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Summary

� Recent observations suggest that repeated fires could drive Mediterranean forests to shrub-

lands, hosting flammable vegetation that regrows quickly after fire. This feedback supposedly

favours shrubland persistence and may be strengthened in the future by predicted increased

aridity. An assessment was made of how fires and aridity in combination modulated the

dynamics of Mediterranean ecosystems and whether the feedback could be strong enough to

maintain shrubland as an alternative stable state to forest.
� A model was developed for vegetation dynamics, including stochastic fires and different

plant fire-responses. Parameters were calibrated using observational data from a period up to

100 yr ago, from 77 sites with and without fires in Southeast Spain and Southern France.
� The forest state was resilient to the separate impact of fires and increased aridity. However,

water stress could convert forests into open shrublands by hampering post-fire recovery, with

a possible tipping point at intermediate aridity.
� Projected increases in aridity may reduce the resilience of Mediterranean forests against

fires and drive post-fire ecosystem dynamics toward open shrubland. The main effect of

increased aridity is the limitation of post-fire recovery. Including plant fire-responses is thus

fundamental when modelling the fate of Mediterranean-type vegetation under climate-

change scenarios.

Introduction

The extensive land abandonment that occurred worldwide during
the last century (Pongratz et al., 2008; Ellenberg & Strutt, 2009)
has raised concern about the fate and management needs of old-
field communities (Chazdon, 2008; Cramer et al., 2008). In
many different ecosystems, growing evidence supports the possi-
bility of different successional trajectories and the existence of
alternative stable states, maintained by internal positive feedbacks
(Suding & Hobbs, 2009). Uncertainty about successional trajec-
tories is further enhanced by ongoing climate change, which can
modulate ecosystem dynamics and disturbance regimes (Allen
et al., 2010; Littell et al., 2016), and may foster novel successional
trajectories (Cramer et al., 2008). Understanding how global
change drivers and successional dynamics interact and shape
future ecosystem states is of utmost importance in order to

anticipate the vulnerability and the fate of old-field communities
in a rapidly changing world.

Mature Mediterranean forests mostly comprise broad-leaved,
sclerophyllous species, with a dominance of Holm oak (Quercus
ilex), especially in the most mesic conditions (Amici et al., 2013),
accompanied by conifers (mostly Aleppo pine, Pinus halepensis,
and Brutia pine, Pinus brutia) under more xeric conditions
(Zavala et al., 2000; Zavala & Zea, 2004). The Mediterranean
Basin has a millennial history of land use and deforestation, dat-
ing back to the Neolithic and peaking in the last two millennia,
when a large fraction of the natural vegetation was removed
(Vallejo et al., 2006; Connor et al., 2019). However, during the
last century, rural depopulation and land abandonment partly
reversed these trends, with important consequences for the pre-
vailing fire regimes (Chergui et al., 2018). More specifically, due
to land abandonment many old-field successional communities
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arose (Hill et al., 2008; San-Miguel-Ayanz et al., 2012). The
increase in biomass and forest continuity during secondary suc-
cession, together with increased aridity due to climate change
(Mariotti, 2010; Bedia et al., 2014), has aggravated the fire risk
in the Mediterranean in the last decades (Baeza et al., 2006; San-
tana et al., 2013; Turco et al., 2016).

The classical description of Mediterranean systems proposes
that fires simply restart succession by returning the system to an
early successional stage (Hanes, 1971; Trabaud, 1984). However,
differences in the successional trajectories of old fields with or
without the occurrence of fire have been observed (Baeza et al.,
2007; Santana et al., 2010). This is particularly evident in the
case of short intervals between fires, which may diverge the suc-
cession toward a degraded alternative stable state (Baeza et al.,
2006; Santana et al., 2010), characterized by a dominance of
shrubs and herbs and less fertile soil (Zedler et al., 1983;
Haidinger & Keeley, 1993; Lloret & Vil�a, 2003; Eugenio &
Lloret, 2006; Baeza et al., 2007; Mayor et al., 2016a,b). The per-
sistence of this open shrubland could be maintained by a feed-
back between fire occurrence and floristic composition, resulting
from different fire-related plant traits and responses (Ackerly,
2004; Odion et al., 2010; Pausas & Keeley, 2014; Batllori et al.,
2015, 2019). Early successional shrubs and grasses are more
prone to fire than other functional types, due to their high heat
of combustion, low water content, fine fuel and capacity to retain
standing dead biomass (De Luis et al., 2004; Baeza et al., 2006,
2011; Pausas & Moreira, 2012; Nolan et al., 2018). Further-
more, early successional species can regenerate and spread very
rapidly after fire, through different post-fire responses (Grigulis
et al., 2005; Santana et al., 2012; Baeza & Santana, 2015;
Vidaller et al., 2019). Specifically, shrubs typically are ‘seeders’
that spread rapidly after fire through their large, and often persis-
tent, seed banks. Grasses are ‘resprouters’ that quickly regrow
after fire from their underground reserve system (Keeley, 1986).
The combination of fast post-fire responses and high flammabil-
ity enables shrubs and grasses to maintain the system in a highly
fire-prone condition. Conversely, the late successional trees,
mainly oaks, are slow-growing resprouters (Clarke et al., 2013;
Zeppel et al., 2015), and can outcompete pines, shrubs and
grasses (Ac�acio et al., 2007; Vayreda et al., 2016). These
resprouter trees promote fires much less, as they accumulate less
fine and dead standing fuel, and their understorey is moister and
cooler (Puerta-Pi~nero et al., 2007; Saura-Mas et al., 2009; Tinner
et al., 2009; Baeza et al., 2011; Azevedo et al., 2013). These con-
trasting functional responses have been also observed in other
Mediterranean-climate regions (Odion et al., 2010; Pausas &
Keeley, 2014).

Fire–vegetation feedbacks can foster drastic changes in floristic
composition, flammability and environmental conditions, yield-
ing the notion that these feedbacks may drive alternative stable
states under identical climatic conditions. Specifically, vegeta-
tion–fire feedbacks have been proposed as a driver of alternate
stable states in tropical forests and humid savannas (Langevelde
et al., 2003; Hirota et al., 2011; Staver et al., 2011; Higgins &
Scheiter, 2012; Staver & Levin, 2012; Accatino & De Michele,
2013, 2016; Dantas et al., 2016; D’Onofrio et al., 2018), boreal

(Johnstone et al., 2010; Rogers et al., 2015; Abis & Brovkin,
2019) and temperate forests (Kitzberger et al., 2012, 2016; Tep-
ley et al., 2016). However, other potential drivers of alternate
stable states, mostly related to edaphic conditions, also have been
proposed (Fletcher et al., 2014; Bowman & Perry, 2017; Vee-
nendaal et al., 2018). The hypothesis that in the Mediterranean
Basin forests and open shrublands are alternative stable states is
motivated by observations of succession that has stalled in shrub-
lands (Baeza et al., 2006; Ac�acio et al., 2009; Santana et al., 2010;
Ac�acio & Holmgren, 2014) and of loss of resilience in oak and
pine forests after repeated fires (Diaz-Delgado et al., 2002; Mayor
et al., 2016b). Testing this hypothesis is very challenging, how-
ever, as the appropriate time frame to study stability of ecosystem
states (Schr€oder et al., 2005; Bestelmeyer et al., 2011; Fukami &
Nakajima, 2011) is typically one to two generations of the
longest-lived species (Connell & Sousa, 1983): in these systems,
Q. ilex can reach 1000 yr of age (Rigo & Caudullo, 2016),
whereas the available direct observations span a few decades or a
century at most (Capitanio & Carcaillet, 2008; Santana et al.,
2010).

The vegetation–fire feedback described will likely be reinforced
by projected climatic changes. For the Mediterranean Basin, an
increase in aridity is expected, with higher temperature and more
frequent and severe droughts (IPCC, 2013). Projected changes
occur more rapidly in this area as compared to the global average
(Guiot & Cramer, 2016). Drought affects species composition
directly, as water stress limits recruitment, survival and growth
(Tweddle et al., 2003; G�omez-Aparicio et al., 2008; Prieto et al.,
2009; Moreno et al., 2011; Pe~nuelas et al., 2018). Plant types
with different responses to fires are associated to dissimilar
responses to drought. Seeder shrubs are in general less vulnerable
to aridity than resprouter species (Lloret et al., 2005; Saura-Mas
et al., 2009; Pausas et al., 2016). During post-disturbance
resprouting in particular, plants are more susceptible to drought-
induced mortality (Oliva et al., 2014; Pratt et al., 2014; Pausas
et al., 2016). Because primary productivity in the region is gener-
ally moderate to high (Moreno et al., 2013), droughts increase
the probability of fire (Turco et al., 2012; Bedia et al., 2014; Kar-
avani et al., 2018), thus influencing species community composi-
tion also indirectly. The combination of these direct and indirect
effects can have a dramatic impact on species composition and
ecosystem functions (Pratt et al., 2014; Enright et al., 2015), and
theoretically they may influence the vulnerability of a landscape
to fire (Tepley et al., 2018). Sharp vegetation shifts that occurred
in the Mediterranean basin in the past have been associated with
the same combination of drought and fire (Colombaroli et al.,
2007).

The aim of the present study was to assess the dynamics of
Mediterranean ecosystems as affected by the impact of fires and
increased aridity. This understanding is fundamental for facing
ongoing drastic shifts in vegetation structure and for the develop-
ment of future management strategies. The complex ecosystem
dynamics and their long time horizons (several centuries to mil-
lennia) make modelling a valuable approach (Estes et al., 2018),
as vegetation dynamics can be simulated up to many generations.
The present study adopted a modelling approach for plant
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competition that includes stochastic fires and differential
responses to fire for resprouting and seeding plants. The model
parameters were calibrated by quantifying competition and plant
growth with observational data from old-field sites where fire did
not occur since land abandonment (between a decade and a cen-
tury ago), and species responses to fire with observational data
from sites where fires did occur in the last four decades. The
model was analyzed across a wide, realistic range of parameters
around the values obtained from calibration, to ensure the gen-
eral validity of the results for Mediterranean ecosystems (i.e.
beyond the sites used for calibration). The main question was
whether Mediterranean oak forests will recover (or persist) under
the synergic action of climate change and fire, or whether instead
these factors will maintain shrublands as an alternative stable state
to forests. An assessment was made of long-term (centuries-to-
millennia) ecosystem stability and short-term (decades-to-cen-
turies) risk of ecosystem transitions, which are anthropocentri-
cally relevant, given the urgency of ongoing climate change.

Materials and Methods

Model description

A model was developed that describes the dynamics of the main
plant types of the Western Mediterranean Basin, including their
competitive interactions leading to successional dynamics and
stochastic fires (cf. Accatino et al., 2010; Baudena et al., 2010).
Furthermore, the differential responses to fires of resprouters and
seeders were included.

Six plant types were included, representing the following genus
or species: evergreen Quercus spp., Pinus halepensis, Rosmarinus
officinalis, Ulex parviflorus, Cistus spp. and Brachypodium retusum
(see Table 1, and Supporting Information Notes S1). So, these
genera or species represent dominant tree, shrub and grass species
in the target ecosystems; for example, in the eastern Iberian
Peninsula they jointly cover > 80% of the natural areas under dry
meso-Mediterranean conditions (Baeza et al., 2007; Santana
et al., 2010). The oaks (Quercus spp.) and the grass (B. retusum)
can resprout after fires, whereas pines and the shrubs regenerate
exclusively via seed germination.

The model consists of six ordinary differential equations for
the variables bi that describe the proportion of space occupied by
a certain plant type i (0 ≤ bi < 1):

dbi
dt

¼ cibi 1�
Xi
j¼1

bj

 !
� mibi �

Xi�1

j¼1

cjbj

 !
bi

þ aiðt Þ 1�
X6
j¼1

bj

 !
; Eqn 1

with t representing time (yr), and 1�P6
j¼1

bj representing the pro-

portion of unoccupied space. See Table 2 for the interpretation
of model parameters, their values and units. The first three terms
on the right-hand side (r.h.s) of Eqn 1 represent plant dynamics
within the ‘competition model’ (Tilman, 1994; see next section).
The fourth term on the r.h.s. of Eqn 1 was included to represent
the establishment of seeder plants from their seedbanks after fires.
Fires occurred randomly as instantaneous events within the con-
tinuous-time model. The spatial domain was qualitatively
defined as an area where the seeds of all plant types could disperse
homogeneously (of the order of 104 m2), meaning that the model
does not explicitly consider long-distance dispersal. The follow-
ing sections describe first the successional competition model and
subsequently how the fire response of plants was included.

Competition model

When the a parameters in Eqn 1 are set to zero, plants compete
for space (as in Tilman, 1994), implicitly representing the com-
petition for resources (which, in the system herein, is mostly
competition for water in early successional stages, and for light in
later stages when the canopy closes). The model assumes a hierar-
chy between plants, from the strongest (oak, i = 1) to the weakest
(the grass B. retusum, i = 6) competitor, corresponding roughly to
an inverse successional order (i.e. from late to early; Sheffer,
2012; Amici et al., 2013; Carnicer et al., 2014). The strongest
competitor can outcompete all weaker competitors. Yet, the
model-imposed hierarchy does not necessarily lead to a fixed
replacement sequence in the succession: coexistence of all plant
types is mathematically possible if a competition–colonization
trade-off is present. For example, for equal mortality rates, an
inferior competitor will persist if it is sufficiently faster in coloniz-
ing new areas (i.e. has larger colonization rate) than its superior
competitors (Tilman, 1994).

The ci parameters in Eqn 1 are the colonization rates (yr�1) and
represent which proportion of the total space the existing popula-
tion of plant type i can colonize per capita per time unit, represent-
ing a combination of the processes of seed production, germination,
and establishment. Note that the space plant type i can colonize is
equal to 1�Pi

j¼1 bj
� �

: thus, the total amount of space minus the
proportion of space currently occupied by the plant type i itself or
its superior competitors (as indicated by the summation). These
parameters were obtained by model calibration (see the ‘Parameter
estimation’ section). The mi parameters are the plant mortality
rates (yr�1), equal to the inverse of their life span (Table 2).

Table 1 List of plant types in inverse successional order, corresponding to
i = 1–6 in the equations.

i Plant type (genus or species) Acronym Growth form
Fire
strategy

1 Quercus (ilex, coccifera) Q Tree
(or sub-tree)

Resprouter

2 Pinus halepensis P Tree Seeder
3 Rosmarinus officinalis R Shrub Seeder
4 Ulex parviflorus U Shrub Seeder
5 Cistus (mostly albidus,

with somemonspeliensis

and clusii)

C Shrub Seeder

6 Brachypodium retusum B Perennial
grass

Resprouter
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Modelling plant post-fire responses

Plant post-fire responses were represented differently for
resprouters and seeders. After a fire, the cover of seeders was
reduced to zero (by setting the fraction of pre-fire cover surviving,
ri, to zero, i.e. ri = 0, for i = 2–5), to simulate mortality of all indi-
viduals. This implicitly assumes that all simulated fires were severe
crown-fires, which are most common in Mediterranean shrublands
and woodlands (Keeley et al., 2012). By contrast, the resprouters
retained a fraction ri of their pre-fire cover. As the resprouting
capacity of Q. ilex is extremely high, a rather large baseline r1 (0.9)
was assumed. The resprouting capacity of B. retusum was obtained
via calibration (see the ‘Parameter estimation’ section). Resprout-
ing was modelled as occurring immediately after a fire, which is
the case for most resprouting species (Keeley, 1986).

The seeders’ high post-fire germination ability due to the
(aerial or soil) seed bank was included in the last terms on the
r.h.s. of Eqn 1 for i = 2–5, whereas the term was set to zero for
the resprouters (a1 = a6 = 0). This term was proportional to the
proportion of unoccupied of space (left free after a fire). The
parameters a2–5 were calculated as a function of pre-fire seed pro-
duction and storage in the seed bank Si(t) and of post-fire seed
germination and seedling establishment ci:

aiðt Þ ¼ C
ciSiðt ÞP5

i¼2

ciSiðt Þ
; for i ¼ 2�5; Eqn 2

where the denominator corrected for competition for available
space after a fire, and C was a dimension-conversion parameter
(yr�1), estimated from model calibration (see the ‘Parameter esti-
mation’ section). The ci parameters were estimated from avail-
able observations. See Table 2 for parameter values and Notes S1
for details.

The dynamics of the seed-bank Si were different for shrub
seeders and pines. For pines, the (aerial) seed bank became avail-
able after a fire (representing its fall from the canopies to the

ground), and the seeds were then viable for c. 2 yr (Pausas, 1999a;
Climent et al., 2008). The pine seed bank also depended on the
age of the pines before the last fire, because pines only produce
seeds when mature (with maturity being reached after 10–12 yr,
Pausas, 1999a; Climent et al., 2008). For the shrubs, a gradual
decay of the seed bank between fires was assumed. No delay in
reproduction was included as these shrubs already produce viable
seeds in their first or second year (Moya-Delgado, 2017). See
Notes S1 for details, including the mathematical functions repre-
senting these processes and their parameter values.

Stochastic fire occurrence

Fires were modelled as stochastic events with the time between
two consecutive fire events being described by an exponential dis-
tribution with average time Tf (yr). Higher cover of the more
flammable species (i.e. larger flammability li; see Table 2)
decreased the average fire return time (D’Odorico et al., 2006;
Baudena et al., 2010):

Tf ¼
X6
i¼1

li bi þ e

 !�1

: Eqn 3

The term e assured that when total plant cover was zero the fire
return time would be very large (1/e = 104 yr) but not infinite, to
avoid numerical instabilities. A minimum of 2 yr was set for fire
return time.

Dataset description

Old-field data In order to calibrate the competition model, data
were used from different sites where plant cover had been
recorded in old fields, ranging from 1 to 100 yr since abandon-
ment, and where no fire had occurred since (‘old-field data’). A
total of 73 sampling sites were selected from previous studies
located in the Western Mediterranean Basin in Eastern Spain and
Southern France (Rodriguez-Aizpeolea et al., 1991; Tatoni,

Table 2 List of symbols, names, values, units, and their source for the parameters and functions used in Eqns 1 and 2.

Symbol Interpretation

Values in use for

Units Sources*Q (i = 1) P (i = 2) R (i = 3) U (i = 4) C (i = 5) B (i = 6)

ci Colonization rate 0.047 0.053 0.045 0.067 0.11 0.22 yr�1 a

mi Mortality rate= 1/average life time 1/400 1/125 1/50 1/25 1/15 1/40 yr�1 b

ri Fraction of space maintained after fire 0.9 0 0 0 0 0.4 – c
li Flammability (i.e. the inverse of fire average

return times if entire plot is covered by one plant type)
1/400 1/20 1/15 1/10 1/10 1/10 yr�1 d

ai Colonization of seeders after fires 0 See Eqn 2 0 yr�1 –
ci Post-fire seed germination and seedling establishment – 0.040 0.0016 0.0029 0.00078 – – e
Si Seed production and storage in the seed bank – See Notes S1 – – –
C Conversion parameter – 0.014 – yr�1 f

Q,Quercus spp; P, Pinus halepensis; R, Rosmarinus officinalis; U, Ulex parviflorus; C, Cistus spp; B, Brachypodium retusum.

*Sources: (a) optimization of the parameters with the successional data (c1–5) and with fire data (c6); (b) (Roy & Sonie, 1992; Pana€ıotis et al., 1997; Pausas,
1999b; Caturla, 2002; Lloret et al., 2003; Baeza et al., 2006; Raevel et al., 2012; Moya-Delgado, 2017); (c) r1, expert estimation; r6, optimized from fire
site data. (d) expert estimation. (e) (Daskalakou & Thanos, 1996; Mart�ınez-S�anchez et al., 1999; Pausas et al., 2003; Santana et al., 2012, 2014); (f) cali-
bration with fire data.

� 2019 The Authors

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2020) 225: 1500–1515

www.newphytologist.com

New
Phytologist Research 1503



1992; Padilla, 1997; Pe~na, 2007; Santana et al., 2010). Vegeta-
tion in these sites was mostly composed of the six plant types
described above, generally not overlapping in space (Notes S1).
All sites are characterized by a dry meso-Mediterranean climate
(mean annual precipitation: 480–814 mm yr�1, mean annual
temperature 14–17°C, aridity index (UNEP, 1992): 0.62–0.96),
are located over basic bedrock type (marls or limestones), and
represent the actual range of environmental conditions for the
selected plant types in their natural distribution area within fire-
prone Mediterranean ecosystems (Table S2 in Notes S1). Space-
for-time substitution was used and these data treated as a time
series (Blois et al., 2013) of plant cover since land abandonment
(Fig. 1).

Fire data In order to calibrate the fire model, a time series was
used of plant cover from four experimental sites located in SE
Spain (‘fire data’). These sites are part of a permanent long-term
study established in 1994 (Santana et al., 2013). Each of them
had experienced one wildfire during the last three decades, and
some plots within the sites were burned once or twice experimen-
tally. The regularly sampled data from the experimentally burned
plots were used to define four temporal series of plant cover
(Fig. S2; Table S3 in Notes S1).

Parameter estimation

The model parameters c1–6, r6 and C were calibrated with the
two sets of data, obtaining a standard parameter set (Tables 2, S1
in Notes S1), used throughout the study, unless specified other-
wise. In the calibration, the parameters were determined as those
minimizing the mean square deviation between modelled time-

trajectories and data (with respect to the variance of the data;
Baudena et al., 2012). As such minimization is nontrivial, requir-
ing a large number of model runs to cover the multidimensional
parameter space, the simulated annealing optimization algorithm
(Kirkpatrick et al., 1983; see Notes S1 for a detailed description)
was adopted.

Optimal values for the colonization rates c1–5 were obtained by
calibrating the competition model with the old-field data (‘old-
field-cal’); see the resulting model trajectories in Fig. 1(a–e). For
c6, the value estimated from the fire data (see subsequent para-
graph) was preferred, because the old-field-cal determined c6 with
a very large error.

The complete model was calibrated using the fire data to
obtain optimal values of the three parameters C, r6 and c6 (chosen
as they showed the greatest improvement in the goodness-of-fit,
see Notes S1). See Fig. S2 in Notes S1 for the model trajectories
and the fire data.

A range of realistic values also was estimated for the coloniza-
tion rates, with which the general validity of the results herein
could be shown beyond the specific values of the standard set.
For this, the old-field-cal was repeated taking into account the
uncertainties in the data (e.g. due to the space-for-time substitu-
tion) with a Monte Carlo approach (MC) (Jakoby et al., 2014;
D’Onofrio et al., 2015). The resulting variation in the model tra-
jectories thus obtained is represented by the shaded areas in
Fig. 1; see Notes S1 for details.

Analyses

An analysis was undertaken for whether Mediterranean oak forest
would regrow or persist simulating historical and increased
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Fig. 1 Plant cover of the old-field data (symbols) and of the competition model runs (lines) for the six plant types, as a function of the time since land
abandonment. Model trajectories were obtained with colonization parameters c1–5 as in Table 2, which correspond to the best fit obtained by calibration
with the old-field data shown (H2 = 0.70). The model trajectory for the grass (Brachypodium retusum, panel (f)) was omitted because c6 was calibrated
using the fire data. Shaded areas indicate the extent of all possible trajectories as obtained with Monte Carlo variations within the calibration procedure
(see Supporting Information Notes S1.4).
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aridity conditions. Within each simulation, climatic conditions
were constant (with the exception of one experiment, see Short-
term experiments and Notes S5.2). Climate was implicitly imple-
mented via its effects on the plant parameter values. Experiments
were performed at two different timescales: (1) a ‘long-term’
(centuries-to-millennia) scale, characteristic of the ecosystem
dynamics, and (2) a ‘short-term’ (decades-to-centuries) scale,
characteristic for anthropogenic impact management. The model
was solved numerically (Fortran code, Runge–Kutta integration
with time steps of 1/365 yr). A few analytical calculations were
performed to reinforce the numerical results, obtaining analytical
values for the oak cover within a simplified version of the model,
where fires had an imposed frequency, independent of species
composition (Notes S2).

Historical and increased aridity Three different effects of his-
torical and increased aridity were included, modifying different
parameter values in a full-factorial design:
(1) oak resprouting ability after fires decreasing with water stress
(Galiano et al., 2012; Pausas et al., 2016). The oak parameter r1
was lowered from 0.9 to 0.75 and 0.6; it was not decreased to
smaller values because the oak target species are extremely good
resprouters in any condition (Espelta, Retana & Habrouk,
2003).
(2) lowering reproduction and establishment, represented by
colonization abilities ci. Water stress is expected to influence oak
growth, reproduction and establishment negatively (Ogaya &
Pe~nuelas, 2007; Pe~nuelas et al., 2018), and possibly to a larger
extent than for the other plant types (Pe~nuelas et al., 2001;
Garc�ıa-Vald�es et al., 2015; Pausas et al., 2016). Thus, the effect
of a decrease in the colonization rate of oaks was first analyzed,
with c1 lowered between 0.047 and 0.011 yr�1, without affecting
the colonization rates of the other plant types. To simulate the
predicted severe changes in aridity in the Mediterranean area, this
reduction was well beyond the range of variation of the parame-
ters as detected in several ways by the old-field-cal (see Notes
S1.4), which represented plant colonization under historical cli-
mate conditions.
(3) increasing the flammability li of all plant types (between the
original values, as in Table 2, and three-fold higher values), to
represent the increased fire ignition and rate of spread due to
decreased fuel moisture content (Nolan et al., 2016, 2018; Kara-
vani et al., 2018).

Thus, there were 48 sets of parameters (3 r1 values� 4
flammability values� 4 c1 values), including the baseline aridity
scenario representing historical climate conditions (as given by
the standard set). Each parameter set was used in runs with differ-
ent initial conditions, and for both timescales described below.
Furthermore, for the long-term experiments, it was analyzed
what would happen if all six plant types were affected by aridity,
with specific runs and by varying all colonization rates with a
Monte Carlo approach (see end of Long-term experiments sec-
tion and Notes S4 for details). In one of the two short-term
experiments, aridity was not constant but increased over time (see
Short-term experiments and Notes S5).

Different timescales (1) Long-term experiments. In order to
represent the long-term ecosystem dynamics, each model run
simulated 10 000 yr. These long runs also assured a good statisti-
cal representation of the plant cover oscillations due to the
stochastic fire perturbations (Fig. 2). Values of final plant cover
were calculated as the average cover during the last 20% of each
model run (e.g. Fig. 3). If fires were not included, model runs
simulated 1000 yr.

For each of the 48 parameter sets described above, representing
historical and increased aridity conditions (Fig. 3), the simula-
tions were repeated for six different initial conditions (Table S8
in Notes S1). Furthermore, to explore the effect of the fire-vege-
tation feedback, an extensive MC analysis was performed to test
for path-dependency on plant cover initial conditions, including
4010 sets of random initial conditions for each of the 48 parame-
ter sets. From these runs the time to oak dominance also was
determined, a parameter which characterized the forest (re)-
growth (see Notes S3).

Another MC analysis (more than 180 000 simulations in total)
also was performed, where the colonization rates ci of all plant
types were varied over a broad range of values (Table S10 in
Notes S4), with three aims: (1) including the effects of aridity on
all plant types (instead of only affecting oaks); (2) assessing the
validity of the results herein beyond the specific sets of 48 simula-
tions; (3) including parts of the parameter space where pines and
oaks could theoretically coexist in the absence of fire. See Notes
S4 for further details.

(2) Short-term experiments. In order to predict the response of
the Mediterranean ecosystems in the anthropogenic climate
change context, the dynamics were analyzed over a climatically
relevant timescale of 100 yr. For this timescale, a probabilistic
approach was used, running 100 simulations for each of the 48
parameter sets, representing different aridity conditions. The
probabilistic approach across runs was necessary given the
stochastic fires, because at this short timescale the system states
depended on the specific fire sequence realized in a run. The sys-
tem was initialized with three contrasting initial conditions repre-
senting different present-state communities: oak forest,
shrubland with grasses and a mixed ‘successional community’ (in-
cluding 15% cover for each of the plant types; Table S12 in
Notes S5). To characterize community composition at this
timescale, the probability distribution of oak cover and of the
sum of shrub and grass cover in the last 20 yr of the runs were
analyzed, across all of the runs performed with a specific aridity
parameter set and initial conditions (Fig. 4). Probabilites also
were quantified of oak forests decaying by the end of the century
(b1 < 50% or 65% cover), or growing > 30% cover if starting
from shrubland or mixed successional communities (Table S13
in Notes S5).

Finally, it was verified whether the predictions for oak forest
recovery or persistence of the short-term experiments would
change substantially if aridity harshened over time (see Notes
S5.2).
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Data availability

Model scripts and field data are available on the platform github.-
com at: https://github.com/baudenam/FireMed-Baudena-et-al-
2019-New-Phytologist.

Results

Vegetation dynamics under historical climate conditions

Although coexistence is theoretically possible in the competition
model without fires (Tilman, 1994), long-term coexistence of the
plant types defined herein was not observed. Instead, the oak

became dominant (here defined as b1 > 0.5) between 75 and
150 yr after abandonment, and all other species disappeared
within the first 150–200 yr (Fig. 1). Oak dominance was
achieved for a wide range of parameter values; that is, this result
was not sensitive to variations of the model parameters within
their margins of uncertainty (shaded areas in Fig. 1, as obtained
with the old-field-cal; see Notes S1 for details).

When fires were included, plant cover values did not attain
equilibria but kept varying as a consequence of the resulting
stochastic disturbances. Despite these fire disturbances, the oaks
dominated the system in the long term, under any initial condi-
tion and fire frequencies, given enough time to establish, when
using the standard set of parameters (Figs 2a, 3i leftmost bar).
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Fig. 2 Plant cover as a function of time for the six plant types (long-term simulations). Each discontinuity in the lines indicate that a fire occurred, with
frequency that depends on plant community composition. (a) Current climate conditions: after a transient period where all the plant types co-occur, the
system converged to an oak forest. The specific details of the first part of the trajectories depended on the initial conditions and on the stochastic fire
sequence (here b0,1–6 = [0.0039, 0.01, 0.01, 0.01, 0.01, 0.02]). Average fire return time when oak established was c. 275 yr (calculated between 200 and
1300 yr, as shown here for clarity of visualization). (b, c) Increased aridity conditions lead to (b) open shrubland and (c) oak forest (r1 = 0.60,
c1 = 0.0023 yr�1, and flammability 1.2-fold the baseline value, given in Table 2; marked as bistable in Fig. 3c). Not only the plant cover, but also the
emergent fire frequencies were different for the two systems: every c. 500 yr for the oak forest, every c. 27 yr for the open shrubland (calculated on the last
2000 yr of the simulation). For clarity of representation, only a part of the 10 000 yr-long simulation is displayed here. See legend in (a) for colour codes
and Table 1 for plant acronyms; parameters not mentioned here are as in Tables 2 and S1 (Supporting Information Notes S1).
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The time at which oaks became dominant varied widely (up to
300 yr after abandonment), depending on the initial cover of oak,
but not on the initial cover of the other plant types (see details in
Notes S3). Fire return time was c. 275 yr when oak dominance
was achieved (calculated between 200 and 1300 yr since land
abandonment in Fig. 2a). Not surprisingly, in the short-term
experiments the plant composition varied depending on the ini-
tial cover of the different plant types (Notes S5), as the short-
term runs lasted less than the 400-yr average life span of oaks in
the present model. The communities displayed a general ten-
dency toward increase of oak cover. Forest always persisted,
whereas a system initially dominated by shrubs and grasses expe-
rienced substantial increases in oak cover within the century,
reaching values > 0.3 with a 46% probability. A mixed succes-
sional community always developed into a forest with oak cover
always > 70% (Table S13 in Notes S5). Pines would persist until
two subsequent fires occurred close enough to each other (not
shown), as no pine reached seed-production maturity (Thanos &
Daskalakou, 2000).

The effect of fires and increased aridity

When simulating the effect of increased aridity on plant commu-
nity composition, it was observed that a large increase in aridity
could lead to a very different community in the long-term runs,
namely an ‘open shrubland’, composed of Cistus and
Brachypodium, with a lot of space left unoccupied (> 50% in some
cases; Fig. 3). The open shrubland is a stochastically stable state;
that is, maintained by the stochastic fires. The open shrubland
appeared because of the combined effects of increased aridity on
the colonization and resprouting capacity of oaks and on fire
return times (Fig. 3). By contrast, if aridity decreased only oak col-
onization ability, but no fires occurred, the model would converge
to an oak forest for all considered aridity levels. The only effect of
aridity in the absence of fire would be a reduction in oak cover
(from c. 0.90 to 0.77), with grasses coexisting with oaks at the
strongest aridity level considered (not shown; see illustration in
Fig. 5). This dependence was supported by analytical calculations
using a simplified version of the model (see Notes S2 for details).
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For the open shrubland state to occur, aridity needed to affect
at least two different factors, (e.g. reduction of the resprouting abil-
ity and the colonization capacity of oaks) (Fig. 3). Notice that the
open shrubland was observed independently of the assumption of
a relationship between fire frequency and aridity. Specifically, fire
frequency was not imposed but emerged from the plant commu-
nity composition and cover (average return time between c. 150
and 2000 yr for the forest, and 13–33 yr for the open shrubland).
Modelled aridity increased the flammability of all plant types but
not necessarily the fire frequency, because the latter depended also
on the plant cover. The open shrubland also was observed in some
cases without increases in flammability, if aridity diminished oak
colonization and resprouting abilities (Figs 3d,h). Finally, the
results did not change in any major way when aridity was assumed
to affect all plant types and not only the oaks (see Notes S4).

Alternative stable states between a forest with nonfrequent fires
or an open shrubland with frequent fires were observed (see
Fig. 2b–c for two example time series). Alternative stable states
occurred in that part of the parameter space representing interme-
diate conditions, that is with either maximal increase in flamma-
bility and intermediate decreases of colonization rates and

resprouting capacity, or with intermediate increases in flammabil-
ity but strong reduction of resprouting or colonization capacity
(Fig. 3). Technically, this was a case of ‘stochastic bistability’:
stochastic perturbations acting on a dynamic system give stability
to an otherwise unstable state (Kapitza, 1951). In the present case,
the latter state would be the open shrubland, whereas the other
stable state (i.e. the forest) would be the only stable state of the sys-
tem without stochasticity. By means of the MC analysis on initial
conditions, given an initial species composition, it was not possi-
ble to predict the final state of the system unequivocally (see Notes
S3). The stochasticity in the system thus overwhelmed most of the
effects of the initial conditions, so that even oak forests had a finite
chance to convert into open shrublands at these intermediate arid-
ity levels, and a shrubland might or might not develop into a
closed oak forest. Generally, the probability of the forest as a final
state increased with the initial oak cover and decreased with the
initial cover of shrubs and grasses (Figs S6–S8 in Notes S3).

Finally, the MC analyses with varying colonization rates
showed that the long-term results were not dependent on the
specific values used in the 48 parameter sets composed, but were
valid across a realistic range of parameters. With these MC
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simulations it also was observed that pines could survive in the
long-term experiments even in the presence of fires, together with
oaks or in a shrubland, in parts of the parameter space where oaks
and pines could coexist in the competition model (without fires).
Pine survival was only observed in a small portion of the MC runs
in this part of the parameter space, and only if flammability was
not substantially increased, probably due to the higher chance of
two fires occurring too close after each other at higher flammabil-
ity values, preventing pines to reachmaturity. SeeNotes S4.2 for details.

Aridity increased the tendency to shift toward shrubland,
which could already occur over the short-term scale considered.
The probability of a mixed successional community becoming an
oak forest after 100 yr decreased drastically with increasing aridity
(moving from bottom left to top right in Fig. 4, for an example
with flammability equal to 1.5 times the baseline value). Differ-
ently from what was observed for the current aridity levels, oaks
had no chance to establish in a shrubland when aridity was high
or medium-high (Fig. S14 in Notes S5). Even oak forest persis-
tence was compromised by aridity increases (Fig. S13), with up
to 15% chance of oak cover decreasing below 0.5, reaching as
low as 0.15 in some runs (Table S13). Similar conclusions could
be drawn from model runs in which aridity gradually increased
during the 100-yr simulations (see Notes S5 for further details).

Discussion

The combined effect of competition and fire dynamics in the
Mediterranean Basin under historical climatic conditions, even

though perturbed by frequent fires, led to a dominance of the
late-successional oaks on the long term (millennia) in the present
model, involving a process of canopy closure that could already
be observed on the short term (decades-to-century). However,
the present model predicted that future potential increases in
aridity may drive these fire-prone ecosystems past a tipping point,
after which open shrublands stably replace closed forest.

The resilience of oak forests under historical conditions could
be attributed to their high post-fire resprouting capacity, relative
low flammability and ability to outcompete other species (mostly
by shading) in the long run. This result is in line with palaeo-eco-
logical assessments reporting that current open shrubland land-
scapes emerged as a consequence of human activity during the
past 2000 yr (Colombaroli et al., 2007; Tinner et al., 2009), and
that forest landscapes could persist under current climatic condi-
tions (Henne et al., 2013, 2015; Tinner et al., 2016). The long-
term simulation results herein and palaeo-ecological analyses
span at least a few millennia. Going well beyond the time span
covered by direct observations, this time frame is needed to draw
conclusions about succession between ecosystem states that are
dominated by long-lived species.

Despite these inherent long-term characteristics, the resilience
of the oak forest was already apparent over the 100-yr timescale:
oak forests persisted under current conditions (Fig. S13 in Notes
S5), whereas mixed successional communities (Fig. 4) and shrub-
lands (Fig. S14 in Notes S5) tended to experience an increase in
oak cover. Although long-term simulations all converged to
either a forest or a shrubland (Fig. 3), short-term simulations

A

A
A

Fig. 5 Conceptual scheme of the long-term model results. The combined action of aridity and fires led the system to an open shrubland (top-right) instead
of an oak forest (bottom-left). Aridity acted along three different axes: it decreased colonization (x-axis) and resprouting ability (y-axis) after fires, resulting
in an open shrubland instead of a closed oak forest, and it also impacted flammability (along the diagonal). Only two of the three types of effects were
necessary to observe the transition between the states. Stochastic bistability between forest and shrubland was observed in an intermediate region, if
flammability was increased increased at least a little (see also Fig. 3).
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were technically ‘transient’, showing large variability in plant
composition between simulations, mainly depending on initial
conditions and the specific stochastic fire sequence realized in
each simulation. In many short-term simulations, communities
included pines, shrubs and grasses, with oaks comprising only a
minor proportion (e.g. first century in Fig. 2a; Fig. S14). The
mixed temporary communities could persist for a variable
amount of time, partly depending on the initial oak cover (Notes
S3), where low cover values could be interpreted as a proxy of
oak seed availability and recruitment limitation (Sheffer, 2012).
The multiscale approach used herein provided an explanation of
the contrasting findings within direct observations and other
(short-term) modelling predictions, which are bound to show dif-
ferent results depending on the local history (e.g. of land use). In
old fields, assemblies of shrubs and pines without oaks prevail
under the current fire regime (Lloret et al., 2003; Pausas &
Lloret, 2007; L�opez-Poma et al., 2014), with pine disappearing
under repeated fires (Daskalakou & Thanos, 1996; Eugenio &
Lloret, 2004). However, direct observations also show that fires
can transform pine forests into oak forests if the latter are present
in the understory (Retana et al., 2002; Torres et al., 2016;
Vayreda et al., 2016; Mart�ın-Alc�on & Coll, 2016). The present
model results also reinforced state-of-the-art restoration findings,
showing that the planting of resprouting oaks in shrublands sig-
nificantly redirects and accelerates the transition towards late-suc-
cessional oak communities (Santana et al., 2018).

Mediterranean vegetation is threatened by the expected
increase in aridity due to climate change (IPCC, 2013; Guiot &
Cramer, 2016; Turco et al., 2018). It was shown that increased
aridity could disrupt the resilience of oak forests. When fires
occur, water stress is expected to reduce the post-fire resprouting
capacity of oaks because of, for example, higher mortality and
water-stress induced cavitation (Cruz & Moreno, 2001; Vilagrosa
et al., 2014; Pratt et al., 2014; Pausas et al., 2016). Water stress
alone, reducing plant growth and seedling establishment for all
species, and especially oaks (Ogaya & Pe~nuelas, 2007; G�omez-
Aparicio et al., 2008, 2011; Ruiz-Benito et al., 2012), would not
hinder the development of old-field communities and shrubland
into forests in the present model. Yet, the combination of these
effects of water stress with limited post-fire recovery, could drive
the old-field communities towards a shrubland state. At very high
levels of aridity, even established forests would not persist and be
replaced by open shrublands, the only stable state. At intermedi-
ate aridity, forests might already shift to shrublands, as the two
are alternative stochastically stable states (D’Odorico et al., 2006;
Beckage et al., 2011). This is expected in systems where flamma-
bility declines during succession (Kitzberger et al., 2012), and it
follows from the interaction between decreased post-fire oak
recovery rates and the positive feedback driven by the high shrub-
land flammability and fast recolonization after fires (similar to
the scenario shown by Tepley et al., 2018, for temperate forests).
If the effects of water stress on post-fire responses are not
included, modelling efforts might overestimate forest resilience
(Henne et al., 2015). The results herein further underpins the
recent findings of Batllori et al. (2017, 2019), who showed with a
theoretical model for Mediterranean systems, that shrublands

would expand at the expense of forest under high drought recur-
rence combined with fire, although only for certain parameter
values.

A choice was made to represent competition indirectly (follow-
ing, e.g., Hastings, 1980; Tilman, 1994; Staver & Levin, 2012;
Abis & Brovkin, 2019), with a parsimonious approach that
allowed the clear identification of the importance of aridity-
driven decreases in post-fire responses, and to support this find-
ing with analytical calculations. The approach was not immune
to shortcomings. First, aridity was included implicitly in its effect
on vegetation, thus allowing for investigating the effect of average
harshening due to expected strong increases in mean annual tem-
perature and decreases in annual precipitation in the area (Guiot
& Cramer, 2016). However, the changes in temporal rainfall dis-
tribution, for example, were not investigated, which also are
expected to be dramatic (Giorgi, 2006). Secondly, at the highest
aridity level, an open shrubland was obtained where fires still
occur. This is a good representation for mesic Mediterranean
regions, where fires are less fuel-limited than drought-limited
(Pausas & Paula, 2012; Turco et al., 2017), and the space
between living resprouter plants is often occupied by fine stand-
ing dead woody biomass, mostly from seeders, which is very
important for fire spread (Baeza et al., 2002; Baeza & Santana,
2015). It must be acknowledged that this effect will however not
increase indefinitely, as further aridity increases also would
decrease fuel connectivity. To include this, further analyses could
represent fire frequency as decreasing nonlinearly with cover
(Accatino et al., 2016; Yatat et al., 2017). The implicit space
approach used herein did not represent spatial processes at the
landscape scale, such as distance to seed sources, seed dispersal
ability and fire spread. A model extension including spatially con-
tiguous cells could for example verify whether the alternative
shrubland and forest states result in patchy landscapes, or
whether the contiguous presence of forests and shrublands would
actually facilitate landscape-scale changes towards one or the
other state (Kitzberger et al., 2012; Schertzer & Staver, 2018; Li
et al., 2019). The CO2 fertilization effect, acting in parallel to
aridity intensification, is another element that will affect future
vegetation in the area, although its effects are still debated
(Keenan et al., 2011). Finally, adding more plant responses and
types in models has the well-known downside of exponentially
increasing the number of parameters. Although the number of
variables does not necessarily limit analytical tractability (Eppinga
et al., 2018), it becomes generally more challenging to determine
the parameter values. To the best of the present authors’ knowl-
edge, this issue was tackled by an extensive model calibration.

Oaks and pines often co-occur in Mediterranean forests and a
large body of literature has tried to explain this association
(Zavala & Zea, 2004; G�omez-Aparicio et al., 2011; Zavala et al.,
2011; Sheffer, 2012; Garc�ıa-Vald�es et al., 2015). Generally, pines
replace oaks with increasing aridity conditions (Sheffer, 2012).
The present model showed that, as expected, forests with pines
and oaks were possible when including the improved perfor-
mance of pines with increased aridity (by increasing their colo-
nization rate; Notes S4). However, the mechanisms that mediate
pine–oak competition for light and water are more complex than
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classically believed, with shifts in the competition between differ-
ent tree life stages (Zavala et al., 2011) that were not included in
the present model. This approach was sufficiently accurate as it
was found that the main limitation to pine persistence was fire
recurrence and associated post-fire availability of pine seeds
(Thanos & Daskalakou, 2000; Baeza et al., 2007; Tucker &
Cadotte, 2013; L�opez-Poma et al., 2014): in the present model,
pines could not survive even when they were competitively
favoured over oaks, if two fires would occur too close to each
other (i.e. < c. 10 yr; Notes S4).

Both globally and in the Iberian Peninsula, a hump-shaped
relationship between fire and productivity (or aridity) has been
identified and explained according to the interplay between differ-
ent mechanisms. An increase in aridity in temperate regions can
lead to increased frequency of fire-prone conditions, for instance
due to decreased vegetation moisture, whereas in the most arid
areas fire frequency is decreased by the low productivity and the
loss of vegetation connectivity (Pausas & Paula, 2012; Mcwethy
et al., 2013; Pausas & Ribeiro, 2013). For these reasons, the con-
nection between increased aridity and fire frequency can change,
for example in different areas in the Mediterranean, or as a conse-
quence of fire prevention strategies (Turco et al., 2016, 2017). In
the present model, these two counteracting mechanisms were
included directly, and not the hump-shaped fire–aridity relation-
ship. A modelled increase in aridity rendered plants more
flammable, but also decreased plant cover, which in turn lowered
fire frequency. Hence, the results herein did not depend on any
assumption connecting fire frequency and aridity: even without
increasing the flammability, open shrublands would replace the
oak forests if increased aridity significantly affected the reproduc-
tive and resprouting performance of oaks (Fig. 3; Notes S2).

Aridity-driven decreases in post-fire responses may drive transi-
tions in Mediterranean vegetation even more abruptly and irre-
versibly than forecasted previously. This model finding is
potentially general and may be relevant at broader spatial scales
and/or in other fire ecosystems, as fire-driven vegetation feed-
backs have been reported across the world (Dantas et al., 2016;
Tepley et al., 2018; Abis & Brovkin, 2019). Dynamic Global
Vegetation Models (DGVMs) are commonly used for predic-
tions of vegetation under climate change, and predict unprece-
dented northward biome shifts in the Mediterranean Basin
(Guiot & Cramer, 2016). However, DGVMs generally do not
appropriately include plant fire-response traits, especially over-
looking tree resprouting capabilities (Kelley et al., 2014; Baudena
et al., 2015; Hantson et al., 2016). The present study highlights
the necessity and urgency of including fire-related functional
types and post-fire responses for prediction of fire ecosystems
under future scenarios.
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