representativeness on
the validation is reduced. A summary of the in situ sites used for valida-
tion in this study is provided in Table 1. The locations of all reference data
used are shown in Figure 4.

Table 1
Summary of In Situ Sites Used for Validation in This Study. The latitude and longitude for sea ice sites are for the centre of the area through which the station drifted

Site Surface type Network or data source Latitude (°N) Longitude (°E) Data availability in time period of interest

Tiksi Land BSRN 71.59 128.92 2011–2012
Barrow Land ARM 71.32 −156.61 1998–2012
Atqasuk Land ARM 70.47 −157.41 2000–2011
IMAU S5 Greenland ice sheet UU/IMAU 67.08 −50.10 1997–2012
IMAU S6 Greenland ice sheet UU/IMAU 67.06 −49.38 1997–2012
IMAU S9 Greenland ice sheet UU/IMAU 67.05 −48.21 2003–2012
IMAU S10 Greenland ice sheet UU/IMAU 67.00 −47.01 2010–2012
SHEBA Sea Ice ARM 77.29 −158.64 1997–1998
SEDNA Sea Ice SEDNA ice camp 73.28 −146.03 2007
QAANQ Sea ice DMI 77.5 −68.00 2011–2012
Argo floats and drifting buoys Open ocean Met Office Hadley Centre Various (see Figure 4) 1995–2012

Figure 4. The location of in situ validation stations on land, the Greenland
ice sheet, sea ice, and in the open ocean. In situ sea ice and open ocean
observations can occur in the same location due to the spatially and tem-
porally varying nature of sea ice cover.
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Several ground‐based observation networks provide radiometric observations which can be used to derive in
situ Ts data over land, such as the Atmospheric Radiation Measurement Climate Research Facility and the
Baseline Surface Radiation Network. Three stations from these networks fulfilled the validation require-
ments outlined previously. In situ data over sea ice were provided by sensors deployed at several ice camps
(Atmospheric Radiation Measurement, 2015; Dybkjaer et al., 2011; Hutchings, 2007). Over the Greenland
ice sheet, reference data were sourced from radiometers deployed on Automatic Weather Stations by the
Institute for Marine and Atmospheric Research, Utrecht University (Van de Wal et al., 2005; Van den
Broeke et al., 2011). Reference data over open ocean were observations from drifting buoys and Argo floats.
Quality‐controlled in situ SST data from drifting buoys above 66°33′N were provided by the Met Office
Hadley Centre (Corlett, 2016). Near‐surface ocean temperatures from Argo floats were sourced from the
Met Office Hadley Centre EN3. Only data which passed Met Office Hadley Centre quality checks and
observed at depths between 3.5 and 5.5 m were used. The effects of both diurnal variability and the “cool
skin” (Donlon et al., 2002) are minimized by restricting SST reference data to a regime of increased surface
turbulence that is when the surface wind speed is greater than 6 m/s.

It must be noted that due to the extreme paucity of in situ Ts data in the Arctic this validation considers only
a small number of locations, despite utilizing more in situ sites than previous studies. However, an investi-
gation done during this study, which counted the land cover classification for each day of year and pixel in
the Arctic, found that the in situ sites chosen represented around 60% of the surface types for an
example year.

3.2. Surface Temperature Calculation and Matchup Method

In situ data from sites providing broadband radiometric observations were quality controlled and missing
downwelling (atmospheric) radiation values were set to a default value of 110.3 W/m2. Ts were then derived
from these radiation data using broadband land surface emissivity data from the monthly 0.05° CIMMS
Baseline Fit Emissivity Database (Seemann et al., 2008), or the ECOSTRESS spectral library for sea ice sites
(Baldridge et al., 2009). Uncertainties were estimated for data from these sites by propagating the uncertainty
on the radiometric observations and land surface emissivity. For sites with estimated uncertainties, only in
situ data with uncertainties less than 2 K were used for this product validation. The median uncertainty is
less than 0.80 K. In situ SSTs were measured at depth by Argo floats and drifting buoys.

The in situ data and satellite Ts were matched both spatially and temporally. Satellite Ts, which are equiva-
lent to AAST data, were produced from single orbits of L2 GT LST or SST L2P data by spatially averaging
across a 5 × 5 (over land and open ocean) or 11 × 11 (over sea ice) area of pixels centered on the in situ site.
Satellite Tswere only validated if the standard deviation across the area was 2 K or less. Spatial averaging was
performed in order to provide a Level 3 validation using data which is equivalent to an AAST L3 Uncollated
product (L3 data produced from single orbits of L2 data). This increases the number of satellite data available
compared to AAST L3S (daily 0.05° product providing two satellite matchups per day) allowing a better sam-
pling of matchups for validation and a better characterization of the performance of AAST. This is especially
important in a data sparse area such as the Arctic. Furthermore, due to the scale mismatch between the
satellite data (5 to 11 km2) and the in situ instruments (observing 10 m2), in situ Ts measurements may
not be representative of a single pixel satellite footprint which can observe a variety of land covers. Spatial
averaging aims to also reduce the impact of unresolved spatial representativeness on the validation. We
assume that the error characteristics of the in situ data and satellite Ts remain consistent. Missing data,
for example, as a result of cloud masking, when combined with the paucity of in situ data here compared
to other surface types, particularly reduces data availability for validation over sea ice areas. A larger spatial
average was therefore employed over sea ice to further reduce the impact of missing data, in order to retain
as much validation data as possible.

In order to try to further reduce the impact of unresolved spatial representativeness on the validation, only
pixels which had the same surface type as expected at the site were spatially averaged to provide satellite Ts.
However, it should be noted that the variability of Tswithin the satellite footprint will still impact the results
of this validation. The data were temporally matched to within time periods where the Ts is not expected to
change notably: within 1 min over land and ice, and within 3 hr for ice free ocean following Embury
et al. (2012).
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3.3. Results
3.3.1. Ice and Land Surface Temperatures
Product validation results for ice surface temperatures and LSTs from the GT LST product were analyzed
separately over snow covered land, snow‐free land, the Greenland ice sheet, and sea ice. Table 2 gives a sum-
mary of the results.

Overall the product Ts showed agreement with the in situ validation data for ice‐ and snow‐covered surfaces
(Figure 5). The daytime median differences (satellite Ts − in situ Ts) for ice surface temperatures across the
whole time period are −1.47, −0.23, and −1.45 K over land (ice and snow surface type), the Greenland ice
sheet, and sea ice, respectively. The nighttime median differences are −0.80, −1.74, and −0.89 K, respec-
tively. The RSDs for both illumination conditions were up to 3.23 K. These results are similar to Ts retrieval
validation results for GT LST over snow‐ and ice‐free surfaces in the midlatitudes, where median differences
were between −2.41 and 2.27 K and RSDs were 1.23 and 0.54 K on average (Ghent et al., 2017). Results are
generally similar between the two sensors (Table 2). For comparison, temperature‐based validation results
for ST products derived from MODIS are given in Table 2. A table summarizing literature results for valida-
tion of AVHRR andMODIS ST products in the Arctic is also provided in Table S2 in the supporting informa-
tion (Adolph et al., 2018; Dybkjær et al., 2012; Hall et al., 2015; Key et al., 2013; Koenig & Hall, 2010; Østby
et al., 2014; Wan, 2014). The results are fairly similar when comparing the AAST validation with MODIS
results, with differences in performance depending on the ATSR sensor and the surface type.

The product validation results for LSTs in snow‐free Arctic land areas show larger differences between in
situ and satellite data than noted for ice surfaces. The median differences are −2.92 and −2.57 K for daytime
and nighttime data, respectively (Table 2). The RSDs are also higher: 4.11 K for daytime data and 3.94 K for
nighttime. All surface types have marked outliers in their results where satellite Ts are 10 to 20 K lower than
the in situ data. These are most noticeable for Arctic land areas, both ice covered and ice free. These outliers
are expected to be due to cloud contamination in the satellite data, except for two results for sea ice which we
think are due to in situ data issues as the temperatures are atypical, but not implausible, for the area and time
of year at which they are observed.

Additional analysis of the data over Arctic land and the Greenland ice sheet also suggested that cloud con-
tamination is an issue. The absolute median difference (satellite Ts − in situ Ts) was found to be reduced by
around 1–2 K when the percentage of clear‐sky pixels (in the matchup area of 5 × 5 or 11 × 11 pixels)
increased from 4 to 100%. An increase in clear‐sky pixels was assumed to indicate a reduction in the likeli-
hood of cloud contamination rather than an increase of representativeness of the satellite Ts (due to

Table 2
Summary of Validation Results Over Arctic Surface Types for Both ATSR Sensors of Interest in This Study Combined and Separately, As Well As Validation Results for
a Standard MODIS LST Product (MOD11_L2 Collection 6) Produced Using the Same Methods for Comparison

Surface type Sensor(s)

Median difference (K) Robust standard deviation (K) Number of matchups

Daytime Nighttime Daytime Nighttime Daytime Nighttime

Land, snow ATSR‐2 and AATSR −1.47 −0.80 2.46 1.93 2,536 3,043
ATSR‐2 −2.11 −0.62 3.45 2.06 669 792
AATSR −1.31 −0.86 2.13 1.84 1,867 2,251

Land, nonsnow ATSR‐2 and AATSR −2.92 −2.57 4.11 3.94 723 168
ATSR‐2 −7.17 −2.33 7.98 4.74 235 34
AATSR −2.22 −2.57 3.23 3.75 488 134

Land (snow and nonsnow biome) MOD11_L2 collection 6 −2.90 −1.24 2.67 2.16 4,378 5,853
Greenland ice sheet ATSR‐2 and AATSR −0.23 −1.74 2.13 3.23 3,247 658

ATSR‐2 −0.71 −1.04 2.49 2.79 750 264
AATSR −0.06 −2.06 2.00 3.34 2,497 394
MOD11_L2 collection 6 −0.54 −1.75 1.96 2.28 13,491 8,678

Sea ice ATSR‐2 and AATSR −1.45 −0.89 2.77 1.81 108 86
ATSR‐2 −1.51 −0.82 2.71 1.87 98 80
AATSR −0.04 −1.65 3.05 2.16 10 6

Open ocean ATSR‐2 and AATSR −0.19 −0.18 0.21 0.30 7,421 19,462
ATSR‐2 −0.17 −0.13 0.25 0.37 781 2,212
AATSR −0.19 −0.18 0.21 0.30 6640 17,250
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increased sample size of Ts in this spatial average) as the in situ sites are relatively homogenous. Absolute
median differences were also found to be larger when there is a larger variance in satellite Ts across the
matchup area. A large variance is assumed to indicate cloud contamination in the Ts due to a thermal
contrast between the surface and clouds as the variance across the in situ site under largely clear‐sky
conditions is expected to be small.

To investigate these issues further the results were also investigated by month, except for sea ice due to data
paucity. The monthly median differences for the Greenland ice sheet are less than 0.80 K for most months,
with highermedian differences (up to an absolute value of 2.60 K) in boreal wintermonths (Figure 6). Higher
than freezing temperatures were noted in the satellite data in boreal summer, themajority of which are at the
lowest elevation Institute for Marine and Atmospheric Research ice sheet site. This could be due to surface
meltwater on the ice sheet or satellite pixels including areas of snow‐free land surrounding the ice sheet.

Snow‐covered land shows a different, and more pronounced, seasonal pattern; the monthly median differ-
ences were highest in the boreal summer and adjacent months with a maximum median difference of
4.36 K in October (Figure 7). Thesemedian differences are larger than is generally expected for ground‐based
LST validation in these months. Previous validation in the midlatitudes showed that GT LST data were gen-
erally within 2 K of high‐quality in situ observations (Ghent et al., 2017). While snow cover in some areas
persists in the Arctic throughout the year, monthly snow depth information from sources such as the
NOAANational Weather Service and Zhong et al. (2018) suggest that very little or no snow cover is expected
between June and September for sites providing in situ Ts data over Arctic land in this study (Barrow,
Alaska; Atqasuk, Alaska; and Tiksi, Russia). Yet there is a large sample of validation results for snow Ts
in June, as shown in Figure 7, and some results in July and August (up to 26 matchups) when the results
are not filtered by satellite ST standard deviation. This suggests that there is erroneous classification of pixels
as snow covered in GT LST over Arctic land.

The noted issues with surface misclassification of snowmay result from the use of a climatology of 4‐km IMS
data in GT LST before this data set became available, rather than using the lower resolution 24‐km product,

Figure 5. Scatterplots of validation results Ts from the AAST product over Arctic land, the Greenland ice sheet, Arctic sea
ice, and open ocean areas above 60°N across all years of ATSR‐2 and AATSR data. Daytime results are given in red and
nighttime results in blue. For overall statistics from these results, see Table 2.
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given the variability of snow cover extent and the rapid changes seen in recent years (Derksen et al., 2017).
Median differences for before and after 2004 were compared and there was a noticeable reduction in the
median differences for snow free land during the daytime, from around −4 to around −2.5 K. This can
also been seen in Table 2 in the results between ATSR‐2 and AATSR (the ATSR‐2 record ends in 2003 and
AATSR launched in 2002). Snow masking failures could also be due to errors in the IMS data set. IMS
snow cover data are found to be generally comparable with other snow cover data sets and in situ data
(Frei et al., 2012; Metsämäki et al., 2017). IMS provides good results for most snow types. False alarm
rates are low (although relatively high compared to other data sets), except for ephemeral snow (thin and
melting snow) where snow extent data sets often have poor snow detection rates (Metsämäki et al., 2017).
Other studies have also noted that IMS may overestimate snow cover, particularly during snowmelt
(Brown et al., 2007; Frei et al., 2012; Helfrich et al., 2007). Furthermore, snow cover can change quickly
during melt and ablation and many snow cover data sets are produced at daily, or lower, temporal
resolution (Nagler, 2015).

Although this version of AAST is not described as a climate quality data set, due to the need for homogeni-
zation of the sensor series among other aspects discussed in section 4, a time series analysis with respect to
the Atmospheric Radiation Measurement site at Barrow was conducted for each AAST product separately.
Barrow was chosen as the site is well maintained and has no obvious inhomogeneities in its record. The
results are given in the supporting information.

In summary, satellite‐derived Ts equivalent to AAST showed agreement with the in situ validation data but
large differences were noted which are likely due to cloud contamination in GT LST, especially across Arctic
land areas. Investigation of the monthly validation results suggest that this is related to surface misclassifica-
tion of snow and ice, especially in boreal summer, which influences the performance of the cloud‐clearing

Figure 6. Scatterplots of monthly validation results for ISTs from the AAST product over the Greenland ice sheet above 60°N across all years of ATSR‐2 and AATSR
data. N is the number of matchups.
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algorithm. It should be noted that the results will also be impacted by surface misclassification under clear‐
sky conditions as well as the scale mismatch between the satellite and in situ data as noted in section 3.2. In
addition, differences between AAST and the in situ data could also result from factors such as sensor
degradation, errors in intercalibration, and errors in auxiliary data (for instance, atmospheric and
emissivity data; Ghent et al., 2017). Furthermore, there could be an impact of altitude on the suitability of
retrieval coefficients over land snow and ice. Most of the profiles used to generate coefficients for this
surface type (which are applied globally) will be located over Greenland and Antarctica (both of which
are at altitude).
3.3.2. Sea Surface Temperatures
Arctic SSTs from SST L2P agree with in situ data with a median difference of −0.19 K for daytime data and
−0.18 K for nighttime data, and RSDs of 0.21 and 0.30 K for daytime and nighttime, respectively (Figure 5).
These results are similar, although the differences for nighttime are slightly larger, to global validation
results for SST L2P. For AATSR and ATSR‐2 dual‐view retrievals the median differences were less than
0.15 K and RSDs were less than 0.35 K (Corlett, 2016). Much of the bias (on the order of −0.17 K; Donlon
et al., 2002) between SST L2P and in situ data will be due to comparing skin SST (AAST) with subskin
(Argo floats, measured between 3.5 and 5.5m, and drifting buoys, measured at around 20 cm) when the wind
speed is more than 6 m/s (Corlett, 2016). The median differences and RSDs were very similar in all months.

4. Discussion

We have produced a first combined Ts data set for August 1995 to April 2012 for the Arctic region using
ATSR data: the AAST data set. The data set combines land, sea, and ice Ts from the ATSR‐2 and AATSR

Figure 7. Scatterplots of monthly validation results for ISTs from the AAST product over Arctic land above 60°N where the surface type is ice or snow across all
years of ATSR‐2 and AATSR data. Only months with a reasonable sample of data in each month (more than 24 data points) are shown. N is the number of
matchups.
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instruments and includes estimated uncertainties, which are an indication of quality per pixel. There is good
coverage of Ts in the daily products despite the narrow swath of the ATSR sensors.

STs equivalent to those of the AAST data set were validated across different surface types: snow‐covered
land, snow‐free land, the Greenland ice sheet, sea ice, and open ocean. Generally, the Ts showed agreement
with the in situ data and were similar to previous validation results. The daytime median differences for Ts
across the whole time period were−1.47,−2.92,−0.23,−1.45, and−0.19 K over snow‐ and ice‐covered land,
snow and ice free land, the Greenland ice sheet, sea ice, and open ocean, respectively. The nighttime median
differences were −0.80, −2.57, −1.74, −0.89, and −0.18 K for the different surface types, respectively. The
median differences were smallest over the Greenland ice sheet and open ocean, and largest over Arctic land
areas. However, there were noticeable outliers in product validation results, particularly over Arctic land
areas in boreal summer months for ATSR‐2, which are likely due to cloud contamination in the GT
LST product.

Masking cloud cover in satellite‐derived Ts data sets over land and ice is noted as being more complex than
over open ocean. Over land there is cloudmasking uncertainty due to land cover and land surface emissivity,
which may be temporally and spatially heterogeneous between and within pixels, and elevation, which
impacts view angle and atmospheric path. Cloud detection over areas covered by seasonal snow and ice is
particularly difficult, especially during nighttime (Frey et al., 2008; Romano et al., 2017). Spectral responses
for many wavelengths are very similar for snow and ice surfaces compared to clouds. There is also often a
lack of thermal contrast between these surfaces making identification of clouds difficult. Furthermore, snow
cover can change quickly during melt and ablation while ephemeral (thin or melting) snow is often difficult
to detect. As a result, cloud detection uncertainties are larger for areas of snow and ice (Bulgin et al., 2018).
While the UOL v3 cloud clearing algorithm is an improvement on the standard ESA ATSR cloud tests
(Bulgin et al., 2014) and the use of auxiliary data to discriminate between ice‐free and ice‐covered surfaces
works well, and avoids depending solely on TIR data for polar nighttime (extending for several months at
high latitudes and when thermal contrast between snow and ice surfaces and clouds can be especially
low), cloud‐clearing failures are still present in the data set. This can be seen in the differences in cloud flag-
ging between Ts data over open ocean and land in Figure 2 as well as the marked outliers noted in the pro-
duct validation for all surface types.

In the product validation, outliers which were likely a result of cloud contamination in AAST were noted in
the results for Arctic ice‐covered and ice‐free land areas. This issue was most noticeable in boreal summer,
which is likely due to misclassification of seasonal snow, or other nonsnow surface types, over Arctic land.
Cloud contamination is also likely to be present in other months, but may be less obvious due to a lack of
thermal contrast between satellite and in situ data. Surface misclassification impacts the performance of
the UOL v3 cloud‐clearing algorithm as this relies on land cover information (Ghent et al., 2017).
Misclassification of snow in AAST products could result from poor detection rates of ephemeral snow, the
use of a climatology of 4‐km IMS data prior to 2004, or the use of a daily snow cover product when snow
cover can change rapidly during melt and ablation. There may also be some influence from using IMS pro-
ducts at a lower spatial resolution than ATSR data, which is likely to influence snow masking at snow cover
margins. Other auxiliary snow extent products could be utilized for AAST in future work to improve the data
set. However, results from the SnowPEx project suggest that the performance of snow extent products is
similarly poor for all products investigated for ephemeral snow (Metsämäki et al., 2017). Therefore, it is
likely that snow masking improvements in AAST are likely to result from improvements in IMS data rather
than employing a different data set at present.

The product validation results will also have been impacted by surface misclassification under clear‐sky con-
ditions which impacts the appropriateness of the GT LST retrieval coefficients (Ghent et al., 2017). In addi-
tion, despite the methodology used, the scale mismatch between satellite and in situ data and associated Ts
variability will still influence the results. Methods have been developed (Ermida et al., 2014; Guillevic et al.,
2012; Guillevic et al., 2014) and continue to be developed, for example, as part of the Ground‐Based
Observations for Validation of Copernicus Global Land Products project (http://gbov.copernicus.acri.fr/),
to upscale in situ Ts while taking account of Ts variability to make in situ Ts more comparable with
satellite‐derived observations. These methods could be used in the future to reduce the impact of scale mis-
matches when validating satellite Ts with in situ data. Additionally, these methods could enable the
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validation of pixels which contain a mix of surface types, which was a challenge not addressed in this study.
Furthermore, it should be noted that the results may have been impacted by factors such as sensor degrada-
tion, errors in intercalibration, errors in auxiliary data (for instance atmospheric and emissivity data), and
the impacts of altitude on the suitability of retrieval coefficients applied globally over land snow and ice
as the profiles used to produce these are predominately from Greenland and Antarctica.

Although an improved situation relative to previous studies, a limitation of the validation performed in this
study was the narrow range of in situ sites considered due to the extreme paucity of in situ skin Ts data in the
Arctic, most notably over Arctic sea ice. Only three sources of skin Ts data which were available and coin-
cided with ATSR‐2 and AATSR observations could be identified, and these were often short campaigns con-
tributing only a few days to a month of measurements. This highlights the need for more in situ observations
of Ts in the Arctic to enable validation of satellite‐derived Ts products. T2 m could have been utilized here.
This type of measurement has been used in other studies, such as Hall et al. (2004) and Dybkjær et al.
(2012), to validate satellite observations as, although measured at a different height to satellite Ts, these tem-
peratures are highly correlated (Comiso, 2003). But comparing different types of temperature is not ideal, in
particular when the relationship between them can be complex (Adolph et al., 2018; Good et al., 2017;
Vihma & Pirazzini, 2005). Given the sparse coverage of in situ data in the Arctic region, a detailed, spatially
comprehensive intercomparison of AAST with other satellite products would likely prove useful as part of
future work. This would enable investigation of the consistency of the data set with others.

As noted in section 1, there are challenges in producing a consistently processed, high‐quality, combined Ts
data set. Some challenges were addressed in the production of AAST, such as validating the product for dif-
ferent surface types, while many others remain unresolved. Different cloud clearing algorithms were utilized
over land and ice compared to open ocean which is noticeable in Figure 2, where the amount of cloud mask-
ing is inconsistent across surface‐type boundaries. Future work will be required to improve the cloud clear-
ing over land and make the cloud masking more consistent across surface types. AAST products are
produced separately for different ATSR sensors as the input data utilized for the current version of AAST
is not harmonized. The differences between ATSR‐2 and AATSR in the Arctic is around 1 K (Ghent et al.,
2018). Future work should include harmonization to reduce differences between the sensors, following stu-
dies such as Good et al. (2017), Merchant et al. (2012), and Merchant et al. (2014). As noted in sections 2.1.1
and 2.1.2, land sea masking and sea ice masking are different between the SST L2P and GT LST data sets
providing the input Ts for AAST. This may lead to a few missing pixels at surface‐type margins where the
masks are not consistent. The impact of this should be investigated and, if possible, addressed to improve
the AAST data set. Future versions of AAST will aim to combine ST data sets from the ESA Climate
Change Initiative, which will use a common Climate Change Initiative‐wide land‐sea mask. Additionally,
the Ts data sets used to produce AAST use different retrieval algorithms. This is not considered an issue
or a limitation here as the algorithms chosen are considered the most accurate for each surface type. But
the most appropriate retrieval method for lakes was not considered in this study. Lakes cover approximately
6% of the Arctic and are important for terrestrial ecosystem processes as well as biogeochemical cycles
(Paltan et al., 2015). Currently, the GT LST retrieval algorithm is used for inland water bodies, but lake
focused studies use techniques such as optimal estimation to retrieve lake surface water temperatures rather
than employ algorithms designed primarily for other Ts types (MacCallum & Merchant, 2012; Woolway
et al., 2017). The most appropriate retrieval algorithm for lake surface water temperatures should be consid-
ered for AAST in the future. Once these aspects have been addressed a more comprehensive stability assess-
ment should be performed. Finally, the uncertainties in AAST have not been validated and this should be
addressed in the future.

5. Conclusions

The first combined Ts data set for the Arctic region has been derived from ATSR data: the AAST data set.
This data set combines land, sea, and ice Ts, for separate ATSR‐2 and AATSR products, and includes esti-
mated Ts uncertainties which are an indication of quality per pixel.

Production of this data set has emphasized the challenges involved in producing a combined surface tem-
perature data set. But given the limitations and challenges of producing a data set of this type, the overall
good agreement between AAST and in situ data sets is encouraging. AAST Ts were validated against in
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situ Ts data over snow‐covered land, snow‐free land, the Greenland ice sheet, sea ice, and open ocean in the
Arctic. Generally, the satellite‐derived Ts showed agreement with the in situ data and were similar to pre-
vious validation results. Biases range from −1.74 to 0.23 K for most surface types considered here, with
higher variability over snow/ice. An initial time series analysis suggests that the single‐sensor product
records are relatively stable over time. However, there were noticeable outliers in the GT LST validation
results, particularly over Arctic land areas for ATSR‐2, which is likely due to cloud contamination resulting
from a climatologically static snow field used for that sensor.

Modeling studies have shown that both the Arctic and the Antarctic are more sensitive than other regions to
changes in the climate system. However, in situ data at high latitudes is sparse making satellite coverage of
vital importance for monitoring these regions. Arctic satellite observation data sets are urgently needed for
climate monitoring, for the evaluation of climate model Arctic simulations and for climate change detection
and attribution studies. The work produced here suggests that ATSRArctic Surface Temperature data set is a
useful tool for assessment of models. The current version represents a good quality, long‐term ATSR data set
for the Arctic. While it has much value, it is not a fully rigorous climate data set. Users for climate‐related
applications should take careful note of the uncertainties in the data, the validation results shown here
and in particular the lack of sensor homogenization.

Further work to improve this data set would ideally include efforts to address the challenges and issues
noted, such as improving cloud masking in the Arctic. This data set could also be extended back into the
ATSR1 period and forward to the SLSTR period, with appropriate and robust gap bridging and filling.
Gap bridging and filling is required due to a data gap between the loss of contact with the AATSR sensor
on Envisat in 2012 and the launch of SLSTR on Sentinel 3A in 2016. Achieving these improvements and
extensions to the AAST data set would provide a continuous, consistently processed, high‐quality, indepen-
dent record of combined Ts in the Arctic from 1991 to present, coinciding with a time period in which large
changes are known to have occurred in this region.
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