
A Framework for Robust Realistic Geometric
Computations
Jeff Erickson
University of Illinois
jeffe@illinois.edu

Ivor van der Hoog
Utrecht University
i.d.vanderhoog@uu.nl

Tillmann Miltzow
Utrecht University
t.mitzow@gmail.com

Abstract
We propose a new paradigm for robust geometric computations that complements the classical fixed precision
paradigm (interval geometry, ε-geometry and stable algorithms) and the exact geometric computation
paradigm. We provide a framework where we study algorithmic problems under smoothed analysis of the
input, the relaxation of the problem requirements, or the witness of a recognition problem. Our framework
specifies a widely applicable set of prerequisites that make real RAM algorithms suitable for smoothed
analysis. We prove that suitable algorithms can (under smoothed analysis) be robustly executed with
expected logarithmic bit-precision. This shows in a formal way that inputs which need high bit-precision
are contrived and that these algorithms are likely robust for realistic input. Interestingly our techniques
generalize to problems with a natural notion of resource augmentation (geometric packing, the art gallery
problem) and recognition problems (recognition of realizable order types or disk intersection graphs).

Our results have practical implications for many geometric algorithms: if their input is slightly perturbed
before execution then the expected bit-precision for robust computation is logarithmic. Our results also have
theoretical implications for some ∃R-hard problems: we show that many real verification algorithms under
slight perturbations of their witness require expected logarithmic bit-precision. These problems have input
instances where their real verification algorithm requires at least exponential bit-precision which makes it
difficult to place these ∃R-hard problems in NP. Our results imply for a host of ∃R-complete problems that
this exponential bit-precision phenomenon comes from nearly degenerate instances.

It is not evident that problems that have a real verification algorithm belong to ∃R. Therefore, we
conclude with a real RAM analogue to the Cook-Levin Theorem, which shows that algorithmic problems
belong to ∃R, if and only if there is a real verification algorithm. This gives an easy proof of ∃R-membership,
as real verification algorithms are much more versatile than ETR-formulas.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases smoothed analysis, Existential Theory of the Reals, real-RAM, bit-precision, resource
augmentation, verification algorithms, robust computations

Digital Object Identifier 10.4230/LIPIcs...

© Jeff Erickson, Ivor van der Hoog, Tillmann Miltzow;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

91
2.

02
27

8v
1 

 [
cs

.C
G

] 
 4

 D
ec

 2
01

9

mailto:jeffe@illinois.edu
mailto:i.d.vanderhoog@uu.nl
mailto:t.mitzow@gmail.com
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Robust Realistic Geometric Computations

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5
...

CPU

instructions

real registers

word registers

Figure 1. The dominant model in computational geometry is the real RAM. It consists of a central
processing unit, which can operate on real and word registers in constant time, following a set of instructions.

1 Introduction

The RAM is a mathematical model of a computer which emulates how a computer can access
and manipulate data. Within computational geometry, algorithms are often analyzed within the
real RAM [48,75,99] (or the later Blum-Shub-Smale machine [17]) where values with infinite
precision can be stored and compared in constant space and time. By allowing these infinite
precision computations, it becomes possible to verify geometric primitives in constant time, which
simplifies the analysis of geometric algorithms. Mairson and Stolfi [79] point out that “without
this assumption it is virtually impossible to prove the correctness of any geometric algorithms.”
The downside of the real RAM is that it neglects the bit-precision of the underlying algorithms,
although they are very important in practice. If an algorithm can be correctly executed with a
limited bit-precision then the algorithm is called robust. Many classical examples in computational
geometry are inherently nonrobust [99] and there are even examples which in the worst case
require a bit-precision exponential in n in order to be correctly executed [53,65].

Often inputs which require exponential bit-precision are contrived and do not resemble realistic
inputs. A natural way to capture this from a theoretical perspective is smoothed analysis, which
interpolates smoothly between worst case analysis and average case analysis [110]. Practical
inputs are constructed inherently with small amount of noise and random perturbation. This
perturbation helps to show performance guarantees in terms of the input size and and the
magnitude of the perturbation. By now smoothed analysis is well-established, for instance
Spielman and Teng received the Gödel Prize for it. However, within computational geometry its
application is limited to smoothed analysis of the bit-precision of the art gallery problem [38] and
order type realisability [63], and smoothed analysis of the runtime of k-means clustering [5,80],
Euclidean TSP [41,81], and partitioning algorithms for Euclidean functionals [15].

In this paper, we apply smoothed analysis to the real RAM to show that many geometric
algorithms can be correctly executed in practice with logarithmic bit-precision. This analysis has
implications on several levels: (1) Many classical nonrobust geometric algorithms (computing
Delaunay triangulations, convex hulls or order types) can in practice be executed using finite
precision. (2) Many classical optimization problems which have a natural problem relaxation (the
art gallery problem, geometric packing, computing the minimum-link path) can in practice be
executed using finite precision. (3) Solutions to many classical ∃R-complete problems (such as disk
intersection-graph recognition or the Steinitz problem in fixed dimension) have polynomial size.
(4) The classical sum of square roots problem can be correctly solved with a bit-precision which is
linear in the number of square roots that are summed. Point (4) provides theoretical verification
of an old observation that in practice this problem only requires linear bit-precision [112, Ch. 45].
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Figure 2. Examples of how computing the convex hull can fail due to imprecise computations from [67].
Left: the point p1 is very close to the origin and thus left out. Right: the point p2 is mistakenly added to the
convex hull and produces an obvious concave chain.

RAM computations. The Random Access Machine (RAM) is a model of computation for the
standard computer architecture. The precise definition of the RAM varies, but at its core the RAM
has a number of registers and a central processing unit (CPU), which can perform operations on
register values like reading, writing, comparisons, and arithmetic operations. The canonical model
of computation within computer science is the word RAM, a variation on the RAM formalized by
Hagerup [54] but previously considered by Fredman and Willard [49,50] and even earlier by
Kirkpatrick and Reisch [69]. The word RAM models two crucial aspects of real-life computing: (1)
computers must store values with finite precision and (2) computers take more time to perform
computations if the input of the computation is longer. Specifically, the word RAM supports
constant-time operations on w-bit integers, where the word size w is a parameter of the model.

The field of computational geometry uses a different variation of the RAM called the real
RAM, where registers may contain real numbers, instead of just integers; see Appendix A.1. This
abstraction dramatically simplifies the design and analysis of geometric algorithms, at the cost
of working in an physically unrealistic model. Implementations of real RAM algorithms using
finite-precision data types are prone to errors. Not only because the output becomes imprecise, but
because rounding errors can lead the algorithm into inconsistent states (Figure 2). Kettner [67]
provides a recent overview of the problems that nonrobust geometric algorithms can bring.
Nonrobust primitives are typical for naive implementations of geometric algorithms [79,112],
and unsurprisingly, there is a vast amount of research into robust geometric computation.

Robust geometric computation. Yao and Sharma [112, Ch. 45] present an extensive overview of
techniques used to obtain robust geometric computations. They describe two broad paradigms to
obtain provably robust computations. In the first paradigm, called fixed precision approaches, the
goal is to execute a geometric algorithm using fixed bit-precision. If you have a fixed bit-precision,
it can become impossible to correctly test certain geometric primitives (e.g. in-circle testing,
collinearity testing) and it is therefore impossible to prove that the output is correct according
to these geometric primitives. This is why approaches under this paradigm invent alternative
(weaker) geometric primitives and they prove that they can construct output which satisfies
the alternative primitives. The fixed paradigm includes well-known approaches such as interval
geometry [44,104,105], ε-geometry [99], strong algorithmic stability [47] and the more recent
topological stability [64,84]. Recent examples that fall under the fixed precision paradigm are
papers that discuss the construction of almost-Delaunay simplices [7], Delaunay triangulations
of imprecise points [77], stability analysis of Voronoi diagram [93] and sorting of imprecise
points [62]. An appealing property of this paradigm is that solutions are provably correct or
stable. However, the notion of stability or correctness at times may be undesirable. For example
under ε-geometry it is possible that two triples of planar points (a, b, c) and (b, c, d) are collinear
even though the triple (a, b, d) is not collinear.
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Figure 3. The x-axis symbolizes all inputs. The red line indicates the worse case running time or
required bit-precision. The blue line indicates the average however, typical instances are not always average.
Smoothed analysis considers the average of inputs near some worst instance (shown in green).

The second paradigm Yao and Sharma call the exact approach; here, geometric primitives are
given a representation that allows their precision to be lazily evaluated. Such an algorithm detects
if a primitive can be correctly determined with limited bit-precision and if it cannot, the algorithm
can increase the bit-precision of the involved variables accordingly. This approach is sometimes
referred to as exact geometric computation (EGC) and it is an active research field in experimental
computational geometry [8,18,35,48,56,114–116]. There are also theoretical results in this
paradigm such as recent work which computes the expected running time of computing a Delaunay
triangulation [22], verifies order type representation [25, 35] or a deterministic subquadratic
precision bound for representing order types without coordinates [24]. Perhaps most notable is
the fact that the CGAL Core library makes use of the EGC principle [18,55,56].

In this paper we propose a third paradigm for robust geometric computations. We apply
smoothed analysis to either the input of an algorithm (Section 2 and 3), the rigidity of its
geometric primitives (Section 4), or the witness of a recognition problem (Section 5). Our analysis
implies that examples that need high bit-precision are nearly degenerate. Thus, under realistic
input conditions, classical algorithms are robust with only logarithmic bit-precision.

Smoothed analysis. In smoothed analysis, the performance of an algorithm is studied for worst
case input which is randomly perturbed by a magnitude of δ. Intuitively, smoothed analysis
interpolates between average case and worst case analysis (Figure 3). The smaller δ, the closer
we are to true worst case input. Correspondingly larger δ is closer to the average case analysis.
The key difficulty in applying smoothed analysis is that one has to argue about both worst case
and average case input. Following [33,110] we perceive an algorithm to run in polynomial time
in practice, if the expected runtime of the algorithm is polynomial in the input size n and in 1/δ.
Spielman and Teng explain their analysis by applying it to the simplex algorithm, which was
known for a particularly good performance in practice that was seemingly impossible to verify
theoretically [70]. Since the introduction of smoothed analysis, it has been applied to numerous
problems. For example the smoothed analysis of the Nemhauser-Ullmann algorithm [88] for the
knapsack problem shows that it runs in polynomial time polynomial in n/δ [10]. A more general
result that was obtained using smoothed analysis is the following: all binary optimization problems
(in fact, even a larger class of combinatorial problems) can be solved in smoothed polynomial time
if and only if they can be solved in pseudopolynomial time [11]. Other famous examples are the
smoothed analysis of the k-means algorithm [6], the 2-OPT TSP local search algorithm [41], and
the local search algorithm for MaxCut [43]. Not surprisingly, teaching material on this subject has
become available [96–98]. Most relevant for us is the recent smoothed analysis of the art gallery
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Figure 4. Left: given a set of segments S, they define a segment intersection graph GS .
Right: given a graph G, is there a set of segments S′ such that GS′ = G?

problem [38] and of order types [63]. Both papers deal with the required bit-precision needed in
computations under slight perturbations. The surprising similarity in the proof techniques for
these two problems inspired us to generalize this work to the largest possible extent, namely to
the real RAM. We formally define our model of smoothed analysis in Appendix A.2.

The Existential Theory of the Reals. The required precision of an algorithm plays an important
role if we want to show that a problem lies in the class NP. It is often easy to describe a potential
witness to an NP-hard problem, but the bit-precision of the witness is unknown. A concrete
example is the recognition of segment intersection graphs (Figure 4): given a graph, can we
represent it as the intersection graph of segments? Matoušek [82] comments on this as follows:

Serious people seriously conjectured that the number of digits can be polynomially bounded—but it cannot.

Indeed, there are examples which require an exponential number of bits in any numerical
representation. This exponential bit-precision phenomenon occurs not only for segment intersection
graphs, but also for many other natural algorithmic problems [1–3,14,26,27,37,39,42,51,66,
71,78,83,85,94,100–102,107–109]. It turns out that all of those algorithmic problems do not
accidentally require exponential bit-precision, but are closely linked, as they are all complete for
a certain complexity class called ∃R. Thus either all of those problems belong to NP, or none of
them do. Using our results on smoothed analysis, we show that for many ∃R-hard problems the
exponential bit-precision phenomenon only occurs for near-degenerate input.

The complexity class ∃R can be defined as the set of decision problems that are polynomial-
time equivalent to deciding if a formula of the Existential Theory of the Reals (ETR) is true or not.
An ETR formula has the form:

Ψ = ∃x1, . . . , xn Φ(x1, . . . , xn),

where Φ is a well-formed sentence over the alphabet

Σ= {0, 1, x1, . . . ,+, ·,=,≤,<,∧,∨,¬}.

More specifically, Φ is quantifier-free and x1, . . . , xn are all variables of Φ. We say Ψ is true if and
only if there are real numbers x1, . . . , xn ∈ R such that Φ(x1, . . . , xn) is true.

Formally modeling algorithms and robustness. We define in Appendix A.1 a framework for
real RAM algorithms to which we can apply smoothed analysis. A real RAM algorithm A receives
a combination of real and integer input I = (a, b) ∈ Rn×Zm and performs a series of instructions.
Importantly, integer and real valued computations are never mixed. The order of the program
flow is only determined by the comparison instructions. We say two inputs I and I ′ are equivalent
under A if A makes the same decision at every comparison instruction. Note that for equivalent
inputs, an algorithm A always outputs the same combinatorial solution. We say A is robust if
for every input I = (a, b) ∈ Rn ×Zm, there is an equivalent input I ′ = (a′, b), such that a′ has
bounded bit-precision. Let us consider the real RAM without the square root or trigonometric
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`

Figure 5. Given real input (a1, a2), we want to decide if the point (in orange) p = (a1, a2) lies above
or below the line ` (y = x/2+ 1). If the point p lies very close to `, we need a very high precision to
make a correct decision. However, if p was perturbed slightly, low precision is sufficient to make a correct
decision correctly with high probability and in expectation. Note that rounding the coordinates of p to w
bits corresponds to snapping p to a grid width ω= 2−w.

operations. At all times during the computation, a real register holds a value which can be
described as the quotient of two polynomials p

q of the real input values a.

Note that adding, subtracting, or multiplying two rational functions yields another rational
function, possibly of higher degree; for example, p1

q1
+ p2

q2
= p1q2+p2q1

q1q2
. We say an algorithm A has

algebraic-degree ∆, if p and q always have total degree at most ∆. Similarly, A has algebraic-
dimension d, if the number of variables in p and q are always at most d.

We assume that our real-valued input can be represented as a higher-dimensional point
a ∈ [0, 1]n. This normalization assumption makes it easier to phrase our results, as the meaning
of the magnitude of perturbation is with respect to the size of the involved numbers. Given a,
the corresponding integer-valued input a′ limited precision as follows: is the closest point to a
in the scaled integer lattice Γω =ωZd . (We refer to this transformation as snapping.) We upper
bound the minimal number of bits required for a correct execution of A by proving lower bounds
for the scale factor ω.

Results and paper structure. In the following sections we present a framework to apply
smoothed analysis to a wide class of real RAM algorithms. The real RAM and the abstract
notion of an algorithm are often-debated, multifaceted concepts. The discussion of their intric-
acies and subtleties are technical and involved, and therefore ill-suited for the main body of
this paper. We wish to highlight the generality of our framework and the wide practical and
theoretical implications that it has. At the same time, we incline to not over-state our results.
Therefore we defer the formal definition of the real RAM and the proofs of the theorems that rely
on this definition to the appendix and instead use the main body of the paper to carefully state
and explain the results. We believe one of the strengths of our results is that given the real RAM
definitions, our proofs are not overly involved, which makes the framework extendable if needed.

The following sections discuss our results, their implications, and their limitations. Section 2
shows that for realistic input, classical geometrical algorithms are robust. Section 4 shows
that resource augmentation of hard problems is a feasible model for their practical performance.
Section 5 shows that a typical witness to a recognition problem can be described using logarithmic
bit-precision. Section 6 shows that real verification algorithms are robust under perturbations
of the witness and Section 7 shows that having a real verification algorithm is equivalent to
∃R-membership.
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2 Results of Smoothed Analysis of real RAM Algorithms

After precisely definining of both real RAM algorithms and smoothed analysis in Appendix A, we
study real RAM algorithms of bounded algebraic-degree and algebraic-dimension under smoothed
analysis of their input. Specifically, in Appendix B, we prove the following theorem:

É Theorem 1. Consider the real RAM without square roots and a polynomial time algorithm A with
algebraic-degree ∆ and constant algebraic-dimension. Then under perturbations of the input of
magnitude δ, A can be robustly executed with an expected input bit-precision of O

�

log ∆n
δ

�

and an
expected intermediary precision of O

�

∆2 log ∆n
δ

�

.

It is important to point out that in the proof of this theorem, we bound only the bit-precision
of the real-valued input, and not the bit-precision of any intermediate results. However, it is
easy to see that if we have d integers a1, . . . , ad represented using k bits each, then any d-variate
polynomial of degree at most ∆ can be evaluated using at most O(∆2k log d) bits of precision.

The proof idea (Figure 5) is to consider the algorithm A with perturbed input Ix = (a+ x , b).
Where a and b are arbitrary input and x is a small perturbation. We model the perturbed input
Ix as a high-dimensional point which we snap to a fine grid to obtain I ′ (input which can be
described using bounded precision). We then show that, for any algorithm A that meets our
prerequisites, I ′ and Ix are equivalent with high probability. We upper bound the probability that
I ′ and Ix are not equivalent as follows: the input Ix is snapped to the center point of a fine grid
and the center points of the grid define a Voronoi diagram. The content of a real RAM register
for a specific comparison instruction, is per assumption the quotient of two polynomials whose
variables depend on the input. The core argument is, that if Ix lies in a Voronoi cell which is not
intersected by the variety of either of the two polynomials, then the comparison instruction will
be computed correctly. We upper bound the proportion of Voronoi cells that are intersected by
the variety of a polynomial with Theorem 20 in Appendix D.

Implications of Theorem 1. Theorem 1 has implications for many classically nonrobust real
RAM algorithms that rely only on geometric primitives that have constant algebraic-degree and
algebraic-dimension. We point out some of them in the following corollary.

É Corollary 2 (of Theorem 1). The following problems can under perturbations of the input of
magnitude δ be robustly solved with expected bit-precision O(log(n/δ)) for input and computations:

Sorting real numbers.
Computing the convex hull of a point set in fixed dimension.
Computing Delaunay-triangulation in fixed dimension.
Checking if a set of guards surveys an entire polygon.

Let us discuss the computation of the Delaunay triangulation and the convex hull in more detail.
Computing the convex hull in constant dimension is nonrobust [67] since the orientation test
cannot be computed in a robust manner. Since convex hulls are one of the classical geometric
structures, their robustness has been extensively studied under various conditions and in various
dimensions [4, 20, 60, 76, 87, 99]. We note that orientation testing in constant dimension has
constant algebraic-degree and algebraic-dimension. Thus, Theorem 1 implies that the convex
hulls of realistic input sets can be robustly computed with only logarithmic bit-precision.

The nonrobustness of the in-circle test implies nonrobustness of computing Delaunay triangu-
lations. Many geometric algorithms rely on Delaunay triangulations and therefore its robustness
has been extensively studied. Studied topics include exact computing of triangulations [86,91],
Delaunay-like structures with more forgiving primitives [7,8,77], and Delaunay triangulations of
imprecise as opposed to real input [21,62,68,113]. The incircle test considers at most two points
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Figure 6. In a polygonal domain with holes, we want to compare the length of two given paths.

and a circle, and therefore has constant algebraic-degree and algebraic-dimension in constant
dimension. It follows that Delaunay triangulations of realistic constant-dimensional point sets
can be robustly computed with only logarithmic bit-precision.

Limitations. We want to briefly give examples of algorithmic problems that do not fit the
framework that Theorem 1 provides. Algorithmic problems that have non-constant algebraic-
dimension do not satisfy the conditions of Theorem 1. There are geometric questions, such as
computing the average width of a point set, that are defined on input of arbitrary size; Theorem 1
cannot be applied to algorithms that use these kind of primitives. Geometric primitives that
have algebraic-degree exponential in n do fit in this framework; however, the outcome of the
Theorem may not be desirable. Recursive real RAM algorithms may potentially have very high
algebraic-degree. Also our methods are not useful for problems that explicitly try to construct
degenerate (measure zero) output. As an example consider the 3SUM problem. Under our
perturbation model, with probability one, a perturbed input to 3SUM contains no three elements
that sum to zero. Similarly, randomly perturbed points in the plane almost never contain three
collinear points. Thus the notion of random perturbation may not be sensible for problems that
explicitly deal with degeneracies. Lastly Theorem 1 is not applicable to algorithms that use square
roots (unless they can be easily eliminated). The required bit-precision for the sum of square
roots is an open problem within computational geometry [89, 90]. Therefore we extend our
framework to specifically include square roots.

3 Results of Smoothed Analysis of real RAM Algorithms with Square Roots

In Appendix B we work under the assumption that at all times, every real register R[i] contains a
value that can be expressed as the quotient of two d-variate polynomials fi , gi of maximal degree∆.
We strengthen our analysis in Appendix C by allowing the square root operation. This means

that real registers are even allowed to contain contrived expressions f such as
s

a3
1+
p

a2

a3−
p

5a4
. We

transform each such expression f into an equivalent set of polynomials {p, q1, . . . , qs}. Intuitively
the introduction of each square root introduces one extra algebraic-dimension. The algebraic-
degree and the algebraic-dimension of f are inherited from p, q1, . . . , qs.

É Theorem 3. Consider the real RAM with square roots and a polynomial time algorithm A with
algebraic-degree ∆, algebraic-dimension d, and extra algebraic-dimension s. Then under perturb-
ations of the input of magnitude δ, A can be correctly executed on a real RAM if the input has an
expected required bit-precision of O

�

(d + s) log ∆n
δ

�

.

Implications of Theorem 3. The theorem conditions are parametrized by the abstract extra
algebraic-dimension. This makes the theorem apply to a wide class of algorithmic problems that
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in some way or another need to evaluate square root functions, but perhaps makes it harder to
see its applications. Therefore we wish to highlight two applications of the theorem. The first
is on the classical sum of square roots algorithm, which takes as input the real-valued numbers
a1, . . . , an, b1, . . . , bn and decides if

∑

i=1,...,n
p

ai−
∑

i=1,...,n

p

bi > 0, by computing the sums with
limited bit-precision. Yap and Sharma observe that the best known theoretical bounds for the
required bit-precision of the input is exponential in n [112, Ch. 45]. However, they note that
in practice it has been observed that a near-linear bit-precision seems sufficient. The following
corollary gives a theoretical explanation for this practical observation:

É Corollary 4. Under perturbations of the input of magnitude δ, the sum of square roots can be
computed on a real RAM with an expected bit-precision of O(n log(n/δ)) per input variable.

A second implication is the computation of the shortest path in a simple polygon with holes. The
bottleneck here is to compare the length of two given paths, see Figure 6.

É Corollary 5. Under perturbations of the input of magnitude δ, the shortest path in a polygon can
be computed on a real RAM with an expected bit-precision of O(n log(n/δ)) per path vertex variable.

Limitations. There are two limitations of these results that we wish to mention. First of all, this
theorem gives an upper bound on the expected bit-precision of the input variables. The difference
is, that in Theorem 1 we could also prove that the precision needed for intermediate computations
is bounded. In particular when one starts to recursively apply the square root operation, the
required intermediate precision can explode. Second, the linear bit-precision needed for the sum
of square roots and shortest path problems might be considered unpractical.

4 Results of Smoothed Analysis of Resource Augmentation

The predominant approach to find decent solutions for hard optimization problems is to compute
an approximation. An alternative approach is resource augmentation, where you consider an
optimal solution subject to a slightly weaker problem constraints. This alternative approach has
considerably less traction in theoretical computer science than approximation algorithms have.
We want to emphasize that resource augmentation algorithms find a solution which does not
compromise the optimality. Using smoothed analysis, we argue that studying slight relaxations of
algorithmic problems is justifyable for practical applications of the algorithm as we show that the
problem conditions that make the problem hard are brittle.

An example of resource augmentation exists for the geometric packing problem (Figure 7)
where an algorithm needs to pack a set of convex objects into a unit-size square container. To
pack the optimal number of objects into this container is ∃R-complete [3] and therefore a word
RAM algorithm cannot hope to correctly find an optimal solution with limited time or memory. A
resource augmentation algorithm looks to find a way to pack as many objects into a container C ′

which is larger by a factor (1+α) (α being the augmentation parameter). We apply smoothed
analysis to resource augmentation problems, where we study these problems under a slight
perturbation of the augmentation parameter. We prove in Appendix F resource augmentation
problems have expected logarithmic bit-precision and give the optimal solution.

É Theorem 6. Let P be a resource augmentation problem that is monotonous, moderate and
smoothable. Under perturbations of the augmentation of magnitude δ, the problem P has an optimal
solution with an expected bit-precision of O(log(n/δ)).

In the proof of this theorem (Appendix F) we argue about the solution space of the problem P
and we define three natural properties of this solution space. The monotonous property demands
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Figure 7.We augment the container from left to right. This extra space can lead to a better solution. If
the optimal solution does not change, the extra space allows for a solution with low bit-precision.

that as we relax P more and more, the solution space only gains more candidate solutions. The
moderate property demands that as we continuously relax the problem, we do not encounter
more than a polynomial number of new optimums. In many hard optimization problems, the
optimum is a value between 1 and n and the moderate property is then immediately implied.
The smoothable property is the least intuitive of the three, it demands if you relax a problem P by
ε, then it contains a solution which is optimal for the original problem and has a bit-precision
of O (log(n/ε)). It might appear as though the third property immediately implies the theorem,
yet recall that we look for an optimal solution for the newly relaxed problem. The other two
properties, together with common bounds in probability theory bound the expected bit-precision
of an optimal solution to the perturbed problem.

Implications of Theorem 6. To illustrate the applicability of our findings, we give the following
corollary. The first result was already shown in [38]. Recently Kostitsyna et al. showed that
an optimal solution to the minimum-link path must have at least linear bit-precision [72]. The
art gallery problem has been shown to be ∃R-complete [2], and currently ∃R-completeness of
the packing problems is in preparation [3]. Our results imply that apart from near-degenerate
conditions the solutions to these problems have logarithmic bit-precision.

É Corollary 7. Under perturbations of the augmentation of magnitude δ, the following problems
have an optimal solution with an expected bit-precision of O(log(n/δ)).

the art gallery problem under perturbation of edge inflation [38].
packing polygonal objects into a square container under perturbation of the container width.
computing the minimum-link path in a simple polygon under perturbation of edge inflation.

Limitations. Given an algorithmic problem, it is not clear a priori whether there is a way to
augment resources such that it is both mathematically sound, satisfying, as well as practically
plausible. For example, if we search for the smallest square container that fits a given set of items,
the number of changes in the optimum is unbounded thus the moderate property does not hold.

5 Results of Smoothed Analysis of Recognition Problems

In computational geometry, we study many different geometric objects like point sets, polytopes,
disks, balls, line-arrangements, segments, and rays. Many algorithms only use combinatorial
properties of the underlying geometry. A recent impressive example is the EPTAS for the clique
problem on disk intersection graphs by Bonamy et al. [19]. In the paper they first derive a set of
properties for disk intersection graphs (including that they contain no two induced odd-cycles in
their complement) and then they use only those properties to find a new EPTAS.

Suppose that a geometric problem can be solved using only precomputed combinatorial
properties. Then given the combinatorial structure, we do not require real RAM computations
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witness

perturbation extraction

Figure 8. Given a disk intersection graph (combinatorial structure) G, there exists by definition a set of
disks D (witness) representing G = GD. We perturb D slightly. Each perturbation x defines a new set of
disks Dx . And in turn each set Dx defines a new graph Gx . In this way, we us the perturbation on the disks
to attain indirectly a probability distribution over the graphs.

and the algorithm is robust. Indeed, Bonamy et al. emphasize that their algorithm also works
without the disk representation. The crux for this approach, is that we first need a family
of properties that describe all geometric objects of a certain type. This is the motivation for
recognition problems. The formal definition of recognition problems is presented in Appendix E
but a classical example is the problem of recognizing disk intersection graphs (Figure 8). In this
algorithmic problem the input is a graph G and we ask if there is a set of disks D, such that the
disk intersection graph GD equals G. In other words, we wonder whether there exists a simple
characterization of the class of graphs that can arise as disk intersection graphs. The answer
is likely no as it is ∃R-complete to recognize disk intersection graphs [83]. By now, we know
that the same holds for many recognition problems including the Steinitz problem, recognising
visibility and unit distance graphs [23,94,101]. The overarching message is that we cannot forget
about the geometry, when we seek for new algorithms. Our smoothed analysis shows that for
typical instances at least the bit-precision of these hard recognition problems can be bounded.

In order to apply the concept of smoothed analysis, we need to define the concept of perturba-
tion. One naive way to define perturbations for graph recognition is to alter the edges of the graph,
by randomly adding or removing a δ-fraction of all the edges. There are several disadvantages
to this approach. First of all, it will lead to a majority of the instances being non-representable.
The reason is that if an induced subgraph H ⊂ G cannot be represented, than also the entire
graph G cannot be represented. The second reason, is that this perturbation is not geometrically
motivated. In our approach, we define the perturbation in terms of the underlying geometric
representation of the given combinatorial input. This in turn, gives indirectly a distribution on the
combinatorial structure. We illustrate this process for disk intersection graphs. Given some graph
G, we consider any disk representation D. We define a notion of perturbation on D, in a natural
geometric way. Thus every perturbation x , gives rise to a new set of disks Dx , which in turn
defines a new graph Gx . In this way, we have defined indirectly a model of perturbation on the
graphs. The justification for this model of perturbation is the assumption that the combinatorial
structures came from some geometric objects subject to noise.
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É Theorem 8. Let A be an extraction algorithm with a recognition problem RA and denote by n1

and n2 the size of the input for A and RA respectively. Suppose that under perturbations of the input
of A, the algorithm A can be robustly executed if the input has an expected maximal bit-precision of
O(log(n1/δ)). Then the recognition problem RA, under slight perturbation of the witness, can be
robustly verified with an expected bit-precision of O(log(n2/δ)).

The proof of Theorem 8 follows almost immediately from the definition of an extraction algorithm,
see Appendix E. together with Theorem 1. The real-valued input of an extraction algorithm is
the witness of the recognition problem. The simplicity of its correctness contrasts its implications.

Implications of Theorem 8. The theorem applies to an array of recognition problems:

É Corollary 9. The following recognition problems under perturbations of the witness of magnitude
δ admit solutions with an expected bit-precision of O(log n/δ):

Recognition of realizable order types [63] (equivalent to Stretchability).
Recognition of disk intersection graphs.
Recognition of segment intersection graphs.
Recognition of ray intersection graphs.
The Steinitz Problem in fixed dimension.

The practical implications of these corollaries are that apart from near degenerate examples,
realizable order types and intersection graphs can be represented by geometric objects that are
described with logarithmic bit-precision. The theoretical implications follow in the next section.

Limitations. We want to point out that we cannot handle all recognition problems. First of all it
may be that the extraction algorithm does not meet the conditions of Theorem 1. Usually, this
would be the case if the problem deals with unbounded dimension. We still get some bounds on
the bit-precision but they may be less desirable. A concrete example is the recognition of ball
intersection graphs, where the dimension of the ball is part of the input. Secondly perturbing
a witness may not be a sensible idea. It does not mean that our theorems do not apply in a
mathematical sense, but rather that in reality the result may be less desirable. Usually, this applies
to problems that rely on degeneracies in one way or another. A concrete example is the point
visibility graph recognition problem. Given a set of points P, we define a graph by making two
points p, q ∈ P adjacent if line segment pq contains no other point of P. This in turn defines a
recognition problem where we are given a visibility graph G and we look for a point set PG that
realizes this visibility graph. If we perturb the real-valued witness PG then with probability 1
there are no three collinear points. Thus, the point visibility graph will always be a clique.

6 Narrowing the Gap betweenNP and ∃R

Sections 4 and 5 and the corollaries there give a logarithmic upper bound on the expected bit-
precision for the input and the output of ∃R-complete algorithmic problems (except for computing
the minimum-link path). These problems have worst case inputs where their solutions are
geometric objects whose description requires at least exponential bit-precision. The exponential
bit-precision phenomenon is the bottleneck for NP-membership of all these ∃R-complete problems.
Our analysis shows that, in the context of the problems mentioned in Corollary 7 and 9, the gap
between ∃R and NP (if it exists) is formed by near-degenerate input. Naturally, our analysis
applies to the real verification algorithm of ∃R-complete problems. We show in the next section
that the existence of a real verification algorithm is equivalent to ∃R-membership.
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Figure 9. Given two simple closed curves in the plane it is straightforward to design an algorithm, which
checks if the two curves are equivalent. But it is not straightforward to describe an ETR formula for it.

7 Algorithmic membership in ∃R

The complexity class ∃R is often called a “real analogue” of NP, because it deals with real-
valued variables instead of Boolean variables. This analogy is correct, when we compare SAT
with ETR. However, the most common way to think about NP is in terms of certificates and
verification algorithms. The seminal theorem of Cook and Levin shows the equivalence of the
two perspectives on NP [30,74]. We show a similar equivalence between ETR-formulas and real
verification algorithms. Intuitively, a real verification algorithm is a nondeterministic algorithm
that runs on the real RAM that accepts as input both an integer instance I and a certificate, which
may contain both integer and real components, and verifies that the certificate describes a valid
solution to the instance in polynomial time. See Appendix G for a precise definition.

É Theorem 10. For any discrete decision problem Q, there is a real verification algorithm for Q if
and only if Q ∈ ∃R.

Our proof closely follows classical simulation arguments reducing nondeterministic poly-
nomial-time (integer) random access machines to polynomial-size circuits or Boolean formulas,
either directly [95] or via nondeterministic polynomial-time Turing machines [28–30,40].
∃R is known to be equivalent to the discrete portion of the Blum-Shub-Smale complexity class

N P0
R—real sequences that can be accepted in polynomial time by a non-deterministic BSS machine

without constants, and the equivalence of BSS machines without constants and ETR formulas is
already well-known [16,17]. However, the BSS-machine does not directly support the integer
computations necessary for common standard programming paradigms such as indirect memory
access and multidimensional arrays. The real RAM model originally proposed by Shamos [92,106]
does support indirect memory access through integer addresses; however, Shamos did not offer a
precise definition of his model, and we are not aware of any published definition precise enough
to support a simulation result like Theorem 10. We rectify this gap in Appendix A.1 by offering
a precise definition of the real RAM that generalizes both the word RAM and BSS models, and
which we believe formalizes the intuitive model implicitly assumed by computational geometers.
Our real verification algorithms are then defined in terms of this precise model.

Theorem 10 not only strengthens the intuitive analogy between NP and ∃R, but also enables
much simpler proofs of ∃R-membership in terms of standard geometric algorithms. Our motiva-
tion for developing Theorem 10 was Erickson’s optimal curve straightening problem [42]: Given a
closed curve γ in the plane and an integer k, is any k-vertex polygon topologically equivalent
to γ? (See Figure 9.) The ∃R-hardness of this problem follows from an easy reduction from
stretchability of pseudolines, but reducing it directly to ETR proved much more complex; in light
of Theorem 10, membership in ∃R follows almost immediately from the standard Bentley-Ottman
sweep-line algorithm [12]. To further illustrate the power of our technique, we also consider
a new topological problem in Appendix G, which we call optimal unknotted extension: Given a
simple polygonal path P in R3 and an integer k, can we extend P to an unknotted closed polygon
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with at most k additional vertices? In light of Theorem 10, the proof that this problem is in ∃R
is straightforward: To verify a positive instance, guess the k new vertices and verify that the
resulting knot is trivial using existing NP algorithms [58,73].

É Corollary 11. The following discrete decision problems are in ∃R.
The art gallery problem [2].
The optimal curve straightening problem [42].
The optimal unknotted extension problem.

8 Conclusion

We presented an analysis of the minimal bit-precision required by polynomial time, real RAM
algorithms under parametrized perturbations of their input. This parametrization can be con-
sidered a model for practical input data [110]. Our analysis generalizes prior theoretical results
on robustness of algorithms under uniform random input [27,35,45] and provides a theoretical
justification for the performance of exact computation CGAL implementations that use constant
complexity geometric primitives [18, 34, 55, 56]. As our bounds are widely applicable they
arguably also justify the usage of the real RAM itself as a model of computation. We used the
analysis of the real RAM to show that the exponential bit-precision phenomenon for solutions
of some ∃R-complete problems comes from near-degenerate input, thereby narrowing the gap
between NP and ∃R. We wish to conclude with three open questions:
1. Are there published real RAM algorithms that even for perturbed input require exponential

bit-precision, and do these algorithms possibly abuse the power of the real RAM?
2. Do all ∃R-complete problems, under slight perturbation of their input, have a solution which

can be described with expected polynomial bit-precision? Or are there indeed ∃R-complete
problems that require high bit-precision even under a reasonable model of perturbation?

3. Can we develop practical algorithms with performance guarantees for ∃R-complete problems?
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A Preliminaries

A.1 What is the Real RAM?

The real RAM has been the standard underlying model of computation in computational geometry
since the field was founded in the late 1970s [92,106]. Despite its ubiquity, we are unfortunately
unaware of any published definition of the model that is simultaneously precise enough to support
our results and broad enough to encompass most algorithms in the computational geometry
literature. The obvious candidate for such a definition is the real-computation model proposed
by Blum, Shub, and Smale [16,17]; however, this model does not support the integer operations
necessary to implement even simple geometric algorithms.

Even though the real RAM is often presented, either formally or intuitively, as a random
access machine that stores and manipulates only exact real numbers, countless algorithms in this
model require decisions based on both exact real and finite precision integer values. Consider the
following example: Given an array of n real values as input, compute their sum. Any algorithm that
computes this sum must store and manipulate real numbers; however, the most straightforward
algorithm also requires indirect memory access through an integer array index. More complex
examples include call stack maintenance, discrete symbol manipulation, multidimensional array
indexing and slicing, and dynamic management of pointer-based data structures.

On the other hand, real and integer operations must be combined with care to avoid unreason-
able discrete computation power. A model that supports both exact constant-time real arithmetic
and constant-time conversion between real numbers and integers, for example using the floor
function, would also trivially support arbitrary-precision constant-time integer arithmetic. (To
multiply two integers, cast them both to reals, multiply them, and cast the result back to an
integer.) Including such constant-time operations allows any problem in PSPACE to be solved in
polynomial time [103]; see also [13,40,57,69] for similar results.

To accommodate this mixture of real and integer operations, and to avoid complexity pitfalls,
we define the real RAM as an extension of the standard integer word RAM [54]. We define the
real RAM in terms of a fixed parameter w, called the word size. A word is an integer between 0
and 2w−1, represented as a sequence of w bits. Mirroring standard definitions for the word RAM,
memory consists of two random access arrays W [0 .. 2w − 1] and R[0 .. 2w − 1], whose elements
we call registers. Both of these arrays are indexed/addressed by words; for any word i, register
W [i] is a word and register R[i] is an exact real number. (We sometimes refer to a word as an

Class Word Real

Constants W [i]← j R[i]← 0

R[i]← 1

Memory W [i]←W [ j] R[i]← R[ j]
W [W [i]]←W [ j] R[W [i]]← R[ j]
W [i]←W [W [ j]] R[i]← R[W [ j]]

Casting — R[i]← j
— R[i]←W [ j]

Arithmetic and boolean W [i]←W [ j]�W [k] R[i]← R[ j]⊕ R[k]

Comparisons ifW [i] =W [ j] goto ` if R[i] = 0 goto `
ifW [i]<W [ j] goto ` if R[ j]> 0 goto `

Control flow goto `
halt / accept / reject

Table 1. Constant time RAM operations. The values i, j, k are constant words used for indexing.
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address when it is used as an index into one of the memory arrays.)

A program on the real RAM consists of a fixed, finite indexed sequence of read-only instructions.
The machine maintains an integer program counter, which is initially equal to 1. At each time
step, the machine executes the instruction indicated by the program counter. The goto instruction
modifies the program counter directly; the halt and accept and reject instructions halt execution
(and possibly return a boolean result); otherwise, the program counter increases by 1 after each
instruction is executed.

The input to a real RAM program consists of a pair of vectors (a, b) ∈ Rn × Zm, for some
integers n and m, which are suitably encoded into the corresponding memory arrays before the
program begins.1 To maintain uniformity, we require that neither the input sizes n and m nor
the word size w is known to any program at “compile time”. The output of a real RAM program
consists of the contents of memory when the program executes the halt instruction.

Following Fredman and Willard [49,50] and later users of the word RAM, we assume that
w= Ω(log N), where N = n+m is the total size of the problem instance at hand. This so-called
transdichotomous assumption implies direct constant-time access to the input data. Table 1
summarizes the specific instructions our model supports. All word operations operate on words
and produce words as output; all real operations operate on real numbers and produce real
numbers as output. Each operation is parametrized by a small number of constant words i, j,
and k. The running time of a real RAM program is the number of instructions executed before
the program halts; each instruction requires one time step by definition.

Our model supports the following specific word operations; all arithmetic operations interpret
words as non-negative integers between 0 and 2w − 1.

addition: x ← (y + z)mod 2w

subtraction: x ← (y − z)mod 2w

lower multiplication: x ← (yz)mod 2w

upper multiplication: x ← byz/2wc
rounded division: x ← by/zc, where z 6= 0

remainder: x ← y mod z, where z 6= 0

bitwise nand: x ← y ↑ z (that is, x i ← yi ↑ zi for every bit-index i)
(Other bitwise boolean operations can of course be implemented by composing bitwise nands.)
Similarly, our model supports the following exact real operations.

addition: x ← y + z

subtraction: x ← x − y

multiplication: x ← y · z
exact division: x ← y/z, where z 6= 0

(optional) exact square root: x ← +py , where y ≥ 0

To avoid unreasonable computational power, our model does not allow casting real variables to
integers (for example, using the floor function b·c), or testing whether a real register actually
stores an integer value, or any other access to the binary representation of a real number. However,
we do allow casting integer variables to reals.

1 Following standard practice, we implicitly assume throughout the paper that the integers in the input vector b
are actually w-bit words; for problems involving larger integers, we take m to be the number of words required
to encode the integer part of the input.
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A.2 Definition of Smoothed Analysis

In this paragraph, we will formally define the smoothed complexity of an algorithm. For this
paragraph, we assume that we have some algorithm fixed. Let us fix some δ ∈ [0,1], which
describes the magnitude of perturbation. The variable δ describes by how much we allow to perturb
the original input. In this paper, we consider an array I = (a, b) ∈ Rn×Zm of n real numbers and
m integers as the input. We assume that each real number is perturbed independently and that
the integers stay as they are. We denote by (Ωδ, µδ) the probability space where each x ∈ Ωδ
defines for each instance I a new ‘perturbed’ instance Ix = (a+ x , b). We denote by C (Ix) the
cost of instance Ix . The smoothed expected cost of instance I equals:

Cδ(I) = Ex∈Ωδ
C (Ix) =

∫

Ωδ

C (Ix)µδ(x) dx .

If we denote by Γn the set of all instances of size n, then the smoothed complexity equals:

Csmooth(n,δ) =max
I∈Γn
E

x∈Ωδ
[C (Ix)] .

This formalizes the intuition mentioned before: not only do the majority of instances behave
nicely, but actually in every neighborhood (bounded by the maximal perturbation δ) the majority
of instances behave nicely. The smoothed complexity is measured in terms of n and δ. If the
expected complexity is small in terms of 1/δ then we have a theoretical verification of the
hypothesis that worst case examples are well-spread.

A.3 Notation

We use [a] to indicate the set {1, . . . , a}. Let z = (z1, . . . , zd) ∈ Zd be a vector with integer
coordinates. We denote by Cz the unit (hyper)cube, which has z as its minimal corner or formally:
Cz := {x ∈ Rd | zi ≤ x i < zi + 1}. We denote by C(d, k) the collection of all d-dimensional unit
cubes contained in a d-dimensional cube of width k: C(d, k) := {Cz | z ∈ Zd ∩ [0, k)d}. We
generalize this notation of cubes to cylinders. Given z ∈ Zd and s ∈ N, we define the unit cylinder
C s

z ⊂ R
d+s as C s

z = {x ∈ R
d+s | zi ≤ x i < zi + 1,∀i = 1, . . . , d} and subsequently also define

C s(d, k) := {C s
z | z ∈ Z

d ∩[0, k)d} as a grid of cylinders. We suppress the s in the notation, when it
is clear from context. Note that for s = 0, cylinders and cubes are the same. We denote by C s(d, k)
the collection of all d + s-dimensional unit cylinders: C s(d, k) := {Cz ⊂ Rd+s : z ∈ Zd ∩ [0, k)d }.

Let C be a cube partitioned by unit cubes C(d, k). Every facet of C intuitively is a grid of
(d-1)-dimensional cubes C(d, k − 1). In the remainder of the paper, we want to argue about
varieties that intersect cubes in C(d, k) and we do this via induction of the facets. Therefore, we
formalize the above intuition:

Let C be a (d+s)-dimensional cylinder, partitioned by (d+s)-dimensional cylinders of equal
width. We say C is equivalent to C(d, k), denoted by C ∼= C(d, k), if there exists an affine
transformation τ of C such that there is a one-to-one correspondence between cylinders in τ(C)
and C(d, k) where corresponding cylinders coincide. We give to examples of this equivalence
relation that is often used in the remainder of the paper: (1) Consider any d, k and any (d − 1)-
dimensional, orthogonal hyperplane H that intersects a d-dimensional cube C0(d, k) we have that
C0(d, k)∩H ∼= C0(d−1, k). (2) Consider the d-dimensional grid Γω as defined in the introduction
and a cube C which has one corner on the origin and width kω. The intersection C ∩ Γω is
equivalent to C0(d, k).

Following [31], we define a d-variate polynomial p in x1, . . . , xd with coefficients in R as
a finite linear combination of monomials with coefficients in R and we will denote this by
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p ∈ R[x1, . . . , xd]. We denote by V (p) := {x ∈ Rd : p(x) = 0} the variety of p. For any subset
S ⊂ Rd , we say that p intersects S if S ∩ V (p) 6= ;. Given a set of polynomials p1, . . . , pk, we
denote their variety as V (p1, . . . , pk) =

⋂

i=1,...,k V (pi). Let f be an expression, which defines a
function, then we also use the notation V ( f ) = {x : f (x) = 0}, although it is not a variety. We
say f intersects a set S, if V ( f )∩ S 6= ;. We will also need the notion of the dimension of a variety.
We assume that most readers have some intuitive understanding, which is sufficient to follow
the arguments. It is out of scope to define this formally in this paper, so we refer to the book by
Basu, Pollack and Roy [9, Chapter 5]. Specifically, Lemma 22 and Lemma 24 have to be taken for
granted. Given a polynomial p ∈ R[x1, . . . , xd], then the linear polynomial ` ∈ R[x1, . . . , xd] is a
factor of p, if there exists some q ∈ R[x1, . . . , xd] such that ` · q = p.

B Smoothed Analysis of the real RAM

The first part of this section is devoted to prove Theorem 1, which states that a real RAM algorithm
A with algebraic-degree ∆ and algebraic-dimension d runs correctly (under smoothed analysis
with perturbation magnitude δ) when it uses a bit-precision logarithmic in n/δ. Specifically, we
prove the following lemma which implies Theorem 1. In Section C we generalize this lemma so
that the operations in A may include square roots.

É Lemma 12. Consider the real RAM without square roots and a polynomial time algorithm A with
algebraic-degree ∆ and constant algebraic-dimension. Then under perturbations of the input of
magnitude δ, A can be robustly executed if the input has an expected bit-precision of:

O
�

d log
d∆n
δ

�

.

Proof strategy and notation. We consider A with input I = (a, b) where a is real-valued input
in [0, 1]n. We assume that the word RAM has a word size w which allows us to express 2w = 1

ω

different values for each coordinate. Since A runs in polynomial time it can make at most a
polynomial number of binary decisions. As we explained in the Preliminaries Section A at every
such binary decision, the algorithm looks at either a real-valued register or at an integer-value
register and verifies if the value at the register is 0 or strictly greater than 0. For every real-valued
register Ri , per assumption the value at that register is the result of two d-variate polynomials pi

and qi with maximum degree ∆. Let z = (ai1 , . . . , aid ) be the input registers that Ri depends on.
Then per assumption Ri = pi(z)/qi(z) and the evaluation of Ri depends on the evaluation of the
polynomials pi and qi . During smoothed analysis we permute our input a into new input (a+ x)
and we compare the execution of A with the input (a+ x) to its execution with the input a′ which
is the representation of (a+ x) with limited bit-precision. We are interested in the probability
that the execution of A under both inputs is the same, ergo the chance that for all comparison
operations, the algorithms give the same answer. First we show that with high probability a single
d-variate polynomial p evaluates to the same sign under (a+ x) and a′. Second we apply the
union bound to bound the probability that the algorithm A gives the same output under (a+ x)
and a′ for all registers. Lastly we upper bound the expected bit-precision.

For the smoothed analysis, we snap our permuted real-valued input (a+ x) onto a point with
limited precision (a point inωZd∩[0, 1]d). For any real value in [0, 1]d , the natural choice to snap
to is the closest point in ωZd ∩ [0, 1]d . Ergo, for all y ∈ωZd , all points in the Voronoi cell of y
are snapped to y . Note that in this case, the Voronoi cells of all these cells are just d-dimensional
cubes and we shall denote them by C(y). The set of Voronoi cells over all y ∈ ωZd ∩ [0,1]d

forms a d-dimensional cube with the following property:

Γω = {C(y) : y ∈ωZd ∩ [0,1]d} ∼= C(d, 1/ω).
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We permute the original input a with a random value x ∈ Ω = [−δ2 , δ2 ]
d to obtain a new real-

valued point (a+ x) that must lie within a cube in Γω. However the choice of a and δ limits the
cubes in Γω where (a+ x) can lie in. Specifically the range of possible locations for (a+ x) is a
d-dimensional cube of width δ centered around a. This cube contains a d-dimensional cube of
cells which is equivalent to C(d, bδ/ωc) which we shall denote by Γω(a) and possibly intersects
an additional perimeter of cells (refer to Figure 10). We can use this observation together with
Theorem 20 to estimate the probability that sign(p(x + a)) 6= sign(p(a′)):

ω

+

−
Ix

I ′

C(2, 3)

ω

I
V (p)

ω

I

C(2, 1)

ω

I

Figure 10. The variety V (p) separates the region where p evaluates positively (green) and where it
evaluates negatively (orange). We see two scenarios where the input I is shown as a single real-valued two-
dimensional point. The permuted input Ix must lie within a cube of width δ centered around I . Depending
on its size and placement, it contains a subgrid of a certain diameter.

É Lemma 13 (Register-Snapping). Let R be some register, whose value can be described by two
d-variate polynomials p, q maximum degree ∆. Let a ∈ Rd be fixed and x ∈ Ω = [−δ/2,δ/2]d

chosen uniformly at random. Assume (a + x) is snapped to a point a′ ∈ ωZd ∩ [0,1]d . Then
sign(R(a+ x)) 6= sign(R(a′)) with probability at most:

4ω∆3d(d + 1)!
δ

.

Proof. Note that if both polynomials have the same sign after snapping, also R will have the
same sign. Thus we are free to show that sign(p(a+ x)) 6= sign(p(a′)) with probability at most:

2ω∆3d(d + 1)!
δ

.

The statement for q is equivalent and the union bound on these separate probabilities then
upper bounds probability that the register R does not have the same sign. Whenever we have a
continuous polynomial p and points x , z ∈ Rd with p(x)< 0 and p(z)> 0 then there must be a
point y ∈ line(x , z) for which p(y) = 0. It follows that if a cube C ∈ Γω is not intersected by p,
all points in C either have a positive or negative evaluation under p. If the point (a+ x) lies in a
Voronoi cell C(a′) ∈ Γω, then per construction it will be snapped to its center point a′ and if C(a′)
is not intersected by p then si gn(p(a+ x)) = si gn(p(a′)).

Therefore we are interested in the probability that (a + x) is contained in a cell that is
intersected by p. As we discussed, the set of possible locations of (a+ x) is a cube which contains
Γω(a) ∼= C(d, bδ/ωc) together with a perimeter of cells. We upper bound the probability that
(a+ x) lies within a cell that is intersected by p probability in two steps: (1) We upper bound the
number of cells on the perimeter and assume that they are all intersected by p. (2) we upper
bound the number of cells of Γω(a) that are intersected by p. These two numbers, divided by the
total number of cells in Γω(a) gives the upper bound we are looking for. Note that the width of
Γω(a) is equal to k = b δω c and that the perimeter of Γω(a) contains 2d · kd−1 cells. Theorem 20
gives an upper bound on the number of intersected cubes in C(d, k) of:

kd−1∆3d(d + 1)!≤
�

δ

ω

�d−1

∆3d(d + 1)!
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There are bδ/ωcd cubes in Γω(a) and it follows that:

Pr
�

sign(p(a+ x)) 6= sign(p(a′))
�

≤
(b δω c)

d−1∆3d(d + 1)!+ 2d(b δω c)
d−1

bδ/ωcd
≤

2ω∆3d(d + 1)!
δ

Using this, in conjunction with the union bound finishes the proof. Ê

Lemma 13 upper bounds the probability that for input (a + x) and a′ a single real-valued
comparison in A is different. We can use the union bound to upper bound the probability that for
the whole algorithm, any real-valued comparison for (a+ x) and a′ is different.

É Lemma 14 (Snapping). Let I = (a, b) be the input of an algorithm A that makes T (n) comparison
operations and a ∈ Rn and b ∈ Zn. Let x be a permutation chosen uniformly at random in
[−δ/2,δ/2] and let Ix = (a+ x , b) be a permuted instance of the input. For all ε ∈ [0,1], if Ix is
snapped to a grid of width

ω≤
εδ

3d(d + 1)!∆4T (n)
,

Then Ix and I ′ are equivalent input for the algorithm A with probability at least 1− ε.

Proof. By Ei for i ∈ [T (n)], we denote the event that in the i’th algorithm step the inputs Ix and
I get a different outcome. Lemma 13 upper bounds the probability of Ei occuring by:

Pr(Ei)≤
4ω∆3d(d + 1)!

δ
.

The probability that Ix and I ′ are not equivalent is equal to the probability that for at least one
event Ei , the event occurs. In other words:

Pr(Ix and I ′ not equivalent) = Pr
�

∪T (n)
i=1 Ei

�

≤ T (n) ·
4ω∆3d(d + 1)

δ
.

In the antecedent, Pr(Ix and I ′ not equivalent)< ε is implied by T(n) · 4ω∆3d (d+1)
δ < ε and this

proves the lemma. Ê

Fianlly we use Lemma 14 to get an estimate of the expected bit-precision of the algorithm. For this
estimation we need the following folklore lemma about swapping the order of integration [111].

É Lemma 15. Given a function f : Ω → {1, . . . , b} and assume that Pr( f (x) > b) = 0. Then it
holds that

E[ f ] =
b
∑

z=1

z Pr( f (x) = z) =
b
∑

z=1

Pr( f (x)≥ z).

Using Lemma 15, the expected value of bit(Ix) can be expressed as:

E( bit(Ix) ) =
∞
∑

k=1

k Pr( bit(Ix) = k ) =
∞
∑

k=1

Pr(bit(Ix)≥ k).

We split the sum at a splitting point l:

E(bit(Ix)) =
l
∑

k=1

Pr(bit(px)≥ k) +
∞
∑

k=l+1

Pr(bit(Ix)≥ k).
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Now we note that any probability is at most 1 therefore the left sum is at most l. Through
applying Lemma 14 we note that:

Pr(bit(Ix)≥ k) = Pr(GridWidth(Ix)≥ 2−k)≤ 2−k

�

3d(d + 1)!∆4T (n)
δ

�

,

which in turn implies:

E(bit(Ix))≤
l
∑

k=1

1 + 4

�

3d(d + 1)!∆T (n)
δ

� ∞
∑

k=l+1

2−k.

Observe that
∑∞

k=l+1 2−k = 2−l . So if we choose l = dlog 3d (d+1)!∆T (n)
δ e+ 2 we get:

E(bit(Ix))≤ l + 4

�

3d(d + 1)!∆T (n)
δ

�

2−l

≤
�

log
3d(d + 1)!∆T (n)

δ

�

+ 4+

�

3d(d + 1)!∆T (n)
δ

�

�

δ

3d(d + 1)!∆T (n)

�

=

�

log
3d(d + 1)!∆T (n)

δ

�

+ 5= O
�

d log
d∆T (n)
δ

�

This finishes the proof of Theorem 1.

B.1 Implications

We can apply Theorem 1 to classical geometric problems to show Corollary 2 by giving an upper
bound on the algebraic-dimension and algebraic-degree of these polynomial-time algorithms.

For sorting real numbers a1, . . . , an, the comparison operations are of the form ai − a j > 0.
This has degree ∆= 1 and dimension d = 2.

Computing the convex hull of a point set in fixed dimension k can be done using only the order
type of the pointset. The order type in dimension k corresponds to computing the determinant of a
matrix with matrix-dimension k, with k2−k real input entries. Therefore the algebraic-dimension
d = k2 − k and the ∆≤ k. As k is constant, so is d and ∆.

Computing a Delaunay-triangulation can be computed naively in the plane, by making an
in-circle test for every triple of points, and check if a forth point is contained in the circle. The
in-circle test has constant d and ∆. For dimension k, let us repeat some standard trick. We
first lift the points to Rk+1, then compute the convex hull C and project C back to the original
space, to get the Delaunay-triangulation. Given a finite set of points P ⊂ Rk, we can map them to
ϕ(P) = P ′ ⊂ Rk+1.

ϕ : (x1, . . . , xk) → (x1, . . . , xk,
∑

x2
i )

It is well known that the orthogonal projection of the convex hull of P ′ onto Rk gives the
Delaunay-triangulation. As ϕ and computing the convex hull has bounded algebraic-dimension
and algebraic-degree, so has the Delaunay-triangulation.

Let us now consider to check if a set of guards is correctly guarding a given gallery (polygon).
Again, this can be done purely in terms of order types and order types have bounded algebraic-
dimension and algebraic-degree. Thus so has checking if the guards see the entire polygon.
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C Square Roots

The aim of this section is to give a proof to Theorem 3. In Appendix B we worked under the
assumption that at all times a real register R[i] contains a value that can be expressed as the
quotient of two d-variate polynomials fi , gi of maximal degree∆. In this section we make the real
RAM model slightly more powerful as we allow fi and gi to also include the square root function
and we even allow recursive applications of the square root function. Formally, every real register
holds an expression f (x1, . . . , xd), which contains multiplication, addition, subtraction, division
and square roots. We say f is equivalent to the polynomials p, q1, . . . , qs ∈ R[x1, . . . , xd , y1, . . . , ys]
if and only if:

[q1, . . . , qs = 0] ⇒ sign(p) = sign( f ).

See Lemma 16, on how to find those equivalent polynomials. We call p the evaluation polynomial
and q1, . . . , qs the constraint polynomials. We define the algebraic-degree of f as the maximum
algebraic-degree of p, q1, . . . , qs. We say the algebraic-dimension of f equals d, and s is denoted as
the extra algebraic-dimension. We say an algorithm has algebraic-degree ∆, algebraic-dimension
d and extra algebraic-dimension s, if and only if all real registers at time of comparison have
those properties. We are now ready to state the main theorem of this section.

É Theorem 3. Consider the real RAM with square roots and a polynomial time algorithm A with
algebraic-degree ∆, algebraic-dimension d, and extra algebraic-dimension s. Then under perturb-
ations of the input of magnitude δ, A can be correctly executed on a real RAM if the input has an
expected required bit-precision of O

�

(d + s) log ∆n
δ

�

.

The theorem statement in its full generality allows for recursive applications of the square
root function. For example,

qp
x1 +

p
x2 + x5

3 , would be a valid expression for a real register.
However we wish to note that in less general form it applies to the classical sum of square roots
problem, as explained in Section C.1

Before we elaborate on the proof of Theorem 3, we first show how to transform an expression
f into an equivalent set of polynomials. Then we go through the snapping and the integrating
part in the same manner as with single polynomials.

É Lemma16. Let f be an expression on variables x1, . . . , xd , with at most s square roots and divisions.
Then we can transform f , into equiavlent polynomials p, q1, . . . , qs ∈ Z[x1, . . . , xd , y1, . . . , ys].

Proof. We transform f = f0 step by step, into expressions f1, . . . , fs such that fs = p is a polynomial
and we add in step i one additional polynomial qi . In step i, we distinguish between two cases,
and always introduce the variable yi:

The first case is that fi−1 has the form fi−1 = g(
p

h), where h is a polynomial and g is some
other expression. Note that g and h may also depend on other variables. We define fi = g(yi),
with the new variable yi and add the constraint qi = y2

i − h which is a polynomial expression.
The second case is that fi−1 has the form fi−1 = e(g/h), where g, h are a polynomials and e is

some other expression. Note that e, g and h may also depend on other variables. Then we define
fi = e(g · yi) and qi = yi · h− 1. Ê

Let us consider similar, to the case of the real RAM without square roots, the case that a single
register takes a different decision.

É Lemma 17 (Register-Snapping). Let R be a register, which holds some expression f with maximum
degree ∆, algebraic-dimension d and extra algebraic-dimension s. Let a ∈ Rd be fixed and x ∈ Ω=
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[−δ/2,δ/2]d chosen uniformly at random. Assume (a+ x) is snapped to a point a′ ∈ωZd ∩ [0, 1]d .
Then sign( f (a+ x)) 6= sign( f (a′)) with probability at most:

ω(2∆)s+13d(d + 1)!
δ

.

For the forthcoming proof, we assume that the reader is familiar with the proof of Lemma 13.

Proof. As f is a continuous function, we can upper bound the probability of f (a′) 6= f (a), by
counting the number of Voronoi cells c ∈ Γω, which are intersected by V ( f ). Unfortunately, f is
not a polynomial and we cannot employ Theorem 20.

Instead, we consider the polynomials p, q1, . . . , qs ∈ R[x1, . . . , xd , y1, . . . , ys], which exist by
assumption of the lemma. We denote by π : Rd+s → Rd , (x1, . . . , xd , y1, . . . , ys) 7→ (x1, . . . , xd)
the orthogonal projection on the first d coordinates. From the definition of (p, q1, . . . , qs) it
follows that the orthogonal projection of their variety is equal to V ( f ), or in other words:
V ( f ) = π(V (p, q1, . . . , qs)). We want to upper bound the number of d-dimensional Voronoi
cells that are intersected by V ( f ), and we obtain this by providing an upper bound on the
number of (d+s)-dimensional Voronoi cells that are intersected by the higher-dimensional variety
V (p, q1, . . . , qs). Given a cube c ∈ Γω ⊂ Rd , we define (just as in Appendix A) the cylinder
c̃ = {(x , y) ∈ Rd+s : x ∈ c}. Per construction of (p, q1, . . . , qs), it holds that:

V ( f )∩ c = ; ⇔ V (p, q1, . . . , qs)∩ c̃.

In analogy to Lemma 13, we consider the d-dimensional cube partitioned by Γω(a)∼= C0(d, b δω c).
The grid Γω(a) in our (d+s)-dimensional space becomes a collection of cylinders equivalent to
C s(d, b δω c). This now allows us to apply Theorem 23 and bound the number of cylinders that are
intersected by V (p, q1, . . . , qs) by:

kd−1(2∆)s+13d(d + 1)!,

Via our transformation, this implies that the number of cells in Γω(a) that are intersected by
V ( f ) is upper bound by kd−1(2∆)s+13d(d + 1)!. Just as in Lemma 13, the perimeter of Γω(a)
contains at most 2dkd−1 cells. There are kd cubes in Γω(a) and it follows that:

Pr(sign( f (a+ x)) 6= sign( f (a′)))≤ 1
kd

�

kd−1(2∆)s+13d(d + 1)!+ 2d kd−1
�

≤ 1
k 2(2∆)s+13d(d + 1)!

≤ 1
δ ω2(2∆)s+13d(d + 1)!

This finishes the proof. Ê

Lemma 17 is identical to Lemma 13, except ∆ is replaced by (2∆)s+1. Therefore the proof
to Theorem 3 is henceforth identical to the proof of Theorem 1, except that ∆ is replaced by
(2∆)s+1. This finishes the proof of Theorem 3.

C.1 Implications

In this section, we show the two implications of Theorem 3.

É Corollary 18. Under perturbations of the input of magnitude δ, the sum of square roots can be
computed on a real RAM with an expected bit-precision of O(n log(n/δ)) per input variable.
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In the of square roots algorithm, we have only one comparison, and the register holds the
following expression

f =
∑

i=1,...,n

p

x i −
∑

i=n+1,...,2n

p

x i .

The following polynomials are equivalent: p = y1 + . . .+ yn − yn+1 + . . .+ y2n and qi = y2
i − x i .

Thus s = n, d = n,∆= 2. Thus, we see that Corollary 4 is implied by Theorem 3.

É Corollary 19. Under perturbations of the input of magnitude δ, the shortest path in a polygon can
be computed on a real RAM with an expected bit-precision of O(n log(n/δ)) per path vertex variable.

The fastest algorithm to compute the shortest path in a polygon with holes is by Hershberger
and Suri [61]. However, it is not clear that the algorithm can be implemented using square roots
alone. For our analysis, we consider the naive Dijkstra algorithm [36] on the visibility graph as
follows. We define a graph G = (V, E), where V is the set of vertices of the polygon together
with the start and end points s, t. We say two vertices in G are adjacent if they are visible within
the polygon. Each edge receives a weight, which is equal to the Euclidean distance. Now the
Dijkstra algorithm on G will give us the shortest path. It is based on the comparison of length of
previously computed paths. That is on the correct evaluation of the following expression:

f =
∑

(i, j)∈E(P1)

q

(x i − x j)2 + (x i+1 − x j+1)2 −
∑

(i, j)∈E(P2)

q

(x i − x j)2 + (x i+1 − x j+1)2.

Here P1 and P2 denote some paths computed by the algorithm and E(Pi) being their edge set.
We assume for notational convenience that ai , ai+1 hold the x and y-coordinate of the vertices
of the polygon. Using Lemma 16, we can observe that the algebraic-dimension d = O(n), the
algebraic-degree ∆ = 2 and the extra algebraic-dimension s = O(n). Now Theorem 3 implies
Corollary 5.

D Polynomials Hitting Cubes

In the first part of this section, we upper bound the number of unit cubes that a d-variate
polynomial p of bounded degree ∆ can intersect in C(d, k).

In Section D.1, we generalize Theorem 20, to deal with cylinders instead of cubes. Although
the proofs are very similar, for pedagogical purposes, we keep them separate.

É Theorem 20 (Hitting Cubes). Let p 6= 0 be a d-variate polynomial with maximum degree ∆ and
k ≥ 2∆+ 2. Then the polynomial p intersects at most kd−1∆3d(d + 1)! unit cubes in C(d, k).

Our proof gives a slightly stronger, but more complicated upper bound. The proof idea is to
consider the intersection between a cube Cz ∈ C(d, k) and the polynomial p. Then either a
connected component of V (p) is contained in Cz or V (p) must intersect one of the (d − 1)-
dimensional facets of Cz . In order to estimate how often the first situation can occur, we use a
famous theorem by Oleinik-Petrovski/Thom/Milnor, in a slightly weaker form. See Basu, Pollack
and Roy [9, Chapter 7] for historic remarks and related results.

É Theorem 21 (Milnor [9]). Given a set of d-variate polynomials q0, . . . , qs with maximal degree ∆.
Then the variety V (q0, . . . , qs) has at most (2∆)d connected components.

We use Milnor’s theorem later for more than one polynomial.
We also need the following folklore lemma. See the book from Cox, Little, O’Shea [32], for

more background on polynomials. Specifically Hilbert’s Nullstellensatz, which can be found as
Theorem 4.77 in the book by Basu, Pollack and Roy [9] is important.
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É Lemma 22 (folklore). Let p ∈ R[x1, . . . , xd] be a d-variate polynomial and H = {x ∈ Rd : `(x) =
0} a (d − 1)-dimensional hyperplane. Then V (p)∩H is the variety of a (d − 1)-variate polynomial
or ` is a polynomial factor of p.

In our applications, ` will be of the form x i = a, for some constant a.

Proof of Theorem 20. Note first that if p has a linear factor `, we decompose p into p = q · ` and
apply the following for q and ` separately. This works as the maximum degree of q drops by one
and the maximum degree of ` equals 1. Thus for the rest of the proof, we assume that p has no
linear factors, which in particular, makes it possible to apply Lemma 22.

Let us define f (d) as the maximum number of unit cubes of C(d, k) that can be intersected
by a d-variate polynomial p 6= 0 with maximal degree ∆. We will first show that

f (1)≤∆. (1)

Then we will show in a similar manner for every d, k and ∆ holds that

f (d)≤ 2 f (d − 1) · d(k+ 1) + (2∆)d . (2)

Solving the recursion then gives the upper bound of the theorem as follows: first, we show
by induction that Equation 1 and Equation 2 imply f (d) ≤ (k+ 1)d−1∆2d(d + 1)!. Equation 1
establishes the induction basis. Using 2∆≤ k, the induction step goes as follows:

f (d)≤ 2 f (d − 1) · d(k+ 1) + (2∆)d

≤ 2 f (d − 1) · d(k+ 1) + (2∆)kd−1

≤ 2(k+ 1)d−2∆2d−1(d)! · d(k+ 1) + (2∆)kd−1

= (k+ 1)d−1(2∆)2d−1(d)! · d + (2∆)kd−1

= (k+ 1)d−1(2∆)(2d−1(d)! · d + 1)

≤ (k+ 1)d−1∆2d(d)! · (d + 1)

= (k+ 1)d−1∆2d(d + 1)!

Now using k ≥ 2∆+ 2≥ 3, we can deduce that

(k+ 1)d−1 =
(k+ 1)d−1

kd−1
· kd−1 ≤ (1.5)d kd−1

This implies that f (d)≤ kd−1∆3d(d + 1)!. It remains to show the validity of Equation 1 and 2.
If p is a univariate polynomial of degree ∆ then its variety V (p) is a set of at most ∆ points

and therefore p can intersect at most ∆ disjoint unit intervals and this implies Equation 1.
To show the correctness of Equation 2, we refer to Figure 11. Note that there are d(k+ 1)

axis-parallel (d − 1)-dimensional hyperplanes with integer coordinates that intersect C(d, k).
We denote them by H(d, k). Formally, we define the hyperplane h(i, a) = { x ∈ Rd : x i = a }.
This leads to the definition: H(d, k) = {h(i, a) : (i, a) ∈ [d] × [k]}. By the comment at the
beginning of the proof, we can assume that p has no linear factors and we apply Lemma 22 on p
and each h ∈ H(d, k). For all cubes in C(d, k), all facets of such a cube are contained inside a
(d − 1)-dimensional hyperplane h ∈ H(d, k). By Milnor’s theorem, there are at most (2∆)d cubes
in C(d, k) which are intersected by p but whose boundary is not intersected by p. For any other
cube in C(d, k) that is intersected by p, the polynomial must intersect a (d −1)-dimensional facet
of that cube.

Consider one of the d(k+ 1) hyperplanes h ∈ H(d, k). The set I = h∩ C(d, k) is, up to affine
coordinate transformations, equivalent to C(d−1, k). Furthermore, by Lemma 22, V (p) restricted
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k = 5

p

h ∈ H(2, k) C(2, k) ∩ h→ C(1, k)

Figure 11. (Left) The polynomial p that intersects some cubes of C(2, k). (Middle) The set H(2, k) of
axis-parallel lines and the 1-dimensional facets of C(2, k) that are intersected by p. (Right) The intersection
of C(2, k) with a line H gives C(1, k).

to h is the variety of a (d−1)-dimensional polynom. Thus by definition, we know that p intersects
at most f (d − 1) cubes in I . Each of these (d − 1)-dimensional cubes can coincide with a facet of
at most two cubes in C(d, k). It follows that f (d) is upper bound by (2∆)d +2 · f (d−1) ·k(d+1).
This shows Equation 2 and finishes the proof. Ê

D.1 Varieties hitting cylinders

In this section we generalize Theorem 20, to deal with more than one polynomial. For the
application, we have in mind in Section B, we need to replace cubes by infinite cylinders.

É Theorem 23. Let q0, . . . , qs ∈ R[x1, . . . , xd , y1, . . . , ys] be polynomials with maximum degree
∆ and k ≥ 2∆+ 1, such that the variety V (q0, . . . , qs) is (d − 1)-dimensional. Then the variety
V (q0, . . . , qs) intersects at most

kd−1 (2∆)s+1 3d(d + 1)!

unit cylinders in C s(d, k).

The proof of Theorem 23 follows the same line of argument as Theorem 20, but with different
constants.

Similarly to Lemma 22, for polynomials, we have to state a similar lemma, for varieties.

É Lemma 24 (folklore). Let q0, . . . , qs ∈ R[x1, . . . , xd , y1, . . . , ys] be polynomials with maximum
degree ∆. Furthermore, the variety V = V (q0, . . . , qs) is (d − 1)-dimensional. Let H = {x ∈ Rd :
`(x) = 0} be a (d+ s−1)-dimensional hyperplane. Then either ` is a factor of all q0, . . . , qs or V ∩H
is a (d − 2)-dimensional variety.

Proof of Theorem 23. Note first that if q0, . . . , qs have a linear factor `, we decompose q0, . . . , qs

into qi = q′i ·` and apply the following for q′0, . . . , q′s and ` separately. This works as the maximum
degree of q0, . . . , qs drops by one and the maximum degree of ` equals 1. Thus for the rest of the
proof, we assume that q0, . . . , qs have no linear factors, which in particular, makes it possible to
apply Lemma 24.

Let us define f (d) as the maximum number of unit cylinders of C s(d, k) that can be intersected
by V (q0, . . . , qs) with maximum degree ∆. We will first show that

f (1)≤ (2∆)s+1. (3)
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Then we will show in a similar manner for every d, s and ∆ holds that

f (d)≤ 2 f (d − 1) · d(k+ 1) + (2∆)d+s. (4)

Solving the recursion then gives the upper bound of the theorem as follows: first, we show by
induction that Equation 3 and Equation 4 imply f (d)≤ (k+ 1)d−1(2∆)s+12d(d + 1)!. Equation 3
establishes the induction basis. Note that 2∆ ≤ k + 1 implies (2∆)d−1 ≤ (k + 1)d−1. (See
Assumption of the Theorem.) The induction step goes as follows:

f (d)≤ 2d(k+ 1) · f (d − 1) + (2∆)s+d

≤ 2d(k+ 1) · f (d − 1) + (2∆)s+1kd−1

≤ 2d(k+ 1) · [(k+ 1)d−2(2∆)s+12d−1(d)!] + (2∆)s+1kd−1

= (k+ 1)d−1 (2∆)s+1 2d−1(d)! · d + (2∆)s+1kd−1

= (k+ 1)d−1 (2∆)s+1 · (2d−1(d)! · d + 1)

≤ (k+ 1)d−1 (2∆)s+1 2d(d)! · (d + 1)

= (k+ 1)d−1 (2∆)s+1 2d (d + 1)!

We simplify this expression slightly, using k ≥ 2∆+ 2≥ 3. We deduce that

(k+ 1)d−1 =
(k+ 1)d−1

kd−1
· kd−1 ≤ (1.5)d kd−1

This implies that f (d) ≤ kd−1(2∆)s+13d(d + 1)!. It remains to show the validity of Equation 3
and 4.

If V = V (q0, . . . , qs) ⊂ R1+s is a 0-dimensional variety of degree ∆ then it is a set of at most
t = (2∆)s+1 points, by Theorem 21. Therefore V can intersect at most t disjoint unit cylinders
and this implies Equation 3.

Now we show correctness of Equation 4. We denote V = V (q0, . . . , qs) ⊂ Rd+s. Furthermore,
we note that there are d(k + 1) axis-parallel (d − 1)-dimensional hyperplanes with integer
coordinates that intersect C s(d, k). We denote them by H(d, s, k). Formally, we define the
hyperplane h(i, a) = { x ∈ Rd+s : x i = a }. This leads to the definition:

H(d, s, k) = {h(i, a) : (i, a) ∈ [d]× [k]}.

(This is almost identical to the case with cubes.) For all cylinders in C s(d, k), all facets of such
a cylinder are contained inside a (d − 1)-dimensional hyperplane h ∈ H(d, s, k). By Milnor’s
theorem, there are at most (2∆)s+k cylinders in C s(d, k) which are intersected by V but whose
boundary is not intersected by V . For any other cylinder in C s(d, k) that is intersected by V , the
variety must intersect a (d − 1)-dimensional facet of that cylinder.

Consider one of the d(k + 1) hyperplanes h ∈ H(d, k). The set I = h ∩ C s(d, k) is, up to
coordinate transformations, equivalent to C(d − 1, k). Thus by definition, we know that V
intersects at most f (d − 1) cylinders in I . (In particular, h 6⊆ V , by the comment at the beginning
of the proof.) Each of these of these (d − 1)-dimensional cylinders can coincide with a facet of at
most two cylinders in C(d, k). It follows that f (d) is upper bound by (2∆)s+d+2· f (d−1)·k(d+1).
This shows Equation 4 and finishes the proof. Ê

E Smoothed Analysis of Recognition Problems

Recently Hoog, Miltzow and Schaik [63] applied the concept of smoothed analysis to the recogni-
tion problem of order types. We generalize their approach to general recognition problems. This
section is devoted to Theorem 8.
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É Theorem 8. Let A be an extraction algorithm with a recognition problem RA and denote by n1

and n2 the size of the input for A and RA respectively. Suppose that under perturbations of the input
of A, the algorithm A can be robustly executed if the input has an expected maximal bit-precision of
O(log(n1/δ)). Then the recognition problem RA, under slight perturbation of the witness, can be
robustly verified with an expected bit-precision of O(log(n2/δ)).

We first formalize all notions in the theorem and then give a proof.
We say A is an extraction algorithm, if it takes some geometric input g ∈ [0, 1]n and outputs

some combinatorial object A(g) = c ∈ Zm. We assume that m is polynomial in n and only
dependent on n. The recognition problem RA takes a combinatorial object c as input, and asks if
there exists some geometric object g such that A(g) = c.

Given a recognition problem RA and some input c, the guessing algorithm non-deterministically
guesses a geometric object g such that A(g) = c, if it exists. Otherwise, it outputs N I L. The
bit-precision bit(c, RA) of the guessing algorithm is the number of bits to describe each gi in
g = (g1, . . . , gn). To be precise bit(gi) equals the number of bits to represent gi in binary
and bit(g) = maxi bit(gi). Now, the bit-precision of the guessing algorithm is defined by
bit(c; RA) =ming: A(g)=c bit(g).

We are now ready to explain, smoothed analysis, specifically for recognition problems. The
conceptual difficulty with smoothed analysis of recognition problems is that the model of per-
turbation is defined in terms of the output and not in terms of the input. The formal description
is straightforward, but it is unusual to think about smoothed analysis in this way. The probability
distribution of the output gives indirectly a probability distribution on the input as well, but there
may be no simple way to describe this input distribution explicitly. Let us fix some extraction
algorithm A, and consider some model of perturbation. We fix the magnitude of perturbation
δ and denote the perturbation space by Ωδ. We have defined a simple model of perturbation,
but we want to point out that other models of perturbations are valid just as well. We define the
smoothed bit-precision of the guessing algorithm on input c as

bitsmooth(c, RA,δ) = max
g: A(g)=c

bitsmooth(g, A,δ).

Let us unwrap the last equation. We have given some input c to the combinatorial problem and
there may be several g with A(g) = c. Let us fix the worst one possible. When we look at the
smoothed bit-precision of g, we are really perturbing g according to Ωδ and then looking at the
bit-precision with respect to this perturbation. If we denote by Γn the set of all combinatorial
objects of size n, then the smoothed bit-precision equals:

bitsmooth(n,δ) =max
c∈Γn

bitsmooth(c, RA,δ).

We are now ready for the proof.

Proof. This can be shown simply by using the definition.

bitsmooth(n,δ) =max
c∈Γn

bitsmooth(c, RA,δ)

=max
c∈Γn

max
g: A(g)=c

bitsmooth(g, A,δ)

= max
g: A(g)∈Γn

bitsmooth(g, A,δ)

Note that if A(g) has size n, that this implies that g has size m= Θ(nc) for some fixed constant
c > 0. Thus we get

bitsmooth(n,δ) =max
g∈Γm

bitsmooth(g, A,δ)
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Now we need to observe that the last line is actually the definition of the bit-precision of A. Thus
we get

bitsmooth(n,δ) = bitsmooth(m, A,δ)

= O(log m/δ)

= O(log nc/δ)

= O(log n/δ).

This finishes the proof. Ê

F Smoothed Analysis of resource augmentation.

For the art gallery problem, Dobbins, Holmsen and Miltzow [38] showed that expanding the
polygon by so-called edge-inflations, guarding will become easier. This leads to small expected
bit-precision under smoothed analysis. Their proof consists of a problem specific part and a
calculation of probabilities and expectations. We generalize their idea to a widely applicable
framework for smoothed analysis of resource augmentation so that it remains to verify three
simple problem specific properties. This section is devoted to the proof of Theorem 6 and
Corollary 7. We start with an example of geometric packing before we give a formal definition of
a resource augmentation problem.

Convex geometric packing. In convex geometric packing the input is a set of convex objects
that need to be placed in a unit square such that the objects do not overlap. This algorithmic
problem is perceived as very difficult as it is not even known how to optimally pack a set of
eleven unit squares into a minimum square-sized container [52]. Recent research shows that this
problem is ∃R-complete [3]. A solution to the packing problem must specify both a translation
and a rotation of each of the input objects and the optimal rotation or translation can be a real
number with unbounded precision. Geometric packing has a natural resource augmentation
where you slightly enlarge the container. Our results imply that under smoothed analysis of this
enlargement, the optimal solution can be expressed with an expected logarithmic bit-precision.

Definition. Let us fix some algorithmic optimization problem P. For it to be a resource-
augmentation problem, we assume several specific conditions explained below. First, each
input consists of the actual input I and an augmentation-parameter α ∈ [0,1]. Secondly, we
assume that there is an implicitly defined solution space χI[α] = χ[α]. We suppress the input I in
the notation, when it is clear from context. Also we denote χ = χ[0]. Furthermore, we assume
that there is an evaluation function f : χ[α]→ N. The aim is to find a solution x∗ ∈ χ[α] for
which f (x∗) is the maximum or minimum denoted by opt(χ[α]). For notational convenience,
we assume for the remainder of this section that P is a maximization problem. The other case is
analogue. We say that α is a breakpoint if opt(χ[α− ε]) 6= opt(χI[α+ ε]), ∀ε > 0.

We assume three natural properties for resource augmentation problems.
The monotonous property, which states that for all inputs I , for all α,α′ ∈ [0, 1] if α≤ α′ then
χI[α] ⊆ χI[α′]. Note that the mono property implies that in a more augmented version of
the problem, the optimum is at least as good.
The moderate property requires that the number of breakpoints N for χI is upper bound
by nO(1).
The smoothable property requires that for all x optimal in χI[α] and for all ε > 0, there is an
x ′ ∈ χI[α+ ε] with bit-precision ≤ b = c log n/ε, for some c ∈ N, and f (x)≤ f (x ′). In other
words, given some solution x we can increase the augmentation parameter by ε, to attain an
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I

1

∈ χI [0]

∈ χI [0]

opt(χI [0]) = 2

∈ χI [
1
16 ]

∈ χI [
1
16 ]

opt(χI [
1
16 ]) = 2

∈ χI [
1
4 ]

opt(χI [
1
4 ]) = 3

χI [0] ⊆ χI [
1
16 ] ⊆ χI [

1
4 ]

Figure 12. (left) the input for the geometric packing problem. Three convex objects and the diameter of
the packing box. The non-augmented normal solution space χI[0] contains infinitely many solutions, as
the objects can be rotated into many positions. The optimal packing might make use of a rotation which
cannot be expressed using finite precision. If we augment the input, we need to pack the elements in a
larger container and this allows for more solutions. The solution space χI [

1
4 ] has a different optimum than

χI[
1
16 ] which implies that somewhere in the interval [ 1

16 , 1
4 ] there is a breakpoint.

equally good solution x ′ ∈ χ[α+ ε]. Furthermore, x ′ has low bit-precision. Note that x ′ is
not necessarily optimal for χ[α+ ε].

We apply smoothed analysis to resource-augmentation problems with these three properties
by choosing uniformly at random the augmentation α ∈ [0,δ]. We denote by bit(χ[α]) the
minimal bit-precision needed to express an optimal solution in the solution space χ[α]. We upper
bound the worst case expected value E[bit[α]] for α uniform at random between [0,δ].

É Theorem 6. Let P be a resource augmentation problem that is monotonous, moderate and
smoothable. Under perturbations of the augmentation of magnitude δ, the problem P has an optimal
solution with an expected bit-precision of O(log(n/δ)).

Proof. Let the input I be fixed and let α be the augmentation parameter chosen uniformly at
random within the perturbation range [0,δ].

Consider any value ε > 0. The variable α is chosen uniformly at random in the interval
(0,δ], and P is moderate which implies that the probability that the interval [α− ε,α] contains
a breakpoint is upper bound by εN/δ. Assume that the interval [α− ε,α] does not contain a
breakpoint then by definition opt(χ[α−ε]) = opt(χ[α]). Let x be an optimal solution in χ[α−ε].
As the problem P is smoothable and x ∈ χ[α− ε], there must be an x ′ ∈ χ[α− ε + ε] = χ[α]
with a bit-precision of at most c log(n/ε) and x ′ is also optimal for χ[α]. It follows that for a
random α ∈ (0,δ], the probability that there is no optimal solution in χ[α] with a bit-precision
of c log(n/ε) is upper bound by:

Pr (bit(χ[α])≥ c log(n/ε))≤
ε · N
δ

. (5)

Note that Equation 5 holds for every ε. We use this probability to obtain an upper bound on the
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expected bit-precision. Using Lemma 15, we note that for all positive integers l holds that:

E(bit(χ[α])) =
l
∑

k=1

Pr(bit(χ[α]≥ k)) +
∞
∑

k=l+1

Pr(bit(χ[α]≥ k))

Any probability is at least 1 which means that the left sum is upper bound by l. We upper bound
Pr(bit(χ[α])≥ k) by equating k = c log(n/εk)⇔ εk = n/2(k/c) and applying Equation 5:

E(bit(χ[α])) ≤ l +
∞
∑

k=l+1

Pr(bit(χ[α]≥ k))

= l +
∞
∑

k=l+1

Pr(bit(χ[α]≥ c log(n/εk)))

≤ l +
∞
∑

k=l+1

εk · N
δ

= l +
∞
∑

k=l+1

nN
2k/cδ

= l +
nN
δ

∞
∑

k=l+1

�

21/c
�−k

= l +
nN
δ

2−(l+1)/c
∞
∑

k′=0

�

2−1/c
�k′

= l +
nN
δ

2−(l+1)/c 1
1− 2−1/c

≤ l + 2−(l+1) nN
δ(1− 2−1/c)

We choose l = dlog(nN/δ)e and note that:

E(bit(χ[α]))≤ log(nN/δ) + 2− log(nN/δ) nN
δ(1− 2−1/c)

+ 1≤ O(log(n/δ))

This concludes the theorem. Ê

Applying Theorem 6. Dobbins, Holmsen and Miltzow show that under smoothed analysis the
∃R-complete art gallery problem has a solution with logarithmic expected bit-precision [38].
They show this under various models of perturbation with one being edge-inflation. During
edge-inflation, for each edge e of the polygon, they shift the edge e by α outwards in a direction
orthogonal to e. Our theorem generalizes the smoothed analysis result from [38].

É Corollary 25 ( [38]). For the art gallery problem, with an α-relaxation which is an α-edge-inflation,
the expected bit-precision with smoothed analysis over α is O(log(n/δ)).

Proof. The monotonous property and the smoothable property are both shown in the short
Lemmas 6 and 7 in [38]. The evaluation function f in the art gallery problem counts the number
of guards of a solution. The number of guards is a natural number and any polygon can be
guarded using at most n/3 guards [46]. This implies the moderate property. Together with the
monotonous property this proves that the number of breakpoints is upper bound by n/3 and the
corollary follows. Ê
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(7, 7)(3, 4)

(4, 5)

(2, 2)

ε

Figure 13. (Left) A set of 8 convex objects which are tightly packed in a square with diameter (1+α).
Their enumerations specify a choice for πx and πy . Note that this choice is not unique. (Right) The objects
packed in a square of diameter (1+α+ ε) where an object with enumeration (i, j) is translated by ( iε

10 . jε
10 ).

We can also prove new results such as the following result about geometric packing:

É Corollary 26. For geometric packing of convex objects in a unit-size container, with an α-relaxation
over the container size, the expected bit-precision with smoothed analysis over α is O(log(n/δ)).

Proof. In order to prove the corollary, we only have to prove that geometric packing with α-
relaxation over the container size is monotonous, moderate and smoothable. For an input I
and unit container size the solution space χI[α] is the set of all solutions which contain a set of
geometric objects from I packed within a container of size (1+α).
1. The monotonous property. For all α,α′ ∈ [0,1] if α ≤ α′ then χI[α] contains subsets of I

which can be packed in a container of size (1+α) and therefore the elements can be packed
in a container of size (1+α′).

2. The evaluation function f counts the number of geometric objects which are correctly packed
in the solution. Thus the function f can evaluate to at most n distinct values and therefore
the number of breakpoints is upper bound by n.

3. Let x ∈ χ[α] be a packing of k elements of the input in a container of size (1+α). Fix a value
ε > 0 and consider x placed in a container of width (1+α+ ε). Using the extra space and the
fact that the objects are convex, we can translate the objects in x such that any two objects in
x are at least ε

n+2 apart from each other and the boundary by translating them in the two
cardinal directions (refer to Figure 13). We assign a linear order πx on the n elements such
that: (1) if an object dominates another in the x direction it is further in the ordering and (2)
if you take an arbitrary horizontal line, the order of intersection with this line respects the
order πx . We define πy symmetrically for vertical lines. Since the input objects are convex,
such an ordering always exists. Let a convex object O in x ∈ χI[α] be the i’th element in
πx and the j’th element in πy (we start counting from 1). We translate O by

�

iε
n+2 , jε

n+2

�

.
Observe that (1) all objects are contained in a container of diameter (1+ α+ ε) since an
element is translated by at most nε

n+2 in any cardinal direction and (2) all objects are separated
by at least ε

n+2 . (Formally, we say A, B are separated by d, if and only if dist(A, B) ≥ d.)
Since any two objects are separated by at least ε

n+2 , we can freely translate every object by
O(ε/n) and freely rotate every object by O(ε/n) degrees such that all objects are still mutually
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disjoint. This free rotation and translation immediately implies that there is a positioning
of the objects of x where all objects are correctly packed in a container of size (1+ α+ ε)
which can be represented with at most O(log(n/ε)) bit-precision and this is our new solution
x ′ ∈ χ[α+ ε]. Ê

Lastly to demonstrate the wide applicability of Theorem 6 we investigate a classical problem
within computational geometry which is not an ETR-hard problem: computing the minimum-link
path. In this problem the input is a polygonal domain and two points contained in it and one
needs to connect the points by a polygonal path with minimum number of edges. Recently,
Kostitsyna, Löffler, Polishchuk and Staals [72] showed that even if the polygonal domain P is a
simple polygon where the n vertices of the polygon each have coordinates with log n bits each,
then still the minimal bit-precision needed to represent the minimum-link path is O(k log n)where
k is the length of the path and they present a construction where k = Ω(n).

Just like the art gallery problem, the minimum link path problem has a simple polygon as
input and we propose to relax the minimum link path problem in the same way as the art gallery
problem was relaxed in [38]: by edge-inflation. Two points in the minimum link path may be
connected if and only if they are mutually visible. Hence, with an analysis identical to 25 we can
immediately state that:

É Corollary 27. For computing the minimum link path, with an α-relaxation which is edge-inflation,
the expected bit-precision with smoothed analysis over α is O(log(n/δ)).

G Algorithmic Membership in ∃R

A discrete decision problem is any function Q from arbitrary integer vectors to the booleans {TRUE,
FALSE} (or equivalently, any language over the alphabet {0,1}). An integer vector I is called
a yes-instance of Q if Q(I) = TRUE and a no-instance of Q if Q(I) = FALSE. Let ◦ denote the
concatenation operator.

A real verification algorithm for Q is a real RAM program A that satisfies the following
conditions, for some constant c ≥ 1:

A halts after at most N c time steps, using word size dc log2 Ne, given any input of total length N .
For every yes-instance I ∈ Zn, there is a real vector x and an integer vector z, each of length
at most nc , such that A accepts input (x , I ◦ z).
For every no-instance I , for every real vector x and every integer vector z, A rejects input
(x , I ◦ z).

A certificate (or witness) for yes-instance I is any vector pair (x , z) such that A accepts (x , I ◦z).
Intuitively, a real verification algorithm is a nondeterministic polynomial-time algorithm on the
real RAM that allows nondeterminism both by guessing words (or other discrete choices) and by
guessing exact real numbers.

The rest of this section is devoted to proving the following theorem:

É Theorem 10. For any discrete decision problem Q, there is a real verification algorithm for Q if
and only if Q ∈ ∃R.

As usual, we prove this theorem in two stages. First, we describe a trivial real-verification
algorithm for ETR. Second, for any discrete decision problem Q with a real-verification algorithm,
we describe a polynomial-time algorithm on the word RAM that transforms every yes-instance
of Q into a true ETR formula and transforms every no-instance of Q into a false ETR formula.
The first reduction implies that every problem in ∃R has a real-verification algorithm; the second
implies that every real-verifiable discrete decision problem is in ∃R.
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É Lemma 28. ETR has a real verification algorithm.

Proof. Let Φ = ∃x1, . . . , xn : φ(x1, . . . , xn) be an arbitrary formula in the existential theory of the
reals. The underlying predicate φ is a string over an alphabet of size m+ O(1) (the symbols
0,1,+, ·,=,≤,<,∧,∨,¬, and the variables x1, . . . , xn), so we can easily encode φ as an integer
vector. Our real verification algorithm takes the (encoded) predicate φ and a real certificate
vector x ∈ Rm as input, and evaluates the predicate φ(x) using (for example) a standard
recursive-descent parser. This algorithm clearly runs in time polynomial in the length of Φ. Ê

É Lemma 29. Every discrete decision problem with a real verification algorithm is in ∃R.

Proof. Fix a real verification algorithm A for some discrete decision problem Q. We argue that
for any integer vector I , we can compute in polynomial time on the word RAM a corresponding
ETR formula Φ(I), such that Φ(I) is true if and only if I is a yes-instance of Q. Mirroring textbook
proofs of the Cook-Levin theorem, the formula Φ encodes the complete execution history of A on
input (x , I ◦ z). The certificate vectors x and z appear as existentially quantified variables of Φ;
the input integers I are hard-coded into the underlying proposition Φ.

Now fix an instance I ∈ Zn of Q. Let N = n+ 2nc , let w= dc log2 Ne= 2c log2 n+O(1), and
let T = N c = O(nc2

). Thus, w is an upper bound on the word size and T is an upper bound on
the running time of A given input (x , I ◦ z), for any certifciates x and z of length at most nc . Our
output formula Φ(I) includes the following register variables, which encode the complete state of
the machine at every time step t from 0 to T :

For each address i, variable ¹W (i, t)º stores the value of word register W [i] at time t.
For each address i, variable ¹R(i, t)º stores the value of real register R[i] at time t.
Finally, variable ¹pc(t)º stores the value of the program counter at time t.

Altogether Φ(I) has (2 · 2w + 1)T = O(n2c2
) register variables. These are not the only variables in

Φ(I); we will introduce additional variables as needed as we describe the formula below.
Throughout the following presentation, all indexed conjunctions (

∧

), disjunctions (
∨

), and
summations (

∑

) are notational shorthand; each term in these expressions appears explicitly in
the actual formula Φ(I). For example, the indexed conjunction

w
∧

b=1

�

¹2b
º= ¹2b−1

º+ ¹2b−1
º

�

is shorthand for the following explicit sequence of conjunctions
�

¹21
º= ¹20

º+ ¹20
º

�

∧
�

¹22
º= ¹22

º+ ¹21
º

�

∧ · · · ∧
�

¹2w
º= ¹2w−1

º+ ¹2w−1
º

�

.

Integrality. To constrain certain real variables to have integer values, we introduce new global
variables ¹20

º, ¹21
º, ¹22

º, . . . , ¹2w
º and equality constraints

PowersOf2 := (¹20
º= 1)∧

w
∧

b=1

(¹2b
º= ¹2b−1

º+ ¹2b−1
º)

The following ETR expression forces the real variable X to be an integer between 0 and 2w−1:

IsWord(X ) := ∃x0, x1, . . . , xw−1 :

�

X =
w−1
∑

b=0

xb¹2b
º

�

∧
�w−1
∧

b=0

�

xb(xb − 1) = 0
�

�

We emphasize that each invocation of IsWord requires w new variables xb; each xb stores the
bth bit in the binary expansion of X . Our final formula Φ(I) includes the following conjunction,



XX:40 Robust Realistic Geometric Computations

which forces the initial values of every word register variable to actually be a word:

WordsAreWords :=
2w−1
∧

i=0

IsWord
�

¹W (i, 0)º
�

Altogether this subexpression involves w2w new one-bit variables and has length O(w2w). Sim-
ilarly, we can force variable X to take on a fixed integer value j by explicitly summing the
appropriate powers of 2:

Equals(X , j) :=

 

X=
∑

b : jb=1

¹2b
º

!

Input and Output. We hardcode the fixed instance I into the formula with the conjunction

FixInput :=
n−1
∧

i=0

Equals
�

¹W (i, 0)º, I[i]
�

(Here I[i] denotes the ith coordinate of I .) We leave the remaining initial word register variables
¹W (i, 0)º and all initial real register variables ¹R(i, 0)º unconstrained to allow for arbitrary
certificates.

Execution. Finally, we add constraints that simulate the actual execution of A. Let L denote the
number of instructions (“lines”) in program A; recall that L is a constant independent from I . For
each time step t and each instruction index `, we define a constraint Update(t,`) that forces the
memory at time t to reflect an execution of line `, given the contents of memory at time t − 1.
Our formula Φ(I) then includes the conjunction

Execute :=
T
∧

t=1

L
∧

`=1

�

(¹pc(t)º= `)∧ Update(t,`)
�

The various expressions Update(t,`) are nearly identical. In particular, Update(t,`) includes the
constraints ¹W (i, t)º= ¹W (i, t − 1)º and ¹R( j, t)º= ¹R( j, t − 1)º for every word register W [i]
and real register R[ j] that are not changed by instruction `. Similarly, unless instruction ` is a
control flow instruction, Update(t,`) includes the constraint

Step(t) := (¹pc(t)º= ¹pc(t − 1)º+ 1) .

Tables 2, 3, and 4 lists the important constraints in Update(t,`) for three different classes of
instructions.

Encoding constant assignment, direct memory access, real arithmetic (including square roots),
and control flow instructions is straightforward; see Table 2. For an accept instruction, we set
all future program counters to 0, which effectively halts the simulation. Similarly, we encode
the reject instruction as the trivially false expression (0= 1).
Because there is no indirection mechanism in ETR itself, we are forced to encode indirect
memory instructions using a brute-force enumeration of all 2w possible addresses. For example,
our encoding of the instruction W [W [i]]←W [ j] actually encodes the brute-force linear scan
“for all words k, if W [i] = k, then W [k]←W [ j]”. See Table 3.
Finally, Table 4 shows our encodings of arithmetic and bitwise boolean operations on words.
For addition and subtraction, we store the result of the integer operation in a new variable z,
and then store z mod 2w using a single conditional. For upper and lower multiplication, we
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Instruction Constraint

W [i]← j Equals(¹W (i, t)º, j)

R[i]← 0
�

¹R(i, t)º= 0
�

R[i]← 1
�

¹R(i, t)º= 1
�

R[i]← j Equals(¹R(i, t)º, j)

W [i]←W [ j]
�

¹W (i, t)º= ¹W ( j, t − 1)º
�

R[i]← R[ j]
�

¹W (i, t)º= ¹W ( j, t − 1)º
�

R[i]←W [ j]
�

¹R(i, t)º= ¹W ( j, t − 1)º
�

R[i]← R[ j] + R[k] ¹R(i, t)º= ¹R( j, t − 1)º+ ¹R(k, t − 1)º

R[i]← R[ j]− R[k] ¹R(i, t)º= ¹R( j, t − 1)º− ¹R(k, t − 1)º

R[i]← R[ j] · R[k] ¹R(i, t)º= ¹R( j, t − 1)º · ¹R(k, t − 1)º

R[i]← R[ j]/R[k] ¹R(i, t)º · ¹R(k, t − 1)º= ¹R( j, t − 1)º

R[i]←
p

R[ j] ¹R(i, t)º · ¹R(i, t)º= ¹R( j, t − 1)º

ifW [i] =W [ j] goto ` if (¹W (i, t − 1)º= ¹W ( j, t − 1)º) then (¹pc(t)º= `) else Step(t)

ifW [i]<W [ j] goto ` if (¹W (i, t − 1)º< ¹W ( j, t − 1)º) then (¹pc(t)º= `) else Step(t)

if R[i] = 0 goto ` if (¹R(i, t − 1)º= 0) then (¹pc(t)º= `) else Step(t)

if R[ j]> 0 goto ` if (¹R(i, t − 1)º> 0) then (¹pc(t)º= `) else Step(t)

goto ` ¹pc(t)º= `

accept
T
∧

i=t

(¹pc(i)º= 0)

reject 0= 1

Table 2. Encoding constant assignment, direct memory access, real arithmetic, and control-flow instruc-
tions as formulae; “if A then B else C” is shorthand for (A∧ B)∨ (¬A∧ C)

define two new word variables u and l, declare that u · 2w + l is the actual product, and
then store either u or l. Similarly, to encode the division operations, we define two new
word variables that store the quotient and the remainder. Finally, we encode bitwise boolean
operations as the conjunction of w constraints on the one-bit variables defined by IsWord.

Summary. Our final ETR formula Φ(I) has the form

∃[variables]: PowersOf2∧ FixInput∧ WordsAreWords∧ Execute∧ (¹pc(T )º= 0)

Now suppose I is a yes-instance of Q. If we set the initial register variables to reflect the input
(x , I ◦ z) for some certificate (x , z), then Execute forces the final program counter ¹pc(T )º to 0,
at the time step when A accepts (x , I ◦ z)). It follows that Φ(I) is true.

On the other hand, if I is a no-instance of Q, then no matter how we instantiate the remaining
initial register variables, the Execute subexpression will include the contradiction (0= 1) at the
time step when A rejects. It follows that Φ(I) is false.

Altogether, Φ(I) has O(2w(T +w) + T Lw) existentially quantified variables and total length
O(2wT L) = O(n2c2

), which is polynomial in n. Said differently, the length of Φ(I) is at most a
constant times the square of the running time of A on input (x , I ◦z), where x and z are certificate
vectors of maximum possible length.
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Instruction Constraint

W [W [i]]←W [ j]
2w−1
∨

k=0

�

�

¹W (i, t)º= k
�

∧
�

¹W (k, t)º= ¹W ( j, t − 1)º
�

�

W [i]←W [W [ j]]
2w−1
∨

k=0

�

�

¹W ( j, t)º= k
�

∧
�

¹W (i, t)º= ¹W (k, t − 1)º
�

�

R[W [i]]← R[ j]
2w−1
∨

k=0

�

�

¹W (i, t)º= k
�

∧
�

¹R(k, t)º= ¹R( j, t − 1)º
�

�

R[i]← R[W [ j]]
2w−1
∨

k=0

�

�

¹W ( j, t)º= k
�

∧
�

¹R(i, t)º= ¹R(k, t − 1)º
�

�

Table 3. Encoding indirect memory instructions as formulae

We can easily construct Φ(I) in polynomial time on the word RAM by brute force. We emphasize
that constructing Φ(I) requires no manipulation of real numbers, only of symbols that represent
existentially quantified real variables. Ê

G.1 Examples

To illustrate the usefulness of Theorem 10, we give simple proofs that three example problems are
in ∃R. For two of these problems, membership in ∃R was already known [2,42]; however, our
proofs are significantly shorter and follow from known standard algorithms. We introduce the
third problem specifically to illustrate the mixture of real and discrete non-determinism permitted
by our technique.

É Corollary 30. The following discrete decision problems are in ∃R.
The art gallery problem [2].
The optimal curve straightening problem [42].
The optimal unknotted extension problem.

Proof. Recall that the input to the art gallery problem is a polygon P with rational coordinates
and an integer k; the problem asks whether there is a set G of k guard points in the interior
of P such that every point in P is visible from at least one point in G. To verify a yes-instance,
it suffices to guess the locations of the guards (using 2k real registers), compute the visibility
polygon of each guard in O(n log n) time [59], compute the union of these k visibility polygons in
O(n2k2) time, and finally verify that the union is equal to P. We can safely assume k < n, since
otherwise the polygon is trivially guardable, so the verification algorithm runs in polynomial
time.

The optimal curve-straightening problem was introduced by the first author [42]. The input
consists of an integer k and a suitable abstract representation of a closed non-simple curve γ in
the plane with n self-intersections; the problem asks whether there is a k-vertex polygon P that
is isotopic to γ, meaning that the image graphs of P and γ as isomorphic as plane graphs. To
verify a yes-instance of this problem, it suffices to guess the vertices of the k-gon P (using 2k real
registers), compute the image graph of P in O((n+ k) log n) time using a standard sweep-line
algorithm [12], and then verify by brute force that P and γ have identical crossing patterns.
Again, we can safely assume that k = O(n), since otherwise the curve is trivially straightenable,
so the verification algorithm runs in polynomial time.
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Instruction Constraint

W [i]← (W [ j] +W [k])mod 2w ∃z : (z = ¹W ( j, t − 1)º+ ¹W (k, t − 1)º)∧
�

if (z < ¹2w
º) then (¹W (k, t)º= z) else (¹W (k, t)º= z − ¹2w

º)
�

W [i]← (W [ j]−W [k])mod 2w
∃z : (z = ¹W ( j, t − 1)º− ¹W (k, t − 1)º)∧

�

if (z ≥ 0) then (¹W (k, t)º= z) else (¹W (k, t)º= z + ¹2w
º)
�

W [i]← (W [ j] ·W [k])mod 2w ∃u, l : IsWord(u) ∧ IsWord(l) ∧ (¹W (i, t)º= l)∧
(u · ¹2w

º+ l = ¹W ( j, t − 1)º · ¹W (k, t − 1)º)

W [i]← bW [ j] ·W [k]/2wc
∃u, l : IsWord(u) ∧ IsWord(l) ∧ (¹W (i, t)º= u)∧
(u · ¹2w

º+ l = ¹W ( j, t − 1)º · ¹W (k, t − 1)º)

W [i]←W [ j]mod W [k] ∃q, r : IsWord(q) ∧ IsWord(r) ∧ (¹W (i, t)º= r) ∧
(u · ¹W (k, t − 1)º · q = ¹W ( j, t − 1)º) ∧ (r < ¹W (k, t − 1)º)

W [i]← bW [ j]/W [k]c
∃q, r : IsWord(u) ∧ IsWord(l) ∧ (¹W (i, t)º= q)∧

(u · ¹W (k, t − 1)º · q = ¹W ( j, t − 1)º) ∧ (r < ¹W (k, t − 1)º)

W [i]←W [ j] ↑W [k]
IsWord(¹W (i, t)º)∧ IsWord(¹W ( j, t − 1)º)∧ IsWord(¹W (k, t − 1)º)∧

w−1
∧

b=0

�

¹W (i, t)ºb = 1− ¹W ( j, t − 1)ºb · ¹W (k, t − 1)ºb

�

Table 4. Encoding word arithmetic and boolean instructions as formulae, where “if A then B else C” is
shorthand for (A∧ B)∨ (¬A∧ C).

Finally, the input to the optimal unknotted extension problem consists of a polygonal path P
in R3 with integer vertex coordinates, along with an integer k; the problem asks whether P can
be extended to an unknotted closed polygonal curve in R3 with at most k additional vertices.
Like the two previous problems, this problem is trivial unless k < n. To verify an yes-instance of
this problem, it suffices to guess the coordinates of k new vertices (using 3k real registers), and
then check that the resulting closed polygonal curve is unknotted in nondeterministic polynomial
time (using a polynomial number of additional word registers), either using the normal-surface
algorithm of Hass et al. [58], or by projecting to a two-dimensional knot diagram and guessing
and executing an unknotting sequence of Reidemeister moves [73]. Ê
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