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Self-thermoelectrophoresis at low salinity†

Joost de Graaf * and Sela Samin

A locally heated Janus colloid can achieve motion in an electrolyte by an effect known as self-

thermo(di)electrophoresis. We numerically study the self-propulsion of such a ‘‘hot swimmer’’ in a

monovalent electrolyte using the finite-element method and analytic theory. The effect of electrostatic

screening for intermediate and large Debye lengths is charted and we report on the fluid flow generated

by self-thermoelectrophoresis. We obtain excellent agreement between our analytic theory and numerical

calculations in the limit of high salinity, validating our approach. At low salt concentrations, we employ

Teubner’s integral formalism to arrive at expressions for the speed, which agree semi-quantitatively with

our numerical results for conducting swimmers. This lends credibility to the remarkably high swim speed

at very low ionic strength, which we numerically obtain for a fully insulating swimmer. We also report on

hot swimmers with a mixed electrostatic boundary conditions. Our results should benefit the realization

and analysis of further experiments on thermo(di)electrophoretic swimmers.

1 Introduction

Nearly a decade and a half ago saw the introduction of the first
man-made chemical swimmers, colloidal particles that used
catalytic decomposition of hydrogen peroxide (H2O2) to achieve
self-propulsion.1,2 These Janus swimmers where heralded as
artificial model systems for studying the complex motion and
cooperative behavior observed in biology;3 such dynamics have
by now indeed been reproduced in man-made systems.4–8

Nevertheless, despite the success of these chemical swimmers,
many open problems remain regarding their application.

For example, H2O2 is detrimental to biological systems, as
are many other catalytic fuels,9,10 which limits their potential
for in vivo use. This has led to the exploration of other self-
propulsion strategies, which involve biocompatible surface
chemistry.11,12 A promising alternative to chemical self-
propulsion is thermophoresis,13–16 which utilizes local heating
to achieve motion through the migration of solute species in a
temperature gradient. The underlying Soret effect can make use
of solutes already present in the local environment and does
not require large temperature gradients; it may therefore be
compatible with living systems.

From a theoretical perspective, there remain open questions
concerning the microscopic origins of the thermophoretic
effect and associated Soret coefficients,17 seeing very recent

attempts to unify thermophoretic theory for colloidal motion.18

Significant progress has, however, been made theoretically
for a specific thermal driving mechanism, where the dominant
contribution comes from electrostatic interactions, i.e., thermo-
electrophoresis.16,19–25 In addition, thermophoretic theory has
been used to clarify experimental results, e.g., see ref. 16 and
26–29. Yet most thermo(di)electrophoretic theory considers the
limit of high salt concentration, for which several well-established
analytic methods may be used to derive results.

In this paper, we theoretically study self-propulsion via
thermo(di)electrophoresis, for which we go beyond the thin-
screening-layer (Smoluchowski-limit) approximations made in
previous works.16,21,24 We describe in detail the associated
equation system and solve it using the finite-element method
(FEM) over the full range of experimentally relevant ion concen-
trations, from the Smoluchowski to the Hückel (low-salt) limit.
Our calculations show motility reversals that are reminiscent of
those found in external electrophoresis30 and those recently
reported for external thermodielectrophoresis.25

We obtain self-propulsion speeds of a few mm s�1 for
physiologically relevant salt (monovalent ions) concentrations
E1 mmol L�1 and small local heating of DT t 5 K, in agreement
with the literature. Changing the ions and bulk salt concentration
also allows for sensitive tuning of the speed and flow field around
the hot swimmer by controlling the Seebeck effect,31 for which we
explore the impact of low conductivity of the medium, i.e., low
bulk salt concentration or equivalently ionic strength.

We complement our FEM results for the swim speed with
analytic theory. This is based on an expansion both in terms of
small temperature gradients, and in terms of small (gradients of)
ion concentrations and potentials. We show that full linearization
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in both expansions is not possible and that cross terms between
equilibrium and out-of-equilibrium expansion fields must be
preserved in order to account for thermo(di)electrophoretic
self-propulsion. Within our partial linearization approximation,
we determine the swim speed using both the slip-layer approxi-
mation and an integral formalism based on reciprocality,
originally developed by Teubner.32 The latter allows for direct
evaluation of the swim speed from the body-force distribution,
without imposing constraints on the size of the screening
layer with respect to the colloid. We obtain agreement between
both approaches in the Smoluchowski limit, which also
match our FEM results well. Our analytic expressions for the
speed fortuitously hold even when the concentration profiles
and charge excess are no longer well captured by the same
approximative theory.

The generality of Teubner’s formalism allows us to tackle
the regime of intermediate to low ionic strength. We use
two analytic approaches for studying the departures from the
Hückel limit. The first is based on regime splitting. The
potential is assumed to be unscreened up to roughly the Debye
length, which must be very large in order to make this approxi-
mation; the potential is set to zero outside of this range.
The second approach uses an ansatz for the temperature
distribution around the swimmer. That is, we only take into
account the dipolar contribution of the full Legendre–Fourier
series, in which we can expand the temperature field. This
contribution is the one that generates the speed, and ignoring
the other components greatly reduces complexity of the involved
mathematics, though the calculations remain laborious.

Our two approaches give similar results near the Hückel
limit and we discuss the origin of the differences. For an
equipotential swimmer, our analytic results hold incredibly
well even in the intermediate regime of ionic strength, when
compared to our more accurate FEM calculations. For an
insulating swimmer, only the Smoluchowski limit is well captured.
This is to be expected, due to the difference in boundary conditions,
which makes the low-ionic strength situation difficult to tackle
analytically. Nonetheless, we are confident in our numerically
obtained value of a measurably high self-propulsion speed for an
insulating hot swimmer at low ionic strength. We further use our
numerical method to explore the robustness of this finding to
mixed electrostatic boundary conditions, which could be more
representative of experiment. Our proof-of-principle calculations
do not show a ‘‘best of both worlds’’ scenario, wherein the speed
is high over the entire range of ionic strength, though it cannot be
excluded in its entirety on the basis of our present analysis.

The analytic and numerical work performed in this paper
provide a solid background against which more detailed
investigations of self-thermo(di)electrophoretic effects can be
realized. This may also guide future experiments in selecting
optimal conditions for self-propulsion using this mechanism
and in manipulating the swimmers’ motility using ionic
strength alone.

The remainder of this manuscript is structured as follows.
In Section 2 we introduce the model system. Section 3 provides
the linearization of the equation system that governs the

self-thermo(di)electrophoretic motion. Section 4 obtains swim
speeds from these linearized expressions in the Smoluchowski
limit. Section 5 details our analytic calculations based on Teubner’s
formalism around the Hückel limit. Lastly, Section 6 provides
an analysis of the speed for intermediate ionic strengths. The
analytic sections are lengthy and algebra heavy and readers
primarily interested in the numerical results are therefore
recommended to skip ahead to Section 7. We summarize, discuss,
and provide an outlook in Section 8.

2 The model

We consider a single spherical colloid of radius a half-coated by
a thin metal or carbon cap. The colloid is immersed in an
electrolyte, comprised of water and a monovalent salt, with
reservoir concentration nN and local salinities n�(-r ), where -

r
is the position vector. By illuminating the colloid with an
appropriately chosen light source, the cap can be heated, which
leads to a temperature heterogeneity around the colloid which
drives the system out of equilibrium. This causes the colloid to
self-propel due to the thermoelectrophoresis, see Fig. 1 for a
schematic illustration. Here, we also define our radial r and
axial z coordinates (unit vectors r̂ and ẑ, respectively), as well as
the polar angle y.

The governing equations of our system in steady state are as
follows. The temperature distribution throughout the system is
given by T (-r ) and obeys the heat equation,

~r � kðTð~r ÞÞ~rTð~r Þ
h i

¼ 0; (1)

where k is the thermal conductivity, with k = kf in the fluid and
k = ks for the solid colloid. In eqn (1), we neglected advection
in the fluid phase since the typical O (mm s�1) velocities of
microswimmers lead to small thermal Péclet numbers, i.e.,
thermal diffusion dominates thermal advection. Note that we
take the thermal conductivity in eqn (1) to be temperature
dependent, with the constitutive relation for k(T) given in
Section 3. Temperature dependence will be considered for all
physical properties in this work, however, we leave the T (-r )
dependence of all fields, e.g., the fluid velocity and potential,
implicit throughout. This way of writing the functional dependence

Fig. 1 Sketch of a charged Janus particle (axisymmetric around z) immersed
in an electrolyte with an ambient temperature TN. Illumination of the capped
hemisphere (light yellow; z o 0) increases its temperature by DT. In steady
state, the heating leads to an asymmetric distribution of ions around the
colloid, resulting in its self-propulsion. In the co-moving reference frame, the
fluid velocity is then �U

-
at infinity.
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of the quantities makes the notation in this section rather heavy,
but once the system is linearized it will be considerably reduced.

Within a continuum framework, the ion dynamics is
captured by the classical Poisson–Nernst–Planck equations.
The Poisson equation for the electric potential F(-r) reads

~r � eðTð~r ÞÞ~rFð~r Þ
h i

¼ �e nþð~r Þ � n�ð~r Þ½ �; (2)

where e is the medium’s dielectric permittivity and e is the
elementary charge. The Nernst–Planck equations for the ion
fluxes are21,23

~j�ð~r Þ ¼ �D�ðTð~r ÞÞ ~rn�ð~r Þ �
en�ð~r Þ
kBTð~r Þ

~rFð~r Þ
�

þ 2n�ð~r Þa�ðTð~r ÞÞ
~rTð~r Þ
Tð~r Þ

#
;

(3)

where kB is Boltzmann’s constant, D� are the regular diffusion
constants, and a� are the thermal diffusion factors of the
respective ions. The latter are related to the intrinsic Soret
coefficients via S� = 2a�/T; here we incorporate a factor 2 with
respect to the usual literature convention to help compact our
expressions. The equation system is closed by the ionic
conservation laws

~r �~j�ð~r Þ ¼ 0; (4)

where we have employed the low-Péclet-number approximation
to eliminate advective ion transport. That is, regular diffusion
dominates advection, see Appendix A for the justification.

For a micron-size colloid self-propelling in water at a speed
that is O (1 mm s�1), the relevant Reynolds number Re { 1. The
fluid velocity is thus governed by the Stokes equations for an
incompressible fluid

ZðTð~r ÞÞD~uð~r Þ � ~rpð~r Þ ¼ e nþð~r Þ � n�ð~r Þ½ �~rFð~r Þ

þ 1

2
~rFð~r Þ
��� ���2@eðTð~r ÞÞ

@Tð~r Þ
~rTð~r Þ;

(5)

~r �~uð~r Þ ¼ 0; (6)

where Z is the viscosity of the solvent and p(-r) is the hydrostatic
pressure; D indicates the vector Laplacian. Here, we use in the
right-hand side of eqn (5) the body-force terms derived by
Landau and Lı́fshı́ts33 and also employed by ref. 24 and 34–36,
where the first term is the electric body force, which implicitly
depends on the temperature through the ionic distributions,
and the second term is the thermoelectric coupling due to the
permittivity dependence on temperature.

The boundary conditions for our problem are as follows.
We choose a frame of reference co-moving with the particle
such that the fluid velocity far away from the particle obeys
-u(|-r|mN) = �-

U, with
-

U the swim velocity and U =
-

U�ẑ the swim
speed. On the swimmer, we have a no-slip condition for
the fluid velocity, -

u(-rs) =
-

0, where -
rs is a position vector on

the surface of the swimmer; |-rs| = a. N.B. Our definition of the
‘swim speed’ allows it to assume negative values, which we use
to identify the direction of travel.

The Poisson equation has the boundary condition that the
electrostatic potential decays to zero in the bulk, i.e., F(|-r|mN) = 0.
At the surface, we must distinguish between a conductor and
an insulator. For the former, we have F(-rs) = F0(-rs), with F0 the
surface potential. For the latter, we have

n̂ ~rsð Þ � ~rFð~r Þ
���
~r¼~rs
¼ �s ~rsð Þ=e T ~rsð Þð Þ; (7)

where s is the surface charge density and n̂ is the outward unit
normal to the surface.‡

At the surface, we employ no-penetration boundary condi-
tions for the ionic species: n̂(-rs)�

-

j�(-rs) = 0. Fluxes parallel to
the wall are permitted, i.e., there is no drag. The salt concen-
trations at the edge of the system assume their reservoir value,
n�(|-r|mN) = nN.

Finally, for the heat equation, the temperature far away is
given by the reservoir temperature T(|-r|mN) = TN. For the
capped surface we must distinguish between constant heat
flux and constant temperature, respectively. That is, we do
not explicitly resolve the material of the cap in our calculations,
rather we employ a constant-temperature or a constant-heat-
flux surface boundary condition. To connect the physical
difference in cap material to the appropriate boundary condition,
we shall refer to the thermal conductivity of the cap kcap in
the following.

Whenever kcap is much larger than that of the fluid and solid
colloid, kf and ks, respectively, there is a constant temperature
on the capped hemisphere T(-rs) = TN + DT, with DT the excess
temperature induced by heating. This typically occurs for a
metallic cap;6,14 for which the value kcap is typically a few
hundred times larger than that of the surrounding water and
colloid. When thermal conductivity of the coating is much smaller
that of the fluid and colloid, kcap { kf, ks, e.g., for a carbon
coating,37 heat is immediately conducted to the surroundings
such that the illumination leads to a constant heat flux Q
through the cap. In this case, the boundary condition for the
capped region reads

ksn̂ ~rsð Þ � ~rTð~r Þ
���
~r¼~rs
�kf n̂ ~rsð Þ � ~rTð~r Þ

���
~r¼~rs
¼ Q ~rsð Þ; (8)

while on the uncapped half of the colloid, we have the flux
continuity condition

ksn̂ ~rsð Þ � ~rTð~r Þ
���
~r¼~rs
¼ kf n̂ ~rsð Þ � ~rTð~r Þ

���
~r¼~rs

: (9)

The system of eqn (1)–(6) with the appropriate boundary
conditions was solved numerically using the finite element
software COMSOL Multiphysics to obtain the self-propulsion
speed of the particle, see Section 7.

‡ In general, the nature of the surface boundary condition can be a function of
the position on the surface. For example, the coated side of the hot swimmer
could be conducting and the uncoated side insulating. We will work under the
assumption that the entire surface of the hot swimmer has a single electrostatic
boundary condition, unless indicated otherwise, in order to make analytic
progress.
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3 Linear analytic theory

To gain deeper insight into our system, we derive expressions
for the speed of the thermoelectrophoretic swimmer U by
linearizing eqn (1)–(6). The approach we employ is similar
to that of ref. 38, but applied here also to the temperature
dependencies.

Our first linearization is of the electrostatic potential and
the ion distributions, i.e., we make the usual Debye–Hückel
approximation.§ We write

n�(-r ) = nN[1 + x�(-r )], (10)

Fð~r Þ ¼ kBT
1

e
fð~r Þ; (11)

where x�(-r ) and f(-r ) are the dimensionless, linearized ion
distributions and potential, respectively.

Our second linearization decomposes the fields and physical
quantities into equilibrium (‘‘eq’’) and non-equilibrium (‘‘neq’’)
parts, where the non-equilibrium parts are due to variations
in temperature. Here, we shall expand in the small parameter
t � DT/TN, corresponding to the relative maximum temperature
difference DT from the reservoir temperature TN. Note that t
is well-defined both for the constant temperature boundary
condition (kcap { ks, kf), where we impose the maximum
difference, for and the constant heat-flux boundary condition
(kcap c ks, kf), where it needs to be computed, see Appendix B.

This choice of expansion parameter allows us to write to the
temperature distribution as

T(-r ) = TN[1 + tt(-r )], (12)

where t(-r ) is the dimensionless or reduced temperature. Similarly,
for the other physical fields the decomposition yields: x�(-r ) =
xeq
� (-r ) + txneq

� (-r ), f(-r ) = feq(-r ) + tfneq(-r ), -
u(-r ) = t-v(-r ), and p(-r ) =

peq(-r ) + tpneq(-r ). Notice that in equilibrium there is no fluid
flow, hence we only have the out-of-equilibrium -

v velocity
component. We simplify the equations further by introducing
the conjugate variables to the ionic distributions: the local
salinity

Xð~rÞ � xþð~r Þ þ x�ð~r Þ
2

; (13)

and the local ion excess or space charge density

dXð~r Þ � xþð~r Þ � x�ð~r Þ
2

: (14)

The physical quantities are expanded as: e=e1 ¼
1þ te�t ~rð Þ; Z=Z1 ¼ 1þ tZ�t ~rð Þ; D�

�
D1� ¼ 1þ tD��t ~rð Þ; a�

�
a1� ¼

1þ ta��t ~rð Þ; k=k1 ¼ 1þ tk�t ~rð Þ. Here, the ‘‘N’’ superscript

denotes the reservoir value, which is located at infinity, and
the ‘‘*’’ superscript the first-order Taylor expansion coefficient.
We have numerically verified that all starred quantities are
order unity and that the non-equilibrium fields are much
smaller than the equilibrium contributions, see Appendix A.

We now use the above perturbative expressions to expand
all equations in terms of t, keeping only the zeroth-order and
first-order terms. The zeroth order gives the equilibrium
equations at constant temperature T N, which are the standard
linear Poisson–Boltzmann equations, see Appendix C. The
solution of the linear equilibrium problem is xeq

� (-r ) = 8feq(-r ).
The first-order equations capture the leading out-of-equilibrium
effects.

The heat equation becomes r2t(-r ) = 0. The temperature
profile can be straightforwardly established, because is simply a
Laplacian with relatively simple boundary conditions. This
equation system can be solved for using decomposition into
Legendre–Fourier modes, which respect the rotational symmetry
of the problem. The temperature profile for the boundary
conditions in which we are interested, was obtained by Bickel
et al.31 under the additional assumption ks = kf. We therefore do
not reproduce their calculation here, but for completeness we
provide the relevant expressions in our notation in Appendix B.

The Poisson equation reduces to

r2fneqð~r Þ þ e�~r � tð~r Þ~rfeqð~r Þ
� �

¼ � k1ð Þ2dXneqð~r Þ; (15)

with the inverse reservoir Debye length

k1 � 1

l1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2n1

e1kBT1

s
: (16)

The Stokes equations read

Z1D~vð~r Þ � ~rpneqð~r Þ ¼ 2kBT
1n1 dXneqð~rÞ~rfeqð~r Þ

h
� feqð~r Þ~rfneqð~r Þ

þ 1

2
l1ð Þ2e� ~rfeqð~r Þ

��� ���2~rtð~r Þ�;
(17)

~r �~vð~r Þ ¼ 0; (18)

where we used qe/qT = eNe*/TN.
Finally, the ionic fluxes become

~j neq� ð~r Þ ¼ �D1� n
1 ~rxneq� ð~r Þ � ~rfneqð~r Þ
h

þ 2 1� feqð~r Þð Þa1� ~rtð~rÞ � tð~r Þ~rfeqð~r Þ
i
;

(19)

~r �~j neq� ð~r Þ ¼ 0; (20)

The physical interpretation of eqn (19) is that the flux is
generated from left to right by: (i) Diffusion that counters a
concentration gradient. (ii) Ion migration in an electric field.
(iii) Migration in a temperature gradient through the Soret
effect, which has bare migration term and one that couples to
the presence of an electric field. (iv) Migration due to temperature

§ It should be noted that in some cases, particularly those involving thermo-
charging,21,24,36 resorting to the Debye–Hückel approximation is unnecessary. How-
ever, in the case of self- and external thermo(di)electrophoresis, the radial symmetry
breaking due to the temperature gradient leads to complicated differential equations
that only sometimes have closed-form solutions. This will turn out to limit the
applicability of our analytic results in the Hückel limit for insulating swimmers, see
Section 7.
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coupling to an electric field, which accounts for the difference in
temperature dependence between electric mobility and regular
diffusion. Ultimately, point (iv) implies that there can be thermo-
electrophoretic swimming without any a�-effect, also see ref. 24.
From eqn (22) it follows that a non-equilibrium ionic excess will
be present even if a� = 0, in agreement with ref. 22–24.

Remarkably, within the linearized system, only terms
involving e* introduce the temperature dependence of the
physical properties into the equations. That is, no other starred
parameters, which indicate the temperature dependence of
physical quantities, appear to linear order in t! The presence
of e* is why a thermodielectrophoretic component to this
phoresis has been reported in the literature.24,34–36,39 The above
might be surprising, but it can be readily understood by the fact
that, within our expansion, equilibrium and non-equilibrium
quantities are always paired. For example, the parameter D��,
which gives the temperature dependence with respect to the
reservoir values of the regular diffusion coefficients DN

� , is
paired with the flux in equilibrium. However, the flux in
equilibrium vanishes, hence this term does not appear in
eqn (19). Physically speaking, variation of fields with tempera-
ture outweighs variation of quantities with temperature, for all
but the dielectric coefficient.

We can use the flux eqn (19) to obtain equations for the
conjugate variables (13) and (14) by adding and subtracting the
two sign variants. Subsequently, we employ the conservation
eqn (20) and arrive at

r2Xneqð~rÞ ¼ b~rtð~r Þ � ~rfeqð~r Þ; (21)

r2dXneqð~r Þ þ r2fneqð~r Þ ¼ ð1þ gÞ~rtð~r Þ � ~rfeqð~r Þ

þ k1ð Þ2tð~r Þfeqð~r Þ;
(22)

where we have used r2t(-r ) = 0 and introduced

b � aN+ � aN� , (23)

g � aN+ + aN� , (24)

with b commonly referred to as the (reduced) Seebeck para-
meter. This indicates how excess charge is transported in a
temperature field, e.g., for b4 0, the excess charge accumulates
in hot regions. The coefficient g indicates how the background
ionic strength is modified by a temperature gradient.

Establishing a solution to the above equation system is
nontrivial.¶ Eqn (21) and (22) reveal that the cross coupling
between temperature fields and equilibrium ionic screening is
crucial to obtain thermoelectrophoresis. If we ignore such cross
terms, only the trivial solution is obtained. This intrinsic
nonlinearity complicates obtaining solutions using standard

spectral methods.8 Nevertheless, we stress that the theory is
still fully linear in terms of the temperature dependence.

4 The Smoluchowski limit

In this section, we will limit ourselves to the case of high ionic
strength and make the thin-screening-layer approximation. We
compute the swim speed both using the slip-layer approximation
and Teubner’s integral formalism32 to double check the expressions
and demonstrate it as a valid approach.

4.1 The electrostatic potential and ion profiles

In the high-ionic-strength or Smoluchowski limit, the electro-
static screening length lN is small compared to the particle
radius, kNa c 1. Outside (‘‘out’’) of the screening layer, we
have r2Xneq

out (-r ) = 0 and r2fneq
out (-r ) = 0, since feq(-r ) = 0 in this

region and dXneq
out (-r ) = 0, because any excess charge is screened.

This implies that the only solutions for the potential and total
salinity permissible in the region outside of the double
layer have a Laplace form. We know that the temperature
satisfies this equation and that it sets up fluxes of ions in the
bulk. These fluxes will thus be proportional to the reduced
temperature t.

Clearly, in the bulk there cannot be charge separation due
to differences in either the regular diffusion coefficients or
thermal diffusion factors, otherwise a macroscopic net charge
would appear. An unscreened non-equilibrium potential forms
in response to any such separation and acts to impose equal
effective diffusion. The induced potential is therefore propor-
tional to b in our case. The above mechanism is known as
ambipolar diffusion, which in ionic systems results in a state of
quasineutrality, e.g., see ref. 38, 40 and 41. Furthermore, ion
transport in a thermal gradient can affect the local salinity, as
ions may be repelled from or drawn towards areas of higher
temperature; this effect scales with g. Using eqn (19), one
indeed finds that Xneq

out (-r ) = �gt(-r ) and fneq
out (-r ) = �bt(-r ), in

agreement ref. 21.
Now we turn our attention to the region inside the screening

layer, for which we label our fields using the subscript ‘‘in’’.
Let lNq measure distance in the direction perpendicular to
the surface, with q = 0 for r = a. In the Smoluchowski
approximation, the curvature of the sphere can locally be
ignored when describing the region inside the screening layer.
We can then split the solutions into parallel and perpendicular
components: feq(-rs,q) = f(-rs)e

�q and t(-rs,q) = t(-rs). Here, f(-rs) is
the potential at the surface and t(-rs) is the temperature at the
surface. The temperature is approximately radially constant on
scales comparable to lN because it decays with a power law of¶ The fields dXneq(r-) and fneq(r-) form a closed subsystem of equations, to linear

order in t. The non-equilibrium ion concentration Xneq in eqn (21) is only due to
coupling between the temperature gradient and the equilibrium ion potential. It
is weighted by the difference in thermal diffusion factors b, meaning that Xneq

vanishes, when there is no thermal-diffusion-factor-based ion accumulation in
the double layer (aN+ = aN� = 0 or aN+ = aN� ). The closed subsystem is the only non-
equilibrium part that then remains. This feature suggests a route toward solving
the full set of equations, which is explored in Section 6.

8 By ‘‘nonlinearity’’ we mean here that the differential equation system cannot be
cast into the ‘standard form’ of a Laplacian acting on a vector comprising the
individual expansion fields equated to a coefficient matrix acting on the same
vector, as was, e.g., done in ref. 38. This hinders a solution strategy based on
orthogonalization of this matrix and recovery of the relevant decay lengths as the
diagonal elements of the resulting eigenmatrix.
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leading order a/r and is therefore much longer ranged than
exponential decay.

In this limit, the boundary conditions at the surface of the
particle (q = 0) need to be determined. N.B. Here, we do not
consider temperature-dependent charge regulation. We linear-
ize the conducting and insulating conditions, leading to
fneq

in (-rs,0) = 0 and qq f
neq
in (-rs,q)|q=0 = 0, respectively. For a conductor,

the equilibrium part of the field accounts fully for the surface
potential, feq

in (-rs,0) = f0(-rs), with f0(-rs) the reduced surface
potential. This implies feq

in (-rs,q) = f0(-rs)e
�q. For an insulator,

the boundary condition of the equilibrium potential

@qf
eq
in ~rs; qð Þ

��
q¼0¼ �

l1es ~rsð Þ
e1kBT1

; (25)

covers any surface charge present. This implies that

feq
in ~rs; qð Þ ¼ l1e

e1kBT1
s ~rsð Þe�q; (26)

which matches a series expansion of the full solution for the
curved surface in terms of lN { a. Note that throughout
this section, the electrostatic boundary condition could, in
principle, vary along the surface, only in the next section we
will make a further reduction and assume it is homogeneous.

Considering the above, it is possible to write in general
feq

in (-rs,q) = f(-rs)e
�q, with f(-rs) either f0(-rs) (conducting) or equal

to the prefactor in eqn (26) (insulating). The fact that the
insulating case has a prefactor lN does not have consequences
for the expansions that will be performed next, as the parallel
components scale O(1), and all other components either O(kN)
or O((kN)2). However, as we will see in Section 7.6, it will have
consequences for the speeds that can be achieved in the
Smoluchowski limit by an insulating swimmer.

Applying the coordinate transformation inside the screening

layer, we have for the Laplacian: r2 ¼ r2
k þ k1ð Þ2q2q, with ~rk

the gradient in the tangent plane to -
rs and r2

k the associated

in-plane Laplacian. Taking the limit lN k 0, leads to the
following transformed salinity and space charge density

q2
qXneq

in (-rs,q) = 0; (27)

q2
qdXneq

in (-rs,q) + q2
q f

neq
in (-rs,q) = t(-rs)f(-rs)e

�q, (28)

with corresponding Poisson equation

q2
q f

neq
in (-rs,q) = �e*t(rs)f(rs)e

�q � dXneq
in (-rs,q). (29)

Since only derivatives with respect to q remain in eqn (27)–(29),
they can be solved using separation of variables.

The limit |-r| k a for the solutions outside of the screening
layer gives a set of boundary conditions for the solution inside.
Note that by construction this corresponds to q mN. Taking this
limit within the layer, we obtain the conditions Xneq

in (-rs, q m N) =
�gt(-r+

s), dXneq
in (-rs, q m N) = 0, and fneq

in (-rs, q m N) = �bt(-r+
s). The

right-hand value is evaluated at the edge of the screening layer
-
r+

s E -
rs, in order to avoid the ambiguity that arises by simulta-

neously demanding lN k 0.
The above conditions, together with the linearized eqn (27)–(29),

lead to the following solutions within the screening layer.

The non-equilibrium space charge density decays with q, and
we must consider conducting (equipotential) and insulating
(fixed charge) surfaces separately, in all cases.

We start with the solution for the total space charge density.
The temperature decays very little inside the screening layer,
therefore the added total salinity due to the heating therein is
given by Xneq

in (-rs,q) = �gt(-rs). However, the modification of the
net salt concentration in the double layer is sufficiently small
that local corrections to the Debye length do not have to be
accounted for, since Xin = Xeq

in + tXneq
in with t { 1.

Next, we provide the results for the out-of-equilibrium part
of the local ion excess and electrostatic potential. For an
equipotential surface (or conductor), we find

dXneq
in ~rs; qð Þ ¼ �bt ~rsð Þe�q þ

1

2
f ~rsð Þt ~rsð Þ 2� 1þ e�ð Þq½ �e�q; (30)

where the electrostatic potential is given by

fneq
in ~rs; qð Þ ¼ �bt ~rsð Þ 1� e�qð Þ

þ 1

2
f ~rsð Þt ~rsð Þ 1þ e�ð Þq½ �e�q; (31)

because fneq
in (-rs,0) = 0. For a fixed, homogeneous surface

charge, we find

dXneq
in ~rs; qð Þ ¼ 1

2
f ~rsð Þt ~rsð Þ 2� 1þ e�ð Þ 1þ qð Þ½ �e�q; (32)

where the associated electrostatic potential reads

fneq
in ~rs; qð Þ ¼ �bt ~rsð Þ þ

1

2
f ~rsð Þt ~rsð Þ 1þ e�ð Þ 1þ qð Þ½ �e�q: (33)

In both cases the Seebeck effect thus leads to the development
of a surface thermocharge, which is given by dXneq

in = (f0� b)t for a
conductor** and the q k 0 variant of eqn (32) for an insulator.††
These expressions differ from the ones found by Majee and
Würger21 in that we include a non-zero imposed surface potential.
Moreover, by the surface thermocharge, we mean the charge that
is imposed directly at the surface, rather than the integral form
that is employed in ref. 21 and 24, which gives the effective bulk
thermocharge around the swimmer due to thermophoresis.

4.2 Thermo(di)electrophoretic force onto the fluid

We must first determine the forces acting on the fluid to
perform the slip-layer approximation and obtain the swim
speed. The equilibrium component of the force only generates
a hydrostatic pressure, which cannot contribute to the generation
of flow, by definition, see Appendix C. For analytic convenience,

** The charging for b = 0 follows from the right-hand side of eqn (28). Suppose for
convenience that e* = 0 then eqn (28) and (29) combine to give an inhomogeneous
Helmholtz equation for dXneq

in , for which the particular solution exactly corre-
sponds to minus the right-hand side of eqn (28). Physically, the effect is due to the
difference in temperature dependence between regular diffusion and electric
migration,22,23 which gives an additional contribution to surface (and bulk)
thermocharge on top of that induced by the Seebeck effect.21,24

†† Here too, there is a thermocharging effect (dXneq
in (r

-
s,q) a 0) as described in

ref. 21 and 24. However, there is only a non-Seebeck contribution, which means
that uncharged surfaces cannot pick up a surface thermocharge. They can pick up
a bulk thermocharge, as follows from using the definition in ref. 21 and 24. In
general, we will restrict our analysis to the case f(r

-
s) a 0.
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we will assume that the reduced surface potential f(-rs) is locally

uniform, i.e., ~rkf ~rsð Þ ¼~0. We use the general form of the Stokes

equation Z1D~v ¼ ~rpneq � ~f neq to identify the out-of-equilibrium
force density acting on the fluid in a first-order expansion

~f neqð~rÞ
kBT1n1

¼ � 2dXneqð~rÞ~rfeqð~rÞ þ 2feqð~rÞ~rfneqð~rÞ

� l1ð Þ2e� ~rfeqð~rÞ
��� ���2~rtð~rÞ:

(34)

Outside the screening layer, the force density vanishes‡‡

~f neqout ð~rÞ
kBT1n1

¼~0: (35)

Inside of the screening layer, we can split the driving forces
into components parallel and perpendicular to the surface.
These read

~f neq
in;k ~rs; qð Þ
kBT1n1

¼ 2f ~rsð Þe�q~rkfneq ~rs; qð Þ

� e�f ~rsð Þ2e�2q~rkt ~rsð Þ; (36)

~f neqin;? ~rs; qð Þ
kBT1n1

¼ 2k1f ~rsð Þe�q dXneq ~rs; qð Þ þ @qfneq ~rs; qð Þ
	 


q̂; (37)

where we have used that t(-r) is almost constant in the perpendicular
direction over the length of the double layer, as we did previously in
Section 4.1. We have also introduced the unit normal to the sphere’s
surface q̂, which points outward.

The expressions for the force density inside the screening
layer can be rewritten using the expressions for the density and
potential. For the perpendicular component we find

~f neqin;? ~rs; qð Þ
kBT1n1

¼ � k1 4b� 3þ e� � 2 1þ e�ð Þqð Þf ~rsð Þ½ �

	 f ~rsð Þe�2qt ~rsð Þq̂;

(38)

which holds for the equipotential surface, and

~f neqin;? ~rs; qð Þ
kBT1n1

¼ k1 1� e� � 2 1þ e�ð Þq½ �f ~rsð Þ2e�2qt ~rsð Þq̂; (39)

which holds for insulating surface. Under the same assumption,
we obtain

~f neqin;k ~rs; qð Þ
kBT1n1

¼ � 2 1� e�qð Þbþ e� � 1þ e�ð Þqð Þf ~rsð Þe�q½ �

	 f ~rsð Þe�q~rkt ~rsð Þ;

(40)

~f neq
in;k ~rs; qð Þ
kBT1n1

¼ � 2b� 1þ 1þ e�ð Þqð Þf ~rsð Þe�q½ �f ~rsð Þe�q~rkt ~rsð Þ;

(41)

for the equipotential and insulating surface, respectively.

4.3 The slip-layer approximation

At this point of the calculation, we make the slip-layer approxi-
mation. We have already assumed a high ionic strength and
therefore all the thermoelectrophoretic speed is generated in a
small layer around the colloid. This implies that no-slip
boundary condition on the colloid may be replaced by an
effective slip/velocity boundary that accounts for the speed
generation in the thin Debye layer, e.g., see ref. 42–44.

Decomposing the Stokes equations into parallel and
perpendicular components, we obtain the following expres-
sions:

Z1 k1ð Þ2@2q~vkð~rs; qÞ ¼ ~rkpneqð~rs; qÞ � ~f neqin;k ð~rs; qÞ; (42)

kNq̂qqpneq(-rs,q) = f neq
in,>(-rs,q), (43)

where in eqn (42) the decomposed Laplacian acts only on the
parallel velocity components and only the double derivative
with respect to q remains; it dominates due to the (kN)2

prefactor. In eqn (43), we used that the perpendicular fluid
velocity (i.e., toward the particle) in the thin layer must be zero,
due to incompressibility of the fluid.

Solving for the q-dependence of the pressure using eqn (43),
we find the following expressions

pneq ~rs; qð Þ
kBT1n1

¼ 2b� 1� 1þ e�ð Þqð Þfð~rsÞ½ �f ~rsð Þt ~rsð Þe�2q; (44)

pneqð~rs; qÞ
kBT1n1

¼ e� þ 1� 1þ e�ð Þqð Þ½ �f ~rsð Þ2t ~rsð Þe�2q; (45)

for conducting and insulating surfaces, respectively. Here, we
have set the non-equilibrium pressure to zero for (qm0),
because the equilibrium component is subtracted in our
linearization.

One can group the parallel pressure gradient and parallel
force terms in eqn (42) and solve the resulting differential

equation for -
v8(-rs,q), with boundary condition v8(-rs, q k 0) =

-

0.
The slip speed may be obtained by taking the limit ~vslipð~rsÞ ¼
limq!1~vkð~rs; qÞ and it is given by

~vslip ~rsð Þ ¼
l1ð Þ2

4Z1
kBT

1n1 8b� ð1� e�Þfð~rsÞ½ �f ~rsð Þ~rkt ~rsð Þ: (46)

The above result is quite surprising, as the slip velocity has the
same functional form for both insulating and conducting
surfaces, as was also reported in ref. 24.

The speed of the particle is now obtained by evaluating the
integral

�U ¼ � 1

4pa2

þ
~vslipd~rs: (47)

‡‡ Higher-order terms would lead to a force in the bulk, however this contribu-
tion is small, scaling with t3, and is therefore ignored here. That is, there is an
unscreened electric field (fneq

out (r
-

) = �bt(r
-

)) and a temperature gradient in the
bulk. The latter would lead to a temperature-variation of the dielectric permittiv-
ity, while the former ensures that the potential prefactor in the permittivity term
of eqn (5) is nonzero. Hence there will be a force contribution in the bulk even
with strong screening.
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where -
vslip is the slip velocity and integration takes place over

the particle’s surface. We obtain for the total speed of a
swimmer

�U ¼ �kBT
1n1

6Z1a
l1ð Þ2 8bfð~rsÞ � 1� e�ð Þf ~rsð Þ2

h i
�t1; (48)

to leading order in lN. Here, %t1 is the first Legendre–Fourier
coefficient in a decomposition of the temperature, see
Appendix B.

4.4 The speed according to Teubner

We verify the slip-layer swim speed by employing Teubner’s
method32 of integrating the (out-of-equilibrium) body force
density with an integration kernel§§ �K(-r) to obtain the reduced
swim speed

�U ¼ 1

6pZ1a

ð
V

Kð~rÞ � ~f neqð~rÞd~r; (49)

Kð~rÞ ¼ 3a

2r
� a3

2r3
� 1

� �
cos yr̂� 3a

4r
þ a3

4r3
� 1

� �
sin yŷ; (50)

where integration takes place over the volume V outside of the
particle. The laborious calculation of the swim speed via this
route is provided in Appendix D. Grouping the expressions
therein together, we obtain for the speed exactly the result of
eqn (48).

5 The Hückel limit

In this section, we use a regime-splitting approach to determine
the leading-order departure from the salt-free limit. That is, we
study systems in which the Debye length is large kNa { 1.

5.1 Splitting the equation system

We start from the equations for the equilibrium and non-
equilibrium fields, of which the former are provided in Appendix
C and the latter are given by eqn (15), (21) and (22). The equilibrium
electric field obeys the regular Debye–Hückel expression

feqð~rÞ ¼ fs

a

r

� �
e�k

1ðr�aÞ; (51)

where fs is a homogeneous surface potential, related either to the
conducting or the insulating boundary condition.

We introduce the splitting parameter x = kNa { 1 and the
coordinate transform -

r � a
-
y to approximate the equilibrium

potential as

feqð~yÞ ¼
~fs

.
y yo x�1

0 y4 x�1

8<
: ; (52)

up to order O(1). The physical reasoning behind this approach
is that for very large screening layers, the potential is essentially
unscreened for a sizable fraction of the very large Debye length.
However, outside of the screening layer, it must still vanish.
Eqn (52) gives an approximate form to this intuition. Above, we
have introduced the expansion prefactor ~fs, which assumes the
value ~fs = f0 for a conductor and ~fs = (aes0)/(kBTNeN) for an
insulator, respectively. Note that we assume that the potential
is essentially unscreened inside the double layer and fully
screened outside; we still require x�(-y) = 8feq(-y).

Using the above expressions and expanding eqn (15), (21)
and (22) to O(x), we obtain the following for y o x�1:

r2fneq
in ð~yÞ ¼ �e

�~rtð~yÞ � ~rfeqð~yÞ; (53)

r2Xneq
in ð~yÞ ¼ b~rtð~yÞ � ~rfeqð~yÞ; (54)

r2dXneq
in ð~yÞ ¼ 1þ gþ e�ð Þ~rtð~yÞ � ~rfeqð~yÞ: (55)

The relation a~r~r ¼ ~r~y was used to obtain gradients and
Laplacians in terms of -y; the subscript is dropped throughout
for notational convenience. Note that the equations for all fields
have the same shape, which can be solved for, see Appendix E.

5.2 The thermo(di)electrophoretic body force

Employing the general solution, eqn (101) from Appendix E, we
obtain solutions to eqn (53)–(55) by imposing boundary conditions.
We start with fneq

in , which vanishes at the surface of the particle for
an equipotential surface, leading to

fneq
in ð~yÞ ¼

1

2

X1
j¼0

�tjcjðyÞPj cos yð Þ;

cjðyÞ ¼ e�~fsðy� 1Þy�ð jþ2Þ;

(56)

where the t̆j are expansion factors related to the temperature
distribution, see Appendix E. For an insulating surface, the
derivative of fneq

in vanishes at the surface. This leads to the
following non-equilibrium potential expansion coefficients

cjðyÞ ¼ �e�~fs

ð j þ 1Þ � ð j þ 2Þy
ð j þ 1Þ y�ð jþ2Þ: (57)

The fields Xneq
in and dXneq

in (-
y) are solved for by matching the

expansion to the outer boundaries at |-y| = x�1, as expressed by
Xneq

in (-
y)|y=x�1 = �gt( y)| y=x�1, and dXneq

in (-
y)|y=x�1 = �bt( y)|y=x�1.

This results in

Xneq
in ð~yÞ ¼ �

1

2

X1
j¼0

�tjXjðyÞPj cos yð Þ;

XjðyÞ ¼ 2gyþ b~fs xy� 1ð Þ
h i

y�ð jþ2Þ;

(58)

and

dXneq
in ð~yÞ ¼ �

1

2

X1
j¼0

�tjdXjðyÞPj cos yð Þ;

dXjðyÞ ¼ 2byþ 1þ gþ e�ð Þ~fs xy� 1ð Þ
h i

y�ð jþ2Þ;

(59)

§§ This integration kernel isolates via projection those components of the body
force that contribute to the speed of the particle, from those that create higher-
order (multipolar) flow fields that do not contribute to locomotion. That is, the
entries in the kernel have the same decay as found for fluid velocity around a
dragged sphere. Note that our integral is thus also reminiscent some of the steps
taken in the reciprocal approach recently proposed by Burelbach and Stark.25
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for the non-equilibrium ionic strength and excess charge,
respectively. Note that these are the same for insulators and
conductors in the splitting formalism.

Outside the double layer ( y 4 x�1) we have fneq
out (-

y) = �bt(-
y),

Xneq
in (-

y) = �gt(-
y), and dXneq

in (-
y) = 0, as before. This leads to a

vanishing force acting on the fluid up to O(t3). Inside the screening
layer, we write the force on the fluid in terms of -

y and x

~f neqin ð~yÞ ¼ �
e1 kBT

1ð Þ2

e2a3
x2dXneq

in ð~yÞ~rf
eq
in ð~yÞ

h

� x2feq
in ð~yÞ~rf

neq
in ð~yÞ

þ 1

2
e� ~rfeq

in ð~xÞ
��� ���2~rtð~sÞ�:

(60)

Here, the temperature variation of the dielectric permittivity,
as specified to first order by e*, becomes the dominant term. This
is expected, since thermodielectrophoresis is the only effect con-
tributing to the self-propulsion in the salt-free limit (without
counterions) and results in a finite swim speed.

5.3 Swim speed in the Hückel limit

The solutions for the fields can be used in conjunction
with Teubner’s formalism, see eqn (49), to obtain self-
propulsion speeds in the Hückel limit; admittedly, after (further)
laborious algebraic bookkeeping. The conducting swimmer has
a speed

~U ¼ � e1e� kBT1ð Þ2

105Z1e2a
f2
0
�t1

� n1
akBT

1

180Z1
30b� 4þ 4gþ 15e�ð Þf0½ �f0

�t1;

(61)

while that of the insulating swimmer is given by

~U ¼ � e1e� kBT1ð Þ2

105Z1e2a
~f2
s
�t1

� n1
akBT

1

360Z1
60b� 8þ 8gþ 45e�ð Þ~fs

h i
~fs

�t1;

(62)

with ~fs = (aes0)/(kBTNeN). Note that here we have expanded the
result in x, only retaining terms up to O(x3), and we have used
t̆1 = %t1. The identity holds for j = 1, but conversion factors are
generally expected, i.e., t̆j41 a %tj41 usually; these terms fortui-
tously do not contribute to the speed.

From the above speed equations, it is clear that even in the
absence of salt, a polarization-based contribution to the swim
speed remains. Burelbach and Stark similarly report a constant
value of the speed for external thermoelectrophoresis in the
Hückel limit,25 which they refer to as a ‘‘colloid hydration’’ term.
In addition, the direction of self-propulsion can change with ionic
strength. Considering, for example the conducting swimmer, the
leading term in the Hückel limit Ũ p �[30b � (4 + 4g)f0]f0 may
be smaller than zero (e* = 0), whenever the leading term in the
Smoluchowski limit Ũ p � [8b � f0]f0 is larger than zero and
vice versa, depending on the values of b and g. Lastly, whenever,
e* = 0, the limiting behavior at low salt concentration is that of a
vanishing speed for both electrostatic boundary conditions.

This is not the same as the dependency reported in ref. 25.
The difference can be attributed to the geometry of the
temperature field, which is not identical between self- and
external thermoelectrophoresis in the Hückel limit. Such geo-
metric differences were recently showcased for regular electro-
phoresis in ref. 38.

6 Intermediate ionic strengths

Now that we have examined the swim speed in both limits of
thin and thick screening layers, we can consider what happens
in the intermediate regime. The algebra is rather complicated
between the two limiting cases, hence we refer to our ESI† for
the full details. The main idea is to not only assume a uniform
electrostatic boundary condition, but also a specific form for
the temperature profile. Only the first mode of the temperature
expansion contributes to the speed. Thus, we restrict ourselves
to the following temperature distribution t(r,y) = �(a/r)2cos y,
where we introduce the minus sign to have a the capping
material be on the z o 0 hemisphere of the swimmer whenever
DT 4 0.

The relevant cross-coupling terms in eqn (15), (21) and (22)
may now be written as

tðrÞfeqð~rÞ ¼ ~C0 cos y
a3

r3

� �
e�k

1r; (63)

~rtð~rÞ � ~rfeqð~rÞ ¼ 2 ~C0 1þ k1r½ � cos y a3

r5

� �
e�k

1r; (64)

where C̃0 is a coefficient that accounts for all electrostatic
prefactors – both for the equipotential and constant surface
charge case – and we have made use of the uniformity of
the imposed electrostatic boundary condition. The Poisson
eqn (15) reads

r2fneqð~rÞ þ ðk1Þ2dXneqð~rÞ ¼ � e� ~C0 2þ 2k1rþ k1rð Þ2
h i

	 cos y
a3

r5

� �
e�k

1r;

(65)

for the local salinity (21) we find

r2Xneqð~rÞ ¼ 2b ~C0 1þ k1r½ � cos y a3

r5

� �
e�k

1r; (66)

and for the local charge excess (22) we obtain

r2dXneqð~rÞ þ r2fneqð~rÞ ¼ ~C0 2ð1þ gÞ þ 2ð1þ gÞk1rþ k1rð Þ2
h i

	 cos y
a3

r5

� �
e�k

1r:

(67)
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Using eqn (65), we obtain a differential equation in terms of
dXneq(-r) only, which is given by

r2dXneqð~rÞ � k1ð Þ2dXneqð~rÞ

¼ ~C0 2 1þ gþ e�ð Þ þ 2 1þ gþ e�ð Þk1rþ 1þ e�ð Þ k1rð Þ2
h i

	 cos y
a3

r5

� �
e�k

1r:

(68)

We have reduced the problem to an inhomogeneous Laplace
equation for local non-equilibrium salinity Xneq(-r), an inhomo-
geneous Helmholtz equation for the non-equilibrium charge
excess dXneq(-r), and another inhomogeneous Laplace equation
for the associated non-equilibrium potential fneq(-r); provided
that a solution for dXneq(-r) has been established. This system of
equations may be solved analytically, although no closed-form
expressions can be obtained, see ESI.†

Taking the Smoluchowski limit, we arrive at lim
l1#0

�U ¼ 0 for
the insulating surface and

�U ¼ � kBT
1ð Þ2e1

12e2Z1a
8bf0 � 1� e�ð Þf2

0

	 

; (69)

both of which are in agreement with eqn (48). Unfortunately,
using the full analytic approach makes it difficult to establish how
the speed departs from these limits, see the ESI.† The reason is
that expressions appear in the solution that are problematic to
evaluate numerically, as they involve the near cancellation of large
terms, which gives rise to a small, yet relevant values. This hinders
progress via a series expansion around the limit.

In the opposite (Hückel) limit, we obtain for a conducting
swimmer the following speed

~U ¼ � e1e� kBT1ð Þ2

105Z1e2a
f2
0 �

2e1e� kBT1ð Þ2

105Z1e2
k1f2

0

� n1
akBT

1

2520Z1
420b� 49� 161g� 16e�ð Þf0ð Þf0:

(70)

This expression has a similar shape as eqn (61), barring a

k1 /
ffiffiffiffiffiffiffi
n1
p

dependent term. This term comes from the outer
region of the solution, where we had assumed a fully screened
potential and set the force density to zero in Section 5. We
conclude that splitting gives an impression of the limit and
some aspects of the departure therefrom, but can lead to
qualitatively incorrect scaling. Nonetheless, when e* = 0,
eqn (61) and (70) agree semi-quantitatively, with only minor
changes in the prefactors. Therefore, the method can have
merit whenever there is no contribution to self-propulsion
outside the screening layer.

The insulating swimmer’s speed in the Hückel limit is
given by

~U ¼ � ae�

105Z1e1
s20 �

a3e2

360kBT1Z1 e1ð Þ2
7� 23gð Þn1s20

� a2e

6Z1e1
n1s20 þ

8a3e2e�

315kBT1Z1 e1ð Þ2
n1s20:

(71)

This expression also differs from the one provided in Section 5.3
for the same reasons. We will show next that the speeds reported
in this section do capture many of the speed features obtained
using FEM, despite the limitations of the method.

7 Numerical results

In this section, we discuss our numerical FEM results and show
that these correspond to the expressions of our analytic calcu-
lations in the appropriate limits. We will predominantly use
dimensionful units to make the connection with experiments
and to highlight those regimes wherein we expect measurable
results.

7.1 Parameter choices

Throughout, we assume a colloidal particle diameter of 1 mm.
We consider three types of swimmer material for the hot
swimmers: no thermal conductivity contrast with water K = 1;
polystyrene (PS), KPS� kPS/kf = 0.0847; and silica (SiO2) KSiO2

= 2.34.
For the fluid, we use the physical properties of water at
T N = 298.15 K (room temperature): eN = e0er with e0 the vacuum
and er = 78.4 the relative permittivity, ZN = 8.9 	 10�4 Pa s, and
kN = kf = 0.591 W m�1 K�1.45 The ambient pressure is specified
to be pN = 1 	 105 Pa, approximately one atmosphere.

We further consider three types of ions to determine the
effect of thermoelectrophoresis, one cation, sodium Na+, and
two anions, chloride Cl� and hydroxide OH�. This choice is
based on the commonplaceness of these ions, as well as the fact
that the Cl� anion has a much smaller Soret coefficient than
OH�, allowing us to probe the effect thereof on the motion of

the swimmer. The ionic diffusion coefficients are DNa+ = 1.3 	
10�9 m2 s�1, DCl� = 2.0	 10�9 m2 s�1, and D1OH� ¼ 5:3	 10�9.46

The thermal diffusion factors are given by a1Naþ ¼ 0:7,
a1Cl� ¼ 0:1, a1OH� ¼ 3:4.21,47,48 In all cases, we set e* = 0, dropping
any thermal polarization effects, in order to facilitate the discussion
of the results; the actual value e* E �1.3, see Appendix A.

7.2 The finite element method

We performed our finite-element calculations using the
methods detailed in ref. 49 and previously utilized to study
self-electrophoretic motion (without a temperature coupling)
in ref. 38 and 50. We refer to those works for the details, briefly
summarizing the key points here. (i) We exploit the rotational
symmetry of our problem to work with an axisymmetric
simulation domain on which the equations are specified in a
manner that respects the three-dimensional nature of our
problem. (ii) On this domain, we use a triangular mesh
that grows out towards the edge of the domain in size.
We improve the stability of our analysis using quadrilateral
refinement in the region within several (typically 5) Debye
lengths from the surface, see the appendix to ref. 38 for a
visualization of such a domain. We ensured that our grids were
sufficiently refined and our simulation domains sufficiently
large to eliminate both discretization and finite-size effects,
respectively. The discretization near the surface is typically less
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than 0.01 of the particle radius, whilst the domains are at least
than 30 particle radii in size. (iii) Polynomial basis functions
were employed for the thermal, electrostatic, diffusion, and
hydrodynamic subproblems, with orders 3 (Lagrange), 2, 3,
and 3 + 2, respectively. The latter refers to the order of the basis
function for the velocity and pressure fields, respectively. (iv)
To enhance stability and because the subproblems separate
out in the low-Péclet regimes applicable here, we first solve for
the temperature profile. This solution is used to subsequently
compute the coupled electrostatic and diffusion problem,
from which we obtain a force acting onto the fluid. Finally,
the hydrodynamic problem with the appropriate boundary
conditions is solved for the flow under the application of the
obtained force. We measure the velocity of the fluid at the edge
of our simulation domain – an average over the edge of the
velocity – to work out the swim speed.

7.3 The temperature profile and thermocharge

Let us start by examining the temperature profile around a
heated (K = 1) swimmer. Fig. 2 shows the temperature excess for
both types of thermal boundary condition, where we chose the
heat flux Q such that the maximum deviation from the reservoir
temperature, DT E 5 K, is comparable to the imposed excess
temperature for the equi-temperature surface, DT = 5 K.
The two temperature fields differ only slightly.

Next, we turn our attention to the net charge at the surface of
a hot (K = 1) swimmer with equipotential boundary condition,
see Fig. 3. When the particle is not heated (DT = 0 K), dX is fixed,
and equal and opposite to the imposed value of f0 in our
approximation. The agreement is good for f0 = 0.05 (in the
linear regime), but there is a substantial nonlinear effect for
f = 0.5. The nonlinearity can be better captured analytically
by using Poisson–Boltzmann theory.21,24 However, most of

the analytic manipulation performed in this paper cannot be
(readily) accomplished in this more general case as the expressions
become unwieldy.

Heating of the particle in a 1 mmol L�1 NaOH solution leads
to an increase in the anion concentration at the hot surface.
Recall that for e* = 0 the thermocharge at the surface is given by
dXneq = (f0 � b)t to first order, see eqn (30). Here, b = �2.7 and
f0 = 0.05, which gives dXneq = 2.75t, and f0 = 0.5, which gives
dXneq = 3.2t, respectively. Hence, we expect dX to increase at the
heated cap – it is nearly constant over that hemisphere – and to
be minimal at the pole of the particle, where the surface
temperature is lowest.

The thermocharging effect is much smaller for a 1 mmol L�1

NaCl solution due to the smaller Soret coefficient of the Cl�

anion (b = 0.6); here we find dXneq = (f0 � b)t = (0.05 � 0.6)t =
�0.55t and (0.5 � 0.6)t = �0.1t, respectively. In the linear
regime, our theory predicts the correct sign change of the

Fig. 2 Contour plot of the excess temperature tDT around a hot (K = 1)
Janus swimmer in the xz-plane. In the left halfplane, we show t
when the heat flux Q is fixed on the cap (white, z r 0), such that the
maximum temperature on the capped hemisphere is E5 K. The right
halfplane shows the temperature field with DT = 5 K fixed on the heated
cap.

Fig. 3 The net charge dX = dXeq + tdXneq along the particle contour
parameterized by the polar angle y. The curves are for a Janus swimmer
with DT E 5 K, K = 1, and an equipotential surface with f0 = 0.05 (a) and
f0 = 0.5 (b); this corresponds to E2.6 mV and E13 mV, respectively. The
black, dashed curves show the excellent agreement between our numerical
result and analytic prediction.
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thermocharge with respect to the NaOH solution, but in the
nonlinear regime there is no qualitative agreement. The reason
for this is revealed by examining the situation where no
Soret effect is included (purple curve). Here, we should obtain
dXneq = f0t = 0.05t and 0.5t, respectively. Clearly, the effect of
nonlinearity is much stronger for the b = 0 thermocharging, as
there is a sizable offset between the predicted dX and the
computed one, see Fig. 3b.

7.4 The flow field around the hot swimmer

One of the most important properties of the swimmer is the
flow field generated by the non-equilibrium effect, as this
governs to first order the interaction of the swimmer with
its environment. This aspect was previously explored by Bickel
et al.31 for a hot swimmer that had a Seebeck-related slip
velocity. Here, we include all terms leading to thermoelectric
fluid motion in our equations and go beyond the Smoluchowski
limit using FEM.

Fig. 4 shows representative flow fields for several swimmer
and environmental configurations. We find that by lowering
the salinity the puller type flow (butterfly shape) is suppressed,
leaving a flow field that is more like that of a neutral squirmer.
Changing the anion type and leaving the other parameters the
same can be used to change the direction of motion and to
change from a puller- to a pusher-type flow field, thereby
strongly modifying the interaction of the hot swimmer with
its environment.

The relatively high salinity used to generate the flow field in
Fig. 4a, c and d most closely matches the conditions considered
in ref. 31. Our flow field appears to qualitatively match their
predictions. However, examining ref. 50–52 reveals that this
shape is a generic feature of self-propulsion mechanisms
which have a step-like change in boundary condition, be
that step reactive or thermal in nature. That is, for a step-
like change, there is a large gradient term that leads to an
equally large velocity near the equator, which in turn strongly
‘‘compresses’’ the flow lines laterally, due to incompressibility
of the medium.51 Thus, while there is a ‘match’ with the
literature, the exact shape of the flow field is not particularly
insightful. However, the puller versus pusher nature can be
meaningfully distinguished.

Finally, we turn to the flow field shown in Fig. 4b. This
flow does not have the butterfly shape, but is instead similar
to that of a neutral squirmer. The step-like feature in the
boundary condition is washed out, due to the size of the
screening layer compared to that of the colloid at these low
salt concentrations. Comparing our result to direct simula-
tions of neutral self-thermophoresis reveals a similar flow
field.53 This correspondence is likely due to the weaker separa-
tion in scales in the simulations of ref. 53, i.e., the solute
species are small, but not very small compared to the size of
the colloid.

7.5 Thermal conductivity and Soret coefficients

We start by providing the dimensionful expressions for the thermo-
electrophoretic self-propulsion speed in the thin-screening-layer

limit here. These can be obtained by multiplying Ū (eqn (48))
with DT/TN and using Appendix B:

U ¼ � kBT
1n1

6pZ1a
l1ð Þ2 8bfi � f2

i

	 


	

DT
T1

isothermal cap

3paQ
4kfð2þ KÞT1 constant heat flux cap

8>>><
>>>:

:

(72)

Note that the dimensionful expression for the constant heat
flux condition Q is not dependent on the particle radius a here.
However, this is not the case in practice, since typically Q

Fig. 4 Fluid velocity magnitude 8u-8 divided by the absolute swim speed
|U| and streamlines for several hot (K = 1) swimmers in the laboratory frame
of reference. In (a), the electrostatic potential is fixed at f0 = 0.5 (E13 mV)
and we impose DT = 5 K at the heated cap. The concentration of NaOH is
1 mmol L�1 in the left panel and 1 	 10�3 mmol L�1 in the right panel. In (b),
the surface charge of the particle is fixed at 5 	 10�3 e nm�2 and DT = 5 K.
The electrolyte in the left panel is 1 mmol L�1 NaOH and, while in the right
panel it is 1 mmol L�1 NaCl. Notice the opposite direction of the stream-
lines in the two panels as the swimmers translate in opposite directions.
The large arrows in the center of the swimmer indicate the direction of
motion.
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dependents on a. In general, Q p Isabs/a
2, where I is the

illumination intensity and sabs is the absorption cross section.
The dependence of sabs on a, however, is non-trivial. sabs p a3

for small particles with a B O(0.01 mm), while for big particles
with a B O(10 mm), sabs p a2.54 Therefore, Q varies from
Q p I/a to Q p I, while being more complex in between. We
only consider a fixed value of a here and will ignore such
dependencies in the following.

Fig. 5 shows the swim speed as a function of the bulk salt
concentration for four representative swimmer/salt combina-
tions and an equipotential boundary condition. The effect of
the difference in thermal conductivity is quantitative, leading
to an appreciable increase in absolute speed with reduced K.
The direction of swimming is reversed between the two types of
salt, as shown in Fig. 4 and previously reported by Ly et al.24 In
all cases we obtain significant swimming speeds, O(1 mm s�1),
in physiological to high salt concentrations.

Note that we accurately capture the analytic Smoluchowski
limit for our equipotential swimmer, even though we do not
resolve the thermocharge correctly, see Fig. 3. In the analytic
theory we find that for such a swimmer U p nN(lN)2

p 1
(in terms of nN). Our result implies that the swim speed is
independent of the reservoir concentration to first order. This
is borne out by our numerical data in Fig. 5, which is almost
constant over a large range in nN. Higher-order terms would
capture the departures from the constant value of U close to the
limit lN k 0. However, it is non-trivial to analyze these, as
follows from Sections 5 and 6. We will analyze correspondence
between analytic theory and numerical calculations in the
Hückel limit in the next section.

The physical interpretation of the near-constant value of
the speed is that smaller fluid velocities can be generated

in a thinner screening layer. However, this is exactly counter-
balanced by the increased steepness of the electrostatic potential
therein, which in itself leads to higher speeds. Whenever b = 0, the
ion variation is in the bulk couples back to the surface, resulting
in a dependency U p f2

0, but with the same constancy in nN.

7.6 Conducting and insulating hot swimmers

Fig. 6 shows the effect of the electrostatic boundary condition
and the Soret effect on the motion of the hot swimmers as a
function of the bulk salt concentration. Comparing the two
panels of Fig. 6, the impact of the surface properties on the
swim speed becomes evident.

As before, equipotential swimmers have nearly constant
swim speed in the thin-screening-layer limit, see Fig. 6a.

Fig. 5 Swimmer speed U as a function of the bulk salt concentration nN

for two electrolytes, NaOH (black) and NaCl (red), and two materials which
comprise the hot swimmer, SiO2 (circles) and PS (squares). As before,
f0 = 0.5 (E13 mV) and we used a constant heat-flux boundary condition
such that DT = 5 K. The Debye length decreases towards the right and
dashed lines indicate the analytic limit lN k 0.

Fig. 6 Silica swimmer speed U as a function of salt concentration nN for
two electrolytes, NaCl (red) and NaOH (black), and when the Soret effect is
neglected (b = g = 0; blue). Symbols indicate the FEM result, solid curves
show the analytic theory of Section 6, dashed lines the departure from the
limiting value (eqn (48)). In (a) we use an equipotential electrostatic
boundary condition with f0 = 0.5 (E13 mV), while in (b) we used a
constant surface charge boundary condition s = 5 	 10�3 e nm�2. In both
panels DT = 5 K is fixed at the heated cap. The dashed lines indicate the
prediction of eqn (48). The insets show the agreement between theory and
numerical results in the Hückel (a) and Smoluchowski limit (b).
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However, the speed of an insulating swimmer drops to zero in
this limit. Note the excellent agreement between our analytic
expressions and the FEM results here, see the inset to Fig. 6b.
This is mathematically interpreted as follows. The surface
potential fs corresponding to this boundary condition varies
with the ion concentration, i.e., fs p lN. Thus, U p nN(lN)3

p

(nN)�1/2 (b a 0) and U p (nN)�1 (b = 0) to first order, as can be
appreciated from Fig. 6b. The physical intuition is that the
surface potential must decrease with the Debye length in order
to maintain the gradient-based boundary condition. Consequently,
the coupling between the electric field and the temperature-
induced ion currents reduces proportionally, leading to a
vanishing speed.

Turning to the opposite limit of nN k 0, i.e., the Hückel
limit, an equipotential swimmers’ speed drops to zero, see
Fig. 6a. This agrees with the result of eqn (61) which predicts
a dependence U p n0. In fact, the inset to Fig. 6a shows that the
agreement is even quantitative. The physical interpretation of
this scaling is as follows. Any nN perturbation the unscreened
potential, will predominantly generate an out-of-equilibrium
ion profile, rather than directly screen the potential, which
results in a linear dependence. Surprisingly, our analytic result
holds for all intermediate ionic strengths that we considered.
This indicates that our numerical results are trustworthy.

Fig. 6b shows that insulating swimmers have sizable speeds
for low ionic strengths, which are only weakly dependent on the
salt concentration over several decades (numerical result).
The poor match between our analytic and numerical result
for intermediate to low ionic strengths is expected, as the
Debye–Hückel approximation breaks down in this regime for
insulating surfaces. That is, nonlinearities must be accounted
for to accurately capture the physics in this regime. However,
we have verified that the numerical results, which account for
such nonlinearities, are robust.

Physically, the surface-charge boundary condition imposes
that a finite surface potential is maintained, which then
couples to the few ions in the surrounding medium that
maintain it. It may be that for even lower salt concentrations
than considered here, the speed does decay to zero, though it
seems unlikely considering the trend. We have chosen not
to explore this limit for two reasons: (i) Much lower salt
concentrations than studied in Fig. 6 are not attainable in
aqueous experiments, due to water auto-dissociation and CO2

dissolving in water and leading to a reduction in pH. (ii)
Numerically it becomes increasingly difficult to solve the equation
system without incurring finite-size or discretization artifacts for
even lower ionic strength.

Observe that mobility reversals that are present both in our
FEM calculations and our analytic theory for both conducting
and insulating swimmers. This reversal is best observed for the
former in the inset to Fig. 6a. Such reversals are reminiscent
of external electrophoresis30 and presumably have the same
non-linear origin. This is why they only show up for b = 0 in
the case of a conducting swimmer. For external thermoelectro-
phoresis, Burelbach and Stark observe a similar inversion as a
function of the Debye length,25 which could be attributed to the

same mechanism. However, we wish to emphasize that there
are geometric differences between self- and external thermo-
electrophoresis, hindering a direct comparison of the mobility
inversion.

7.7 Mixed electrostatic boundary conditions

In experiment, metal-coated hot swimmers can possess more
complex electrostatic boundary conditions than we have thus
far considered. These hot Janus swimmers may be partially
conducting and partially insulating or even have some inter-
mediate form of boundary condition, due to sputter coating of
the cap material, e.g., see ref. 24. In this final results section, we
analyze two systems, one where the capped side of the swimmer
is a conductor and the uncapped side an insulator and the
other with the opposite combination. Here, we focus on NaOH
as the source of our Soret effect, as this gives the highest swim
speeds.

Fig. 7 shows a comparison between homogeneous electro-
static surface boundary conditions for a hot swimmer (solid
curves) and mixed ones (symbols). We find that the boundary
condition on the uncapped half dominates the behavior in the
Smoluchowski limit, as can be appreciated from the color
inversion between the curves and symbols. This is expected
for a fixed-DT boundary condition on the capped side in the
Smoluchowski limit, as the only relevant temperature variation
take place along the uncapped side in this case. For a constant
heat-flux boundary condition on the cap, there would be a small
contribution from the cap’s electrostatic boundary condition.

Fig. 7 Silica swimmer speed U as a function of salt concentration nN for
NaOH with homogeneous electrostatic boundary conditions (solid curves)
and mixed boundary conditions (symbols). All results were obtained by
FEM calculations for which DT = 5 K is fixed at the heated cap. The solid
curves belong to a homogeneous electrostatic boundary condition with
f0 = 0.5 (fhom; red) and s = 5 	 10�3 e nm�2 (shom; blue). These curves
correspond to a cubic interpolation of the data reported in Fig. 6. The red
symbols (fcap) indicate a hot swimmer for which the capped side is an
equipotential surface with f0 = 0.5 and the uncapped side has a constant
surface charge s = 5 	 10�3 e nm�2. The blue symbols (scap) report the
reverse mixed electrostatic boundary condition.
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The deviation between the result for the homogeneous surface
charge and equi-potential cap + insulating uncapped region can
be attributed to the small region near the equator of the Janus
particle, where the gradients are significant.

The results for the Hückel limit tend in the direction of the
homogeneous equipotential speed (zero for lN m N) in both
cases. This suggests that the sizable self-propulsion speed at
low ionic strength that we reported in the last section can
possibly only be achieved if the entire colloid behaves as an
insulating surface. Such a homogeneous electrostatic boundary
condition may be difficult to realize experimentally, though a
carbon-coated particle may go in this direction. Lastly, note
that for the case of an insulating cap and conducting uncapped
region, a substantial mobility reversal at intermediate ionic
strength is found.

8 Discussion and outlook

Summarizing, we have numerically determined the self-
thermo(di)electrophoretic propulsion speed of a hot swimmer
for various boundary conditions and environmental parameters.
Specifically, we examined the largely unexplored regime of wide
electrostatic screening layers (low ionic strength) using the
finite-element method and verified our results in the appropriate
limits using linear analytic theory, where possible.

We discussed in depth the limitations of the Debye–Hückel
approximation for the case of an insulating swimmer in the
electrostatic Hückel limit. In addition, the strengths and weak-
nesses of our various analytic approaches have been thoroughly
charted. Despite the relatively strong reductions in our analytic
theory, we were able to (semi-)quantitatively capture the speed
dependence found by FEM in the Hückel limit for conducting
swimmers over the full range of ionic strength that is relevant
to aqueous systems. Fortuitously, our analytic expressions
appear hold up to reasonably high values of the surface
potential. However, more involved non-linear calculations are
required to obtain better correspondence between analytic
theory and numerical calculation for insulating swimmers in
the Hückel limit.

Turning to the physics, we obtained mm s�1 swimming
speeds in physiological salt concentrations nN

\ 1 mmol L�1

for an equipotential boundary condition. These speeds are nearly
independent of the salt concentration, in the thin screening-layer
limit, due to a cancellation of ion-dependencies. For an insulating
swimmer, however, propulsion speeds are low in this regime and
they drop off with increasing bulk salinity. Counterintuitively, the
speeds for an insulating swimmer appear to be nearly constant
and are considerable in the limit of large Debye lengths, even
without the thermodielectrophoretic effect taken into account.
Presumably, this is a result of the need to have a small number of
ions present to realize the boundary condition, even close to the
Hückel limit. Analysis of systems with mixed electrostatic
boundary conditions indicate that this result is not obtained
therein, which suggest that it could be singular and experimentally
difficult to realize. Between these two limits the direction of

self-propulsion can reverse, as clearly evidenced by our FEM
calculations and supported by our analytic results.

To the best of our knowledge the low-salinity limit has not
yet been systematically explored experimentally. Speculating on
possible relations to reported experimental results, we note
Simoncelli et al.16 observed a decrease of the height above the
surface for their thermophoretic swimmers with increased salt
concentration. However, these authors study a system wherein
the particle’s self-propulsion is directed towards/away from a
nearby wall. This complicates direct interpretation of the
results in terms of a swim speed, as near-surface thermo-
electroosmotic couplings may come into play. Nonetheless, the
observed decrease in height by switching from NaCl to NaOH
could be related to a reversal in swim direction when using this
salt,16 potentially in agreement with our results, as well as those
of ref. 24. In addition, the decrease in height with increased salt
concentration may be related to the conductivity of the cap, as
we have observed for the mixed boundary conditions.

The main takeaway message of our work is that there may be
interesting nonlinearities in the motility of self-thermo(di)-
electrophoretic colloids that can be induced by varying the salt
concentration in an experimentally accessible range. The FEM
method is particularly well suited to study this range, though
analytic progress may be made. Full analysis of the impact of
non-uniformities in terms of the surface boundary conditions
on the swim speed over the full range of experimentally
accessible ionic strengths is left to future study.
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Appendix A: justification of
linearization

In this appendix, we justify the reductions we made in the main
text. We refer to the work by Dietzel and Hardt23 and references
therein for a full discussion of the first-order Taylor expansion
coefficients to the physical quantities. Here, we reproduce the
values listed in ref. 23 in terms of our notation. For the medium
they found Z* E �5, k* E 0.7, and e* E �1.3. For the ‘‘typical’’
ions Na+, K+, and Cl� they obtained D��E 6.23 For the variation
in the thermal diffusion factors of the ions only limited data is
available in the literature. We refer to the work of Caldwell,55

from which we obtain D�� 
 1 for NaCl and a temperature
dependence for the thermal diffusion factor given by a�� 
 2.
There is clearly some variation in the literature values, but
importantly all these numbers are order unity and we are
therefore justified in ignoring these temperature dependencies.
They come into the differential equations for the potential and
concentration at O(t2), with t2 E 3 	 10�4 for DT r 5 K, leading
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to minute variations. For the speed they come into the expression
at O(t), which leads to a change of at most 10%. The only
exception to this rule is e*, which enters the theory at linear order
and contributes as a constant to the speed, see eqn (72). Finally,
the Péclet number for the ions in our system is given by Pe = Ua/D,
with U r 10 mm s�1 the typical velocity, a = 1 mm the radius of the
colloid, and D Z 1.0 	 10�9 m2 s�1 the smallest ion diffusion
coefficient for convenience. Using the numbers provided in
Section 7, we find that Pe r 10�2, therefore we can safely ignore
advective terms in eqn (20). Similarly, we can ignore thermal
advection terms, since thermal diffusion is orders of magnitude
larger than regular ion diffusion.

Appendix B: temperature profiles

We follow ref. 31 to obtain the temperature profiles in our system
and reproduce their results here in our notation for completeness.
We examine two boundary conditions for the coated hemisphere.
For the a cap maintained at constant temperature, we assume for
the thermal conductivities kf = ks, and obtain for the reduced
temperature field t(-r) outside of the swimmer

tð~rÞ ¼ 1

2

a

r

� �
þ
X1
i¼0

�ti
a

r

� �iþ1
Pi cos yð Þ; (73)

�ti¼2k ¼
1

p
ð�1Þk
2kþ 1

; (74)

�ti¼2kþ1 ¼ �
1

p
ð�1Þk
2kþ 1

; (75)

where, Pi is the i-th Legendre polynomial.
For a constant heat flux Q into the cap, the dimensionful

temperature field T(-r) reads

Tð~rÞ ¼ T1 þ aQ

2kf

a

r

� �
þ
X1
i¼0

t̂i
a

r

� �iþ1
Pi cos yð Þ

" #
; (76)

t̂i=2k = 0, (77)

t̂i¼2kþ1 ¼ �
4kþ 3

ð2kþ 2Þ þ ð2kþ 1ÞK
ð�1Þkð2kÞ!

22kþ1k!ðkþ 1Þ!; (78)

where K = ks/kf is the conductivity contrast. In this case, the
maximum temperature difference appearing in our t expansion
can be written as

DT ¼ aq

2kf
1�

X1
i¼0

t̂i

" #
; (79)

leading to a reduced temperature field t(-r) that may be written
in a more convenient form for our purposes,

tð~rÞ ¼ a

r

� �
1�

X1
j¼0

t̂j

" #�1
þ
X1
i¼0

�ti
a

r

� �iþ1
Pi cos yð Þ; (80)

Appendix C: the equilibrium solutions

The linearized equations for the equilibrium in terms of our
reduced quantities are as follows. The heat equation reduces to
a constant temperature TN throughout the system. The Stokes
equations reduce to zero fluid velocity, with the following
pressure condition

~rpeqð~rÞ ¼ �kBT1n1 x
eq
þ ð~rÞ � xeq� ð~rÞ

 �
~rfeqð~rÞ: (82)

That is, the hydrostatic pressure exactly cancels the ionic
pressure terms induced by electrostatic screening of any charge
or potential on the colloid. The linearized equilibrium Poisson
equation reads

r2feqð~rÞ ¼ �1
2
k1ð Þ2 x

eq
þ ð~rÞ � xeq� ð~rÞ

 �
: (83)

Lastly, the ionic fluxes become

~j eq� ð~r Þ ¼ �D1� n1 ~rxeq� ð~r Þ � ~rfeqð~r Þ
h i

; (84)

with the closure
-

jeq
� (-r) =

-

0. The latter follows from the fact that in
equilibrium the fluxes vanish. Using the closure, we find that xeq

� (-r) =
8feq(-r) and r2feq(-r) = (kN)2feq(-r). The hydrostatic pressure

condition reduces to ~rpeqð~rÞ ¼ 2kBT
1n1feqð~rÞ~rfeqð~rÞ.

Appendix D: the expansion of
Teubner’s integration

We rewrite the expression for the speed given by Teubner,32 see
eqn (49), in terms of the body force inside and outside the
screening layer – using that the latter is vanishing and that the
system is axisymmetric – to arrive at

�U ¼ 1

3Z1a

ð1
a

r2
ðp
0

sin yKð~rÞ � ~f neqð~rÞdydr

¼ 1

3Z1a

ðaþ
a

r2
ðp
0

sin yKð~rÞ � ~f neqin ð~rÞdydr;
(85)

where a+ marks the edge of the screening layer. We have

that �K(-rs) =
-

0 and we must therefore perform a perturbative
analysis in terms of lN/a { 1 to obtain the relevant weighting
factors over the length of the screening layer. We introduce
-
r = -

rs + lN-
qq̂, such that

�U ¼ l1

3Z1a

ð1
0

ðp
0

aþ l1qð Þ2sin yK ~rs þ l1qq̂ð Þ

	 ~f neqin ~rs þ l1qq̂ð Þdydq;
(86)

where the lN term comes from the Jacobian of the coordinate
transformation and we have taken the limit to infinity for the q

integration, as aþ ¼lim
q"1 aþ l1q. The expressions for the terms

that do not pertain to the force reduce to

l1

3Z1a
aþ l1qð Þ2sin yK ~rs þ l1qq̂ð Þ

¼ � l1ð Þ3q2
2Z1a

cos y sin yq̂þ l1ð Þ2q
2Z

sin2 yŷ;

(87)
�ti ¼ t̂i 1�

X1
j¼0

t̂j

" #�1
: (81)
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to leading order in lN. We verified that the next order terms do
not contribute to the speed at leading order. For the force,
we obtain

-

f neq
in (-rs + lNqq̂) = A(q)q̂t(a,y) + B(q)a�1ŷqyt(a,y), (88)

where the term t(a,y) � t(-rs) is the temperature at the surface.
Here, A(q) accounts for all the prefactors in eqn (38) and (39);
B(q) accounts for all the relevant prefactors in eqn (40) and (41);
and a�1ŷ@ytða; yÞ � ~rkt ~rsð Þ. Note that here we have used our
assumption that f(-rs) is homogeneous over the surface to avoid
q dependence in the factors A and B.

Now taking everything together, we may rewrite the expression
for the speed contribution due to the region inside of the thin
screening layer as

�U 
 l1ð Þ2

2Z1a

ð1
0

ðp
0

l1q2 cos y sin yAðqÞtða; yÞ
	

�q sin2 yBðqÞ@ytða; yÞ


dydq:

(89)

Spitting the integrand into the A(q) (>) and B(q) (8) terms, we
evaluate these contributions separately. Starting with the
perpendicular component, we find

�U? ¼
l1ð Þ3

2Z1a

ð1
0

ðp
0

q2 cos y sin yAðqÞtða; yÞdydq

¼ l1ð Þ3

2Z1a

ð1
0

q2AðqÞdq
ðp
0

tða; yÞ cos y sin ydy

¼ l1ð Þ3

3Z1a
�t1

ð1
0

q2AðqÞdq;

(90)

where only the first-order Legendre Polynomial contributes. Note
that if we had not assumed homogeneous electrostatic surface
properties, the splitting of the integration could not have been
done in the same way and all Legendre–Fourier modes would
have contributed. Evaluating the integral over q gives us for a
conducting surface

�U? ¼ �
kBT

1n1

6Z1a
l1ð Þ2 2bf0 þ e�f2

0

	 

�t1: (91)

The result for an insulating surface is

�U? ¼ �
kBT

1n1

6Z1a
l1ð Þ2 1þ 2e�½ �f2

s
�t1: (92)

Similarly, we obtain for the parallel component

�Uk ¼
l1ð Þ2

2Z1a

ð1
0

ðp
0

q sin2 yBðqÞ@ytða; yÞdydq

¼ l1ð Þ2

2Z1a

ð1
0

qBðqÞdq
ðp
0

sin2 y@ytða; yÞdy

¼ � 2 l1ð Þ2

3Z1a
�t1

ð1
0

qBðqÞdq:

(93)

Evaluating the integral over q leads to the desired expression
for a conducting surface

�Uk ¼ �
kBT

1n1

6Z1a
l1ð Þ2 6bf0 � f2

0

	 

�t1; (94)

and for an insulating surface

�Uk ¼ �
kBT

1n1

6Z1a
l1ð Þ2 8bfs � 2þ e�ð Þf2

s

	 

�t1: (95)

Appendix E: solving the general
differential form

We write a general Legendre–Fourier series for the reduced
temperature, mimicking the result obtained in Appendix C.
That is,

tð~yÞ ¼
X1
j¼0

�tjy
�ð jþ1ÞPjðcos yÞ; (96)

with Pi the i-th Legendre polynomial and the t̆j prefactors of the
temperature expansion that can be related to the %tj provided
in Appendix B. Then, the general differential form associated
with our splitting approach may be recast as

r2Gð~yÞ ¼ g~rtð~yÞ � ~rfeqð~yÞ; (97)

with G a function and g some prefactor. The gradient of the
equilibrium potential only has a radial component, under our
constraining assumptions, therefore

r2Gð~yÞ ¼ g~fs

X1
j¼0

�tjð j þ 1Þy�ð jþ4ÞPjðcos yÞ: (98)

A solution to this problem should also decompose into
Legendre-Fourier modes, hence we make the ansatz

Gð~yÞ ¼
X1
j¼0

hjðyÞPj cos yð Þ; (99)

with hj functions to be determined. From eqn (98) and (99) it
then follows that the hj satisfy

h00j ðyÞ þ
2

y
h0jðyÞ �

jð j þ 1Þ
y2

hjðyÞ ¼ g~fs
�tj
ð j þ 1Þ
yð jþ4Þ

; (100)

with the prime denoting the derivative with respect to y. These
differential equations have solutions

hjðyÞ ¼
1

2
g~fs

�tj þ Cjy

� �
y�ð jþ2Þ; (101)

where the Cj are constants of integration to be determined. We
have removed the nonconvergent part in the limit of y m N,
since we are interested in the limit x�1 m N and the solutions
should be bounded for all x.
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G. Mériguet, V. Peyre, M. Kouyaté, C. Filomeno,
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