
Fields of Definition of Finite
Hypergeometric Functions

Frits Beukers

Abstract Finite hypergeometric functions are functions of a finite field Fq to C.
They arise as Fourier expansions of certain twisted exponential sums and were
introduced independently by John Greene and Nick Katz in the 1980s. They have
many properties in common with their analytic counterparts, the hypergeometric
functions. One restriction in the definition of finite hypergeometric functions is
that the hypergeometric parameters must be rational numbers whose denominators
divide q − 1. In this note we use the symmetry in the hypergeometric parameters
and an extension of the exponential sums to circumvent this problem as much as
possible.

1 Introduction

In the 1980s Greene [4] and Katz [5] independently introduced functions from finite
fields to the complex numbers which can be interpreted as finite sum analogues of
the classical one variable hypergeometric functions. These functions, also known
as Clausen–Thomae functions, are determined by two multisets of d entries in Q

each. We denote them by α = (α1, . . . , αd) and β = (β1, . . . , βd). Throughout we
assume that these sets have empty intersection when considered modulo Z. The
Clausen–Thomae functions satisfy a linear differential equation of order d with
rational function coefficients. See [1].

Let Fq be the finite field with q elements. Let ζp be a primitive p-th root of unity

and define the additive character ψq(x) = ζ
Tr(x)
p where Tr is the trace from Fq to

Fp. For any multiplicative character χ : F×
q → C

× we define the Gauss sum

g(χ) =
∑

x∈F×
q

χ(x)ψq(x) .
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Let ω be a generator of the character group on F
×
q . We use the notation g(m) =

g(ωm) for any m ∈ Z. Note that g(m) is periodic in m with period q − 1. Note that
the dependence of g(m) on ζp and ω is not made explicit. Very often we shall need
characters on F

×
q of a given order. For that we use the notation q = q − 1 so that a

character of order d can be given by ωq/d for example, provided that d divides q of
course.

Now we define finite hypergeometric sums. Let again α and β be multisets of
d rational numbers each, and disjoint modulo Z. We need the following crucial
assumption.

Assumption 1.1 Suppose that

(q − 1)αi, (q − 1)βj ∈ Z

for all i and j .

Definition 1.2 (Finite Hypergeometric Sum) Keep the above notation and
Assumption 1.1. We define for any t ∈ Fq ,

Hq(α,β|t) = 1

1 − q

q−2∑

m=0

d∏

i=1

(
g(m + αiq)g(−m − βiq)

g(αiq)g(−βiq)

)
ω((−1)d t)m .

It is an exercise to show that the values of Hq(α,β|t) are independent of the
choice of ζp.

The hypergeometric sums above were considered without the normalizing factor

(

d∏

i=1

g(αiq)g(−βiq))−1

by Katz in [5, p. 258]. Greene, in [4], has a definition involving Jacobi sums which,
after some elaboration, amounts to

ω(−1)|β|qq−d

d∏

i=1

g(αiq)g(−βiq)

g(αiq − βiq)
Hq(α,β|t) ,

where |β| = β1+· · ·+βd . The normalization we adopt in this paper coincides with
that of McCarthy, [6, Def 3.2].

Let

A(x) =
d∏

j=1

(x − e2πiαj ), B(x) =
d∏

j=1

(x − e2πiβj ).
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An important special case is when A(x), B(x) ∈ Z[x]. In that case we say that
the hypergeometric sum is defined over Q. Another way of describing this case
is that kα ≡ α(mod Z) and kβ ≡ β(mod Z) for all integers k relatively prime
to the common denominator of the αi, βj . In other words, multiplication by k of
the αi(mod Z) simply permutes these elements. Similarly for the βj . From work
of Levelt [1, Thm 3.5] it follows that in such a case the monodromy group of
the classical hypergeometric equation can be defined over Z. It also turns out that
hypergeometric sums defined overQ occur in point counts in Fq of certain algebraic
varieties, see [2, Thm 1.5] and the references therein. It is an easy exercise to show
that Hq(α,β|t) is independent of the choice of ω (it is already independent of the
choice of ψq ).

One of the obstacles in the definition of finite hypergeometric sums over Q is
Assumption 1.1 which has to be made on q , whereas one has the impression that
such sums can be defined for any q relatively prime with the common denominator
of the αi, βj . This is resolved in [2, Thm 1.3] by an extension of the definition
of hypergeometric sum. The idea is to apply the theorem of Hasse–Davenport to
the products of Gauss sums which occur in the coefficients of the hypergeometric
sum. Another way of dealing with this problem is given by McCarthy, who uses
the Gross–Koblitz theorem which expresses Gauss sums as values of the p-adic
	-function.

Theorem 1.3 (Gross–Koblitz) Let ω be the inverse of the Teichmüller character.
Let πp−1 = −p and ζp such that ζp ≡ 1 + π(mod π2). Let 	p be the p-adic
Morita 	-function. Let q = pf and gq(m) denote the Gauss-sum over Fq with
multiplicative character ωm. Then, for any integer m we have

gq(m) = −
f−1∏

i=0

π
(p−1)

{
pim
q−1

}

	p

({
pim

q − 1

})
.

Here {x} = x − �x� is the fractional part of x. In particular, when q = p we get

gp(m) = −π
(p−1)

{
m

p−1

}

	p

({
m

p − 1

})
.

See Henri Cohen’s book [3] for a proof. When p does not divide the common
denominator of the αi, βj one easily writes down a p-adic version of our hypergeo-
metric sum for the case q = p.

Definition 1.4 We define Gp(α,β|t) by the sum

1

1 − p

q−2∑

m=0

ω((−1)d t)m(−p)
(m)

d∏

i=1

	p

({
αi + m

p−1

})

	p({αi})
	p

({
−βi − m

p−1

})

	p({−βi}) ,
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where


(m) =
d∑

i=1

{
αi + m

p − 1

}
− {αi} +

{
−βi − m

p − 1

}
− {−βi}.

Note that


(m) =
d∑

i=1

−
⌊
αi + m

p − 1

⌋
+ �αi� −

⌊
−βi − m

p − 1

⌋
+ �−βi�.

In particular 
(m) ∈ Z. Definition 1.4 almost coincides with McCarthy’s function
dGd from [6, Def 1.1] in the sense that our function coincides with dGd(1/t). We
prefer to adhere to the definition given above. The advantage of Definition 1.4 is
that Assumption 1.1 is not required, it is well-defined for all parameters αi, βj as
long as they are p-adic integers. Define

δ = δ(α,β) = max
x∈[0,1]

d∑

i=1

�x + αi� − �αi� + �−x − βi� − �−βi�.

Then, using Definition 1.4 and the fact that −
(m) ≤ δ one easily deduces that
pδGp(α,β|t) is a p-adic integer. In [6, Prop 3.1] we find this in a slightly different
formulation. However, it is not clear from the definition whether this value is
algebraic or not overQ. It is the purpose of the present note to be a bit more specific
by proving the following theorem.

Theorem 1.5 Let notations be as above and let K be the field extension of Q

generated by the coefficients of A(x) and B(x). Suppose p splits in K , i.e. p factors
into [K : Q] distinct prime ideals in the integers of K . Let � = maxk δ(kα, kβ)

over all integers k relatively prime with the common denominator of the αi, βj . Then
p�Gp(α,β|t) is an algebraic integer in K .

For the proof we construct in Sect. 2 a generalization of the hypergeometric
function Hq(A,B|t) involving two semisimple finite algebras A and B over Fq .
We show that it belongs to K and then, in Sect. 3 identify its p-adic evaluation with
Gp(α,β|t).

2 Gauss Sums on Finite Algebras

The main idea of the proof of Theorem 1.5 is to use Gauss sums on finite
commutative algebras over Fq with 1. Let A be such an algebra. For any x ∈ A

we define the trace Tr(x) and norm N(x) as the trace and norm of the Fp-linear
map given by multiplication with x on A.
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Choose an additive character ψ on A which is primitive. That is, to any ideal
I ⊂ A, I 	= (0) there exists x ∈ I such that ψ(x) 	= 1. Any other non-degenerate
additive character is of the formψ(ax) with a ∈ A×. A multiplicative character χ is
called primitive if its kernel does not contain any subgroup of the form {1+a|a ∈ I }
for some non-zero ideal I in A.

For any multiplicative character χ on A× we can define a Gauss sum

gA(ψ, χ) =
∑

x∈A×
ψ(x)χ(x).

When A is not semisimple, the Gauss sum can be 0, as illustrated by the following
example.

Example 2.1 Let A = Fp[x]/(x2). Choose the additive character ψ(a + bx) = ζ b
p .

It is easy to see that this is a primitive character. Note that a + bx ∈ A× ⇐⇒
a ∈ F

×
p . Let χ be a nontrivial multiplicative character on F×

p and extend it to A× by
χ(a + bx) = χ(a). Then

gA(ψ, χ) =
∑

a∈F×
p ,b∈Fp

ζ b
pχ(a) = 0.

♦
So we restrict ourselves to semisimple algebras. These are precisely the finite

sums of finite field extensions of Fq . In this case there is an obvious choice for the
additive character.

Lemma 2.2 Suppose A is a direct sum of finite field extensions of Fq . Then ψ(x) =
ζ
Tr(x)
p is a primitive additive character.

Proof Let A ∼= ⊕r
i=1Fi with Fi a finite field extension of Fq for all i. Then

ψ(x) = ζ
Tr1(x1)+···+Trr (xr )
p , where Tri stands for the trace function on Fi . If ψ were

not primitive then there exists a ∈ A, a 	= 0 such that ψ(ax) = 1 for all x ∈ A.
Suppose a = (a1, . . . , ar ) and assume, without loss of generality, a1 	= 0. Then
ψ(x, 0, . . . , 0) = ζ

Tr(a1x)
p = 1 for all x ∈ F1. By the properties of the trace of a

field this is not possible. ��
From now on we use the trace character on a semisimple algebra A as additive

character and write gA(χ) for the Gauss sum. So we dropped the dependence of the
Gauss sum on the additive character. The only amount of freedom in the additive
character rests on the choice of ζp.

Proposition 2.3 Let A be a direct sum of finite fields over Fq and ψ(x) = ζ
Tr(x)
p the

additive character. Let χ a multiplicative character. Then there exists a non-negative
integer f such that

|gA(χ)|2 = qf .
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Proof Again, write A = ⊕r
i=1Fi . Then χ can be written as χ(x1, . . . , xr) =

χ1(x1) · · ·χr(xr), where χi is a multiplicative character on F×
i . This implies that

gA(ψ, χ) =
r∏

i=1

g(χi),

where g(χi) is the usual Gauss sum on the field Fi . The additive character on Fi is
ζ
Tri (x)
p with the same choice of ζp for each i. Our assertion follows directly. ��
Choose two finite semisimple algebrasA,B over Fq . Choose the trace characters

on each of them with the same choice of ζp and call them ψA,ψB . Let χA, χB be
multiplicative characters on A×, B×. Denote the norms on A,B by NA,NB .

Definition 2.4 We define

Hq(A,B|t) = −1

gA(χA)gB(χB)

∑

x∈A×,y∈B×,tNA(x)=NB(y)

ψA(x)ψB(−y)χA(x)χB(y),

for any t ∈ F
×
q .

The following theorem gives its Fourier expansion in t .

Theorem 2.5 Let ω be a generator of the multiplicative characters on F
×
q . When

the context is clear we denote both functions ω(NA(x)) and ω(NB(y)) by ωN . We
then have,

Hq(A,B|t) = 1

1 − q

q−2∑

m=0

gA(χAωm
N)gB(χBω−m

N )

gA(χA)gB(χB)
ω(NB(−1)t)m.

Proof We compute the Fourier expansion
∑q−2

m=0 cmω(t)m of Hq(A,B|t). The
coefficient cm can be computed using

cm = 1

q − 1

∑

t∈F×
q

Hq(A,B|t)ω(t)−m.

When we substitute the definition for Hq(A,B|t) in the summation over t , we get a
summation over t ∈ F

×
q , x ∈ A×, y ∈ B× with the restriction tNA(x) = NB(y). So

we might as well substitute t = NB(y)/NA(x) and sum over x, y. We get,

cm = 1

1 − q

∑

x∈A×,y∈B×

1

gAgB

ψA(x)ψB(−y)χA(x)χB(y)−1ω(NA(x))mω(NB(y))−m.
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The summation over x yields gA(χAωm
N). To sum over y we first replace y by −y

and then perform the summation. We get ω(NB(−1))mgB(χBω−m
N ). This proves

our theorem. ��
Example 2.6 As in the previous section take two multisets of hypergeometric
parameters α,β. Suppose that (q − 1)αi, (q − 1)βj are in Z for all i, j . Take
A = B = F

d
q , the direct sum of d copies of Fq with componentwise addition

and multiplication. The norm on A,B is given by N(x1, . . . , xd) = x1 · · · xd .
In particular NB(−1) = (−1)d . For both A,B we take the additive character
ψ(x1, . . . , xd) = ζ

Tr(x1+···+xd )
p , where Tr the trace function on Fq . As multiplicative

characters we take

χA(x1, . . . , xd) =
d∏

i=1

ω(xi)
(q−1)αi , χB(x1, . . . , xd) =

d∏

j=1

ω(yj )
(q−1)βj .

An easy calculation shows that gA(χAωm
N) = ∏d

i=1 g(m + (q − 1)αi) and
similarly for gB . So we see that we recover the finite hypergeometric sum of the
previous section. ♦
Lemma 2.7 Suppose dimFq (A) = dimFq (B). Then Hq(A,B|t) does not depend
on the choice of ζp in the additive characters.

As a corollary, in this equi-dimensional case the values of Hq(A,B|t) are
contained in the field generated by the character values of χA, χB .

Proof When we choose ζ a
p , a ∈ F

×
p instead of ζp in the definition of the additive

character it is easy to check that gA(χA) gets replaced by χA(a)−1gA(χA). And
similarly for B. As a corollary any term in the sum in the hypergeometric sum
in Theorem 2.4 is multiplied by ω(NB(a)/NA(a))m. Since a ∈ Fp is a scalar,
NA(a) = NB(a) = ad , where d = dimFq (A) = dimFq (B). Hence, in the case
of equal dimensions of A,B the multiplication factor is 1.

Let σ ∈ Gal(Q/Q) be such that it fixes the values of χA, χB but sends ζp to ζ a
p .

According to the above calculation Hq(A,B|t) is fixed under this substitution and
hence under σ . ��

Let us return momentarily to Example 2.6 and suppose that the parameters α have
the property that kα ≡ α(mod Z), kβ ≡ β(mod Z) for all k relative prime with the
common denominator of the αi, βj . Then, for any σ ∈ Gal(Q/Q) there exists a
permutation ρ of the summands of A = ⊕d

i=1Fp such that χA(ρ(x)) = χA(x)σ for
all x ∈ A×. A similar permutation exists for B. Notice also that Tr(ρ(x)) = Tr(x)

and N(ρ(x)) = N(x).
A similar situation arises in the case A = Fpr as Fp-algebra. Let χA be a

character of order d dividing pr − 1. Let ρ be the p-th power Frobenius on A,
then χA(ρ(x)) = χA(x)p, a conjugate of χA(x) for all x ∈ A×. Notice also that
Tr(ρ(x)) = x and N(ρ(x)) = N(x).
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Definition 2.8 Let A be a finite dimensional Fq -algebra. A ring automorphism ρ :
A → A is called an Fq-automorphism if it is Fq -linear and it fixes both norm and
trace of A.

Proposition 2.9 Let A,B be finite commutative semisimple Fq -algebras. Let
χA, χB be multiplicative characters. Consider the subgroup G of Gal(Q/Q) of
elements σ for which there exists an Fq -automorphisms ρA of A and ρB of B with
the property that χA(ρA(x)) = χA(x)σ and χB(ρB(x)) = χB(x)σ for every σ ∈ G.
Then Hq(A,B|t) lies in the fixed field of G for every t ∈ F

×
q .

Proof Let σ ∈ G. We first compute the action of σ on gA(χA). Suppose that
σ(ζp) = ζ a

p .

gA(χA)σ =
∑

x∈A×
ζ aTr(x)
p χA(x)σ

=
∑

x∈A×
ζ aTr(x)
p χA(ρ(x))

=
∑

x∈A×
ζTr(ρ−1(x))
p χA(a−1x)

= χA(a)−1gA(χA)

A similar calculation holds for B. Now apply σ to the terms in the sum in
Definition 2.4. A similar calculation as above shows that the sum gets multiplied
with χA(a)−1χB(a)−1. This cancels the factor coming from gA(χA)gB(χB). Hence
Hq(A,B|t) is fixed under all σ ∈ G. ��

3 Proof of Theorem 1.5

We use the notations from the introduction. In particular

A(x) =
d∏

j=1

(x − e2πiαj ), B(x) =
d∏

j=1

(x − e2πiβj )

and K is the field generated by the coefficients of A(x) and B(x). Let p be a prime
which splits completely in K . Then we can consider A(x) as element of Fp[x].
Let A(x) = A1(x) · · ·Ar(x) be the irreducible factorization of A(x) in Fp[x]. For
the Fp-algebra we take ⊕r

i=1Fp[x]/(Ai(x)). The construction of a multiplicative
character on A is as follows. First we choose a multiplicative character ω on Fp

such that its restriction to Fpr has order pr −1 for all r ≥ 1 and fix in the remainder
of the proof.
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Since p splits in K multiplication by p gives a permutation of the multiset α

modulo Z. Under this action α(mod Z) decomposes into a union of orbits, which
we call p-orbits. Let O be such a p-orbit. Then

∏
α∈O(x − e2πiα) is a polynomial

and p splits in the field generated by its coefficients. So we can consider it modulo
a prime ideal dividing p and hence as an element of Fp[x]. It is one of the factors
Ai(x) of the mod p factorization of A(x). The orbit O will now be denoted by Oi .
There are r orbits and we renumber the indices of the αi such that αi ∈ Oi for
i = 1, . . . , r . On Fp[x]/(Ai) we define the multiplicative character χi = ωαi(qi−1),
where qi = pdeg(Ai). If we would have chosen pαi instead of αi , the new character
would simply consist of the Frobenius transform followed by χi . For the character
χA on A = ∑r

i=1 Fp[x]/(Ai) we choose

χA(x1, . . . , xr) =
r∏

i=1

ω(xi)
αi(qi−1).

Let σ ∈ Gal(Q/K). It acts as ω(x) �→ ω(x)k for some integer k. Hence

χA(x1, . . . , xr)
σ =

r∏

i=1

ω(xi)
kαi(qi−1).

This permutes the factors by a permutation s ∈ Sr and we get

χA(x1, . . . , xr )
σ =

r∏

i=1

ω
(
xs−1(i)

)pli αi (qi−1)
,

where 0 ≤ li < deg(Ai) for each i. We used qs(i) = qi . We finally get

χA(x1, . . . , xr )
σ =

r∏

i=1

ω
(
x

pli

s−1(i)

)αi(qi−1) = χA

(
x

pli

s−1(1)
, . . . , x

plr

s−1(r)

)
.

In other words, χA(x)σ = χA(ρ(x)) for a suitable Fp-automorphism ρ of A.
Notice that norm and trace of A are preserved by ρ. A similar construction can
be performed for B(x). According to Proposition 2.9 we get Hp(A,B|t) ∈ K for
all t ∈ F

×
q .

In order to connect to the p-adic function Gp we take the inverse of the
Teichmüller character for ω and compute the terms given in Definition 2.4 p-
adically. The Gauss sum gA(χAωm

N) is the product of ordinary Gauss sums of the

form g(ω(q−1)α+m(1+p+···+pl−1)) over the field Fq with q = pl . The occurrence of

m(1 + p + · · · + pl−1) is due to ω(NFq/Fp(x)m) = ω(x)m(1+···+pl−1). The Gross–
Koblitz theorem for Gauss sums over Fq with q = pl gives us

gq(ωa) = −
l−1∏

i=0

π

{
pi a
q−1

}

	p

({
pia

q − 1

})
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for every integer a. When applied to a = (q−1)α+m(q−1)/(p−1) this amounts to

−
l−1∏

i=0

π

{
piα+ m

p−1

}

	p

({
piα + m

p − 1

})
.

Note that this is a product over the p-orbit containing α and each factor is precisely
of the type that occur in the definition of the p-adic hypergeometric sum. A similar
story goes for B(x). As a result we get

gA(χAωm
N)gB(χBω−m

N )

gA(χA)gB(χB)
= (−p)
(m)

d∏

i=1

	p

({
αi + m

p−1

})
	p

({
−βi − m

p−1

})

	p ({αi}) 	p ({−βi}) ,

where 
(m) is as defined in the introduction. So we find that p-adically

Hp(A,B|t) = Gp(α,β|t).

Hence we conclude that the values of Gp are in K . It remains to give an estimate
for the denominator. The conjugates of Hp(A,B|t) are obtained by taking χk

A, χk
B

as multiplicative characters. The corresponding hypergeometric parameters are
kα, kβ . From McCarthy’s work it follows that p�Gp(kα, kβ|t) is a p adic integer
for all k relatively prime to the common denominator of αi, βj . This implies that
p�Hp(A,B|t) is an algebraic integer in K .
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