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A B S T R A C T

Individual assessment of infants’ speech discrimination is of great value for studies of language
development that seek to relate early and later skills, as well as for clinical work. The present
study explored the applicability of the hybrid visual fixation paradigm (Houston et al., 2007) and
the associated statistical analysis approach to assess individual discrimination of a native vowel
contrast, /aː/ - /eː/, in Dutch 6 to 10-month-old infants. Houston et al. found that 80% (8/10) of
the 9-month-old infants successfully discriminated the contrast between pseudowords boodup -
seepug. Using the same approach, we found that 12% (14/117) of the infants in our sample
discriminated the highly salient /aː/ -/eː/ contrast. This percentage was reduced to 3% (3/117)
when we corrected for multiple testing. Bayesian hierarchical modeling indicated that 50% of the
infants showed evidence of discrimination. Advantages of Bayesian hierarchical modeling are
that 1) there is no need for a correction for multiple testing and 2) better estimates at the in-
dividual level are obtained. Thus, individual speech discrimination can be more accurately as-
sessed using state of the art statistical approaches.

1. Introduction

Early speech discrimination is assumed to be vital for children’s language acquisition, as it is a first step into the formation of
speech sound categories. These, in turn, are necessary for word learning (e.g. Tsao, Liu, & Kuhl, 2004). These past decades have seen a
significant increase in our understanding of the development of speech perception in infants (see for recent reviews Maurer & Werker,
2014; Tsuji & Cristia, 2014). However, the majority of studies have based their conclusions on group data. It has thus far turned out
difficult to make claims about individual performance and development, even though this type of information is critical for un-
derstanding individual developmental trajectories as well as clinical questions. It seems that only one study has addressed this matter
so far (Houston, Horn, Qi, Ting, & Gao, 2007). In the present study, we use a variant of Houston et al.’s hybrid visual fixation
paradigm (HVF), and we describe and evaluate a new approach for assessing individual infants’ phoneme discrimination.

Infant speech discrimination can only be measured indirectly. A frequently used behavioral method is a habituation paradigm. In
such paradigms, looking time is the preferred dependent variable. Generally, in habituation paradigms infants are habituated on a set
of stimuli (A), followed by a test phase in which infants are tested on new set of stimuli (B), i.e., the ‘dishabituation’ or ‘change’ trials.
If infants are sensitive to the difference between A and B, longer listening times are expected to the novel stimuli (B) (Sokolov, 1963).
Studies often employ designs with only 2–4 test trials (see Colombo & Mitchell, 2009 for a review). This can lead to interpretation
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difficulties, because infant data is, without exception, noisy. Group results often show large individual variation in looking times. This
reflects substantial inter-individual variation, comprising overall long or short lookers. It also reflects intra-individual variation. This
variation may result from a variety of factors, both infant-internal, such as gas in the digestive system, tiredness, developmental level,
memory capacity, attentiveness, motivation, and external factors, such as sounds other than the stimuli, stimulus complexity, and
task demands. Hence, the length of a look does not merely reflect the mental processing of the stimulus, and thus does not un-
equivocally mirror habituation or dishabituation (Oakes, 2010). In order to deal with the noise, researchers typically collapse data
over individuals. However, the HVF paradigm (Houston et al., 2007) uses 14 test trials instead of 2–4 test trials, which in principle
allows for individual assessment, as the higher number of test trials will boost the signal-to-noise ratio.

Recently, there has been a growing interest in explaining individual differences in infants’ early speech perception, i.e. word
segmentation and speech sound discrimination skills (see Cristia, Seidl, Junge, Soderstrom, & Hagoort, 2014 for a review). A fre-
quently used approach to individual differences is to use follow-up data, such as later vocabulary size, reading scores or other skills to
predict (in retrospect) infants’ looking times (e.g. Altvater-Mackensen & Grossmann, 2015; Cristia, 2011; Junge & Cutler, 2014;
Melvin et al., 2017; Molfese, 2000; Newman, Ratner, Jusczyk, Jusczyk, & Dow, 2006). For instance, Newman et al. (2006) found that
24-month-old toddlers with larger vocabulary sizes were better at speech perception tasks in infancy than their peers with smaller
vocabularies. Although the reported correlations between looking time data and later language, cognitive or social measures, e.g.
vocabulary size, social interaction, social economic status (e.g. Altvater-Mackensen & Grossmann, 2015; Melvin et al., 2017) are
sometimes low to moderate, the meta-analysis of Cristia et al. (2014) shows that early speech perception skills have a predictive value
of later language skills.

Even though there is a (weak) positive relation between early looking time data and later language, cognitive or social measures,
this is not the same as being able to assess an individual child’s ability to discriminate speech sounds or segment words. There are
three reasons why individual data collected with the traditional discrimination paradigms cannot provide this information. First,
individual data is likely to show that some infants have, on average, longer listening times to the familiarized, than to the new stimuli
(Houston-Price & Nakai, 2004). This could be due to some infants having reached the habituation criterion without having fully
encoded the stimulus (Aslin & Fiser, 2005); as a consequence they do not look longer to the new stimulus. However, such a looking
pattern does not imply that they cannot discriminate A from B (e.g. Aslin & Fiser, 2005; Houston-Price & Nakai, 2004). This implies
that the direction of the difference in raw looking times cannot be used to infer discrimination. Second, it is not a priori clear that a
larger looking time difference between stimuli A and B is evidence for better discrimination performance, and a smaller difference
reflects poorer discrimination (Aslin & Fiser, 2005), because there is no clear conceptualization of looking time duration and dis-
crimination. Third, although Houston found high test-retest reliability (Houston et al., 2007), this test-retest reliability was found to
be extremely variable across different experiments in a multi-center study by Cristia, Seidl, Singh, and Houston (2016). Across the
three participating labs 12 speech perception experiments were conducted, which included testing and retesting of 5-12-month-old
infants within 18 days. Some of the labs found significant correlations between performance of the infants tested on two separate
days, whereas others did not. One of the labs used the HVF paradigm to assess speech sound discrimination skills of a vowel contrast
(/i - u/), a consonant contrast (/sa - ʃa/) and a word contrast (boodup-seepug). Here too, test-retest reliability was extremely variable
across experiments; there were high test-retest correlations for vowel and consonant contrasts, but not for the word contrast. In
conclusion, it appears highly challenging, if not impossible, to infer discrimination at the individual level, based on raw looking time
data.

Evidence for discrimination at the individual level might be found if infant data could be modeled taking into account the
individual variances as well as the autoregressive effect, i.e. the correlations in noise between trials. Houston and colleagues at-
tempted to tackle these issues by using the HVF paradigm and applying statistical analyses on the individual data and test trials.
However, the statistical approach by Houston et al. (2007), testing each infant individually using a classical frequentist approach,
ignores chance findings based on multiple testing, and misses the opportunity to gain strength in analyses by taking the hierarchical
structure of the data into account. Bayesian hierarchical modelling could be a solution to overcome the multiple testing impracticality
(Gelman, Hill, & Yajima, 2012). Additionally, adding (hierarchical) information to the individual estimates reduces noise, and also
reduces the number of cases for which estimated effects are found in the wrong direction, type-S (sign) errors, and inflated estimated
effects, type-M (magnitude) errors (Gelman & Tuerlinckx, 2000).

Houston et al. (2007) developed the HVF paradigm to assess discrimination skills at the individual level. HVF is a habituation
paradigm that includes more test trials (14 trials) than typically used in habituation studies, facilitating individual analysis. In their
study, Houston et al. tested ten 9-month-olds on the pseudowords boodup and seepug. These stimuli could a priori be regarded as
highly discriminable for infants this age. Infants were habituated on one of the words (e.g. boodup) and then tested on alternating
(boodup-seepug) and non-alternating (boodup-boodup) trials. Data was analyzed using a linear regression model with autoregressive
(AR1) error structure. Eight out of the ten infants were able to discriminate the contrast, as indicated by a significant difference in
looking time between alternating (boodup-seepug) and non-alternating test trials (boodup-boodup, seepug-seepug). The paradigm has
successfully been used by other researchers assessing speech (sound) discrimination skills of infants at group level (Cristia et al., 2016;
de Klerk, de Bree, Kerkhoff, & Wijnen, 2019; Dijkstra & Fikkert, 2011; Horn, Houston, & Miyamoto, 2007; Liu & Kager, 2015, 2016).
The design and analysis applied by Houston et al. (2007) might be suitable for assessing individual performance in speech sound
discrimination as well.

In the present study, we applied an adapted variant of Houston et al.’s procedure to infants’ speech sound discrimination: we used
a Dutch vowel contrast (/aː/-/eː/). Smits, Warner, McQueen and Cutler (2003) found that when native adults speakers of Dutch were
presented with /aː/ and /eː/ in syllable medial position, vowel /eː/ was classified only once as /aː/ out of 1548 instances and the
opposite error never occurred. This indicates that the contrast is easy to discriminate by adults. The study by de Klerk et al. (2019) has
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shown that groups of Dutch learning 6, 8, and 10-month-old infants can indeed discriminate this contrast; moreover, performance
increased with age (see Results, 3.1). These findings are in line with theories of speech perception which predict good or age-related
enhancement of discrimination of highly distinctive native speech sounds contrasts (Maurer & Werker, 2015; Tsuji & Cristia, 2014).
The current study investigates outcomes at the individual level rather than the group level, using the data from the previously-
published paper by de Klerk et al. (2019). The primary research question is whether we can obtain similar results at the individual
level as Houston et al. (2007). We expect that a large percentage of individual infants will show evidence of discrimination, mirroring
the findings reported by Houston et al. (2007).

In addition, we explore the application of Bayesian Hierarchical modeling to our discrimination data, and compare it to Houston
et al.’s statistical approach. Bayesian Hierarchical modeling might provide better estimates of individual infants’ discrimination
performance than classical regression modeling: Using a Bayesian Hierarchical analysis allows us to obtain estimates for each of the
individual and group parameters in one model without the need to correct for multiple testing (Gelman et al., 2012). If it can be
assumed that infants within the same age group belong to the same population -i.e. infants are exchangeable within age groups but not
between age groups – a hierarchical (multilevel) structure is thus a more powerful approach.

2. Method

2.1. Participants

A total of 117 typically developing, monolingual Dutch 6–10-month-old infants participated. In addition, 53 infants (31% of total
recruited) were tested, but their data was not included for analysis because of behavior during test (crying, extreme restlessness,
n=31), technical errors (n=12), failure to meet the habituation criterion (n=5; see Procedure), parental interference (n=3), or
ear infection at time of testing (n=3). An overview of the ages and drop-out rates is provided in Table 1. Note that none of the
infants were excluded for failing to meet the pre-and posttest criterion (see Procedure). Parents provided active informed consent
before participation.

2.2. Stimuli

Both auditory as well as visual stimuli were presented in each phase of the procedure. Similar to Houston et al.’s (2007) study, the
experiment consisted of a habituation phase, a test phase, and a pre- and posttest to measure participants’ general attentiveness. For
more detailed information about the stimuli we refer to de Klerk et al. (2019).

During the pre-and posttest infants were presented with both auditory (beep sounds, 330 Hz, played at 65 dB(A), duration 250ms,
ISI 1000ms, total duration of ˜24 s) and visual stimuli. The visual stimuli were three cartoon pictures pseudo-randomly selected from
a set of 25 (e.g. train, car, book), displayed for two seconds on a light blue background. These pictures appeared in three different,
randomly selected positions within an invisible 3× 3 grid, see Fig. 1. Every two seconds new pictures appeared at different locations.

In both the habituation and test phase participants heard a speech token repeatedly (with a maximum of 30 repetitions) while being
shown one of six still pictures of smiling female faces. The faces were displayed in a random order, one face per trial. Houston and
colleagues used movies of females producing the words: we could not do the same because of technical limitations. Between habi-
tuation trials a visual attention getter was displayed: a video of a cute laughing baby. The attention getter shown between test trials
was a video clip of a toddler going down a slide (see Fig. 1 for the visual stimuli). Auditory stimuli were native vowels /aː/ and /eː/,
embedded in pseudowords faap (/faːp/) and feep (/feːp/). Five tokens of four female Dutch native speakers (aged between 25 and 35
years of age) were obtained. From three speakers one token was selected. From the fourth speaker two tokens were selected, one of
which was used during the habituation and test phase and the other only during test phase (see Fig. 3 for an overview). The four
different speakers that were used during the habituation phase were presented per block of 4 trials, in randomized order. All auditory
stimuli were played at ˜65 dB(A). Tokens were spoken in a child-friendly manner.

2.3. Procedure

Infants were seated on their caretaker’s lap in a sound-attenuated booth. As soon as infants looked towards the computer screen in
front of them, the experimenter started the first trial. In each trial, the time the participant was looking at the screen was measured.
Whenever the participant looked away for 2 consecutive seconds, the trial was ended; a new one started when the infant oriented to

Table 1
Numbers of Participants, Mean Ages and Age Ranges, and Drop-Out Rate per Age Group.

Age Group Age range Age (days) Infants tested Infants included Drop-Out Rate
month.days M (SD) N= n= n = (%)

6 6.1 - 6.30 203 (8.4) 59 38 21 (35)
8 8.0 - 8.30 259 (6.5) 66 44 22 (33)
10 10.3-10.30 320 (12.9) 45 35 10 (22)
Total 170 117 53 (31)
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the screen again. There was no minimum looking time to the screen. Looking times were coded online using a button box connected
to the computer controlling the experiment and acquiring data.

Pre- and posttest were used to gauge participants’ general attentiveness. If total looking time to the posttest stimulus was less than
50% of the total looking time to the pretest stimulus, the participant was considered to be showing a general loss of attention and was
discarded for analysis. This was never the case in our sample (see Participants).

The habituation phase consisted of a maximum of 12 trials, with a maximum of 30 repetitions of a token per trial (ISI of 1 s)
resulting in a total duration of approximately 48 s. A 65% habituation criterion was used to determine whether the participant had
habituated. To determine whether the habituation criterion was met, a moving window was used (Fig. 2). The mean looking times of
the first three trials (1–3) was compared to the subsequent three trials (4–6): if looking time had decreased by (minimally) 35%, the
criterion was met. If not, the mean looking time of trial 1–3 was compared to 5–7, 6–8, etc., and the same criterion applied, up until
the final subset 10–12. Infants who did not meet the habituation criterion were not included in data analysis (n=5, see Participants).
The selection of habituation stimuli (faap (/faːp/) or feep (/feːp/)) was counterbalanced between infants. Infants were presented with
all four voices, in randomized order: in each block of four trials the infant heard all four voices but in randomized order within the
blocks (see Fig. 3).

The test phase included a fixed number of 12 trials, with a maximum number of 30 tokens per trial, resulting in a duration of

Fig. 1. Visual stimuli presented during the pre- and posttest, habituation and test phase.
Note: Picture 1 is an example of the visual stimuli during pre-and posttest; 2 is an example of a female face used during habitation and test trials; 3 is
a still of the attention getter between habituation trials and 4 is a still of the attention getter between test trials.

Fig. 2. Visual depiction of the assessment of the (65%) habituation criterion.
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approximately 48 s per trial. Houston et al. (2007) used 14 test trials (10 non-alternating and 4 alternating). We reduced the number
of test phase trials and thus duration, because we know from experience that Dutch infants are not always able to sit through
experiments that have the same duration as those conducted with infants in the US. Of these 12 test trials, four were alternating (e.g.
/feːp/-/faːp/), and 8 non-alternating (e.g. /faːp/-/faːp/). The alternating and non-alternating trials were presented in a semi-fixed
order: the first trial could be either alternating or non-alternating, which was counterbalanced. Three subsequent alternating trials
occurred at positions: 5, 8 and 12. During the test phase a new token of one familiar speaker was introduced, either non-alternating or
alternating (see Fig. 3).

3. Results

3.1. Summary of the group data published in de Klerk et al. (2019)

The group-based data is presented in Fig. 4 and Table 2. Mixed Modeling using SPSS (version 23) with Subjects as random factor,
Trial Number as a repeated effect (covariance structure AR1), and Trial type (alternating vs. non-alternating) and Age as the fixed
factors showed that at group level, infants between 6–10 months of age discriminated /faːp/ from /feːp/, at group level (de Klerk
et al., 2019). In the current study we focus on the individual data.

Fig. 3. Schematic overview of the experimental procedure with reference to the auditory stimuli only.
Note. In this example, the first test trial is non-alternating and consequently the second is alternating. The remaining three alternating trials have a
fixed number, viz. the 5th, the 8th and 12th trial. Alternating trials are printed in bold. Token is abbreviated as ‘T’ and Speakers as ‘S’.

Fig. 4. Raw mean looking times (milliseconds) to alternating and non-alternating trials per age group.
Note. Error bars represent Confidence Intervals (95%).
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3.2. Data screening

The raw looking times to alternating and non-alternating trials were not normally distributed; for this reason, a log transformation
(Log10) was performed. After this transformation the skewness (.123, SE= .065) and kurtosis (.150, SE= .131) values were ac-
ceptable. We refer to the supplementary files for histograms of the raw and log transformed data (https://osf.io/ebrxy/).

3.3. Analysis 1: linear regression model with autoregressive (AR1) error structure

To assess individual performance, we used the same regression model with autoregressive effect as Houston et al. (2007), Fig. 5).
Looking times and statistical outcomes per infant are reported in Appendix A. Individual analyses show that condition effects were
significant for 14 participants, implying that only 12% of the infants were able to discriminate between alternating and non-alter-
nating trials. When we correct for multiple testing using the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995), this
number decreases to 3 infants (3/117), a mere 3%.

Our results do not align with the results of the study of Houston et al. (2007), in which 80% (8/10) of the 9-month-old infants
successfully discriminated the contrast. Applying the Benjamini-Hochberg correction for multiple testing to Houston et al. (2007)
data did not make a difference in their outcomes, because of the few participants tested and the large effect of condition on looking
times. Nevertheless, an analysis without having to correct for multiple testing is desirable and Bayesian modeling could be a solution.

3.4. Analysis 2: hierarchical Bayesian analysis

The analyses used in the paper by Houston et al. (2007) rely on separate regression analyses for each individual child. However, if
we assume that infants are exchangeable within the same age group, that is, that they come from the same population, an alternative
and more powerful approach is to model their looking times in a hierarchical (multilevel) structure. By modeling both the individual
and group effects in one analysis instead of doing so for 117 separate analyses, one for each individual, part of the observed variance
could be explained at the group level instead of trying to explain all variance at the individual level. As a result, we will have reduced
uncertainty in our estimates for the individual parameters (Gelman, 2006). Moreover, by using a Bayesian hierarchical analysis, we
are able to obtain estimates for each of the individual and group parameters in one model without the need to correct for multiple
testing (Gelman et al., 2012).

In our Bayesian hierarchical regression, we modelled the individual infant data in three groups based on their age (6, 8 and 10
months). We used the same model as before, namely a regression model with an AR1 error structure, with Log10 transformed looking
times as outcomes and condition (alternating or non-alternating trial) as predictor. For all groups we obtained both group and individual
estimates for the intercept (looking time alternating trials), the condition (difference in looking time between alternating and non-
alternating trials) and the AR1 effect. Details on the priors, estimation, model fit and sensitivity analyses are given in the supplementary
files on the Open Science Framework webpage for this study at (https://osf.io/ebrxy/). In short, we achieve a good model fit.

The parameter of interest was the condition parameter. This parameter allowed us to establish whether the looking times differed
between the alternating and non-alternating condition for the individual infants. To keep the decision criterion as similar as possible
to the previously described analyses, we checked how many of the infants included the value 0 in their 95% credibility interval (CI)
for the condition parameter. For the 95% CI (the 0.025 and 0.975 quantiles of the posterior sample) we regard this interval as having

Table 2
Listening Times (seconds) to Alternating and Non-Alternating Trials.

Infants Age Group Alternating Trials Non-Alternating Trials Statistics

N M (SD) M (SD) F P Cohen’s d

38 6 10.4 (8.6) 7.9 (6.8) 13.55 < .001 .31
44 8 9.7 (8.6) 7.1 (6.7) 21.74 < .001 .32
35 10 8.1 (5.6) 5.7 (4.5) 29.24 < .001 .45
117 All 9.4 (7.9) 7.0 (6.3) 62.70 < .001 .32

Fig. 5. The model used for the linear regression with autoregressive errors.
Note. Subscript t denotes the trial number t=1,…,T; y denotes the looking time of the trial; C denotes the condition (alternating or non-alternating)
of the trial; e denotes the error term; 1 denotes the autoregressive factor. In this model b Ct1 accounts for the influence of the condition and b1 is
interpreted as the difference in looking time for the two conditions. The dependence on the looking time of the previous trial is found in the
specification of the error structure, at1 1. The error in the current time, at , point is dependent on the error of the previous time point, at 1, except
for a1, because a1 is the first trial. There is no carry-over effect from the previous trial and no autoregressive effect.
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a 95% probability of containing the unknown parameter value. In contrast, the 95% Confidence Interval in frequentist statistics
relates to (potential) replications of the experiment and expresses the expectation that the interval contains the true parameter
estimate in 95% of the experiments. In our study, the percentages of infants whose 95% CI did not include 0 are displayed per age
group in Table 3. For the 10-months-olds we found that 77% discriminated between the alternating and non-alternating condition,
and 53% of the 6-month-olds did, whilst for the 8-month-old infants this was only 27%.

Fig. 6 shows the results of the hierarchical model for each individual per age group. Credibility Intervals for the 8-month-old
infants show larger uncertainty for the estimates than for the other two age groups, especially the 6-month-olds. The group-estimated
effect of condition, depicted in the left panel of Fig. 7, increases with age. The estimated random effect for condition is largest in the
8-month-old group, which can be seen from the variance estimates in the right panel of Fig. 7. Because the infants of the 8-month-old
group differ more from one another than the infants in the other age groups, less shrinkage of estimates occurs and we remain more

Table 3
Number and Percentage of Infants that Discriminate the Contrast Significantly per Age Group and of Infants that did not include the Value 0 in Their
95% Credibility Interval (CI).

Frequentist (non-hierarchical) modeling Bayesian Hierarchical modeling

Age Group Participants Uncorrected Successful Discrimination (%) Corrected Successful Discrimination (%) Infants without 0 in their 95% CI (%)

6 38 2 (5) 0 (0) 20 (53)
8 44 4 (9) 2 (5) 12 (27)
10 35 8 (23) 1 (3) 27 (77)
Total 117 14 (12) 3 (3) 59 (50)

Fig. 6. Results of the hierarchical model for each individual per age group.
Note. The black dots represent the median; the red bars represent the 95% Credibility Intervals. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).
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uncertain about their estimated condition effects. This outcome is visible in the larger credibility intervals for the infants in age group
8 compared to the other two age groups.

As part of the model assessment we conducted posterior predictive checks. These checks provide insight into the plausibility to the
hypothesized and estimated model by drawing simulations from the posterior model. Fig. 8 shows how well the model fits the data of
a particular child, in this case child 16 in age group 6. Simulations are based on the posterior parameter estimates for this specific
child at each specific measurement, taking into account the child-specific estimated looking times for (non-)alternating trials, the
child-specific condition effect and the child-specific autoregressive effect. The posterior predictive p-value (ppp) indicates the pro-
portion of simulated values for this measurement that are smaller than the observed value. If ‘ppp’ falls between 0.025 and 0.975 we
conclude that our model provides an accurate prediction for this specific observation. Note that this specific child 16 is classified as
non-discriminator and that all measurements are accurately captured by the model as shown by the blue bars in each histogram
(Fig. 8). For an example of a child classified as non-discriminator with less accurate model descriptions for the observed measurement
see for instance child 17 from age group 10, measurements (trials) 5 and 7 (see https://osf.io/ebrxy/).

To evaluate the effects of the hierarchical regression compared to modelling the individual regressions, we also ran Bayesian
regression analyses with AR1 error structure without the multilevel structure. Fig. 9 shows the estimates with their uncertainty for the
condition parameter for all infants in age group 6 (only); the other groups show similar patterns. The figure shows that including the
hierarchical structure reduced the uncertainty of the estimates markedly.

Table 4 displays the mean log-transformed looking time differences between the alternating and non-alternating trials for all individuals
that did not include the value 0 in their 95% CI for the condition effect in the hierarchical regression. These raw data show the direction of the
average difference in looking time between alternating and non-alternating trials, as well as the magnitude of the average difference between
trial types. As can be seen, both looking time difference directions are present, meaning that the data set includes infants with on average
longer looks to alternating trials as well as infants with on average longer looks to non-alternating trials. In addition, Table 4 shows that the
magnitude of looking time differences between alternating and non-alternating trials shows considerable variation.

4. Discussion

The primary aim of this study was to determine if speech discrimination performance can be reliably assessed for individual
infants in a habituation design. This is crucial for understanding individual developmental trajectories and in addressing potential
clinical questions. In order to do so we used the experimental design – hybrid visual fixation (HVF) – and statistical approach – linear
regression modeling with autoregressive error structure – reported in Houston et al. (2007). Houston et al. found that 80% (8/10) of
their 9-month-old participants discriminated the boodup - seepug contrast. Our study assessed individual native phoneme (/faːp -
/feːp/) discrimination in Dutch infants aged 6, 8 and 10 months, using a slightly altered version of the HVF paradigm. When
conducting the regression analysis that Houston et al. (2007) applied, we found that only 12% (14/117) of the infants discriminated
the contrast. We were thus not able to replicate Houston et al.’s (2007) findings, using the same model as they did.

Houston et al. did not correct for multiple testing, but when such a correction is applied (as we did), it did not make a difference for
the findings of the Houston et al. sample. For our study, however, the correction led to a reduction of the percentage of infants in whom
discrimination could be attested to 3% (from 12%). Bayesian Hierarchical modeling provides both group and individual estimates using
the same model and therefore has the advantage that it does not require correction for multiple testing. Using a hierarchical model with
both the autoregressive effect (looking time decreases during test) and the inclusion of group information led to reduced uncertainty of
the estimates of the condition effects (alternating versus non-alternating) at both the group and the individual level. The analysis

Fig. 7. Group estimates for condition effects and variation per age group.
Note. The left panel shows the group estimates for condition effects. The right panel shows the standard deviation of the condition effect per age
group. The densities, presented in red, represent the 95% credibility interval. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).
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returned a higher percentage (50%) of infants that showed evidence of discrimination. Evidence of discrimination is defined as the 95%
credibility interval that does not include value 0 for the condition effect. For the 10-months-olds we found that 77% discriminated
between faap and feep, while 53% of the 6-month-olds and only 27% of the 8-month-olds did. These individual discrimination outcomes
are still lower than expected. We expected that most infants would show evidence of discrimination, regardless of age and we predicted
discrimination percentages comparable to those obtained by Houston et al. (2007). Seventy-seven percent of the 10-months-old infants
discriminated the contrast. This is comparable to findings of 9-month-olds in the study of Houston et al. (2007). It is conceivable that the
design (14 alternating and non-alternating test trials) is more suitable for the older than for the younger infants.

Two design differences between the study by Houston et al. (2007) and ours could also account for the diverging results. First, Houston
et al. used a word contrast, boodup - seepug, which differs markedly from the phonemic contrast /faːp - feːp/ we used. The more conspicuous
word contrast may have elicited a larger difference between alternating and non-alternating trials. Second, Houston et al. used 14 test trials,
two more non-alternating trials than we did. This might have caused a lower mean looking time to non-alternating trials, as infants’ internal
representation of the old (non-alternating) stimulus might become stronger during test, which is expected to result in a larger increase in
looking time to new stimuli (Sokolov, 1963). Still, infants of all age groups showed evidence of discrimination (de Klerk et al. (2019) and
Fig. 7 of this paper) and this does not seem to align with the lower percentage of infants significantly discriminating the contrast we observed
in the current study. However, age-related enhancement of discrimination is shown by an increasing percentage of infants discriminating the
contrast, which fits the theory of perceptual attunement (Tsuji & Cristia, 2014; Maurer & Werker, 2015).

Our individual analyses are an exploratory extension of the individual analyses done by Houston et al. (2007); we used Bayesian
hierarchical modelling to assess if an infant can discriminate the two stimuli. The theoretical advantages of our approach have been
discussed throughout the paper. The approach by Houston et al. (2007) and our approach lead to different conclusions for many
infants in our study. Strictly speaking, our decision rule, i.e., discrimination is attested if the 95% CI does not include 0, is not an
entirely proper method for hypothesis testing. Some shortcomings of forcing decision rules on parameter estimates are discussed in
Lee (2018), where Bayes Factors are advocated. However, the application of Bayes Factors in the current setting would present
serious challenges and there are arguments against them in general (Gelman et al., 2013). On the other hand, our approach is not
unprecedented; Kruschke (2013), for example, used a similar approach as an alternative to t tests, and Gelman and Tuerlinckx (2000)

Fig. 8. Posterior predictive simulations for child 16 in age group 6 for all 12 observed trials. Each histogram contains 6000 simulated values for that
particular observation of that specific child based on the posterior parameter estimates. The blue vertical line denotes the actually observed value for
the specific measurement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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show that this approach reduces the chance of Type S (sign) errors in comparison to the classical framework. The decision rule we
used could be used to infer discrimination.

The Bayesian hierarchical model presents a more reliable statistical approach: If measurements contain (substantial) noise, this
negatively affects the reliability of a measurement. That is, if we measure the same construct multiple times we obtain different
results. If we are able to reduce the noise, our measurement becomes less variable and will measure the same construct in a more
stable manner over multiple times. By including hierarchical structures in our model we can capture part of the noise in our estimated
looking times (see Fig. 9). The reduction of the noise leads to less variable representations of the measurements which can be seen as
an improvement of the reliability of the measurements (Gelman et al., 2012).

The current study aimed at assessing individual outcomes because looking time data is noisy and often challenging to interpret (Aslin &
Fiser, 2005; Oakes, 2010). Nevertheless, studies do attempt to interpret these individual variations by, for instance, examining follow-up
data and in retrospect analyze the infant looking time data (e.g. Newman et al., 2006), which at group level give some insight in the
relations between early perception skills and later language development (Cristia et al., 2014). However, raw looking time data cannot be
used to infer success or failure. In order to classify individuals as discriminators, data should be modelled and advanced statistical methods
need to be applied. The method presented in this study allows us to classify individual infants as discriminators or non-discriminators.
Moreover, the procedure allows us to investigate how well our model performs for each trial for each individual child using posterior
predictive checks, an example can be seen in Fig. 8. However, more research needs to be done to investigate replicability of the current
study. Factors that will influence outcomes are, for example, sample size, as estimates will be more accurate with increased sample size,
and the total number of data points per subject. Future research should also focus on the question whether classification as presented in
this study is indeed of clinical value: do infants classified as discriminators have better language performance measured at a later age?

Taken together, assessing individual discrimination performance with an autoregressive model per individual without correcting
for multiple testing is not an approach to be favored. On the other hand, if multiple testing is corrected for, significant results rely on
sample size, because with each infant that is added another test should be run. Sample size influences the corrected alpha-level,

Fig. 9. Comparison of results of individual and hierarchical analyses for condition parameter of each infant in the 6-month-olds group.
Note. The Hierarchical model reduces the uncertainty (95% CI represented by red bar (median represented by the black dot) for the parameter
estimates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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which is arbitrary. A model in which all these issues can be tackled is the Bayesian Hierarchical model: we can account for a decrease
in looking time (autoregressive effect); it includes group information in the hierarchical model; it does not require correction for
multiple testing, and it provides more confidence in classifying infants as being able to discriminate a stimulus contrast or not. Our
findings thus provide a step forward in assessing infants’ speech discrimination.
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Appendix A

See Table A1.

Table 4
The Mean Looking Time Difference between Alternating and Non-Alternating Trials for the Infants whose Confidence Interval (95%) did not cross
the Value 0.

Subject Group Difference Subject Group Difference
Age alternating - nonalternating Age alternating - nonalternating

child 02 6 −.10 child 41 8 −.27
child 03 6 −.14 child 44 8 −.07
child 05 6 −.03 child 01 10 .12
child 06 6 .03 child 02 10 .13
child 07 6 −.10 child 03 10 −.09
child 08 6 −.01 child 04 10 .25
child 09 6 −.02 child 05 10 .11
child 12 6 −.05 child 06 10 .09
child 13 6 .02 child 07 10 .15
child 14 6 −.16 child 08 10 .26
child 16 6 −.13 child 09 10 .16
child 19 6 −.03 child 10 10 .11
child 20 6 .19 child 12 10 .20
child 23 6 .03 child 13 10 −.02
child 24 6 .09 child 14 10 .15
child 29 6 .11 child 15 10 −.12
child 32 6 .06 child 16 10 −.15
child 33 6 −.07 child 17 10 −.04
child 34 6 −.04 child 18 10 .14
child 36 6 .08 child 19 10 −.23
child 01 8 −.24 child 21 10 .03
child 08 8 −.36 child 23 10 .14
child 13 8 −.15 child 26 10 −.02
child 17 8 .19 child 27 10 .12
child 20 8 .48 child 28 10 .22
child 21 8 .04 child 29 10 −.10
child 30 8 −.10 child 32 10 .16
child 32 8 −.12 child 34 10 .36
child 34 8 −.11 child 35 10 .02
child 37 8 −.08

Note. The mean log-transformed looking time differences are presented.

M. de Klerk, et al. Infant Behavior and Development 57 (2019) 101345

11



Table A1
Mean Listening Times per Condition (Alternating and Non-Alternating), Difference Score and p Value for Condition for each Infant.

Participant Age Condition Difference Statistics

(months) Alternating Non-Alternating Alt minus Non-alt p_adj

child 10 6 4,05 3,74 0,31 .012
child 38 6 3,71 3,59 0,12 .022
child 31 6 3,92 3,69 0,22 .055
child 4 6 4,26 3,98 0,28 .055
child 18 6 4,43 4,08 0,35 .062
child 35 6 3,95 3,67 0,29 .074
child 15 6 4,22 3,98 0,24 .100
child 25 6 4,26 3,94 0,32 .113
child 29 6 4,06 3,95 0,11 .128
child 37 6 4,24 4,02 0,22 .133
child 17 6 3,74 3,58 0,16 .134
child 11 6 4,34 3,99 0,35 .14
child 26 6 4,20 4,06 0,14 .211
child 30 6 3,88 3,75 0,13 .23
child 14 6 3,61 3,76 −0,16 .258
child 3 6 3,80 3,94 −0,14 .278
child 28 6 4,16 3,90 0,26 .293
child 22 6 3,90 3,80 0,10 .295
child 7 6 3,82 3,91 −0,10 .335
child 2 6 3,57 3,67 −0,10 .347
child 33 6 3,87 3,94 −0,07 .406
child 19 6 4,01 4,04 −0,03 .416
child 27 6 4,05 3,99 0,06 .46
child 8 6 3,77 3,78 −0,01 .524
child 16 6 4,02 4,15 −0,13 .56
child 1 6 3,97 3,87 0,10 .603
child 13 6 3,84 3,82 0,02 .665
child 20 6 3,96 3,78 0,19 .675
child 21 6 3,55 3,47 0,07 .675
child 32 6 3,72 3,66 0,06 .723
child 23 6 3,79 3,76 0,03 .725
child 6 6 4,09 4,05 0,03 .748
child 24 6 4,21 4,12 0,09 .773
child 36 6 3,99 3,91 0,08 .847
child 5 6 3,70 3,73 −0,03 .85
child 12 6 4,19 4,23 −0,05 .857
child 9 6 3,79 3,82 −0,02 .899
child 34 6 3,88 3,92 −0,04 .905
child 9 8 4,42 3,70 0,72 .001
child 7 8 3,76 3,30 0,46 .001
child 20 8 3,97 3,49 0,48 .022
child 15 8 3,94 3,55 0,38 .031
child 38 8 3,43 3,51 −0,08 .051
child 19 8 3,95 3,74 0,21 .053
child 10 8 4,01 3,73 0,28 .057
child 27 8 4,20 4,00 0,20 .062
child 35 8 4,36 3,96 0,40 .067
child 17 8 4,30 4,11 0,19 .092
child 40 8 4,15 3,78 0,37 .098
child 29 8 4,24 4,02 0,22 .142
child 5 8 4,13 4,00 0,13 .144
child 11 8 3,82 3,47 0,35 .153
child 25 8 3,88 3,72 0,16 .160
child 6 8 3,72 3,54 0,18 .160
child 12 8 3,85 3,70 0,15 .202
child 13 8 3,82 3,97 −0,15 .242
child 41 8 3,68 3,95 −0,27 .254
child 8 8 3,68 4,04 −0,36 .294
child 16 8 4,25 4,00 0,25 .319
child 36 8 4,06 3,94 0,12 .332
child 3 8 3,92 3,80 0,12 .354
child 18 8 3,90 3,69 0,21 .387
child 23 8 4,04 3,85 0,19 .397
child 26 8 3,84 3,69 0,15 .420
child 39 8 3,79 3,59 0,20 .440
child 31 8 4,18 4,03 0,15 .483

(continued on next page)
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