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Abstract

We consider spin—vorticity coupling—the generation of spin polarization by vorticity—in viscous
two-dimensional electron systems with spin—orbit coupling. We first derive hydrodynamic equations
for spin and momentum densities in which their mutual coupling is determined by the rotational
viscosity. We then calculate the rotational viscosity microscopically in the limits of weak and strong
spin—orbit coupling. We provide estimates that show that the spin—orbit coupling achieved in recent
experiments is strong enough for the spin—vorticity coupling to be observed. On the one hand, this
coupling provides a way to image viscous electron flows by imaging spin densities. On the other hand,
we show that the spin polarization generated by spin—vorticity coupling in the hydrodynamic regime
can, in principle, be much larger than that generated, e.g. by the spin Hall effect, in the diffusive
regime.

1. Introduction

The field of spintronics is concerned with electric control of spin currents [1]. For the description of
experimentally relevant systems it has, until very recently, been sufficient to consider their coupled spin-charge
dynamics in the diffusive regime where the time scale for electron momentum scattering is fast compared to
other time scales. The celebrated Valet—Fert theory for electron spin transport in magnetic multilayers [2] and
the Dyakonov—Perel drift-diffusion theory for spin generation by the spin Hall effect [3], for example, fall within
this paradigm.

Very recent experimental developments have brought about solid-state systems, such as ultra-clean
encapsulated graphene, in which the momentum scattering time can be much longer than the time scale for
electron—electron interactions [4—7]. In this so-called hydrodynamic regime, the electron momentum needs to
be included as a hydrodynamic variable and the viscosity of the electron system cannot be neglected [8—17]. The
finite electron viscosity leads to several physical consequences, such as a negative nonlocal resistance [4] and
super-ballistic transport through point contacts (PCs) [7, 18]. These developments have spurred on a great deal
of research, including proposals for measuring the Hall viscosity [19-21] and connections to strong-coupling
predictions from string theory [22].

In a very different physical system, liquid Hg, spin-hydrodynamic generation, i.e. the generation of voltages
from vorticity, was recently experimentally observed. [23]. Spin-hydrodynamic generation is believed to be a
consequence of spin—vorticity coupling. Phenomenological theories of spin—vorticity coupling were developed
early on [24] and have been applied to fluids consisting of particles with internal angular momentum such as
ferrofluids [25], molecular nanofluids [26], and nematic liquid crystals [27]. In these phenomenological
theories, the coupling between orbital angular momentum, i.e. vorticity of the fluid, and internal angular is
governed by a dissipative coefficient, the so-called ‘rotational viscosity’. This type of viscosity has been estimated
microscopically for classical systems (see e.g. [27]) and Hg [23], but not for viscous electrons in a crystal.

Motivated by the recent realization of solid-state systems hosting viscous electron fluids, we develop in this
Letter the theory for spin—vorticity coupling in such systems. We derive the phenomenological equations
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describing coupled spin and momentum diffusion, and compute the rotational viscosity microscopically. We
apply our theory to viscous electron flow through a PC and show that the spin densities generated
hydrodynamically can be much larger than the ones that are generated by the spin Hall effect in the diffusive
transport regime. Our results may therefore stimulate experimental research towards novel ways of spin
detection and generation.

2. Phenomenology

We consider two-dimensional (2D) electron systems with approximate translation invariance and approximate
rotation invariance around the axis perpendicular to the plane (chosen to be the Z-direction). The conserved
quantities of this system are energy, charge, linear momentum in the plane and angular momentum in the
z-direction. For brevity, we do not consider energy conservation explicitly and focus on momentum and angular
momentum conservation. In the following, we adopt the discussion of [24, 28] and generalize it to include lack
of Galilean invariance. The momentum density is denoted by p(r, t) andisa2D vector p = (p,, p,) inthe
x—y-planewith r = (x, y) = (r, r,). The total angular momentum density in the Z-direction is the sum of
orbital angular momentum density €, 5r,pgand spin density s(r, t) (in the Z-direction). Here, €,3is the 2D
Levi-Civita tensor and summation over repeated indices v, 3,7, 6 € {x, y} isimplied. We denote with v the
conjugate variable to the momentum density, i.e. the velocity, whereas the spin chemical potential, commonly
referred to as spin accumulation, y is the conjugate variable to the spin density.

Conservation of linear momentum yields

apa (r, 1) _ 8Haﬂ(r’ t)

) ey
ot Org
with IL,53(r, t) the stress tensor. Conservation of angular momentum in the z-direction is expressed as
Oleaptaps(r ) + s ] 9j/(r, 1) 2

ot or,

with j ({ (r, t) the ath component of the angular momentum current and in the above equations the summation
is over both avand 3. The equation for the spin density is found by subtracting the cross-product of  with
equation (1) from equation (2) and yields

Os(ryt) _ o (r, 1)

— 2II%(r, 1), 3
o or. (r, 1) 3

with IT*(r, t) = €,3115,(r, t)/2 the antisymmetric part of the stress tensor and
o, t) = ]aj (r, t) — egyr31l,o(r, t) thespin current.

A nonzero velocity and spin density increase the energy of the system. By symmetry, a nonzero velocity leads
to a contribution p,; v*/2 to the energy density. This expression defines the kinetic mass density py,, such that
p(r, t) = py,v(r, t)[29]. For the case that is of interest to us, i.e. 2D electrons with spin—orbit coupling, the
kinetic mass density is not equal to the average mass density p because spin—orbit coupling breaks Galilean
invariance. Similar considerations arise in the hydrodynamic description of phonons [30].

A nonzero spin density contributes y/2/2 to the energy density, where y is the static spin susceptibility, so
that s(r, t) = /x, (7, t). These terms in the energy density lead to contributions to the entropy production
from which relations between the fluxes (the spin current and antisymmetric part of the pressure tensor) and the
forces (spin accumulation and velocity) are derived phenomenologically. In terms of y1 (r, t) and v (r, 1) we
have for the antisymmetric part of the pressure tensor that [24]

Ha(r’ t) = _nr[w(r) t) - ZMs(r> t)/ﬁ]) (4)

with w(r, t) = €,30v3(r, t)/0r, the vorticity and ), the rotational viscosity. The above expression, after
insertion into equation (3), shows that angular momentum is transferred, by spin—orbit coupling, between
orbital and spin degrees of freedom until the antisymmetric part of the pressure tensor is zero. For the spin
current we have that j°(r, t) = —o,0p,(r, t) /01, = —D,0s(r, t) /Or, which defines the spin diffusion
constant D and spin conductivity o, which obey the Einstein relation o, = /i Dy,. Note that we are omitting
an advective contribution ~ v,s to the spin current as we restrict ourselves to the linear-response regime.
Inserting these results for the fluxes into equation (3) and using equation (1) leads to

2



10P Publishing

J. Phys.: Mater. 2 (2019) 015006 RJ Doornenbal et al

Os(r, t)
ot

= D,V3s(r, t)

71X

Pkin Olr, 1 = &Pk + Upign Va(r, 1)
ot m

s Tsr

' znr[w(“ n- 2 t)] _ s,

ZS(T, t):| o pkinVa(r’ t) (5)

+ 1. € i w(r, t) —
Ty €ap 81’3 > ﬁzx

s Tmr

In the above we have assumed the linear-response regime and introduced the kinematic viscosity v using that the
symmetric part of the stress tensor is given by I1,3 = vp,;, 0, /Ors. Furthermore, we have added spin and
momentum relaxation terms, parameterized by the phenomenological time scales 7, and 7, respectively. We
have also included an electric field E (the electron has charge —e).

Equations (5) are the main phenomenological equations for spin density and velocity. The term
proportional to 7, in the first equation describes generation of spin accumulation in response to vorticity, e.g.
spin—vorticity coupling, and arises because of spin—orbit coupling. See [31] for an example of spin dynamics in
the hydrodynamic regime without spin—orbit coupling.

In the steady state the hydrodynamic equations are characterized by three length scales. The first is a length
scale that results from the spin—vorticity coupling equal to &, = /D;/%%x,/(27,) , which is the characteristic
length over which the orbital and spin angular momentum equilibrate. Furthermore, we have the spin diffusion
length &, = /D7, that determines the length scales for relaxation of spin due to impurities, and the
momentum diffusion length £, = /U7, - The most interesting regime, which occurs in the limit of strong
spin—orbit coupling relative to momentum and spin relaxation, is the one where £, is the shortest length scale.
In this case the spin density locally follows the vorticity, which is determined by the electron flow.

3. Application

We consider electron flow through a PC[7, 18] driven by a voltage V. Taking 7., 7y — 00 we have from [18]
for the velocity distribution at the PC that

2
v, (x) = __mpeV (K) — x2, (6)
4mupy, \\ 2

where the flow is in the y-direction and w is the PC width. From equation (5), in the limit £, < w the steady-
state spin density generated at the PC by spin—vorticity coupling in the hydrodynamic regime is then

s(x) _m 4x
71X ¢ Tewp J(w/2)2 — x*

™)

where j© = —ep f dx v, (x) / (mw) is the average current density.

Let us compare equation (7) with the spin density generated by the spin Hall effect in the diffusive limit. In
the latter case, the spin accumulation is determined by 0% /9x? = pu_ /¢, which follows from equations (5) in
thelimit £, < £, together with the expression ]ys = —o,0p, / Ox + Osy /7]; / (2e) for the spin current. Here
]}f = 0.E, is the diffusive charge current through the PC, with o, = €?p*7y,, / (m*p,,) the electrical conductivity
and sy the spin Hall angle. Using the boundary conditions j*(—w/2) = j°(w/2) = 0, we find for the spin
density in the diffusive limit that

Sdiff(ﬁf) _ Osuty sech (2 Vsinn [ 2], ®
ﬁsz]; 2e0; Cor G

A crucial difference is thus that for diffusive spin transport and when w >> ¢, the spin density is only nonzero
within a distance ~ £, away from the edges of the PC, while when w >> £, and in the hydrodynamic limit, the
spin density (see equation (7)) is nonzero everywhere (except at x = 0 where it vanishes by symmetry).

In both hydrodynamic and diffusive limits, the maximum spin density occurs at the edges. In the
hydrodynamic limit the spin density formally diverges as |x| — w/2, since the vorticity that results from the
velocity in equation (6) diverges in the same limit. This divergence is, however, unphysical, as there will be a
microscopic length scale Zq44. 0ver which the velocity goes to zero near the edge of the sample, resultingin a
maximum spin density of s (£w /2)|/(%%x,j) ~ m/(epteage) near the edges of the sample. We expect the latter
to be much larger than the maximum spin density |sgigr (£w/2) / (/22X )| ~ m*Osu i / (e/3pTum:) generated by
the spin Hall effect in the diffusive regime (where we estimated o5 ~ ApTp,./ m?), because
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IiTie / (MOsp by) ~ e / (Osu ke ) is expected to be much larger than the microscopic length scale £ gg.. Here,
kg is the Fermi wave number.

4. Microscopic theory

We proceed by calculating the rotational viscosity microscopically, following argumentation similar to that
developed for the drift-diffusion equation in [32]. We consider the limit that 7, 7,,, — 00. To facilitate a linear-
response calculation, we couple the spin density to a Zeeman magnetic field in the z-direction. This adds a term
—b(r, t)s(r, t)to the energy density, where b(r, t)is proportional to the Zeeman magnetic field and has the
relevant prefactors absorbed. Note that for the purpose of developing the microscopic calculation we consider
this magnetic field to couple to the spin only. We also put the electric field to zero. With these modifications, the
hydrodynamic equations become [28]

Os(r, t)
ot

= DyV?%[s(r, t) — /i3, b(r, 1)]

4 znr[w(r, - 20D | o, t)];
%)

S

O (r, t
pkin%) = Vpkinvzv(y(r) t)

0 2s(r, t
+ nreaﬁa—rﬂ[w(r, ) — Sﬁ(zx ) + 2b(r, t)], ©)

S

whereas equation (4) becomes
I (r, t) = —n,fw(r, t) — 2p(r, t) /7 + 2b(r, 1)]. (10)

The hydrodynamic equations are solved after Fourier transforming to frequency w and momentum ¢, which
yields for the antisymmetric part of the pressure tensor that
202 prin XsTew (ivg® + w)b(g, w)

Ha(q) (U) - D(q w) > (11)

with

D(q, w) = 41, piin 72*[(1q* — iw)

= X(Dsq? — i) (0 — VPiin) 4 + iP1inw)]- 12)
Hence, the antisymmetric part of the pressure tensor has the static limit IT* (g, w — 0) = 0, and the dynamic limt

2i7%x n,wb(q — 0, w)

II*(g — 0, w) = 13
K : 4n, — i w -
Using standard imaginary-time linear-response theory [33], we find that
‘a 7
(P (r, 7)) = %j; fdr'K(r T — b, ), (14)

where the imaginary-time correlation function K (r — #'; 7 — 7/) = (f[a (r, T)$(r', 7))o, and the expectation
value (--+)o is taken at equilibrium. In this expression, the spin density operator in imaginary time 7 is

Sr,T)=17 [12)9-(1', T)'IQJT (r,7) — fbf(r, T)zAbl(r, )] /2, where the dependence on 7 of the electron creation

[¢, ()] and annihilation [12); (r)] operators indicates their corresponding Heisenberg evolution in imaginary
time ranging from 0 to 20, with 3 = 1/(kpT) the inverse thermal energy. The operator expression 1*(r, 7) for
the antisymmetric part of the pressure tensor depends on the microscopic hamiltonian and is determined by the
operator version of equation (3) in imaginary time. Using this latter equation at zero wavevector, however, we do
not need the microscopic expression for the antisymmetric part of the pressure tensor as we use equation (3) to
express it in terms of the spin density. Namely, at zero wavevector, i.e. for the homogeneous situation, we have
from equation (3) in imaginary time that

KD _ 20T (r, 7). (15)

or

From this,wefind K(r — r'; 7 — 7') = ((05(r, 7) /OT)$(r', 7'))9 /2, which, after Fourier transforming,
yields K (g— 0; iw,) x w, Xs (iw,), where x,(iw,) is the imaginary-time spin—spin response function at zero
wavevector (see equation (19) below), and where the zero-wavevector limit has to be taken because equation (15)
can only be used in this limit. Moreover, w,, = 27n/(h() is abosonic Matsubara frequency. After a Wick
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rotation we have the usual retarded response functions K" (g, w) = K(g; iw, — w + i0%)and
Y P (w) = x,(iw, — w + i0%),and find K (q — 0; w) = —iA%wx! P (w) /2. With this result inserted, the
Fourier-transformed version of equation (14) yields

i/izwxi”(w)b(q — 0, w)

(') (g — 0, w) = ; (16)
Comparing this with the phenomenological result in equation (13), we find that
2
I )
1o _(L) fim X1 (17)
1 s ) wm0 o w

which is a convenient starting point for calculating 7, microscopically.

The above result for 7, can also be understood by considering the phenomenological equation (5) in the
homogeneous limit, while taking 7, 7, — 00. Then, the term proportional to the rotational viscosity takes the
form of a spin-relaxation term. This shows that, in the absence of other spin relaxation mechanisms (i.e. when
Ta — 00) the rotational viscosity governs the spin relaxation. This makes sense because the only way for spin
angular momentum to decay in a tranlation and rotation invariant electron fluid is by transferring angular
momentum to the motion of the electron fluid itself, which then manifests as vorticity.

As arepresentative example, we compute the rotational viscosity using standard linear-response techniques
fora 2D electron gas with Rashba spin—orbit coupling, which has the following Hamiltonian [34]:

+ N - (z X 7-)]1%0), (18)
1

= [ar > 0,0

[ A2V2
oe{T,l}

2m

where T is a vector of Pauli matrices. The unit vector in the Z-direction is denoted by Z. The constant A
parametrizes the strength of spin—orbit interactions. We have for the imaginary-time spin—spin response
function

X, (i) = % f dr fo " dr 3 (r, 3, O)hoe. (19)

Neglecting vertex corrections due to interactions, this is worked out to yield

Nl = === 5 [ dhwdhist Ak, Ay (h, )

4nv k 6=¢'
y [N(ﬁw) - N(ﬁw’)]

; (20)
w — W+ iw,

with N (/w) = [e#~~1 + 1]! the Fermi-Dirac distribution function at chemical potential ;.. The spectral
functions A (k, w) are labeled by the Rashba spin—orbit-split band index § = +. We incorporate electron—
electron interactions into the spectral function by taking them equal to Lorentzians broadened by the electron
collision time 7. (this corresponds to dressing bare propagator lines in the spin bubble in equation (19) by self-
energy insertions), i.e.

Asth, w) = 2 ! , 1)

2T (o — WP + (£)

2Tee

where 7iws (k) = /%k?/2m + 67)k is the Rashba band dispersion. Inserting equation (21) into equation (20)
and performing a Wick rotation yields

r

a2y 8( L&
_ Xelor + (’l ) — 4tan‘1(%) , (22)

where we took A — 0. In the limit p7../f > 1,wehave n, = 7/ 4x§/(m7'ee).

Since we have neglected vertex corrections, the result in equation (22) does not vanish in the A — 0 limit and
is strictly speaking only valid when spin—orbit coupling is so strong that the spin—vorticity coupling is limited by
electron—electron interactions, i.e. when M\kg7.. > 1.In the opposite limit, where the bottleneck for spin
relaxation is the spin—orbit coupling, we perform a Fermi’s Golden Rule calculation to determine the decay rate
of a spin polarization to second order in the strength of the spin—orbit interactions. Similar calculations were
carried out by Bogulawski in the non-degenerate limit [35] and by Bir et al for electron-hole spin-flip scattering
[36]. This gives at low temperatures that
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T dk
= —— A?(k, Nik)?,
5] Gtk Vi (23)

My

where A(k, ;1) is the spectral function obtained from equation (21) by replacing 7ws (k) — 7%k?/2m. Carrying
out the remaining integral gives

n, = m—/\z[l + w(@) + 2(ﬂ)tanl(%)], 24)
27 7 7 7

which indeed vanishes as A — 0. When pi7./h >> 1, we have that 7, ~ (Akp) (AkpTee), showing the
dependence on the small parameter Akg7.. << 1 explicitly. Interestingly, since the kinematic viscosity v o< Tee,
we have that the rotational viscosity 77, o< 1/vin the limit of strong spin—orbit coupling and 7, x vin the limit of
weak spin—orbit coupling, with a maximum rotational viscosity when Akg7e. ~ 1. Thisis reminiscent of the
Dyakonov—Perel result for spin relaxation [37] with the momentum scattering time replaced by the electron—
electron scattering time, and is also expected on dimensional grounds. This also shows that in the degerate limit
rotational viscosity is mostly determined by the strength of the interactions and spin—orbit coupling.

For completeness, we also compute the kinetic mass density for the Rashba model in the noninteracting
limit. We then have that the momentum density is given by

dk
P X [ st N — = ) 25)

whichyields p = p\;, v for v — 0, with the kinetic mass density p,;,, = p[1 + Nm/2pu + O(X)]. The
correction, i.e. the second term between the brackets, is typically small since one almost always has that
Nm/2u < 1.

5. Estimates

Next, we estimate the spin—vorticity coupling for graphene with proximity-induced spin—orbit coupling. We
consider the degenerate limit where lack of Galileian invariance and thermal effects may be ignored [38, 39]. We
take Ahkg to be on the order of 1 meV [40]. Furthermore, we take 7.. ~ 100 fs [4]. We thus have that \fkgis
about one order of magnitude smaller than /7. and use the weak spin—orbit coupling expression in

equation (23). Evaluating equation (23) for a linear dispersion /ivgk, where v ~ 10® m s~ is the graphene Fermi
velocity, we find that

Aikg)?

0 ~ %(&) 26)
hivg 7

using p7e. > h. We estimate the corresponding inverse time scale as

M N(Mkp)z(&
I S A WA

) ~ 100 GHz, (27)

where we took p7../h ~ 10, and estimated the spin susceptibility as x; ~ D(u), with the density of states at the
Fermilevel D(u) ~ /1. /(/vg), and the electron number density n, ~ 10" cm 2 [4].

To estimate the corresponding length scale £, we assume that spin diffusion is in the hydrodynamic regime
determined by electron—electron interactions that lead to spin drag [41]. We then have for the spin diffusion
constant that Dy ~ fipTe./(m”xs). The spin—vorticity length scale is then &, ~ v/ \/Tee Xs/M, ~ 1 pm. Thisis
the same order of magnitude as the momentum relaxation length scale £, [4], so that the rotational viscosity
appears to be high enough to lead to observable spin—vorticity coupling. Moreover, the limit where £, < &y,
seems to be within experimental reach. Note that in the regime of weak spin—orbit coupling we have for the spin
relaxation the Dyakonov—Perel result that 1 /7, o< 7, [37], which yields that in the hydrodynamic regime we
have &4, ~ Gy Tee/Tmr > Ci.

A simple interpretation of the spin—vorticity coupling is that the electron spins are polarized by an effective
magnetic field 7w (r, t) / piy, with pip the Bohr magneton, in the frame that rotates with the electron flow
vorticity. We estimate the vorticity w ~ v/£p, using £, ~ 0.1-1 um, and a drift velocity of v ~ 100 m s~ ' [4],
which yields a substantial effective magnetic field of 1-10 mT.

6. Discussion and conclusions

We have developed the theory for spin—vorticity coupling in viscous electron fluids, both phenomenologically
and microscopically, and we have estimated that the proximity-induced spin—orbit coupling in graphene is large
enough for observable effects. As an example, we predict a large spin polarization induced by spin-
hydrodynamic generation in a PC. This large spin density may e.g. be observed optically [42] or via nitrogen-
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vacancy center magnetometry [43, 44]. The imaged spin density would provide a fingerprint of the vorticity of
the electron flow.

An interesting direction for future research is generalization of the phenomenological and microscopic
derivation to other spin—orbit couplings, including, in particular, also the effects of violation of translational and
rotational invariance beyond the phenomenological relaxation terms that we included here. One example would
be that of Weyl semi-metals that naturally have sizeable spin—orbit coupling and have also been reported to be
able to reach the hydrodynamic regime [45]. Other candidates are bismuthene [46] and stanene [47] that
combine strong spin—orbit coupling with high mobility. Further interesting directions of research include
incorporating effects of a magnetic field and computation of the rotational viscosity in the regime where spin—
orbit interactions and electron—electron interactions are comparable in magnitude. In this regime, the crossover
from weak-to-strong spin—orbit coupling takes place, whereas inclusion of momentum-relaxing scattering
would lead to a crossover from the spin—vorticity coupling to the spin Hall effect.
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