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ABSTRACT
Sapropels are organic-rich sediment layers deposited in the eastern Mediterranean Sea dur-

ing precession minima, resulting from an increase in export productivity and/or preservation. 
Increased freshwater delivery from the African continent resulted in stratification, causing deep-
water anoxia, while nutrient input stimulated productivity, presumably at the deep chlorophyll 
maximum. Previous studies have suggested that during sapropel deposition, nitrogen fixation 
was widespread in the highly stratified surface waters, and that cyanobacteria symbiotic with 
diatoms (diatom-diazotroph associations, DDAs) were responsible. Here we analyzed sapropel 
S5 sediments for heterocyst glycolipids (HGs) from three locations in the eastern Mediterra-
nean. HG biomarkers can differentiate between those heterocystous cyanobacteria that are free 
living (found predominately in freshwater or brackish environments) and those that are from 
DDAs (found in marine settings). In our primary core, from a location which would have been 
influenced by the Nile River outflow, we detected a HG with a pentose (C5) head group specific 
for DDAs. However, HGs with a hexose (C6) head group, specific to free-living cyanobacteria, 
were present in substantially (up to 60×) higher concentration. These data suggest that at our 
study location, free-living cyanobacteria were the dominant diazotrophs, rather than DDAs. 
The C6 HGs increased substantially at the onset of sapropel S5 deposition, suggesting that 
substantial seasonal cyanobacterial blooms were associated with a brackish surface layer flow-
ing from the Nile into the eastern Mediterranean. Two additional S5 sapropels were analyzed, 
one also from the Nile delta region and one from the region between Libya and southwestern 
Crete. Overall, comparison of the HG distribution in the three S5 sapropels provides evidence 
that all three locations were initially influenced by surface salinities that were sufficiently low 
to support free-living heterocystous cyanobacteria. While free-living heterocystous cyanobac-
teria continued to outnumber DDAs during sapropel deposition at the two Nile-influenced 
sites, DDAs, indicators of persistent marine salinities, were the dominant diazotrophs in the 
upper part of the sapropel at the more westerly site. These results indicate that N2 fixation by 
free-living cyanobacteria offers an important additional mechanism to stimulate productivity 
in regions with strong river discharge during sapropel deposition.

INTRODUCTION
The dark-colored, organic-rich sapropels 

found in the eastern Mediterranean Sea are 
associated with a stratification-linked reduction 
in ventilation resulting from freshwater outflow 

during precession minima, concurrent with in-
creased organic-matter export from the photic 
zone. The increase in productivity is, for sapro-
pel S5 and probably most other sapropels, linked 
to a highly productive deep chlorophyll maxi-
mum (DCM) (Rohling et al., 2015). Increased 
organic-matter flux into the poorly ventilated 

bottom waters and subsequent respiration re-
sulted in anoxia development and sapropel 
formation (Rossignol-Strick et al., 1982; Rossi-
gnol-Strick, 1985; Rohling et al., 2015). Isotope, 
biomarker, and microfossil studies have suggest-
ed that the nutrient-sparse surface waters would 
have been favorable for cyanobacterial nitrogen 
fixation and, in particular, diatom-cyanobacteria 
symbioses (Kemp et al., 1999; Sachs and Repeta, 
1999; Bauersachs et al., 2010) termed diatom-
diazotroph associations (DDAs).

Heterocyst glycolipids (HGs) are biomarkers 
for cyanobacteria that use heterocysts to carry-
out N2 fixation (Nichols and Wood, 1968; Gam-
bacorta et al., 1995; Bauersachs et al., 2009a). 
The sugar moiety of HGs found in free-living 
heterocystous cyanobacteria is typically hexose 
(hereafter C6), while the HGs associated with 
endosymbiotic heterocystous cyanobacteria in 
DDAs contain a pentose moiety (hereafter C5) 
(Schouten et al., 2013; Bale et al., 2015). C6 
HGs have been applied as specific paleo-bio-
markers for the presence of N2-fixing cyanobac-
teria in marine and lacustrine geological records 
(Bauersachs et al., 2010; Sollai et al., 2017). Pre-
viously, Bauersachs et al. (2010) found that C6 
HGs were abundant in the S5 sapropel from a 
Nile-influenced location in the eastern Mediter-
ranean Sea and suggested that they were likely 
derived from DDAs. However, the subsequent 
discovery that all DDAs studied to date produce 
C5 HGs (Schouten et al., 2013; Bale et al., 2015), 
not C6 HGs, casts uncertainty on this explanation. 
Furthermore, the analytical method of Bauer-
sachs et al. (2010) did not cover the detection 
of C5 HGs. Here we comprehensively analyzed *E-mail: nicole.bale@nioz.nl
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the C5 and C6 HGs in a sediment core from the 
eastern Mediterranean Sea containing a well-
preserved sapropel S5 (ca. 128.3–121.5 ka; Grant 
et al., 2016), as well as two other S5 sapropels 
also located in the eastern Mediterranean Sea, 
in order to unravel the primary mechanism for 
N2 fixation by cyanobacteria during this interval.

METHODS
A piston core and suspended particulate 

matter (SPM) were obtained during Nether-
lands Earth System Science Centre (NESSC) 
research cruise 64PE406 onboard the R/V Pe-
lagia in the eastern Mediterranean in January 
2016. A 920.5-cm-long piston core was col-
lected at cruise station 1 (core 64PE406-E1, 
33°18.14898′N, 33°23.71998′E, water depth 
1760 m; larger red filled circle in Fig. 1) in the 
southeastern Levantine Sea. McLane in situ 
pumps (McLane Laboratories Inc., Falmouth, 
UK) were used to collect SPM from the water 
column for lipid analysis (see the GSA Data 
Repository1 for details). Two other S5 sapropels 
from core MS66PC (2004 MIMES [Multiscale 
Investigations of Eastern Mediterranean Seep 
Systems] cruise; Bauersachs et al., 2010) and 
Ocean Drilling Program (ODP) core 160-971C-
2H-3 (Pearce et al., 1998; Kemp et al., 1999) 
were also analyzed for their HG lipid content. 
For details of sample extraction and lipid analy-
sis, see the Data Repository. The core chronolo-
gy of the sapropel S5 interval (for details, see the 

Data Repository) was obtained by correlating 
the Ba variability to that of published sapropel 
boundaries (Grant et al., 2016) and, for intervals 
prior to S5, to other Ba excursions (Ziegler et al., 
2010). Sedimentary bulk elemental composi-
tion measurements by X-ray fluorescence (XRF) 
core scanning were performed with trace-metal 
settings (Hennekam et al., 2019); for details, see 
the Data Repository.

RESULTS AND DISCUSSION
We examined the HG distribution in 30 

× 1 cm sediment slices from a depth interval 
including sapropel S5 (as evidenced from total 
organic carbon [TOC] and XRF elemental 
ratios; Fig. 2). We detected (1) a single C5 HG, 
1-(O-ribose)-3,27,29-triacontanetriol (C5 HG30 
triol); and (2) three C6 HGs, 1-(O-hexose)-3,25-
hexacosanediol (C6 HG26 diol), 1-(O-hexose)-
3,27-octacosanediol (C6 HG28 diol), and 
1-(O-hexose)-3,27,29-tricontanetriol (C6 HG30 
triol) (see Fig. 2 for structures). We found a 
notably higher concentration of C6 HGs (maxima 
between 20 and 31 µg [g TOC]−1) relative to 
the C5 HG (maximum 1.8 µg [g TOC]−1). The 
concentrations of all HGs (normalized to TOC) 
were higher in the sapropel (Figs. 2B–2E).

The occurrence of C5 HG30 triol prior to and 
during the onset of S5 (Fig. 2B) suggests that 
cyanobacteria belonging to DDAs, specifically 
Richelia intracellularis (Schouten et al., 2013; 
Bale et al., 2015, 2018), were present in the eu-
photic zone at our study site before the depo-
sition of the S5 sapropel, and then either they 
increased in number or their HG was more ef-
ficiently preserved during S5 deposition. The 
presence of C5 HG30 triol agrees with the high 
numbers of the DDA host diatoms, in particular 
Hemiaulus hauckii, that have been reported in 
sapropel S5 (Kemp et al., 1999) at ODP site 971 
south of Crete. Kemp et al. (1999) concluded 
that increased freshwater-induced stratification 

of surface waters, although still highly marine, 
led to conditions that were ideally suited for 
DDAs. In the modern-day eastern Mediterra-
nean, DDAs containing R. intracellularis have 
been detected in low levels throughout the year 
with a maximum in autumn (Zeev et al., 2008). 
We also detected C5 HG30 triol in modern-day 
SPM collected in the winter at the site where 
piston core 64PE406-E1 was recovered (Table 
DR1 in the Data Repository).

A quite different trend was observed for the 
C6 HGs than for the C5 HG: all three C6 HGs 
increased substantially at the onset of S5 deposi-
tion (Figs. 2C–2E). The three C6 HGs detected 
have been found in varying proportions both in 
cultures of the order Nostocales (Bauersachs 
et al., 2009a; Wörmer et al., 2012) and in fresh-
water and brackish environments (Bauersachs 
et al., 2009b, 2010, 2011, 2013; Wörmer et al., 
2012; Bühring et al., 2014; Bale et al., 2015, 
2016). Based on comparison of the sapropel 
S5 C6 HG distribution with literature data (cf. 
Table DR1), we suggest that during sapropel 
deposition there was an initial peak in the ge-
nus Nodularia (C6 HG26 diol; Fig. 2C), followed 
by dominance in the genus Aphanizomenon (C6 
HG28 diol and C6 HG30 triol; Figs. 2D and 2E). 
To date, the C6 HGs detected in this study have 
not been detected in any DDAs (see the Data 
Repository for further discussion).

The presence of free-living Nostocales in 
eastern Mediterranean sapropel layers is unex-
pected, as these freshwater and/or brackish cya-
nobacteria have not been reported in the modern 
eastern Mediterranean, where the surface salin-
ity is >35 PSU and no C6 HGs were detected 
in the recovered SPM (Table DR1). It is not 
likely that the HGs detected were delivered to 
the sediment by river as the contributions of ter-
restrial biomarker lipids into sapropels are very 
low (Bosch et al., 1998; Menzel et al., 2003). 
Moreover, the Ti/Al ratio, indicative of the rela-
tive contribution of aeolian (Ti) versus Nile-de-
rived fluvial (Al) sediment input (Lourens et al., 
2001), shows the highest Nile discharge well 
after the peak in C6 HGs (Fig. 2I). Hence, we 
find no support for the hypothesis that C6 HGs 
were produced on land, in lakes or rivers, and 
delivered to the sediment record via rivers. Re-
ports of free-living heterocystous cyanobacteria 
in present-day marine settings are very limited: 
planktonic Nostoc has been described in the In-
dian Ocean and the Red and Mediterranean Seas 
(Taylor, 1966), and Anabaena gerdii has been 
reported to occur in the western Pacific Ocean, 
Arabian Sea, and Arafura Sea (Carpenter and 
Janson, 2001). Tuo et al. (2017) reported free-
living Richelia in the western North Pacific. In 
contrast, blooms of free-living cyanobacteria 
are common in brackish environments. For ex-
ample, there are extensive summer blooms of 
the free-living Nostocales species Nodularia, 
Aphanizomenon, and Dolichospermum in the 

1GSA Data Repository item 2019375, details of 
experimental methods used, additional discussion of 
diatom-diazotroph associations, Table DR1 (hetero-
cyst glycolipid compositions cited in the text and data 
from literature), Table DR2 relative abundance of C5 
heterocyst glycolipids and C6 heterocyst glycolipids 
as cited in the literature), and Figure DR1 (records 
used for age model construction)., is available online 
at http://www.geosociety.org/datarepository/2019/, or 
on request from editing@geosociety.org.

Figure 1.  Map of area 
where core 64PE406-E1 
was recovered, eastern 
Mediterranean Sea. Recov-
ery position of other cores 
referenced in text are also 
indicated: Ocean Drilling 
Program (ODP) Site 160-
971. (Kemp et  al., 1999; 
Sachs and Repeta, 1999) 
and core site MS66PC 
(Bauersachs et al., 2010). 
Stations for suspended 
particulate matter col-
lection are marked with 
red circles (including 
64PE406-E1 recovery sta-
tion). Present-day location 
of river Nile is shown in 
blue, while approxima-
tion of extant river-wadi 
system of Libyan Basin is 
shown in green (adapted 
from Rohling et al., 2002).
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upper 20 m of the Baltic Sea (Hajdu et al., 2007; 
Ploug, 2008; Celepli et al., 2017), where surface 
salinity is on average 6–8 PSU (Gustafsson and 
Westman, 2002). Hence, we propose that the 
abundant C6 HGs in the S5 sapropel at this lo-
cation indicate the presence of free-living het-
erocystous cyanobacteria in a brackish surface 
layer, likely resulting from the freshwater Nile 
river plume in the eastern Mediterranean at the 
onset of S5 deposition.

The presence of a surface brackish layer is 
seemingly inconsistent with the simultaneous 
presence of DDAs, albeit their HGs occur in 
much lower concentrations (Fig. 2B). DDAs 
would also be expected to inhabit the uppermost 
40 m (as seen in the analogous Amazon River 
plume; Foster et al., 2007). DDAs are unimport-
ant at salinities <30 PSU (Foster et al., 2007, 
2009; Subramaniam et al., 2008; Bombar et al., 
2011). We postulate that the presence of low lev-
els of the C5 HG alongside the dominant C6 HGs 
is due to variation in monsoonal river flow and/
or plume location causing seasonal and/or yearly 
oscillations between marine and brackish water 

at the surface and thus an alternation between 
Nostocales and DDA-dominated cyanobacte-
rial populations. Furthermore, in the modern-
day Baltic Sea, cyanobacterial blooms are not 
observed as a pervasive cover, but in surface 
patches (Stal et al., 2003; Ploug, 2008). This can 
explain how, despite the cyanobacterial bloom, 
sufficient light penetrated the surface to support 
the high level of productivity that occurred at the 
DCM during sapropel formation (Rohling and 
Gieskes, 1989). Our results indicate that the low-
salinity surface cyanobacterial blooms started 
to establish at the onset of suboxic to euxinic 
conditions (indicated by U and Mo concentra-
tions and Mo/Al and U/Al ratios [Figs. 2G and 
2H]; Tribovillard et al., 2006) and were occur-
ring periodically for ∼4.5 k.y. The occurrence of 
these blooms peaked and then diminished well 
before the end of the sapropel deposition (Figs. 
2C–2E), possibly due to a change in the nutrient 
availability in the surface waters or a reduced 
input of freshwater, leading to a system which 
did not support N2 fixation. Indeed, the TOC 
of the sediments was still increasing toward a 

maximum (of ∼9% at 357–339 cm depth; ca. 
126–122 kyr B.P.; Fig. 2A), in tune with increas-
ing export of productivity (high Ba/Al ratios; 
Fig. 2F) from a potential DCM, while the con-
centration of all HGs was already decreasing 
(Figs. 2C–2E).

The presence of a lowered-salinity surface 
layer in the eastern Mediterranean due to en-
hanced freshwater influx is well established 
(Rossignol-Strick et al., 1982; Rossignol-Strick, 
1985; Rohling et al., 2004; Rohling, 2007; van 
der Meer et al., 2007; Rodríguez-Sanz et al., 
2017), although the extent and intensity of 
this surface freshening is uncertain. In order to 
constrain the geographical spread of the bloom, 
we also examined the HG distribution in the S5 
sapropels recovered in cores MS66PC (Bauer-
sachs et al., 2010) and ODP 160-971C-2H-3 
(Pearce et al., 1998; Kemp et al., 1999) (see 
Fig. 1). Cores 64PE406-E1 and MS66PC are 
both from the Nile delta region, and hence their 
sites were likely influenced by freshwater de-
livery from the Nile. Conversely, the ODP 160-
971 core site is in the region between Libya 
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Figure 2.  Depth profile of eastern Mediterranean piston core 64PE406-E1 (33°18.14898′N, 33°23.71998′E, water depth 1760 m; NESSC research 
cruise 64PE406 onboard the R/V Pelagia). Horizontal gray bar shows deposition of sapropel. A–E: Organic analyses of total organic carbon 
(TOC) (A) and concentration (µg [g TOC]−1) of heterocyst glycolipids (HGs) C5 HG30 triol (B), C6 HG26 diol (C), C6 HG28 diol (D), and C6 HG30 
triol (E). Structures of HGs are shown on respective graphs. Stereochemistry of C5 HG30 triol is as determined by Schouten et al. (2013). 
F–I: Multivariate log-ratio calibrated X-ray fluorescence scan data in concentration (ppm, black lines) and as ratios (gray lines) for Ba and 
Ba/Al (F), Mo and Mo/Al (G), U and U/Al (H), and Ti/Al (I). Concentrations derived by inductively coupled plasma–mass spectrometry data 
are overlain (gray circles).
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and southwest Crete, which currently is out of 
reach of any modern-day river systems but has 
been shown to have been influenced by mon-
soon flooding during the previous interglacial 
maximum, thought to have been delivered via 
extant river systems of northern Libya (Rohling 
et al., 2002). These additional locations also re-
vealed a high C6 HG concentration in the lower 
part of the sapropel (Table DR1), consistent 
with the expected high input of freshwater at 
this time. At the site closest to the mouth of the 
Nile (MS66PC), the relative abundance of C6 
HG was high (97% ± 3% of total HGs), as it 
was at our site (64PE406-E1) slightly further 
from the Nile plume (97% ± 2%). The ODP 
160-971C-2H-3 core had a lower relative abun-
dance of C6 HG (78% ± 10%) consistent with 
a lower freshwater input. The upper half of the 
sapropel was also characterized by a moderate 
or high relative abundance of C6 HGs in the 
MS66PC and 64PE406-E1 cores (on average 
54% and 87%, respectively). Conversely, the 
upper part of S5 in the ODP 160-971C-2H-3 
core contained a high percent of C5 HG (96%). 
Interestingly, the percent of the DDA-forming 
diatom H. hauckii has also been reported to be 
significantly higher in the upper half of S5 in the 
ODP 160-971C-2H-3 core (Pearce et al., 1998; 
Kemp et al., 1999), further confirming the C5 
HG30 triol is a marker for DDAs.

Overall, comparison of the HG distribution 
in the three S5 sapropels provides evidence that 
all three locations were initially influenced by 
surface salinities that were sufficiently low to 
support free-living heterocystous cyanobac-
teria. While free-living heterocystous cyano-
bacteria continued to outnumber DDAs during 
sapropel deposition at the two Nile-influenced 
sites, DDAs, indicators of persistent marine 
salinities, were the dominant diazotrophs in 
the upper part of the sapropel at the ODP 160-
971 site.
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