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We study the response of a classical massless minimally coupled scalar to a static point scalar charge on 
de Sitter. By considering explicit solutions of the problem we conclude that – even though the dynamics 
formally admits dilatation (scaling) symmetry – the physical scalar field profile necessarily breaks the 
symmetry. This is an instance of symmetry breaking in classical physics due to large infrared effects. The 
gravitational backreaction, on the other hand, does respect dilatation symmetry, making this an example 
of symmetry non-inheritance phenomenon.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Point particle and scaling solution

In this note we investigate the system of a massless minimally 
coupled scalar (MMCS) field � in de Sitter space coupled to a 
scalar point charge. The action for the MMCS in an arbitrary curved 
space is given by,

S0[�] =
∫

d4x
√−g

[
−1

2
gμν

(
∂μ�

)
(∂ν�)

]
, (1)

where gμν is the inverse of the metric tensor gμν , g = det[gμν ], 
the metric signature is (−, +, +, +) and its coupling to the point 
particle χμ = χμ(τ ) is modeled by the action,

S int[χ,�] = −
∫

dτ
√

−gμνχ̇μ(τ )χ̇ν(τ )λ�(χ(τ )) , (2)

where τ is an affine parameter, λ is a dimensionless coupling, 
and χ̇μ(τ ) = dχμ(τ )/dτ . We assume that the point particle is at 
rest, sitting at the origin of the coordinate system on flat spatial 
slices of the Poincaré patch, χμ(τ ) = (τ , 0, 0, 0). The equation of 
motion for the MMCS descends from variation of the action (1)
and (2),

�(x) = − 1

a2

(
∂2

0 + 2aH∂0 − ∇2
)
�(x) = λ

δ3(�x)
a3

, (3)
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where a(η) = −1/(Hη) is the scale factor of de Sitter space with 
η conformal time, H = (∂0a)/a2 the (constant) Hubble rate, ∂0 =
∂/∂η and ∇2 is the Laplacian. While the sourceless equation would 
respect all of the isometries of de Sitter, the point source (3) breaks 
spatial special conformal transformations and spatial translations, 
leaving us with only four isometries, namely spatial rotations and 
dilatations, xμ → eαxμ with α ∈R.

It is most natural to assume that the solution of (3) satis-
fies the background isometries, and that it depends only on the 
rotation-invariant and dilatation-invariant combination of coordi-
nates X = aHr, r = ‖�x‖, i.e. �(η, �x) → �(X), also known as the 
scaling solution, upon which the equation of motion (3) away from 
the origin turns into an ordinary one,

[
(1 − X2)

d

dX
+ 2

X
(1 − 2X2)

]
d

dX
�(X) = 0 . (4)

This equation is integrated straightforwardly, and its general solu-
tion is

�(X) = − λH

4π X
− λH

8π
ln

(
1 − X

1 + X

)
+ �0 . (5)

One integration constant is completely fixed by the δ-function 
source term by means of the Green’s integral theorem, while the 
remaining trivial constant �0 remains undetermined.

A closer examination of the solution in (5) reveals some wor-
risome features. Most notably, the solution exhibits a logarithmic 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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singularity at the horizon! At a first glance there seems to be noth-
ing wrong with our assumptions. Perhaps it is that strong infrared 
effects that are known to exist for MMCS in de Sitter conspire to 
create, in a manner of speaking, a classical wall of fire – a barrier 
at which the geodesic equation for a test particle becomes singular.

That (5) cannot be a physical solution can be seen by consid-
ering the energy-momentum tensor, Tμν = ∂μ�∂ν� − 1

2 gμν gαβ ×
∂α�∂β�, accompanying the solution (5), which in spherical coor-
dinates reads,

T μ
ν = H2

⎛
⎜⎜⎝

− 1
2 (1+ X2) −X 0 0

X 1
2 (1+ X2) 0 0

0 0 − 1
2 (1− X2) 0

0 0 0 − 1
2 (1− X2)

⎞
⎟⎟⎠

×
(∂�

∂ X

)2
. (6)

Near the horizon it diverges quadratically, as can be seen from,

(∂�

∂ X

)2 X→1∼ λ2 H2

64π2

1

(1 − X)2
. (7)

This divergence of the diagonal terms would generate a large clas-
sical backreaction onto the background space-time. In particular, 
there is a positive radial energy density flux T r

0, which also di-
verges quadratically at the horizon. While the divergence at the 
origin ∝ 1/(ar)4 is the usual divergence generated by a point 
charge that is dealt with in the usual way, the divergence at the 
Hubble horizon cannot be a part of the physical solution. In order 
to shed light on the origin of the problem, in the next section we 
consider the equivalent problem for a massive scalar and construct 
a solution that is regular everywhere except at the origin.

2. Massive scalar on de Sitter

A massive scalar field satisfies the equation of motion,

(
− m2

)
�(x) = λ

δ3(�x)
a3

. (8)

This equation still possesses dilatation symmetry, and thus admits 
a scaling solution that away from the origin satisfies a homoge-
neous equation,[
(1 − X2)

d2

dX2
+ 2

X
(1 − 2X2)

d

dX
− m2

H2

]
�(X) = 0 . (9)

The general solution can be written in terms of two hypergeomet-
ric functions,

�(X) = − λH

4π X
× 2 F1

({
1

4
+ ν

2
,

1

4
− ν

2

}
,

{
1

2

}
, X2

)

+ λH

2π
× 

( 3
4 + ν

2

)

( 3

4 − ν
2

)

( 1

4 + ν
2

)

( 1

4 − ν
2

)
× 2 F1

({
3

4
+ ν

2
,

3

4
− ν

2

}
,

{
3

2

}
, X2

)
, (10)

where,

ν =
√

9

4
− m2

H2
. (11)

The constant in front of the first hypergeometric function is fixed 
by the source in (8), while the second one is fixed by the require-
ment of regularity at the horizon. Moreover, the behavior of the 
solution for X → ∞ is regular. One can add to (10) a homogeneous 
solution that breaks scaling symmetry, but such contributions tend 
to be subdominant at late times.

Examining the result (10) in the small mass limit is instructive 
for understanding the issues involved in the massless scaling solu-
tion (5),

�(X)
m→0∼ − λH

4π X
− λH

8π
ln

(
1 − X

1 + X

)

− λH

2π

[
3H2

2m2
+ ln(2) − 7

6

]
+ λH

8π
ln

(
1 − X2) . (12)

The first line in this expansion comes from the first line of the 
full solution (10), and reproduces the massless solution (5) up to 
a constant. The second line above comes from the small mass ex-
pansion of the second line in (10). It is clear there is no singularity 
at the horizon even in this limit. However, it is also clear that this 
limit is singular due to the constant term ∼ 1/m2. One might try 
to employ the observation that the massless solution (5) is defined 
up to a constant in order to remove the divergent term above. 
This though does not work, as (12) with the divergent constant re-
moved simply does not satisfy the massless equation of motion (4). 
The proper conclusion is that the scaling solution of our problem 
is singular in the massless limit, and (5) does not represent a valid 
physical solution. In other words, there is no scaling solution for 
the massless case that is regular away from the origin.

The physical interpretation of this behavior is clear: the point 
source generates a large amount of classical infrared scalar modes 
such that it breaks scaling (dilatation) symmetry in the limit of 
small mass. This is the reason behind why the naîve scaling solu-
tion (5) we found in the massless case has a pathological behavior 
at the horizon. The small mass behavior in (12) is reminiscent of 
the well understood massless limit of the MMCS propagator in de 
Sitter space, which we briefly recap in the following.

3. Scalar propagator in de Sitter

The small mass behavior in (12) is reminiscent of the bet-
ter known example in linear quantum physics in de Sitter space. 
There exists a de Sitter invariant two-point Wightman function for 
a massive scalar in de Sitter [1],

〈
φ̂(x)φ̂(x′)

〉 = H2 
( 3

2 + ν
)

( 3

2 − ν
)

(4π)2

× 2 F1

({
3

2
+ ν,

3

2
− ν

}
,

{
2

}
,1 − y

4

)
, (13)

where ν is again the one from (11), and y is the de Sitter invariant 
function of the coordinates,

y(x; x′) = a(η)a(η′)H2
[
‖�x − �x ′‖2 − (

η − η′ − iε
)2

]
. (14)

The small mass expansion of this expression is,

〈
φ̂(x)φ̂(x′)

〉 m→0∼ H2

(2π)2

[
1

y
− 1

2
ln(y) + 3H2

2m2
+ ln(2) − 11

12

]
,

(15)

which tells us there is no physical and finite de Sitter invariant so-
lution for the massless scalar field due to strong infrared effects. 
However, demanding that the state respects only spatial homo-
geneity and isotropy yields a perfectly physical behavior [2–9],
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〈
φ̂(x)φ̂(x′)

〉 = H2

(2π)2

[
1

y
− 1

2
ln(y) + 1

2
ln(aa′) + 1 − γE

]
, (16)

where the (non-universal) constant is fixed by taking the D = 4
limit of the massless scalar propagator from [10]. This lesson 
prompts us to look for a physical solution in the case at hand 
which does not respect the background isometries to resolve the 
conundrum.

4. Breaking of dilatation symmetry

Here we derive the solution of (3) by using the Green’s function 
method. Let us assume that the scalar point charge starts acting 
on the scalar field at some initial moment of time η0. We use the 
method of Green’s function to determine the reaction of the scalar 
field to this charge. The retarded Green’s functions for a massless 
scalar field on de Sitter space can be straightforwardly obtained 
from (16),

G R(x; x′) = −θ(�η)

2π

[
δ
(
�η2 − ‖��x‖2

)
a(η)a(η′)

+ H2

2
θ
(
�η − ‖��x‖)] ,

(17)

where �η = η − η′ , and ��x = �x − �x ′ . The scalar potential that 
solves (3) is now obtained by integrating the retarded Green’s 
function against the point source,

�(η, r) =
0∫

η0

dη′
∫

d3x′ a4(η′) G R(x; x′) × λ
δ3(�x′)
a3(η′)

, (18)

which evaluates to,

�(η, r) = θ
(
η − η0 − r

)[− λH

4π X
− λH

4π
ln

(
a

1 + X

)]
, (19)

where η0 = −1/H such that a(η0) = 1. The step function in front 
of the solution accounts for causality, restricting the effect of the 
interaction to within the forward light cone of the source. Of 
course, Green’s second identity includes surface integrations of 
the Green’s function (and its derivative) times the solution (and 
its derivative) on the initial value surface. Eq. (19) has implicitly 
assumed that the solution and its first time derivative vanish at 
η = η0. It is more natural to take the initial values from the term 
inside the square brackets, in which case the solution becomes,

�(η, r) = − λH

4π X
− λH

4π
ln

(
a

1 + X

)
. (20)

From the point of view of a local observer on de Sitter, Eq. (20)
is valid on the entire manifold. The solution (20) is the principal 
result of this letter. It can be obtained by adding to (5) a homo-
geneous solution, �h = λH

8π ln[(1 − X2)/a2], resulting in a solution 
that is regular everywhere except at the origin. However, the scaling 
symmetry is broken by the term ∝ ln(a). It should be noted that 
at late times and at large radial separations the dominant con-
tribution is time-independent and grows logarithmically with the 
comoving distance,

�(η, r)
r→∞∼ λH

4π
ln

(
Hr

)
. (21)

The energy-momentum tensor for (20) reads,

T μ
ν = λ2 H4

32π2

⎛
⎜⎜⎝

−�2 − �2 −2�� 0 0
2�� �2 + �2 0 0

0 0 �2 − �2 0
0 0 0 �2 − �2

⎞
⎟⎟⎠ ,
(22)

with � = 1
X2 + 1

1+X , � = X� − 1. It is regular everywhere away 
from the origin and decays as ∼1/X2 for large radial distances. Re-
markably, the energy-momentum tensor in (22) respects dilatation 
symmetry, even though the field profile in (20) does not. This is 
a cosmological example of the phenomenon of (perturbative) sym-
metry non-inheritance, which has attracted significant attention in 
recent literature [11–15].

5. Summary and discussion

We investigate the classical response of a massless scalar field 
to a static point-like scalar charge on de Sitter. The point charge 
breaks spatial special conformal isometries, as well as spatial 
translations of de Sitter space. The resulting equation (3) pos-
sesses only four isometries, namely spatial rotations and dilata-
tions, also known as global scaling transformations. We show that 
any solution that respects all four isometries exhibits a logarithmic 
singularity at the Hubble horizon, making this naîve solution (5)
unphysical. Inspired by the quantum case of a massless scalar 
propagator on de Sitter, we then show that the classical phys-
ical solution (20) necessarily breaks scaling symmetry and it is 
regular everywhere except at the point charge location. Remark-
ably, the energy-momentum tensor associated with this solution 
does respect dilatation symmetry. Therefore, our solution provides 
an example of the phenomenon of symmetry non-inheritance in 
gravitational systems [11–15]. Our analysis can be generalized to 
D space-time dimensions, in which case the naîve scaling solution 
also exhibits a logarithmic singularity at the horizon,1 and there-
fore the physical solution must break scaling symmetry in arbitrary 
number of dimensions.

It would be of interest to study physical consequences of such 
a classical breaking of scaling symmetry, and in particular whether 
there are observable late time effects of this symmetry breaking. 
For example, our solution can be helpful for improving our un-
derstanding of how point charges in inflation affect temperature 
fluctuations in the cosmic microwave background radiation [16,17].

6. Note added in proof

After the completion of this work it came to our attention that 
some our results, including equation (20) but not the breakdown 
of the dilatation invariant solution (5), were previously obtained 
by Akhmedov, Roura and Sadofyev [18].
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�(X) = −
λH D−3

(
D−3

2

)
4π

D−1
2 X D−3

×2 F1

({
1,

3 − D

2

}
,

{
5 − D

2

}
, X2

)
+ �0 ,

which exhibits a logarithmic singularity at the horizon,

�(X)
X→1∼ −λH D−3 

( D−1
2

)
4π

D−1
2

ln
(
1 − X

)
.
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