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The integration of multiple traits into a unitary impression has been exten-
sively investigated in impression formation research. However, because the 
focus has typically been on the verbal output of the formed impressions, 
little is known about how impressions resulting from different trait com-
binations impact perceivers’ expectations about facial content. Here, we 
offer initial evidence about how trait integration occurs in social face per-
ception. In two studies, we used a reverse correlation paradigm to obtain 
face images reflecting participants’ expectations about facial content for 
different trait combinations of dominance and trustworthiness. Analyses of 
the physical and perceived content of these images suggest that: (a) trust-
worthiness information outweighs dominance information in expectations 
about facial content; and (b) the face content derived from any trait combi-
nation contains information that goes beyond the content associated with 
each separate trait. These findings extend the research on trait integration 
to social face perception.
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Forming an impression of someone’s personality involves the acquisition and in-
tegration of multiple information sources. Most of this information corresponds 
to traits inferred from the person’s behavior and appearance (for reviews, see Gil-
bert, 1998; Todorov, Olivola, Dotsch, & Mende-Siedlecki, 2015; Uleman & Kressel, 
2013). 
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After Asch’s (1946) seminal work, researchers have strived to understand the 
cognitive operations underpinning the integration of traits into a unitary evalu-
ative impression (e.g., Anderson, 1965; Asch & Zukier, 1984; Bruner, Shapiro, & 
Tagiuri, 1958; Hampson, 1990; Himmelfarb, 1972; Rosenberg & Jones, 1972; Rosen-
berg, Nelson, & Vivekananthan, 1968). Two theoretical perspectives emerged from 
those studies: gestaltic, which posits that an impression emerges from the perceived 
interrelations between traits (Asch, 1946; Asch & Zukier, 1984; see also Hamilton & 
Sherman, 1996); and linear integration, according to which evaluative impressions 
are better predicted by additive or averaging models of the traits’ valence and 
weight (e.g., Anderson, 1965). Whatever the integration process and whatever the 
number of behaviors or traits we have access to while forming an impression, the 
final outcome will be a unitary impression. Importantly, moreover, the content of 
this impression will be characterized by how warm and how competent a person 
seems (Abele & Wojciszke, 2014; Cuddy, Fiske, & Glick, 2008; Rosenberg et al., 
1968). Specifically, according to the warmth-by-competence model (for a review, 
see Cuddy et al., 2008), the content of an impression formed about a person/group 
can be parsimoniously described by its positioning in a two-dimensional space 
formed by the two perpendicular axes of warmth and competence. In essence, 
research suggests that perceivers integrate multiple traits into an impression that 
is characterized by the combination of two “more fundamental” traits.

Previous research has mainly investigated the process of trait integration in 
terms of abstract mental representations of the target persons (for a review, see 
Hamilton & Sherman, 1996). Here, we investigate the same process within the 
social face perception domain. Specifically, we examine, and offer initial evidence 
about, how the integration of different traits (conceptual knowledge) influences 
expectations about the facial content (physical appearance) of a target person.

Facial appearance is highly relevant to our impressions (Zebrowitz, 2006). We 
infer traits from faces as quickly as 34 to 100 ms (Todorov, Pakrashi, & Oosterhof, 
2009; Willis & Todorov, 2006). Further, not only do we read traits “from faces,” we 
also read them “into faces” (Hassin & Trope, 2000), meaning that we are able to 
visualize someone’s face based on a trait description (e.g., visualizing a book char-
acter). Despite the many personality traits we are able to infer from the face alone, 
the resulting impression is ultimately mapped onto a two-dimensional space de-
fined by trustworthiness and dominance (Oosterhof & Todorov, 2008). That is, the 
impression is characterized by how trustworthy and how dominant a person ap-
pears to be.

The trustworthiness-by-dominance model of social face perception was identi-
fied by Oosterhof and Todorov (2008) via a data-driven approach (from face rat-
ings of a target). This allowed them to (a) identify trustworthiness and dominance 
as the trait dimensions that accounted for most of the variance in personality infer-
ences from faces, and (b) capture the variance in facial structure leading to the in-
ference of each one of those traits (for convergent results, see Kleisner, Chvátalová, 
& Flegr, 2014; Sutherland et al., 2013; Walker, Jiang, Vetter, & Sczesny, 2011; Walker 
& Vetter, 2009). With this information, Oosterhof and Todorov (2008) generated 
novel synthetic faces whose physical features resulted from an averaging (i.e., 
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linear combination) between the features associated with inferences of domi-
nance and the features associated with inferences of trustworthiness. Because the 
trustworthiness-by-dominance 2D-space encompasses four quadrants, these faces 
conveyed four different combinations of these dimensions (i.e., dominant with 
trustworthy or untrustworthy; submissive with trustworthy or untrustworthy). 
The specific content of these faces was subsequently found to be associated with 
traits such as threat, attractiveness, competence, and likeability (Todorov, Said, 
Engell, & Oosterhof, 2008; see their Figure 2). Hence, Oosterhof and Todorov’s 
(2008) approach followed an inverse pathway to that initially used to identify the 
two-dimensional space. Instead of deriving the facial content reflecting the space’s 
diagonals from judgments that explicitly combine the two dimensions (e.g., how 
“dominant and trustworthy” is the person?), the approach relies on synthetic faces 
artificially derived from the trustworthiness-by-dominance face space. That is, to 
create faces that integrated the two traits, Oosterhof and Todorov (2008) linearly 
combined (averaged) the physical features previously identified to be associated 
with each separate dimension (i.e., trustworthiness and dominance), and mapped 
them into a face that was subsequently judged on several other traits. 

We wondered whether people indeed integrate these two traits in such a way. 
In the present work, we ask if the linear perspective assumed by Oosterhof and 
Todorov (2008) reflects how people themselves make such an integration. 

INTEGRATION OF TRUSTWORTHINESS AND DOMINANCE TRAITS 

The process of integrating traits into a face can be thought of as following an equal 
or unequal weighting linear model (e.g., Anderson, 1968) or to be (trait-) context 
dependent (e.g., Asch, 1946). In the general field of impression formation, we find 
evidence suggesting that trait integration is not predicted by a linear model with 
equal weights for the traits (e.g., weight average). The main argument has been 
that traits are unequally weighted. Social perceivers are generally more sensitive 
to traits related with a morality dimension, such as honesty and trustworthiness, 
than to traits related with an ability dimension, such as competence and domi-
nance (Abele & Bruckmüller, 2011; Brambilla & Leach, 2014; Goodwin, Piazza, & 
Rozin, 2014; Wojciszke, Bazinska, & Jaworski, 1998). This is supported by evidence 
suggesting that perceivers tend to prioritize the detection of morality-related traits 
over ability-related information (e.g., Abele & Bruckmüller, 2011; Ybarra, Chan, & 
Park, 2001), and to attribute higher informational weight to morality-related traits 
(Wojciszke et al., 1998). Altogether, these studies suggest that when perceivers in-
tegrate traits into an impression and map this impression onto a face space, they 
will attribute a higher weight to trustworthiness than to dominance information. 
Thus, if the same priority of morality information occurs in social face perception, 
and traits are being combined in a linear fashion, then we should not expect them 
to be equally weighted. 

The higher weight of morality information found in the general impression for-
mation domain has also echoed in the social face perception literature. However, 
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comparatively less evidence and focus can be found in the latter domain regard-
ing the differential weighting of dimensions. For instance, Oosterhof and Todorov 
(2008)’s data show that the component of the trustworthiness (also interpreted as 
valence) dimension was the one that accounted for most of the variability in face 
impressions, compared to the component of the dominance (or power) dimension. 
In addition, studies showing that valence and trustworthiness judgments of faces 
occur as fast as between 33 and 167 ms after stimulus presentation (Todorov et 
al., 2009) may also be suggesting that those dimensions have priority over others. 
Nevertheless, these studies did not offer data that allow for a direct comparison 
between the weighting of trustworthiness and dominance in face impressions. 

Altogether, the reviewed evidence suggests that if a linear combination reflects 
how trustworthiness and dominance are simultaneously mapped onto a face, the 
first will outweigh the second. However, although some of the reviewed evidence 
shows that a linear integration assumption has predictive power, there is no study 
addressing the validity of the linear assumption in explaining trait integration. 
This assumption would be challenged if the traits’ weights change with the con-
text.

Here, we aim to test whether a personality trait is similarly weighted when the 
other trait (i.e., of the other dimension) changes. If that is not the case (i.e., traits are 
differently weighted in different contexts), the integration is not reflecting a simple 
linear compound. This hypothesis is supported by Asch’s (1946) work showing 
that the trait context modulates the meaning/weight attributed to a specific trait. 

REVERSE CORRELATING TRAIT INTEGRATION WITH FACES

To answer this question, we needed a method capable of capturing the facial 
content associated with an impression previously formed by the perceiver. This 
possibility was offered by the so-called psychophysical reverse-correlation (RC) 
method, also known as the classification image technique (for a review, see Brink-
man, Todorov, & Dotsch, 2017; Jack & Schyns, 2017). Psychophysical RC allowed 
us to visualize how social dimensions such as trustworthiness or dominance are 
mapped into a face by the perceiver (Dotsch & Todorov, 2012). At the same time, it 
makes as few assumptions as possible about which features of the stimulus are as-
sociated with the target judgment. Hence, this method taps into perceivers’ naïve 
theories about how a trait is mapped onto a face by capturing the strategies they 
used in a task in which they were instructed to detect a trait (signal) in noisy face 
stimuli. These strategies are assumed to be correlated with the visual content of 
a perceiver’s mental representation of the target construct (see Brinkman et al., 
2017).

Previous studies using RC methods have only inquired about how individuals 
separately represent each trait (e.g., tasks with a single target trait; see Dotsch & 
Todorov, 2012; Imhoff, Woelki, Hanke, & Dotsch, 2013). Here, we used this method 
to assess how people visually integrated the two traits into a face. Specifically, our 
aim was to assess how people mentally represent a face reflecting a combination 
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of two different trait poles of the basic dimensions of social face perception (i.e., 
trustworthiness and dominance). By relying on this methodology, we aimed to ob-
tain new empirical data documenting how more specific and complex personality 
judgments are integrated into a face.

THE CURRENT RESEARCH

We approached the question of how trait combinations are mentally integrated into 
a face by using a psychophysical RC method. Visual proxies of mental representa-
tions are obtained in the form of classification images (CIs). To obtain these CIs, 
we created a large set of variations of the same face image by a repeated process 
of applying visual noise to that image. We asked participants to perform a two-
image forced-choice (2IFC) task (e.g., Dotsch & Todorov, 2012; Dotsch, Wigboldus, 
& van Knippenberg, 2011), in which they were instructed to select from a pair of 
face images with superimposed visual noise the one that most resembled a person 
described by a specific trait combination. These data were then used to estimate a 
CI by averaging across all the visual noise patches selected by the participant—in-
dicating signal detection—and re-superimposing them on the base face image. In 
other words, the CI is a face image that represents how participants mapped the 
trait combination onto a face.

Our first approach (Study 1) aimed to examine the extent to which the visual 
content of each trait contributes to a final impression, and whether the degree 
of this contribution can be argued to be context dependent. Our main analysis 
addressed this question with an objective similarity approach (i.e., pixel correla-
tions between CIs). Specifically, we examined the relationship between CIs gener-
ated with two-trait combinations (henceforth referred to as two-trait CIs or 2TCIs) 
and CIs generated using only one of the traits (henceforth referred to as one-trait 
CIs or 1TCIs, obtained in a previous study by Oliveira, Garcia-Marques, Dotsch, 
and Garcia-Marques (2019). By analyzing how much variance in a 2TCI can be 
explained by the two 1TCIs reflecting its component traits, we assessed the fit of 
a linear trait integration assumption. All CIs used in these analyses were subse-
quently validated with subjective judgments of dominance and trustworthiness 
performed by an independent sample of judges.

Study 2 replicated and consolidated the previous results obtained in Study 1 by 
(a) using more stable estimates for each CI (relying on bigger samples), (b) coun-
ter-balancing word sequence in instructions, and (c) adding two tasks in which the 
default 2IFC task stimuli were replaced by actual CIs. These two additional tasks 
allowed us to examine the degree of overlap between the signal contained in 2TCIs 
and 1TCIs. 

POWER CONSIDERATIONS OF STATISTICAL ANALYSES

The participant sample size of each study is relevant to inform about the stability 
of CI estimation. Although it has an implication on statistical power, it is not the 



COMBINING TRAITS INTO A FACE 521

participant sample size that is directly determining the power associated with the 
majority of the statistical analyses in this article. The units of analysis in these anal-
yses are the pixel luminance values of each CI. Thus, it is the pixel sample size that 
is of relevance (65536 per unmasked CI, or 38958 pixels per masked CI). Because 
of these large sample sizes, effects may more easily achieve significance at the 
nominal type I error rate (.05) regardless of their meaningfulness (e.g., Johnson, 
1999). To help us evaluate the meaningfulness of our results, our main analysis 
was complemented by simulations aimed at identifying the range of values that 
we could expect to obtain by chance alone (see R-squared simulations section; see 
also Murayama, Pekrun, & Fiedler, 2014).

The analyses of the CI ratings in Study 1 involved an independent sample of 
participants (i.e., not involved in CI generation), whose size was shown a priori to 
be sufficient to detect a medium effect size with 80% power and an error probabil-
ity of α = .05 (G*Power v.3.1.9.2; Faul, Erdfelder, Lang, & Buchner, 2007). Neverthe-
less, in these analyses we additionally report the power achieved in the detection 
of the effects (1-β).

DATA AVAILABILITY

The data required to generate the CIs and results reported in all studies, in-
cluding additional supporting information, are publicly available online at: 
https://osf.io/4zncm/

STUDY 1

In this study, we assessed composites of face images that result from perceivers’ 
expectations about the facial appearance of someone possessing either a specific 
combination of traits of the poles of the dominance and trustworthiness dimen-
sions (2TCIs) or just one of those traits separately (1TCI). To address whether or 
not the 2TCIs result from a linear combination of the single-trait information that 
perceivers map onto a 1TCI, we analyzed how the pixel information in each 2TCI 
was predicted by the pixel information of its correspondent 1TCIs using a multiple 
linear regression procedure. This analysis allowed us to examine whether the two 
predictive dimensions (i.e., of the 1TCIs) were symmetrically (as expected by a 
linear integration perspective) or asymmetrically (as expected by a gestaltic per-
spective) weighted in different trait combination contexts (i.e., different 2TCIs). We 
further approached these different hypotheses by generating CIs using the residu-
al variance of our regression analyses. These residual CIs inform about the extent 
to which a 2TCI contains facial information that goes beyond that predicted by 
each of its correspondent 1TCIs, thus offering the opportunity to examine whether 
any gestaltic integration occurred. Subsequently, with the aim of validating the 
obtained CIs, we assessed how 2TCIs and 1TCIs were rated on dominance and 
trustworthiness by independent judges. Further, these ratings allowed us to test 
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for differences in signal strength between the two traits of a 2TCI, in a bottom up 
fashion. This additionally informs about how the signal strength of any of these 
traits might have been modulated by the trait combination context in the 2TCI.

PARTICIPANTS AND DESIGN

CI Generation Sample. Eighty individuals, including undergraduate students 
and university staff (65 female, MAge = 23.71 years, SDAge = 9.38), participated in 
the main task of this study either in exchange for course credits or to take part 
in a lottery to win gift vouchers. Participants were randomly assigned to one of 
four conditions, each of which corresponded to a combination of two traits: one 
trait represented one of the poles of dominance (i.e., dominant or submissive) and 
another represented one of the poles of trustworthiness (i.e., trustworthy or un-
trustworthy). Previous studies using RC tasks to estimate CIs of social traits (e.g., 
Dotsch & Todorov, 2012) established a sample size of 20 per CI as providing stable 
estimates (see also Power considerations of statistical analyses).

CI Trait Ratings Sample. An independent sample of 29 participants (20 female, 
MAge = 24.79 years, SDAge = 5.21; undergraduate students in laboratory setting) was 
additionally recruited for a subsequent CI trait ratings task (see CI ratings section).

MATERIALS AND PROCEDURE

Face Stimuli. Stimuli were generated with the R package rcicr 0.3.0 (Dotsch, 
2015). Each stimulus consisted of a base face image with a superimposed layer of 
visual noise. The base face image corresponded to the gray-scale average male face 
from the Karolinska Face Database (Lundqvist & Litton, 1998), resized to 256 × 256 
pixels. The noise patterns superimposed on the base image consisted of truncated 
sinusoid patches in six orientations (0º, 30º, 60º, 90º, 120º, and 150º), five spatial 
frequency scales (2, 4, 8, 16, and 32 cycles per image), and two phases (0, π/2) 
with random amplitudes (for more details, see Dotsch & Todorov, 2012). Three 
hundred pairs of stimuli were generated for a 2IFC (i.e., two-image forced-choice) 
task. Each stimulus pair was designated to be presented in one trial of the 2IFC 
task. Therefore, the task consisted of 300 trials. For each pair of images, the noise 
pattern of one image was the negative (i.e., opposite values of pixel luminance) of 
the other, thus maximizing the differences between the images and circumventing 
the possibility of highly similar image pairs inflating guessing responses through-
out the task. 

Two-Trait Combinations. The traits selected for the task included the poles of the 
dominance and the trustworthiness dimensions. These poles were combined in 
four different pairings in such a way as to represent the four quadrants of the two-
dimensional trustworthiness-by-dominance space. Therefore, the resulting trait 
combinations were: Dominant & Trustworthy (DomTrust), Dominant & Untrustwor-
thy (DomUntrust), Submissive & Trustworthy (SubTrust), and Submissive & Untrust-
worthy (SubUntrust).
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Reverse Correlation Task. Participants were recruited to take part in a face evalu-
ation study. The experiment was conducted in a lab setting, where participants 
were randomly assigned to individual cubicles equipped with desktop computers. 
They were told that they would see pairs of face images exhibiting a type of noise 
similar to that of “old television screens” and that one of the aims of the study 
was to understand how image quality affected face evaluation. This last detail 
was included to serve as a cover story explaining why the target faces were noisy. 
The 2IFC task had a total of 300 trials, with a forced break of one minute after 
the 150th trial. In each trial, a pair of face images was presented side-by-side (i.e., 
location of image with negative noise was counterbalanced) on the center of the 
screen and the participants’ task was to select the face from the pair that, in their 
opinion, most resembled the face of a person defined by a specific combination of 
two traits (e.g., dominant and trustworthy). After completing the task, participants 
were thanked and debriefed.

Classification Image Generation. We computed a grand-mean two-trait classifica-
tion image (2TCI) for each of the four conditions. To compute each 2TCI, we first 
averaged all the noise patterns selected by all the participants in a condition, and 
subsequently superimposed the averaged noise pattern on the base image. The 
resulting 2TCIs are depicted in Figure 1. 

FIGURE 1. 2TCIs (framed pictures) obtained in Studies 1 and 2, for each of the four two-
trait combinations of the poles of the dominance and trustworthiness dimensions, and 1TCIs 
(unframed pictures) extracted from Oliveira and colleagues (2019).
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CIs generated using only one trait (i.e., 1TCIs) were included in our studies to 
serve as a reference for the visual inspection of the 2TCIs and to be entered as pre-
dictor variables in subsequent analyses (see Results and Discussion). All the 1TCIs 
shown in Figure 1 were generated in a previous study by Oliveira and colleagues 
(2019) who used an identical CI generation procedure, the same dimensions for 
the CIs (256 × 256 pixels; n = 65536 pixels per CI), and 20 participants per CI condi-
tion sampled from the same population. 

CI Ratings. The four resulting 2TCIs and the 1TCIs (the latter obtained from 
Oliveira et al., 2019) were submitted to dominance and trustworthiness judgments 
by an additional independent sample of judges (sample details in Participants and 
Design section). Participants judged the 2TCIs and the 1TCIs on a scale ranging 
from 1 (not at all [trustworthy; dominant]) to 4 (not very [trustworthy; dominant] 
or not at all [trustworthy; dominant]) to 7 (very [trustworthy, dominant]). Each CI 
was rated on all target traits before the next CI. The order of CIs and the two target 
trait judgments within the CI blocks were randomized. Additional trait ratings 
(e.g., threat, competence, and others related with perceptions of morality and so-
ciability) were collected for these CIs for exploratory purposes but are not reported 
here for the sake of simplicity. However, because some of these additional ratings 
(i.e., threat and competence) may be of use to researchers interested in compari-
sons with related studies (i.e., Oosterhof & Todorov, 2008; Todorov et al., 2008), we 
made them available as supplementary data in our online data repository. 

RESULTS

In our analyses, the data corresponded to the classification images (i.e., 2TCIs and 
1TCIs) generated at the group level in each trait combination condition. We as-
sessed how these CIs were related using their pixel luminance values as the units 
of analysis. First, we tested whether traits were linearly (symmetrically) integrated 
by addressing how each 2TCI was related to their correspondent 1TCIs using mul-
tiple regression analyses. Subsequently, we assessed the meaningfulness of these 
models’ results by conducting simulations to identify the range of values that we 
could expect to obtain by chance given these data (see R-Squared Simulations sec-
tion). These simulations informed us about the validity of the conclusions sug-
gested by the regression models’ results. 

A second follow-up analysis addressed the impact of our methodological deci-
sion to include all pixels of the CIs (vs. pixels of the face region only) on the ex-
plained variance of our regression models. Specifically, we repeated our analysis 
using only the pixels of the face region (i.e., masked CIs). To further test whether a 
simple linear trait combination is able to entirely account for a 2TCI, we explored 
the residual images of our CI regressions. Residual images displaying any face in-
formation, especially if it resembles the 2TCI itself, would suggest that perceivers 
integrate traits in such a way that they give rise to an impression that goes beyond 
the mere sum of its parts (e.g., Asch, 1946; Asch & Zukier, 1984).
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Finally, to validate the subjective content of each CI, we analyzed ratings of the 
CIs on the two traits used to generate them, performed by an independent sample 
of judges. Moreover, this analysis allowed us to test the results of the integration 
process, as the 2TCIs’ traits also inform about the extent to which one trait out-
weighed the other in different trait combination contexts.

CLASSIFICATION IMAGES

A visual inspection of the upper panel of Figure 1 (Study 1) suggests that there 
is not a full overlap between any of the 2TCIs and the 1TCIs. This hints that the 
participants used the two traits in their judgments during the task. A greater simi-
larity between 1TCIs and 2TCIs generated with positive trustworthiness suggests 
that this trait (i.e., trustworthy) weighted more in the 2TCIs compared to other 
traits. However, 2TCIs that included negative trustworthiness resulted in a higher 
differentiation of dominance-related features between the 2TCIs. 

Although CIs are by themselves informative because of their visual nature, our 
interpretation of the CIs is limited by subjectivity. To circumvent this limitation, 
we submitted the CIs to a more objective analysis of similarity, described below. 

MAIN ANALYSIS: OBJECTIVE SIMILARITY BETWEEN 2TCIS AND 1TCIS

An objective measure of similarity between two CIs is obtained by computing 
how the pixel luminance values of the two images co-vary. The stronger a positive 
(negative) correlation is between two CIs, the more similar (dissimilar) they are, 
whereas close to null correlations indicate that the CIs share little to no similarities. 
Taking this into account, we relied on regression analyses to test our trait integra-
tion hypotheses, as they are more informative than a correlation matrix. Regres-
sion analyses allowed us to predict a 2TCI from its two correspondent 1TCIs, and 
to examine how much variance each predictor CI shares with (i.e., is objectively 
similar to) an outcome 2TCI. 

In four separate regression analyses, we analyzed how the pixel values of each 
2TCI (n = 65536 pixels per CI) would be predicted by the pixel values of 1TCIs (n = 
65536 pixels per CI) generated for each of the traits that made part of the 2TCI trait 
combination (e.g., Dominant 1TCI and Trustworthy 1TCI entered as predictors of 
the Dominant & Trustworthy 2TCI). For that purpose, we used 1TCIs previously 
generated for the poles of the dominance and trustworthiness dimensions. For 
this analysis, no masks (i.e., isolation of specific regions of the image) were ap-
plied to the CIs, and thus, all the information contained in the CIs was included in 
the analyses. Results of the multiple regression models are shown in Figure 2. All 
the F-ratios of the models depicted in Figure 2 were significant (all ps < .001) and 
ranged from F(2, 65533) = 14370 (Submissive & Untrustworthy) to F(2, 65533) = 
35950 (Dominant & Untrustworthy).
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Importantly for our aims, the contribution of each specific trait for the 2TCI var-
ied as a function of the trait combination context. The results consistently showed 
that the trustworthiness-related 1TCIs primarily predicted the 2TCI across all four 
trait combinations. However, the weight of a 1TCI trait in the 2TCI also changes 
depending on the combination context. Whereas practically only trustworthiness 
is present in the DomTrust 2TCI, the contribution of trustworthiness and domi-
nance becomes conjoined in other 2TCIs.

FIGURE 2. 2TCIs (framed pictures) obtained in Study 1 for each of the four two-trait combinations 
of the poles of the dominance and trustworthiness dimensions, and 1TCIs (unframed pictures) 
from Oliveira and colleagues (2019). All results presented here are for the unmasked CIs. Each 
row illustrates a regression model with a 2TCI as the outcome and the trait combinations of 
correspondent 1TCIs. Residual CIs represent the variance in the pixel data left to be explained 
by each model. Reported values correspond to standardized beta coefficients [95% confidence 
intervals]. All coefficients were significantly different from zero, all ps < .001.



COMBINING TRAITS INTO A FACE 527

The amount of explained variance in each model also informs us about the ex-
tent to which each 2TCI shares visual information with both of its 1TCI predictors. 
So, the higher the R2, the more the visual information of a 2TCI can be explained 
by its two 1TCI predictors. A theoretical assumption regarding the linear integra-
tion of the two traits would lead us to expect similar R2 values across the four re-
gression models. Our data suggest instead that the contribution of the 1TCIs to the 
2TCI was disproportionate and varied depending on the trait context (see Figure 2 
and Table 1). As shown in Table 1 (see Pure 2TCI model), the confidence intervals 
for the R2 values do not overlap between 2TCI conditions, thus suggesting that 
they are not similar. 

An alternative methodological approach to assess this explained variance is to 
create artificial 2TCIs for each of the four trait combinations by averaging the cor-
respondent pairs of 1TCIs and assessing their squared correlation with the “pure” 
2TCIs. Although this approach ignores differences in variability associated with 
each 1TCI overall, the R2 values were lower than those associated with the multiple 
regression analyses. As Table 1 shows, this analysis leads to a similar conclusion: a 
general weak overlap between a pure and its correspondent artificial 2TCI, which 

TABLE 1. Variance of Pure 2TCI Accounted for by Artificial 2TCI with Pure 2TCI Model Values as 
Reference for Unmasked and Masked 2TCIs, in Studies 1 and 2

R2 [95% CI]

Study CI masking Trait combination Pure-Artificial 2TCIs Pure 2TCI model

1 Unmasked Dom. & Trust. .15 [.15, .16] .35 [.35, .36]

Dom. & Untrust. .51 [.51, .52] .52 [.52, .53]

Sub. & Trust. .35 [.35, .36] .39 [.38, .40]

Sub. & Untrust. .22 [.22, .23] .30 [.30, .31]

Masked Dom. & Trust. .20 [.19, .21] .43 [.42, .43]

Dom. & Untrust. .53 [.52, .54] .55 [.54, .56]

Sub. & Trust. .41 [.41, .42] .45 [.45, .46]

Sub. & Untrust. .27 [.26, .28] .34 [.33, .35]

2 Unmasked Dom. & Trust. .21 [.20, .22] .43 [.42, .43]

Dom. & Untrust. .47 [.47, .48] .49 [.48, .50]

Sub. & Trust. .40 [.39, .40] .41 [.41, .42]

Sub. & Untrust. .18 [.18, .19] .18 [.18, .19]

Masked Dom. & Trust. .24 [.23, .25] .45 [.44, .46]

Dom. & Untrust. .49 [.48, .50] .51 [.51, .52]

Sub. & Trust. .41 [.40, .41] .42 [.41, .42]

Sub. & Untrust. .18 [.18, .19] .18 [.18, .19]

Note. Artificial 2TCIs result from the artificial averaging of two 1TCIs for a given trait combination (e.g., Artificial DT 
2TCI is the average of the Dominant and Trustworthy 1TCIs). The Pure-Artificial 2TCI R2 values represent the variance in 
a pure 2TCI accounted for by the artificial 2TCI derived from the same trait combination. The column Pure 2TCI model 
R2 provides the values obtained in the regression models where pure 2TCIs were predicted by the 1TCIs, as a reference 
to compare with the Pure-Artificial 2TCI R2 values.
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varies depending on the trait context. Thus, each 2TCI is unlikely to result from a 
simple linear combination of the 1TCIs.

Our next analysis aimed to assess the validity of the conclusions suggested by 
these data.

R-Squared Simulations. To ascertain whether the observed R2 values are mean-
ingful or could have been obtained by chance alone, we ran a simulation for each 
2TCI model. In each simulation, we substituted the two 1TCI predictors by two 
randomly generated CIs. Unlike the 1TCIs, the randomly generated CIs did not, 
in principle, contain any specific trait signal, since they were composed of random 
visual noise. Thus, in these simulation models, each 2TCI was essentially being 
predicted by random noise. As a result, we expected the explained variance of 
these models to drop to close to null values. For each simulation, we generated 
two different stimuli sets, using a different randomization seed for each set (spe-
cifically, 1 and 2). Each set consisted of 300 pairs of stimuli, which is the same 
number of pairs used in the study’s main task (i.e., 2IFC task) to simulate the 2IFC 
task’s 300 trials. Next, we generated 300 random responses (i.e., coded as -1 or 1, 
corresponding to the selection of one or the other image of a pair) per participant, 
for a total of 20 participants per set, as this was the sample size of the real data. 
This resulted in 20 individual CIs per set. Finally, for each 2TCI, we ran a total of 
20 regression models. In these models, one of the 2TCIs was fixed as the outcome 
variable, and the predictors were two of the randomly generated individual CIs 
(substituting the 1TCIs). At each iteration of the simulation, each of the individual 
CI predictors was sampled from a different set than that of the other predictor.

The R2 ranges obtained for each predicted 2TCI simulation are described in 
Table 2. The resulting ranges represent the interval of R2 values that could be ex-
pected to be obtained by CIs without trait signal (i.e., random noise). Since none of 
the R2 values of the four 2TCI regression models falls within the simulations’ R2 
ranges, they are unlikely to be due to chance, and thus, we can be more confident 
that the trait signal contained in the 1TCIs accounts for the observed variance in 
the outcome 2TCI. 

Masked Versus Unmasked CIs. Our main analysis was performed using all the 
pixel information in a CI. It could be argued that our main analysis results were 
driven by the inclusion of pixel information outside the face region of a CI, which 

TABLE 2. R2 Values Observed in Study 1 versus R2 Values Expected to Be Obtained by Chance Based on 
Simulated Data, for Each Predicted 2TCI

Simulation R2

Quantile

Predicted 2TCI Observed R2 M SD 50% 95% 100%

Dom. & Trust. 0.35 0.011 0.010 0.008 0.030 0.033

Dom. & Untrust. 0.52 0.013 0.013 0.010 0.041 0.050

Sub. & Trust. 0.39 0.015 0.013 0.015 0.036 0.043

Sub. & Untrust. 0.30 0.014 0.014 0.011 0.042 0.054
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in turn could be inflating explained variance. Alternatively, it could also be the 
case that these outer pixel regions were themselves a source of variability. To ex-
amine this possibility, we repeated our analysis by now restricting it to the most 
meaningful information in the CIs (i.e., face region). Both the outcome 2TCI and 
the 1TCI predictors were masked. The applied mask was oval-shaped and kept 
only the area containing the full face (including hair) in the analyzed image (mask 
and scripts of the analyses are provided in our online data repository). The results 
of the regression models using masked CIs, including the R2 of the models using 
unmasked CIs as a reference, are shown in Table 3. Results indicate that the ex-
plained variance was generally higher in models using masked CIs, thereby ruling 
out the possibility that the inclusion of outer pixel regions was inflating explained 
variance and showing that the use of unmasked CIs in fact decreased it. Finally, 
the observed differences in explained variance varied in extent across 2TCIs. 2TCIs 
including high trustworthiness exhibited a larger gap between the explained vari-
ance of masked and unmasked models, compared to 2TCIs including untrust-
worthiness. This, however, may just be reflecting that high trustworthiness 1TCIs 
explain more variance in the outcome 2TCI compared to its untrustworthiness 
counterparts (see Figures 2 and 4). 

TABLE 3. R2 Values and Standardized Coefficients (with 95% Confidence Intervals) for Regression 
Models of Masked Classification Images, and Reference R2 Values of Models of Unmasked 
Classification Images, for Studies 1 and 2

Masked 1TCI Predictors Masked CIs model

Study Masked 
2TCI 

β Dominance [95% CI] β Trust. [95% CI] F (2, 38955) R2 Unmasked 
model R2

1 DT 0.00 0.65*** 14410*** .43 .35

 [-0.01, 0.00] [0.64, 0.66]

DU 0.25*** 0.58*** 23690*** .55 .52

[0.24, 0.26] [0.57, 0.58]

ST 0.20*** 0.65*** 16140*** .45 .39

[0.19, 0.20] [0.64, 0.65]

SU 0.15*** 0.61*** 10100*** .34 .30

[0.15, 0.16] [0.60, 0.62]

2 DT 0.04*** 0.68*** 15820*** .45 .43

[0.03, 0.05] [0.68, 0.69]

DU 0.21*** 0.58*** 20530*** .51 .49

[0.21, 0.22] [0.57, 0.59]

ST 0.27*** 0.59*** 13920*** .42 .41

[0.26, 0.28] [0.58, 0.60]

SU 0.28*** 0.41*** 4417*** .18 .18

[0.27, 0.29] [0.41, 0.42]

Note. DT = Dominant & Trustworthy; DU = Dominant & Untrustworthy; ST = Submissive & Trustworthy; SU = 
Submissive & Untrustworthy. α = 0.05; ***p < .001
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RESIDUAL CIS: VISUALIZING BEYOND THE TWO TRAITS

The variance in each model that is not explained by the two 1TCI predictors can 
be interpreted not only as error but also, and more interestingly, as additional in-
formation mapped in the 2TCI that goes beyond a linear combination of the two 
separate traits. 

To visualize the unexplained variance for each model, we computed additional 
CIs from the residuals. These residual CIs are shown in Figure 2; they appear to 
be very similar to their correspondent 2TCIs. Such similarity suggests that there 
is a large portion of additional trait information in the 2TCI beyond that which is 
accounted for by the 1TCIs and error. Otherwise, if the 1TCIs accounted for all of 
the 2TCIs’ variance, the resulting residual CI would be an image mostly filled with 
pixels that are uniformly one value with no variation (e.g., all pixels would exhibit 
the same color, and thus, only the underlying base image would remain in the im-
age; for a demonstration see the R scripts regarding the artificial 2TCIs analyses in 
our online data repository).

CI TRAIT RATINGS

Figure 3 presents the results for the CI ratings task, informing about whether 
the CIs were perceived as intended in the trait(s) used to generate them. For the 
sake of simplicity, we submitted the 1TCI ratings and the 2TCI ratings to sepa-
rate within-participants ANOVAs, and applied a Benjamini-Hochberg correction 
to the omnibus tests’ p-values to control for the false discovery rate (FDR; Ben-
jamini & Hochberg, 1995). Thus, we additionally report FDR corrected p-values for 
every omnibus test. Effect sizes were calculated following the recommendations 
described in Lakens (2013) for within-participants designs. Probability of Type I 
error (α) was set to .05 for all analyses.

1TCI Ratings. The overall pattern of the 1TCI ratings presented in Figure 3 shows 
that each 1TCI was rated higher in its intended trait (e.g., trustworthy 1TCI rat-
ed as high on trustworthiness). We tested the significance of these differences by 
submitting the 1TCI ratings to a 2 (Dimension: dominance vs. trustworthiness) × 
2 (Pole: high vs. low) within-subjects ANOVA for each separate trait rating (i.e., 
dominance or trustworthiness). 

Trustworthiness ratings yielded the expected Dimension × Pole interaction, F(1, 
28) = 99.45, p < .001 (pFDR = .002), hG

2 = .44, 1-β = 1.00, indicating that the difference 
in perceived trustworthiness occurred as intended between the two trustworthi-
ness-related 1TCIs, t(28) = 9.30, ptukey < .001, Mdiff = 2.55, Mdiff 95% CI [1.98; 3.11], 
Cohen’s dz = 1.73 (see Figure 3). However, suggesting that the two dimensions are 
not perceived as independent, the two dominance-related 1TCIs also differed in 
perceived trustworthiness, t(28) = 6.02, ptukey < .001, Mdiff = 1.62, Mdiff 95% CI [1.06; 
2.17], Cohen’s dz = 1.12, with the dominant 1TCI perceived as less trustworthy than 
the submissive 1TCI (cf. Oosterhof & Todorov, 2008).
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For the dominance ratings, the ANOVA yielded a Dimension × Pole interaction, 
F(1, 28) = 82.40, p < .001 (pFDR = .002), hG

2 = .48, 1-β = 1.00, indicating that the domi-
nant 1TCI was rated as more dominant than the submissive 1TCI as intended, 
t(28) = 12.29, ptukey < .001, Mdiff = 3.48, Mdiff 95% CI [2.90; 4.06], Cohen’s dz = 2.28. 
Again suggesting that the two dimensions are not perceived as independent, the 
perceived dominance of the trustworthiness-related 1TCIs also differed, t(28) = 
3.61, ptukey < .003, Mdiff = 1.48, Mdiff 95% CI [0.64; 2.32], Cohen’s dz = 0.67, with the 
trustworthy 1TCI being rated as less dominant than the untrustworthy 1TCI (see 
Figure 3). The negative relationship between perceived dominance and trustwor-
thiness was further corroborated by a Pearson correlation coefficient computed 
across all 1TCIs (r = -.36, p < .001). 

Overall, these results indicate that not only each 1TCI contained their intended 
trait signal but also that this signal modulates the perception of dominance. 

2TCI Ratings. To examine how each 2TCI was evaluated on each of the two traits 
used to generate it, we submitted their dominance and trustworthiness ratings 
to a 2 (Trustworthiness: 2TCI with trustworthy vs. 2TCI with untrustworthy) × 
2 (Dominance: 2TCI with dominant vs. 2TCI with submissive) within-subjects 
ANOVA for each separate trait rating. Although we expected to corroborate that 
participants perceived the 2TCIs as intended on the two traits (e.g., DomUntrust 
2TCI rated high on dominance and low on trustworthiness), we also assumed that 
the integration of the two traits during the 2TCI generation task would modulate 
how they are perceived in a face (e.g., any differential weighting of traits underly-
ing the 2TCI would be reflected in the ratings). 

Results for the trustworthiness ratings yielded the expected main effect for Trust-
worthiness, F(1, 28) = 84.28, p < .001 (pFDR = .002), hG

2 = .45, 1-β = 1.00, indicating 
that 2TCIs generated with trustworthy were rated as more trustworthy than 2TCIs 
generated with untrustworthy (see Figure 3). However, the integration of the traits 
promoted a Trustworthiness × Dominance interaction, F(1, 28) = 6.65, p = .015 (pFDR 
= .015), hG

2 = .03, 1-β =.70, indicating that the difference in trustworthiness rat-
ings between the DomTrust and DomUntrust 2TCIs was greater than between the 
SubTrust and SubUntrust 2TCIs. Post-hoc comparisons further clarified that the 
DomTrust and SubTrust 2TCIs did not differ in perceived trustworthiness (equal 
means), whereas the DomUntrust 2TCI was perceived as less trustworthy than 
the SubUntrust 2TCI, t(285) = 2.85, ptukey= .005, Mdiff = 0.79, Mdiff 95% CI [0.22; 1.36], 
Cohen’s dz = 0.53. This suggests that 2TCIs generated with untrustworthy were 
more differentiated than 2TCIs generated with trustworthy. This could not have 
resulted from a simple addition or subtraction of the information about the other 
trait. The specific trait combination creates a context that changes their perception. 

For the dominance ratings, besides the expected main effect for Dominance, F(1, 
28) = 30.78, p < .001 (pFDR = .002), hG

2 = .18, 1-β = 1.00, the ANOVA also yielded a 
Dominance × Trustworthiness interaction, F(1, 28) = 9.75, p = .004 (pFDR = .005), hG

2 
= .05, 1-β = .85. This interaction indicates that the difference in perceived domi-
nance between the DomUntrust and SubUntrust 2TCIs, t(28) = 4.88, ptukey < .001, 
Mdiff = 2.03, Mdiff 95% CI [1.18; 2.88], Cohen’s dz = 0.91, was greater than the differ-
ence between the DomTrust and SubTrust 2TCIs, t(28) = 3.46, ptukey= .131, Mdiff = 
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0.69, Mdiff 95% CI [0.28; 1.10], Cohen’s dz = 0.64, suggesting an inflation of domi-
nance evaluations when dominance traits are combined with untrustworthiness. 

This analysis demonstrates that the trait combination context modulated the 
strength of the expression of a trait in a 2TCI. Importantly, this pattern of results 
indicates that the trait combination context distorted the negative correlation be-
tween dimensions observed in the 1TCIs. This distortion was more apparent in the 
DomTrust and SubUntrust 2TCIs whose trait combinations do not reflect a nega-
tive relationship between dimensions, like the DomUntrust and SubTrust 2TCIs 
do. Although more clearly in the DomTrust 2TCI than in the SubUntrust 2TCI, it 
was trustworthiness, rather than dominance information, that prevailed in the CI. 
This seems to suggest that being informed that someone is untrustworthy pro-
motes visualizing their face as dominant, whereas being informed that someone 
is dominant does not promote visualizing them as untrustworthy. However, this 
interpretation should be taken with caution as this study was not designed to di-
rectly test that possibility.

Nevertheless, although our pattern of results cannot be entirely explained by a 
simple negative correlation between the two trait dimensions, a negative correla-
tion between dimensions still emerges when it is computed across all 2TCIs (r = 
-.30, p = .001), as this aggregation counterbalances any distortions induced by the 
trait context. 

STUDY 2

Altogether, Study 1’s results seem to support that trustworthiness overweighs 
dominance in trait integration, and that this integration does not result from a 
simple additive linear model. In Study 2, we aimed to obtain stronger support for 
this conclusion by replicating the main results of Study 1 with more stable CI es-
timates. With this goal in mind, we increased the number of judges per 2TCI, and 
additionally controlled for other potential sources of noise, such as word order in 
the target trait combinations. 

In addition, Study 2 adds two tasks to the 2IFC task used in Study 1. These tasks 
aimed to assess some properties of the type of trait integration participants were 
making during the 2IFC task (from which 2TCIs are derived). The first task used as 
targets both the 2TCIs generated in Study 1 and the 1TCIs. In this task, we assessed 
participants’ performance in detecting the signal of the two-trait combination (i.e., 
2TCI generated in Study 1) when it is presented in a trial of the 2IFC task, and how 
the correct detection of that signal suffers interference from the signal of each of 
the four possible 1TCIs (paired with the 2TCI). An analysis of how participants 
reacted to these stimulus pairings informs us about the extent to which they were 
relying on the trait combination, as opposed to each trait in isolation, to perform 
the task. In the second task, only 1TCIs were used as targets, each corresponding 
to one of the traits in the target combination (e.g., Dominant 1TCI vs. Trustworthy 
1TCI with Dominant & Trustworthy as the target instruction). This task addressed 
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the type of bias that participants were prone to when no proper signal was pre-
sented for the detection of the simultaneous presence of the two traits. 

PARTICIPANTS AND DESIGN

A total of 160 undergraduate students from ISPA – University Institute (148 fe-
male, MAge = 20.29 years, SDAge = 4.67) participated in the study in exchange for 
course credits. In total, there were eight between-participants conditions defined 
by the 2IFC task instruction. As in Study 1, each condition (n = 40) corresponded 
to a unique combination of two trait poles: one from dominance and another from 
trustworthiness. The position of a trait in the task instruction was counterbalanced 
between participants. This resulted in two instruction conditions for every spe-
cific two-trait combination (e.g., “trustworthy and dominant” and “dominant and 
trustworthy”). Still, it must be noted that we expected both traits of the combina-
tion to be activated simultaneously in the mind of a perceiver during a task trial, 
as opposed to being sequentially processed across time. 

EXTENDED REVERSE CORRELATION TASK 

The 2IFC task stimuli and procedure were identical to those in Study 1 until the 
300th trial. After the 300th trial, there were five additional trials in which we present-
ed strategic pairings of the previously obtained CIs (i.e., 1TCIs and 2TCIs) instead 
of the usual pair of images generated to serve as task stimuli. The specific pairings 
are listed in Table 4. The five additional CI pairs were presented in random order. 
The side of the screen on which each CI from a pair was shown was counterbal-
anced between participants. Importantly, for these additional trials, the task in-
structions did not change; they were exactly the same instructions that were given 
for the previous 300 trials of the task. That is, the participant’s task was to select 
from a pair of face images the one that most resembled a person who possessed 
both of the two target traits. There were two different (hidden) tasks in these ad-
ditional trials: one that involved a decision that could be considered “correct,” 

TABLE 4. CI Stimuli Pairings for the Five Last Trials of the 2IFC Task, by 2TCI Condition

Task 2TCI Condition

Dom. & Trust. Dom. & Untrust. Sub. & Trust. Sub. & Untrust.

I DT vs. D DU vs. D ST vs. D SU vs. D

DT vs. T DU vs. T ST vs. T SU vs. T

DT vs. S DU vs. S ST vs. S SU vs. S

DT vs. U DU vs. U ST vs. U SU vs. U

II D vs. T D vs. U S vs. T S vs. U

Note: D = Dominant 1TCI; S = Submissive 1TCI; T = Trustworthy 1TCI; U = Untrustworthy 1TCI; DT = Dominant & 
Trustworthy 2TCI; DU = Dominant & Untrustworthy 2TCI; ST = Submissive & Trustworthy 2TCI; SU = Submissive & 
Untrustworthy 2TCI; DT, DU, ST, and SU correspond to the 2TCIs obtained in Study 1.
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and another in which any decision taken was “partially incorrect.” Henceforth, we 
refer to them as Task I and Task II, respectively.

Task I. This task included trials in which each group of participants continued to 
perform judgments for one of the four combinations of traits (see Table 4). In each 
of these four trials, the 2TCI— previously generated in Study 1— that matched the 
current combination of traits was paired with each of the four 1TCIs. Therefore, 
each group of participants in a 2TCI condition performed four trials. For example, 
for the group of participants who were instructed to detect the “dominant and 
trustworthy” combination, the 2TCI was always the DomTrust 2TCI and the 1TCI 
paired with it changed across these four trials. Importantly, we considered the 
selection of the 2TCI as the correct response in all of these trials, since the 2TCI 
was expected to contain the signal of the target trait combination of the condition.

Task II. This task corresponded to only one trial (see Table 4). In this trial, each 
group of participants in a 2TCI condition was presented with a pair of 1TCIs. Each 
1TCI corresponded to one of the traits in the target combination. For example, for 
the group of participants who were instructed to detect the “dominant and trust-
worthy” combination, this trial would exhibit the dominant 1TCI and the trust-
worthy 1TCI side by side. Since each 1TCI was expected to contain the signal of 
only one of the two traits in the task instruction, the decision to select either 1TCI 
was always (partially) incorrect. This task was devised to simulate a scenario in 
which both target stimuli exhibited a partial signal, and to examine whether the 
participant exhibited some bias toward one of the traits.

After completing all of the tasks, participants were thanked and debriefed.

RESULTS

Our analytical approach for Study 2 was similar to the one in Study 1. We expected 
to find: (a) that the 1TCIs are meaningful predictors of the 2TCIs, (b) that trustwor-
thiness plays a stronger predictive role than dominance, and (c) that these linear 
models would differ across trait combination conditions. Thus, our main analysis 
consisted in analyzing the objective similarity between each 2TCI and both of its 
correspondent 1TCIs. Again, we conducted this analysis using either unmasked or 
masked CIs to examine the impact of the CI masking procedure on our results, and 
we computed the residual CIs to visualize any information unaccounted for by the 
1TCIs in each 2TCI regression model.

Next, we examined the strategies used by participants to integrate the traits dur-
ing CI estimation in the 2IFC task. First, we examined participants’ performance 
in detecting the signal of the two-trait combination during Task I with a binomial 
logistic regression analysis. Finally, we addressed the bias towards any of the two 
dimensions that could be occurring during the trait integration process, with a log-
linear analysis of the response data obtained in Task II. 
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CLASSIFICATION IMAGES

The 2TCIs depicted on the bottom panel of Figure 1 (Study 2) were generated 
using the same procedure described in Study 1, and excluded the five additional 
trials of Tasks I and II (intended for separate analyses). The overall pattern of simi-
larities (based on our subjective assessment) among these CIs appears to remain, 
and thus, we maintain the same view reflected in our previous comments (see 
Study 1 Results). 

MAIN ANALYSIS: OBJECTIVE SIMILARITY BETWEEN 2TCIS AND 1TCIS

As in Study 1, we conducted a regression analysis for each 2TCI to examine how 
much variance is explained by each of the two correspondent 1TCIs (see Figure 4). 
In these analyses, the data points corresponded to CI pixel values (n = 65536 pixels 
per CI). The results again indicated a higher contribution of the trustworthiness 
1TCIs to all the final 2TCIs. All the F-ratios of these models were significant (all ps 
< .001) and ranged from F(2, 65533) = 7256 (Submissive & Untrustworthy) to F(2, 
65533) = 31490 (Dominant & Untrustworthy). 

Again, we found that the explained variance varied across the four 2TCI linear 
models. Overall, the pattern of explained variance was similar to the one found 
in Study 1 (see Figure 4 and Table 1). Once more, we analyzed how the 2TCIs ob-
tained in this study (i.e., pure 2TCIs) were related to their correspondent artificial 
2TCIs (i.e., average of two 1TCIs; see Table 1). Overall, this analysis yielded results 
similar to those in Study 1, and suggests that the assumption of a context-indepen-
dent linear integration of individual traits is unlikely to have occurred.

Masked versus Unmasked CIs. As in Study 1, we also ran the regression models 
using masked CIs (see Study 1 Results section for masking details). Results are 
listed in Table 3. The overall pattern of results is consistent with those found in 
Study 1, with some exceptions. Applying a mask to the SubTrust and SubUntrust 
2TCIs adds a lower impact on the explained variance of these models, especially 
for the SubUntrust 2TCI. This suggests that the explained variance of these 2TCIs 
was less affected by the inclusion of pixels outside the face region and, thus, that 
the pixel information contributing to the explained variance in the unmasked CI 
models was located within the boundaries of the applied mask. Nevertheless, the 
explained variance of the masked versions of these 2TCIs was not lower than that 
of their unmasked counterparts, thus demonstrating that the use of unmasked CIs 
was not inflating our models’ explained variance. 

RESIDUAL CIS

Again, we generated CIs using the residuals of each model (see Figure 4). As in 
Study 1, these CIs highly resemble their correspondent 2TCIs. This suggests that 
additional information emerged from the integration of the two traits, as these CIs 
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FIGURE 4. 2TCIs (framed pictures) obtained in Study 2 for each of the four two-trait combinations 
of the poles of the dominance and trustworthiness dimensions, collapsed across order of traits 
in the task instruction, and 1TCIs (from Oliveira et al., 2019). All results presented here are for 
the unmasked CIs. Each row illustrates a regression model with a 2TCI as the outcome and 
the trait combinations of correspondent 1TCIs. Residual CIs represent the variance in the pixel 
data left to be explained by each model. Reported values correspond to standardized beta 
coefficients [95% confidence intervals]. All coefficients were significantly different from zero, 
all ps < .001.

cannot be accounted for by any of the 1TCIs in the model. We discuss these results 
further in the General Discussion.

TASK I: DISCRIMINABILITY BETWEEN 2TCIS AND 1TCIS IN 2IFC TASK

In this analysis, we examined participants’ performance and response strategies 
during the 2IFC task. This informs us about whether participants were attending 
to both traits simultaneously or were instead strategically changing from one trait 
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to the other during the task. If participants were attending to the presence of both 
traits in a target face, we would expect to observe a higher probability of correctly 
selecting the 2TCI regardless of the 1TCI with which it was paired. However, if 
one trait in the target combination (e.g., Dominant & Trustworthy) was being more 
heavily weighted than the other, then we would expect the 1TCI containing that 
signal (e.g., Trustworthy 1TCI) to overlap with the signal of the 2TCI (which re-
flects that asymmetrical weighting). The resulting competition between the signals 
of the 2TCI and the 1TCI should lead to an equal probability of selecting any of 
these CIs. This would additionally suggest that participants could rely only on 
that (more heavily weighted) trait to make their decisions in the 2IFC task. 

To examine this, we conducted a binomial logistic regression1 with Selected CI 
Type (2TCI vs. 1TCI) as the outcome variable, and 2TCI Condition and Reference 
1TCI (i.e., 1TCI paired with 2TCI) as predictors. The model including both the 
main effects and interaction was significant, c2 (15) = 106.6, p < .001, AIC = 656, 
R2

McFadden’s = .15 (vs. main effects only model, AIC = 713, R2
McFadden’s = .04). In our re-

sults, the odds ratios (ORs) represent the ratio between the probability of identify-
ing the 2TCI (hit) and the probability of identifying a 1TCI as representing the two 
traits (false alarm). An OR of 1 indicates equal probability of hit and false alarm 
(i.e., chance level). ORs higher (lower) than 1 indicate that the probability of hits 
(false alarms) are superior to those of false alarms (hits). 

A significant 2TCI Condition × Reference 1TCI interaction, c2 (9) = 75.5, p < .001, 
indicated that the differences in the probability of selecting a 2TCI (i.e., hit) across 
2TCI–1TCI pairings also differed across the 2TCI condition. We report FDR–cor-
rected p-values for the multiple comparisons. A plot of these results can be found 
in Figure S4 of the Supporting Information file in our online data repository. The 
results show a higher overlap in signal between the Trustworthy 1TCI and both 
2TCIs whose trait combinations included the trait “trustworthy.” Specifically, the 
probability of a hit was the same (p = .50) for the DomTrust 2TCI and the SubTrust 
2TCI when they were paired with the Trustworthy 1TCI (OR = 1.00, pFDR = 1.00, 
95% CI: 0.53, 1.85; in both 2TCI conditions). Moreover, compared to the Trustwor-
thy 1TCI, the probability of a hit was always higher when the 2TCI was paired with 
the Dominant, Submissive, and Untrustworthy 1TCIs in both the 2TCIs conditions 
(ORs were, respectively, 9.00, 12.33, and 19.00, all psFDR < .001, in the DomTrust 
condition; and 4.71, 4.71, and 9.00, all psFDR < .001, in the SubTrust condition). 

A signal overlap was also apparent between the Dominant 1TCI and 2TCIs gen-
erated with “untrustworthy” (see Figure S4 in online Supporting Information). 

1. This analysis is akin to a signal detection analysis where a d-prime score for two-alternative 
forced-choice tasks can be obtained (see Macmillan & Creelman, 2005). We relied on the binomial 
logistic regression because it not only provided the same information as a signal detection analysis, 
but it also facilitated a clearer and more concise reporting of inferential statistics for the relevant 
comparisons in the context of our discussion. Nevertheless, we additionally provide the results 
of a d-prime analysis of our data in our online data repository (see Supporting Information). The 
analysis of the d-prime scores is consistent with the binomial logistic regression results as it shows an 
overlap (lower discrimination) in signal between the Trustworthy 1TCI and both 2TCIs, whose trait 
combinations included the trait “trustworthy” as well as an overlap between Dominant 1TCI and the 
2TCIs generated with “untrustworthy.”
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Specifically, the probabilities of a DomUntrust 2TCI hit (p = .57) and a SubUntrust 
2TCI hit (p = .50) when these were paired with the Dominant 1TCI (DomUntrust 
condition: OR = 1.35, pFDR = .489, 95% CI: 0.72, 2.53; SubTrust condition: OR = 
1.00, pFDR = 1.00, 95% CI: 0.54, 1.85) did not differ across the 2TCI conditions 
(OR = 0.74, pFDR = .656, 95% CI: 0.31, 1.78). In the DomUntrust 2TCI condition, 
compared to the Dominance 1TCI, 2TCI hits were more likely for any other refer-
ence 1TCIs (ORs were, respectively, 9.12, pFDR =.002, and 5.17, pFDR =.008, for the 
Submissive and Trustworthy 1TCIs), except for the Untrustworthy 1TCI, for which 
the probability of a hit did not significantly differ from Dominant 1TCI’s (OR = 
1.72, pFDR =.382, 95% CI: 0.68, 4.34). In the SubUntrust 2TCI condition, 2TCI hits 
were only more likely when the 2TCI was paired with the Trustworthy 1TCI (OR 
= 5.67, pFDR =.002) compared to the Dominance 1TCI. However, the probability of 
2TCI hits in the pairing with Dominant 1TCI did not significantly differ from that 
in the pairings with the Submissive and Untrustworthy 1TCIs (respectively, OR = 
2.08, pFDR =.194, 95% CI: 0.84, 5.14, and OR = 0.82, pFDR =.794, 95% CI: 0.34, 1.97). 

From those results, we can infer that the generally high probabilities for 2TCI 
hits (ORs > 1) across all 2TCI conditions (see Figure S4 in online Supporting Infor-
mation), in cases where the signal did not overlap with the 1TCI, resulted either 
from participants focusing only on one trait, or on both, to make their decisions.

Overall, these results support the claim that 2TCIs are reflecting a cognitive in-
tegration of both traits by the participants. However, they also suggest that indi-
viduals may rely on only one trait to make their decisions in the 2IFC task, which 
would contribute to the higher weight of that trait in the resulting 2TCI. Despite 
the methodological relevance of this evidence, these results also suggest that the 
weight participants attribute to traits is dependent on the trait combination con-
text. When the context is one of high trustworthiness, dominance loses relevance. 
On the other hand, high dominance only seems to be meaningful when coupled 
with untrustworthiness. 

TASK II: RESPONSE TENDENCY ANALYSIS

In this analysis, we assessed the participants’ tendency to rely on one dimension 
versus the other, in a trial where each of the two target faces corresponded to only 
one of the traits in the instruction (e.g., Trustworthy 1TCI vs. Dominant 1TCI, in 
Dominant & Trustworthy condition). Performance on this task should inform 
about whether there is a general bias to rely on one trait dimension over the other 
during the 2IFC task. For instance, in the Dominant & Trustworthy 2TCI condi-
tion, participants may be inclined to choose a trustworthy-looking face rather than 
a dominant-looking face. The absence of a particular inclination towards either of 
the two traits would promote a random selection in this task. 

To examine response tendency, we submitted the frequencies of dominance-
related and trustworthiness-related 1TCI selections in each 2TCI condition to a 
log-linear regression analysis. Specifically, we entered 2TCI Condition and 1TCI 
Dimension as variables in the regression. Results are shown in Figure 5. There 



540 OLIVEIRA ET AL.

was no difference between the saturated model including the interaction (c2 (7) = 
52.3, p < .001, AIC = 53.2) and the main effects only model (c2 (4) = 46.4, p < .001, 
R2

McF = .89, AIC = 53.1), which indicates a non-significant interaction between the 
2TCI condition and the dimension of the selected 1TCI (c2 (3) = 5.93, p = .115). We 
kept the saturated model with the interaction to account for all the variability in 
the data. The main effect of the 2TCI condition was non-significant (c2 (3) = 4.59, 
p = .204), indicating that the difference between frequencies of dominance- and 
trustworthiness-related 1TCIs did not differ across 2TCI conditions. Only the main 
effect for 1TCI Dimension was significant (c2 (1) = 46.4, p < .001), indicating that, 
across all 2TCI conditions, the rate of selection of a trustworthiness-related 1TCI 
was 3.21 times the rate of selection of a dominance-related 1TCI (b = 1.17, p < .001, 
rate ratio = 3.21, 95% CI: 2.23, 4.62). In other words, participants showed a ten-
dency to rely on trustworthiness-related facial content in Task II’s trial, regardless 
of the 2TCI instruction. This is consistent with previous results suggesting that 
perceivers ascribe more weight to the trustworthiness dimension (see introductory 
section). These results help to clarify that a bias to perceive trustworthiness in a 
face may have contributed to the predominance of trustworthiness information in 
the 2TCIs. 

GENERAL DISCUSSION

The present studies offer initial evidence about how impressions derived from 
two trait combinations are mapped onto a face, thereby extending Asch’s (1946) 
seminal work on trait integration to the domain of social face perception. The first 
relevant aspect of our data is that it shows that this integration occurs, suggesting 
that participants were matching an impression derived from two different trait 

FIGURE 5. Plot exhibits absolute frequencies (counts) of dominance-related and trustworthiness-
related 1TCI selections in the trial of the 2IFC extended reverse correlation task in which only 
1TCIs were presented (task II), by 2TCI condition. Error bars denote 95% confidence intervals.
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dimensions to particular face content. Moreover, it suggests that the content of the 
resulting faces—or 2TCIs—went beyond a mere linear compound of the features 
associated with each separate dimension. Although subsequent ratings of these 
2TCIs by an independent sample of participants showed that the face content of 
the 2TCIs conveyed information on the two trait dimensions, participants were 
not equally weighting them and even changed the weight of a trait depending 
on its trait context. For instance, our results suggest that the weight of dominance 
changes depending on the perceived trustworthiness of a person. 

Our data are consistent with previous findings regarding how trait information 
is integrated in impression formation that shows an unequal weighting of traits 
(e.g., Anderson, 1968) and different trait centrality and context effects (e.g., Asch, 
1946). To the best of our knowledge, these are the first studies that extend those 
findings to the domain of social face perception.

The results from both studies are also consistent with data previously reported 
in the impression formation literature supporting that morality-related informa-
tion, such as trustworthiness, weights more in our impressions (e.g., Abele & 
Bruckmüller, 2011; Goodwin et al., 2014; Wojciszke et al., 1998). They suggest that 
when perceivers receive information about the trustworthiness and dominance 
of a target person, trustworthiness information will weigh more than dominance 
information on their expectations about the target’s facial appearance. Our studies 
only suggest that this is what occurs by default, when no specific context is provid-
ed. Future studies could further investigate if a specific context where dominance 
is a relevant dimension would promote a higher contribution of this dimension to 
the final visual face impression. 

Our results additionally document that when we evaluate the two dimensions 
simultaneously in a face, not only do we ascribe a higher weight to trustworthi-
ness, we also contrast the evaluation of both dimensions, thereby promoting a 
compensation effect (see Judd, Garcia-Marques, & Yzerbyt, 2019). Although this 
type of compensation strategy is identified, by itself it does not seem to account for 
the context effects observed in our data. 

The results from Tasks I and II in Study 2 also show that the different weights of 
trustworthiness found in trait integration (see CI regression models) are detected 
in the integration process itself as differences in detection of the presence of the 
trustworthiness trait itself and as a bias that favors the detection of trustworthi-
ness relative to dominance. These data are in line with evidence suggesting that 
valence and trustworthiness information are automatically assessed by perceivers 
in social face perception (Todorov et al., 2009), and that they may have priority 
over other dimensions.

Importantly for our goals, although the findings of our conceptually driven per-
ception approach are consistent with those obtained using synthetic faces, they 
extend their interpretation. As stressed above, in agreement with Oosterhof and 
Todorov’s (2008) results, ours show that trustworthiness outweighs dominance in 
face impressions of personality. However, what our approach adds to that knowl-
edge is that the specific weight of a trait dimension in a face impression (which 
integrates several traits) is not predicted by a linear model that relies on a fixed 
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set of weights attributed to each individual trait. Our data show instead that those 
weights are trait context-dependent. The regression analyses using 1TCIs as pre-
dictors of the 2TCIs clarify that the trait dominant weights more in a face represen-
tation when paired with untrustworthy than with trustworthy. This is further cor-
roborated by the following factors: (a) 1TCIs did not account for all of the variance 
in the 2TCIs, thus allowing the residual CIs to preserve face information that bore 
a strong resemblance to the 2TCI; (b) evaluating a face on a trait was dependent 
on other available trait information associated with the same face; (c) the results 
of the signal detection analysis in Study 2 suggest that dominance is more heavily 
mapped in a face when coupled with untrustworthiness than when it is coupled 
with trustworthiness. Hence, our data fit well with Asch’s claims that “characteris-
tics forming the basis of an impression do not contribute each a fixed, independent 
meaning, but that their content is itself partly a function of the environment of the 
other characteristics, of their mutual relations” (1946, p. 268).

Besides offering new evidence supporting a gestaltic integration of trait infor-
mation in face perception, we believe that this article is methodologically innova-
tive: First, it demonstrates the feasibility of using RC methods to visualize face 
content associated with more complex personality judgments; and second, it de-
scribes how the output of these methods can be analyzed (i.e., CI regression analy-
ses) to quantify the impact of conceptual trait knowledge on representations of 
face content (i.e., how trait-space information shapes face-space information; see 
Over & Cook, 2018).

This methodologic approach opens a new perspective to the study of how infor-
mation is integrated in our minds, which can go beyond the focus of the discussion 
in this article. Take, for instance, the residual CIs that resulted from the CI regres-
sions (see Figures 2 and 4). These residual CIs exhibit emotional expressions that 
were not accounted for by the trustworthiness- and dominance-related features of 
the 1TCIs. It is an empirical question what these emotional expressions are reflect-
ing. It could be specific deviations from the predominant trustworthiness-related 
features in the 2TCIs, or alternatively, an additional emotional state expected by 
participants as a result of the trait integration. Future studies could further investi-
gate these possibilities by, for instance, examining how similar 2TCIs are predicted 
by 1TCIs generated for different emotions and obtaining trait and emotion ratings 
for all the CIs, including the residual CIs.

To our knowledge, our studies represent the first attempt to investigate how 
perceivers associate physical face content with impressions derived from different 
combinations of trait information. Our results are consistent with Asch’s configur-
al (1946) perspective, which argues that the content of an impression is determined 
by the specific interrelations between the traits from which it originated. In this 
way, our approach is theoretically relevant by bringing the discussion promoted 
by Asch’s (1946) work into the social face perception domain. 
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