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Abstract
Phase 0 microdose trials are exploratory studies to early assess human pharmacokinetics of new chemical entities, while 
limiting drug exposure and risks for participants. The microdose concept is based on the assumption that microdose phar-
macokinetics can be extrapolated to pharmacokinetics of a therapeutic dose. However, it is unknown whether microdose 
pharmacokinetics are actually indicative of the pharmacokinetics at therapeutic dose. The aim of this review is to investigate 
the predictive value of microdose pharmacokinetics and to identify drug characteristics that may influence the scalability 
of these parameters. The predictive value of microdose pharmacokinetics was determined for 46 compounds and showed 
adequate predictability for 28 of 41 orally administered drugs (68%) and 15 of 16 intravenously administered drugs (94%). 
Microdose pharmacokinetics were considered predictive if the mean observed values of the microdose and the therapeutic 
dose were within twofold. Nonlinearity may be caused by saturation of enzyme and transporter systems, such as intestinal 
and hepatic efflux and uptake transporters. The high degree of success regarding linear pharmacokinetics shows that phase 
0 microdose trials can be used as an early human model for determination of drug pharmacokinetics.
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Key Points 

The predictive value of microdose pharmacokinetics 
could be determined for 46 compounds and showed 
adequate predictability for 28 of 41 orally administered 
drugs (68%) and 15 of 16 intravenously administered 
drugs.

Nonlinearity was caused by saturation of the enzyme 
and transporter systems, especially intestinal and hepatic 
efflux and uptake transporters such as organic anion 
transporting polypeptides (OATPs).

The high degree of success regarding linear pharmacoki-
netics confirms the strength of phase 0 microdose trials 
in gaining early pharmacokinetic data, thereby providing 
safety and reducing developmental costs.

1  Introduction

Drug development is an extensive endeavor in which only 
10% of newly developed compounds eventually gain mar-
ket authorization [1–3]. Although clinical failure is mainly 
attributed to lack of efficacy or poor drug tolerability, 10% 
of failure is caused by undesirable pharmacokinetics such as 
poor absorption or a short half-life (t½) [4]. Early determina-
tion of drug pharmacokinetics could increase success rates 
in further development and thereby reduce costs. In recent 
times, drug pharmacokinetics in human are estimated by 
extrapolation of pharmacokinetics from in vitro and pre-
clinical studies to a clinical setting. The predictability of 
human pharmacokinetics from preclinical data is based on 
assumptions about the behavior of the drug across species 
[5–7]. Although interspecies scaling may be used to predict 

http://orcid.org/0000-0003-1763-7334
http://crossmark.crossref.org/dialog/?doi=10.1007/s40262-019-00769-x&domain=pdf


1222	 M. van Nuland et al.

pharmacokinetic parameters, extrapolation from animals to 
humans is complex. Therefore, a more accurate predictive 
model of pharmacokinetic parameters could improve selec-
tion of drugs and increase clinical approval.

The European Medicines Agency (EMA) introduced the con-
cept of microdose studies as a human model, in which a small 
portion of a drug is administered to participants with the aim of 
investigating pharmacokinetics. Currently, the EMA M3 (R2) 
guideline is widely accepted as guidance for microdose studies. 
A microdose is defined as 1% of the anticipated therapeutic dose, 
with a maximum of 100 µg for chemical entities and 30 nmol for 
protein drugs [8]. Because these trials are conducted prior to tra-
ditional phase I trials, they are denoted phase 0 microdose trials.

The main feature of phase 0 microdose trials is early 
assessment of human pharmacokinetics of new chemical 
entities, with limited drug exposure, including mass balance 
and metabolite profiling. Hereby, phase 0 microdose trials 
have the potential to make drug development more efficient 
by earlier selection of promising candidates. Microdoses are 
considered harmless because of the limited drug exposure, 
therefore less extensive preclinical toxicology studies are 
required. Due to this nontoxic nature of a microdose, neither 
a therapeutic effect nor adverse events are to be expected [8].

The microdose concept is based on the assumption that 
microdose pharmacokinetics can be extrapolated to phar-
macokinetics of a therapeutic dose. However, it is unknown 
whether microdose pharmacokinetics are really indicative of 
the pharmacokinetics at therapeutic dose. A previous review 
assessed microdose predictability in human for 25 orally 
administered drugs and 12 intravenously administered drugs. 
It was shown that 62% of orally administered drugs and 100% 
of intravenously administered drugs tested between microdose 
and therapeutic dose demonstrated scalable pharmacokinetics 
within twofold [9]. Many new microdose trials have been pub-
lished since. Furthermore, the last review did not discuss the 
influence of enzymes or transporter systems on the linearity of 
microdose pharmacokinetics. In this review, we collect drug 
characteristics, including relevant metabolizing enzymes and 
transporters, to identify similarities between drugs with non-
linear pharmacokinetics in terms of saturation mechanisms. 
The aim of this review is to update previous data by investi-
gating whether the pharmacokinetics in a clinically relevant 
therapeutic dose can be predicted from the pharmacokinetics 
of a microdose, and to identify drug characteristics that may 
influence the scalability of these parameters.

2 � Methods

2.1 � Literature Search

The Pubmed and EMBASE databases were searched to iden-
tify pharmacokinetic microdose trials, using the following 

terms: microdose OR microdosing OR ‘phase 0’. The search 
was performed on 19 November 2018 and results were 
restricted to the English language and to studies in humans. 
Additional papers were selected from review articles. Initial 
screening was based on title and abstract, while inclusion 
was performed manually by full-text assessment of eligibil-
ity. Furthermore, publications were only included if phar-
macokinetic outcome measures were available for both the 
microdose and a clinically relevant therapeutic dose. Micro-
tracer studies, in which a radio-labeled microdose is coad-
ministered with a nonradiolabeled therapeutic dose, were 
excluded as the total administered dose exceeds the criteria 
to be regarded a microdose (> 1/100th of the therapeutic 
dose, with a maximum of 100 µg) [9].

For each oral drug investigated in the included micro-
dose trials, the following drug characteristics were gath-
ered: solubility, lipophilicity (log P) and Biopharmaceutical 
Drug Disposition and Classification System (BDDCS) class 
(Fig. 1). Furthermore, metabolizing enzymes and relevant 
drug transporters were collected. Information on registered 
drugs were obtained from a review article on BDDCS class 
[10] and FDA documents (prescribing data, clinical phar-
macology and biopharmaceutics review, label text). Drug 
characteristics of nonregistered drugs were collected from 
the literature, and the BDDCS classification was based on 
solubility and permeability: good solubility was defined as 
being soluble in 250 mL water or less at the highest mar-
keted dose strength, and good permeability was defined as 
the log P being greater than the log P of metoprolol (1.88), 
as proposed by Benet et al. [10].

2.2 � Pharmacokinetic Scalability

The predictive value of microdose pharmacokinetics was 
determined by comparing pharmacokinetic parameters of 
the microdose with those of the therapeutic dose. For the 
area under the curve (AUC), the value to infinity in ng h/
mL was used, unless otherwise denoted, and was presented 

Fig. 1   Biopharmaceutics Drug Disposition Classification System 
(BDDCS) as described by Benet et al. [10]
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dose-adjusted to 100 µg. Furthermore, t½ was reported in 
hours, clearance (CL) was reported in liters/hour, and vol-
ume of distribution (Vd) was reported in liters. Pharmacoki-
netic data from trials in which only microdose pharmacoki-
netics were determined were complemented with literature 
data on therapeutic pharmacokinetics. Microdose pharma-
cokinetics were considered predictive if the mean observed 
values of the microdose and the therapeutic dose were within 
twofold, as described previously [11, 12]. The predictive 
value was determined for all pharmacokinetic parameters 
that were available for both the microdose and therapeutic 
dose. Drugs with at least one poorly scalable parameter (i.e. 
outside the twofold threshold) were denoted as having non-
linear pharmacokinetics

3 � Results

3.1 � Studies

The literature search identified 2107 publications, of which 35 
articles were found eligible for inclusion. Four more papers 
were selected from the references cited in other review arti-
cles. Microdose pharmacokinetics were available for 46 dif-
ferent drugs; eight drugs were investigated in more than one 
trial. Table 1 shows the characteristics of drugs investigated in 
crossover trials (n = 25) in which a microdose and a therapeu-
tic dose were administered, thereby facilitating a direct com-
parison of pharmacokinetic parameters. Furthermore, Table 2 
contains pharmacokinetic parameters of drugs from trials in 
which only a microdose was administered. Results from these 
studies were compared with pharmacokinetics of the thera-
peutic dose as described in literature. In general, three types of 
study designs could be distinguished; single-drug microdose 
trials (n = 24), multiple-drug microdose trials (n = 9), and 
cassette microdose trials (n = 6). In multiple-drug microdose 
trials, more than one drug was administered separately to 
participants, while a combination of drugs was administered 
simultaneously in cassette microdose trials. 

3.2 � Pharmacokinetics

Microdose pharmacokinetics were reported for 30 drugs 
investigated in crossover trials and for 20 drugs studied in 
single microdose trials. In total, the predictive value could 
be determined for 45 drugs, of which 41 were administered 
orally and 16 were administered intravenously. Twelve drugs 
were administered both orally and intravenously. Microdose 
pharmacokinetics were predictive within the twofold criteria 
for 28 of 41 (68%) oral formulations and 15 of 16 (94%) 
intravenous formulations. Conflicting data were found for 
atorvastatin, verapamil, and fexofenadine [13–17]. Phar-
macokinetic linearity was determined in crossover trials, in 

which both a microdose and therapeutic dose were adminis-
tered (Table 1), or comparing microdose data with the litera-
ture (Table 2). As a crossover design reduces interindividual 
variability, the results of the crossover trials were regarded 
to be more accurate. Therefore, verapamil and fexofenadine 
were considered as having predictive microdose pharma-
cokinetics, while atorvastatin was regarded as having poor 
predictability.

Pharmacokinetic nonlinearity of oral drugs was predomi-
nantly reflected in the exposure (AUC), with 11 of 13 (85%) 
drugs showing poorly scalable AUC. A nonlinear increase in 
AUC after dose escalation was seen for atorvastatin (2.3-fold), 
celiprolol (2.2-fold), mirodenafil (3.3-fold), nicardipine (2.2-
fold), omeprazole (3.2-fold), propafenone (2.3-fold), quinidine 
(2.6-fold), telmisartan (5.6-fold), and verapamil (2.3-fold), 
while a decrease in AUC was shown for sumatriptan (2.9-fold) 
and rosuvastatin (2.2-fold) [13–15, 17–23]. Bioavailability 
(F) was determined for two of these drugs, with a nonlinear 
increase at therapeutic dose for propafenone (2.3-fold) and a 
decrease for sumatriptan (2.6-fold) [17].

Nonlinearity in Vd was described for intravenous admin-
istration of docetaxel and oral administration of warfarin 
[24, 25]. Vd decreased 3.5-fold for docetaxel and 3.8-fold 
for warfarin following dose escalation.

Five microdose trials specifically focused on the metab-
olism of a drug and metabolite pharmacokinetics. Linear 
metabolite pharmacokinetics were described for nicardipine 
and verapamil (1.0-fold) [13, 23], while quinidine exhibited 
nonlinear pharmacokinetics for both the parent compound 
and three major metabolites (2.6-fold) [13]. The pharma-
cokinetics of celiprolol, telmisartan and tolbutamide were 
assessed for various cytochrome P450 (CYP) enzyme gen-
otypes, responsible for metabolic conversion [14, 19, 26]. 
The predictive value was similar for poor, extensive, and 
ultra-rapid metabolizers. Moreover, the pharmacokinetics 
of intracellular metabolites were described for zidovudine 
and tenofovir. These antiretroviral drugs are phosphoryl-
ated intracellularly to pharmacologically active triphos-
phate metabolites. The pharmacokinetics of the intracellular 
metabolites of tenofovir (measured in peripheral blood mon-
onuclear cells and CD4+ cells) and of the parent compound 
in plasma were found to be linear (1.3- to 1.5-fold) [27], 
while the pharmacokinetics of zidovudine triphosphates 
were nonlinear, with a 3.9-fold higher dose-adjusted AUC 
at therapeutic dose compared with microdose [27].

Kusuhara et al. specifically focused on the pharmacoki-
netics of metformin after inhibition of the multidrug and 
toxin extrusion (MATE) protein that is responsible for renal 
elimination of this drug, and reported linear pharmacoki-
netics [28]. Celiprolol, warfarin and pitavastatin showed a 
nonlinear decrease in t½ at therapeutic dose compared with 
microdose, of 2.2-fold, 5.8-fold, and 3.1-fold, respectively 
[14, 21, 24].
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Table 1   Pharmacokinetic parameters of drugs from crossover trials in which a microdose and a therapeutic dose were administered

Drug Microdose (µg) Therapeu-
tic dose 
(mg)

Route of 
administra-
tion

Pharmacokinetic 
microdosea

Pharmacokinetic 
therapeutic dosea

Linear phar-
macokinet-
ics (NR)

References

Atenolol 100 50 PO t½ = 7.11
AUC = 8.88

t½ = 7.23
AUC = 7.27

Yes [43]

Atorvastatin 100 10 PO AUC = 0.20 AUC = 0.45 No [15]
Celiprolol 37.5 100 PO t½ = 13.35

AUC​24 = 0.232
CL/F = 488

t½ = 6.14
AUC​24 = 1.29
CL/F = 109

No [14]

Clarithromycin 100 250 IV t½ = 4.10
AUC = 4.78

t½ = 4.50
AUC = 5.44

Yes [17]

100 250 PO t½ = 4.00
AUC = 0.99
F = 22%

t½ = 3.40
AUC = 1.96
F = 39%

Yes [17]

Diltiazem 30 30 PO AUC = 0.138 AUC = 0.264 Yes [20]
Docetaxel 100 100 IV t½ = 5.10

AUC = 3.64
Vd = 3.91

t½ = 3.41
AUC = 2.23
Vd = 13.7

No [44]

Enalapril 100 10 PO t½ = 12.1
AUC = 13.0

t½ = 11.8
AUC = 12.0

Yes [43]

Fexofenadine 100 120 IV t½ = 8.10
AUC = 8.06
CL = 13

t½ = 10
AUC = 7.47
CL = 16

Yes [45]

100 120 PO t½ = 16
AUC = 2.77

t½ = 12
AUC = 1.84

Yes [45]

100 60 PO t½ = 3.2
AUC = 3.19

t½ = 2.90
AUC = 2.39

Yes [46]

hRESCAP 53 5.3 IV t½ = 108
AUC = 531

t½ = 104
AUC = 716

Yes [37]

Losartan 100 50 PO t½ = 3.31
AUC = 3.62

t½ = 3.41
AUC = 3.41

Yes [43]

Metformin 100 250 PO AUC​12 = 2.13
CLR = 623

AUC​12 = 2.24
CLR = 395

Yes [28]

Midazolam 100 7.5 IV t½ = 4.87
AUC = 4.53
CL = 21.2

t½ = 2.55
AUC = 4.68
CL = 20.4

Yes [24]

1 1 IV t½ = 3.55
AUC = 3.79

t½ = 4.02
AUC = 3.90

Yes [47, 48]

100 7.5 PO t½ = 3.95
F = 22.8%

t½ = 3.31
F = 22.1%

Yes [24]

3 3 PO t½ = 3.26
AUC = 0.89
F = 23.4%

t½ = 3.96
AUC = 0.81
F = 20.9%

Yes [47, 48]

0.3 3 PO t½ = 3.54
AUC = 3.67
V/F = 376

t½ = 4.11
AUC = 3.53
V/F = 353

Yes [49]

Mirodenafil 100 100 PO t½ = 1.80
AUC = 0.27
CL/F = 538

t½ = 1.32
AUC = 0.89
CL/F = 131

No [18]

NBI-1 100 10 PO t½ = 6.70
AUC = 2.86

t½ = 8.40
AUC = 3.28

Yes [50]

Nicardipine 100 20 PO Comparable concentration-time curves for the 
metabolites

Yes [23]

30 30 PO AUC = 0.098 AUC = 0.22 No [20]
Nifedipine 40 20 PO AUC = 2.13 AUC = 2.76 Yes [20]
Omeprazole 100 20 PO t½ = 1.21

AUC = 2.59
t½ = 2.40
AUC = 8.24

No [22]
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Table 1   (continued)

Drug Microdose (µg) Therapeu-
tic dose 
(mg)

Route of 
administra-
tion

Pharmacokinetic 
microdosea

Pharmacokinetic 
therapeutic dosea

Linear phar-
macokinet-
ics (NR)

References

Paracetamol 0.024b

0.024b
15
15

IV
PO

t½ = 3.78
AUC​6 = 8.4
CL = 2.72
t½ = 1.6
AUC​8 = 9.0
CL = 1.5

t½ = 2.62
AUC​6 = 5.4
CL = 2.93
t½ = 2.6
AUC​8 = 7.0
CL = 2.9

Yes
Yes

[51]

PF-05089771 100 2400 IV t½ = 6.50
AUC = 33

t½ = 8.20–11.4
AUC= 33

Yes [52]

Propafenone 100
100

150
150

IV
PO

t½ = 5.40
AUC = 1.90
Vd = 273
t½ = 3.80
AUC = 0.12
F = 5.8%

t½ = 4.70
AUC =2.20
Vd = 214
t½ = 2.60
AUC = 0.27
F = 13.0%

Yes
No

[17]

Quinidine 100 100 PO t½ = 5.07
AUC = 0.813

t½ = 5.59
AUC = 2.08

No [13]

RDEA806 80 200 IV NR NR Yes [53]
Sumatriptan 100

100
50
50

IV
PO

t½ = 6.50
AUC = 2.20
Vd = 426
t½ = 1.90
AUC = 0.44
F = 20%

t½ = 5.60
AUC = 2.10
Vd = 397
t½ = 1.40
AUC = 0.15
F = 7.6%

Yes
No

[17]

Telmisartan 100 80 PO UGT1A1*1/*1:
AUC​24 = 1.76
CL/F = 64.0
UGT1A1*1/*28:
AUC​24 = 0.771
CL/F = 126

UGT1A1*1/*1:
AUC​24 = 3.97
CL/F = 23.6
UGT1A1*1/*28:
AUC​24 = 1.57
CL/F = 50.8

No [19]

Tenofovirc 100 300 PO t½ = 14.1
AUC = 9658
CL/F = 31.3
Intracellular metabo-

lites:
Cmax = 13.1
AUC = 2334
Intracellular metabo-

lites CD4+:
Cmax = 13.2
AUC = 1925

t½ = 21.4
AUC = 6653
CL/F = 45.6
Intracellular metabo-

lites:
Cmax = 10.4
AUC = 1526
Intracellular metabo-

lites CD4+:
Cmax = 5.1
AUC = 1500

Yes
Yes

[27]

Unknown integrase 
inhibitors A

50 NR IV
PO

t½ = 3.30
AUC = 4.37
t½ = 3.02
AUC = 2.69
F = 57%

NRd Yesc [54]

Unknown integrase 
inhibitors B

50 NR IV
PO

t½ = 2.75
AUC = 5.20
t½ = 2.28
AUC = 2.62
F = 54%

NRd Yesc [54]

Unknown integrase 
inhibitors C

50 NR IV
PO

t½ = 4.08
AUC = 4.12
t½ = 3.31
AUC = 1.60
F = 43%

NRd Yesc [54]
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3.3 � Drug Characteristics

Drug characteristics were collected for orally administered 
drugs of the included microdose trials (n = 41). Table 3 shows 
the solubility, lipophilicity (log P), BDDCS class, metaboliz-
ing enzymes, and relevant drug transporters of these com-
pounds. The majority of drugs with linear pharmacokinetics 
are BDDCS classes 1 and 3, while the majority of drugs with 
nonlinear pharmacokinetics are classes 1 and 2. Drugs were 
metabolized or transported by a great variety of proteins, 
such as organic anion transporting polypeptides (OATP), 
P-glycoprotein (P-gp), multidrug resistance-associated pro-
tein (MRP), breast cancer resistance protein (BCRP), and 
organic cation transporting proteins (OCT), with the majority 
of BDDCS class 2 drugs being transported by OATPs.

4 � Discussion

The predictive value of microdose pharmacokinetics was 
determined for 46 compounds and showed adequate pre-
dictability for 68% of orally administered drugs (n = 41) 

and 94% of intravenously administered drugs (n = 16). 
These results are in line with previously reported data [9]. 
Importantly, these numbers may underestimate the predic-
tive value as included studies examined compounds known 
or suspected to have nonlinearity issues. This overview is 
different to the last literature survey because more drugs 
are included and drug characteristics are identified that may 
influence the pharmacokinetic scalability. Furthermore, the 
relevance of metabolizing enzymes and transporters was 
discussed with regard to saturation mechanisms. With this 
increased number of microdose data, our review provides 
new information on microdose predictability, while confirm-
ing findings from previous literature.

Microdose pharmacokinetics were considered predictive 
if all given pharmacokinetic parameters of the microdose 
and the therapeutic dose were within twofold [11, 12]. This 
twofold criterion is commonly used in allometry, however 
limitations should be acknowledged. For example, the AUC 
increased nonlinear, with an average of 2.4-fold for 12 drugs, 
being just outside the twofold threshold. Although these 
drugs are denoted as having nonlinear pharmacokinetics, 
the question arises whether the predictive value would be 

Table 1   (continued)

Drug Microdose (µg) Therapeu-
tic dose 
(mg)

Route of 
administra-
tion

Pharmacokinetic 
microdosea

Pharmacokinetic 
therapeutic dosea

Linear phar-
macokinet-
ics (NR)

References

Unknown integrase 
inhibitors D

50 NR IV
PO

t½ = 2.22
AUC = 3.96
t½ = 1.69
AUC = 1.75
F = 53%

NRd Yesc [54]

Verapamil 50 80 IV K1 = 0.030
Vd = 0.66

K1 = 0.031
Vd = 0.56

Yes [55]

100 80 PO t½ = 2.48
AUC = 0.139

t½ = 3.21
AUC = 0.320

No [13]

Zidovudinec 100 300 PO Intracellular metabo-
lites in PBMCs:

AUC = 1837
Intracellular metabo-

lites CD4+:
AUC = 1266

Intracellular metabo-
lites in PBMCs:

AUC = 578
Intracellular metabo-

lites CD4+:
AUC = 151

No [27]

ZK253 100
100

50
50

IV
PO

t½ = 61.4
AUC = 7.42
CL = 9.29
F = 0.16%

t½ = 56.2
AUC = 7.15
CL = 14.8
F < 1%

Yes
Yes

[24]

IV intravenously, PO orally, PBMCs peripheral blood mononuclear cells, t½ half-life, AUC​ area under the curve, AUC​x area under the curve from 
time zero to x hours, CL/F apparent clearance, F biological availability, Vd volume of distribution, CL clearance, CLR renal clearance, V/F appar-
ent volume of distribution, AUC​∞ AUC from time zero to infinity, Cmax maximum concentration, NR not reported
a Pharmacokinetic parameters: AUC = AUC​∞ in ng·h/mL unless otherwise denoted, and is shown dose-normalized to 100 µg; t½ is reported in 
hours, CL is reported in liters/hour, and Vd is reported in liters
b Study in children with a dose of 6 ng/kg and a mean weight of 4 kg
c Intracellular pharmacokinetics in PBMCs and CD4+ cells. Cmax of intracellular metabolites in fmol/106 cells, and AUC of intracellular metabo-
lites in fmol*h/106 cells
d Therapeutic dose pharmacokinetics were not given in the literature, however linearity was determined based on unpublished data
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Table 2   Pharmacokinetic parameters of drugs from trials in which only a microdose was administered; microdose pharmacokinetics were com-
pared with pharmacokinetics of the therapeutic dose as described in literature

Drug Microdose (µg) Therapeutic dose 
(mg)

Route of 
administra-
tion

Pharma-
cokinetic 
microdosea

Pharmacokinetic 
therapeutic dosea

Linear phar-
macokinetics 
(NR)

References

AFN-1252 100 400 PO t½ = 7.40
AUC = 16.8

t½ = 7.74
AUC = 13.5

Yes [56, 57]

Anastrozole 1.98 1 PO t½ = 37.2
AUC = 65.2

t½ = 56.3
AUC = 104

Yes [58, 59]

Atenolol 30 50 PO t½ = 6.47
AUC​24 = 10.2
Tmax = 3.13

t½ = 7.23
AUC​b = 7.27
Tmax = 4.14

Yes [14, 43]

Atorvastatin 33 40 PO AUC​10 = 0.19 AUC​24
b = 0.22 Yes [16, 60]

50 40 PO t½ = 9.00
AUC = 0.24

t½ = 8.05
AUC = 0.25

Yes [21, 60]

Caffeine 25 250 PO t½ = 4.13
AUC = 10.8

t½ = 5.20
AUC = 13.0

Yes [61–64]

Diazepam 100 10 IV t½ = 45.1
AUC = 65.5
CL = 1.38

t½ = 35.7
AUC = 55.8
CL = 1.30

Yes [24, 65]

Diphenhydramine 100
100

50
50

PO
IV

t½ = 12.0
F = 34.0%
AUC = 1.35
T½ = 9.30

t½ = 6.32
F = 66.3%
AUC = 1.01
T½ = 7.30

Yes
Yes

[50, 66–70]

Fexofenadine 25
30

120
120

PO
PO

t½ = 5.75
AUC = 2.00
T½ = 7.05

t½ = 2.90
AUC = 2.12

Yes
No

[14, 45, 46, 61]

IDX899 (Fos-
devirine)

100 800 PO t½ = 4.40
AUC = 7.60

t½ = 8.30
AUC = 8.90

Yes [71, 72]

Midazolam 25 7.5 PO t½ = 4.01
AUC = 1.76

t½ = 3.31
AUC = 1.16

Yes [24, 61]

10 7.5 PO t½ = 5.80
AUC = 1.97

t½ = 3.31
AUC = 1.16

Yes [21, 24, 61]

33 7.5 PO AUC​10 = 1.41 AUC​12
b = 2.14 Yes [16, 73]

NS-304 (Selexipag) 100 0.8 PO t½ = 1.7
AUC = 5.8

t½ = 2.3
AUC = 3.12

Yes [74, 75]

Paracetamol 100
100

1000
1000

PO
PO

t½ = 2.41
AUC = 4.11
t½ = 5.80
AUC = 4.80
F = 88%

t½ = 3.61
AUC = 5.46
F = 89%

Yes
Yes

[17, 76–80]

100 1000–1500 IV t½ = 4.60
CL = 19.0
Vd = 123

t½ = 2.50
CL = 19.7
Vd = 66.5

Yes [17, 80, 81]

Phenobarbital 100 240 PO T½ = 180 T½ = 98.0 Yes [17, 82]
Pitavastatin 10 1 PO t½ = 12.3

AUC = 4.61
t½ = 4.0
AUC = 2.90

No [21, 83]

Pravastatin 33 600 PO AUC​8 = 0.60 AUC​8 = 0.36 Yes [16, 84–87]
Raltegravir 50 400 PO AUC = 3.86

Tmax = 0.50
AUC = 2.64
Tmax = 1.00

Yes [54, 88]

Rosuvastatin 25 5 PO t½ = 7.70
AUC = 1.03

t½ = 12.8
AUC = 0.47

No [21, 83]
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significantly different with an AUC increase of 1.9-fold, 
indicating linear pharmacokinetics within twofold. With 
this in mind, microdose data should be regarded as explora-
tory, providing early pharmacokinetic information for newly 
developed compounds.

Data gathered in this review clearly show that the absorp-
tion phase is pivotal for predictability of microdose phar-
macokinetics. Nonlinearity may arise in the gastrointestinal 
dissolution process, or when enzymes or transporter systems 
saturate at therapeutic doses [9, 29, 30]. Dissolution, solubil-
ity, and intestinal uptake are reflected in the BDDCS class. 
Saturation of enzyme and transporter systems may occur 
at different sites: intestinal and hepatic efflux transporters, 
uptake transporters, and metabolizing enzymes. The most 
important intestinal and hepatic efflux transporters in drug 
pharmacokinetics are P-gp, MRP2, and BCRP, and the most 
relevant uptake transporters are OATP 1B1/3 and 2B1 [31]. 
In an attempt to identify drug characteristics responsible for 
nonlinearity, scalability was examined in relation to BDDCS 
class, metabolizing enzymes, and drug transporters. Drugs 
in BDDCS classes 2 and 4 might be prone to nonlinearity 
regarding low solubility, where class 2 will be even more 
challenging due to potential extensive metabolism. The 

majority of drugs with linear pharmacokinetics are classes 
1 and 3, while the majority of drugs with nonlinear pharma-
cokinetics are classes 1 and 2. Extensive metabolism seems 
to complicate the scalability of pharmacokinetics, while 
solubility is less of a problem.

When further zooming into specific metabolizing enzymes 
and transporters, great variety is shown among linear and non-
linear compounds. Although nonlinearity could be caused by 
saturated metabolism [13, 18, 22], in most cases it may be 
attributed to saturation of transporters in the gut wall [13–15, 
17, 21]. Among these transporters are OATP, P-gp, MRP2, 
BCRP, and OCTs, with the majority of BDDCS class 2 drugs 
being transported by OATPs. OATPs mostly transport large, 
hydrophobic organic anions from the portal blood into hepato-
cytes and may therefore influence the rate of elimination [32]. 
Although saturation of OATPs may be a cause of nonlinearity, 
due to great interpatient variability in transporter abundance 
and difference in transporter affinity for each drug, it is dif-
ficult to predict nonlinearity beforehand. This is reflected in 
the group of seven drugs with linear pharmacokinetics that 
are also transported by OATPs. Based on current data it is 
hard to draw conclusions, however drugs in BDDCS class 2 

 AUC​ area under the curve, AUC​t AUC from time zero to time t, AUC​x area under the curve from time zero to x hours, CL clearance, CL/F appar-
ent clearance, F biological availability, IV intravenously, NR not reported, PO orally, t½ half-life, tmax time to reach maximum concentration, Vd 
volume of distribution
a Pharmacokinetic parameters: AUC = AUC​∞ in ng·h/mL unless otherwise denoted, and is shown dose-normalized to 100 µg; t½ is reported in 
hours, CL is reported in liters/hour, and Vd is reported in liters
b The AUC​t calculated for microdose exposure was not found in the literature for therapeutic dose exposure, therefore the closest AUC​t time point 
was chosen

Table 2   (continued)

Drug Microdose (µg) Therapeutic dose 
(mg)

Route of 
administra-
tion

Pharma-
cokinetic 
microdosea

Pharmacokinetic 
therapeutic dosea

Linear phar-
macokinetics 
(NR)

References

Tolbutamide 100 125 PO CYP2C9*1/*1:
t½ = 7.90
CL = 0.82
AUC = 123
CYP2C9*1/*3:
t½ = 13.9
CL = 0.50
AUC = 206

CYP2C9*1/*1:
t½ = 7.30 (7.10–

7.50)
CL = 0.91 

(0.85–0.97)
AUC = 119
CYP2C9*1/*3:
t½ = 13.1 (12.2–

13.9)
CL = 0.91 

(0.56–0.60)
AUC = 166

Yes [26, 89–91]

25 125 PO t½ = 8.13
AUC = 167

t½ = 7.70
AUC = 143

Yes [61, 92]

Warfarin 100 5 PO t½ = 274
AUC = 571
Vd = 67.3

t½ = 48.6
AUC = 416
Vd = 17.9

No [24, 93]

Zidovudine 100 300 PO t½ = 4.5
AUC = 4269
CL/F = 70.5

t½ = 6.6
AUC = 4458
CL/F = 68.2

Yes [27, 94, 95]
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Table 3   Drug characteristics of orally administered drugs (n  =  41), with linear pharmacokinetics (n  =  28) and nonlinear pharmacokinetics 
(n = 13)

Linear PK drugs 
(n = 28)

Solubilitya (mg/mL) Lipophilicity 
(log P)

BDDCS class Metabolizing 
enzymes

Transporter pro-
teins

References

AFN-1252b 0.003–0.01 3.21 3 NR Passive transport [56, 96]
Anastrozole 0.5 1.29 1 CYP3A4/5

CYP2C8
UGT1A4

P-gp [10, 97–99]

Atenolol 24.8 0.16 3 Minimal metabo-
lism

OATP2B1
OATP1A2

[10, 100, 101]

Caffeine 21.5 − 0.07 1 CYP1A2 Passive transport [10, 102, 103]
Clarithromycin 2 3.16 3 CYP3A4 P-gp [10, 104–106]
Diltiazem (hydro-

chloride)
30–100 2.70 1 CYP3A4/5 P-gp [10, 107, 108]

Diphenhydramine 1000 3.27 1 CYP2D6
CYP1A2
CYP2C9
CYP2C19

NR [10, 109]

Enalapril 25 0.67 1 Carboxylesterase OATP1B1
MRP2

[10, 110, 111]

Fexofenadine 1–10 1.96 3 Minimal metabo-
lism

P-gp
OATP2B1/3
OATP1A2

[10, 101, 112, 113]

Fosdevirineb 0.0094 3.50 3 NR NR [114]
Losartan (potas-

sium)
0.048 4.10 2 CYP3A4

CYP2C9
P-gp [10, 115–117]

Metformin 30–100 − 1.63 3 Minimal metabo-
lism

OCT1/2 [10, 118–122]

Midazolam (hydro-
chloride)

30–100 3.27 1 CYP3A4/5/7 P-gp [10, 123, 124]

NBI-1b Highly soluble Highly permeable 1 NR NR [50]
Nifedipine 0.006 2.20 2 CYP3A4 P-gp [10, 125]
Selexipag < 0.1 4.40 3 CYP2C8 P-gp

OATP1B1
OATP1B3
BCRP

[126]

Paracetamol 23.7 0.20 1 UGT1A1/6/9
SULT1A1/3/4
CYP1A2
CYP2E1

P-gp
MRP1/5

[10, 127]

Phenobarbital 1 1.47 1 NR P-gp [10, 128]
Pravastatin 300 2.18 3 CYP3A4 P-gp

OATP2
[10, 129, 130]

Raltegravir (potas-
sium)

71 1.16 2 UGT1A1 P-gp
BCRP

[10, 131, 132]

Tenofovir (diso-
proxil)

13.4 0.80 3 Carboxylesterase OATP1/3
MRP4

[10, 133]

Tolbutamide 0.109 2.34 2 CYP2C9 OATP2 [10, 134, 135]
Unknown integrase 

inhibitors Ab
NR NR NR NR NR [54]

Unknown integrase 
inhibitors Bb

NR NR NR NR NR [54]

Unknown integrase 
inhibitors Cb

NR NR NR NR NR [54]

Unknown integrase 
inhibitors Db

NR NR NR NR NR [54]
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and drugs with affinity for drug transporters may be prone to 
having nonlinear pharmacokinetics.

The percentage of predictable pharmacokinetics, especially 
for intravenous administration, is much higher in microdose 
studies than for extrapolation from preclinical models. When 
predicting human pharmacokinetics with physiologically 
based pharmacokinetic modeling (PB-PK) or in vitro to in vivo 
extrapolation (IVIVE), the degree of success for predicting Vd, 

CL, and oral AUC is only 78% (n = 18), 78% (n = 19), and 
51% (n = 108) of cases, respectively [6, 33–36]. This may be 
not only due to physiological differences between animal and 
human but also due to poor animal models of human illness 
and conflicting data from in vivo and/or in vitro experiments. 
Results from this review clearly show an added value of micro-
dose data to predict pharmacokinetics at a therapeutic dose.

AUC​ area under the curve, BDDCS Biopharmaceutical Drug Disposition Classification System, BCRP breast cancer resistance protein, CL/F 
apparent clearance, CYP cytochrome p450, F biological availability, MRP multidrug resistance-associated protein, NR not reported, OATP 
organic anion transporting polypeptide, OCT organic cation transporting proteins, P-gP p-glycoprotein, PK pharmacokinetics, t½ half-life, SLC 
solute carrier family, SULT sulfotransferase UGT​ uridine diphosphate (UDP)-glucuronosyltransferase, Vd volume of distribution
a Experimental solubility in 250 mL or less of aqueous media over a pH range of 1–7.5 at 37 °C. When experimental solubility was not reported, 
qualitative evaluation such as ‘highly soluble in water’ was used and a range is given in the table
b Drug characteristics of nonregistered drugs were collected from the literature, other than FDA documents or the article by Benet et al. [10], and 
the BDDCS class was based on these literature values

Table 3   (continued)

Linear PK drugs 
(n = 28)

Solubilitya (mg/mL) Lipophilicity 
(log P)

BDDCS class Metabolizing 
enzymes

Transporter pro-
teins

References

Zidovudine 25 0.08 1 UGT2B7 SLC28A1/3
SLC 22A6/7/8/11

[10, 136–138]

ZK253b NR Poor permeability NR NR NR [24]

Nonlinear PK drugs 
(n = 13)

Nonlinear 
PK param-
eters

Solubilitya (mg/mL) Lipo-
philicity 
(log P)

BDDCS 
class

Metabolizing enzymes Transporter proteins References

Atorvastatin (calcium) AUC​ 0.0000204 4.46 2 CYP3A4 OATP1B1
P-gP

[10, 139]

Celiprolol AUC, t½ 151 1.92 3 Minimal metabolism OATP2B1
OATP1A2

[10, 101, 140]

Mirodenafilb AUC, CL/F 0.181 2.85 3 CYP3A4
CYP2C19
CYP2D6

NR [141–143]

Nicardipine AUC​ 7.9 3.82 1 CYP3A4 NR [10, 144]
Omeprazole AUC​ 0.5 2.23 1 CYP2C19

CYP3A4
NR [10, 145]

Pitavastatin t½ 0.1–1 3.59 2 UGT1A3
UGT2B7
CYP2C9

OATP1B1/3
BCRP

[10, 146, 147]

Propafenone (hydro-
chloride)

AUC, F 0.093 3.64 2 CYP2D6
CYP1A2
CYP3A4

NR [10, 148, 149]

Quinidine (sulfate) AUC​ 11.1 3.77 1 CYP3A4 P-gp [10, 150]
Rosuvastatin (calcium) AUC​ 10–33 1.90 3 CYP2C9

CYP2C19
CYP3A4
CYP2D6

OATP1B1/3
BCRP
P-gp

[10, 151–153]

Sumatriptan (suc-
cinate)

AUC, F 21.4 0.93 1 Monoamine oxidase-
A

OCT1 [10, 154]

Telmisartan AUC, CL/F < 0.1 7.54 2 UGT​ OATP1B3
P-gp
MRP2
BCRP

[10, 155–157]

Verapamil (hydrochlo-
ride)

AUC​ 0.75 4.47 1 CYP3A4
CYP1A2

P-gp
OCT

[10, 106, 158]

Warfarin Vd, t½ 0.018 2.60 2 CYP2C9 BCRP [10, 134, 159]
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Microdose trials have been performed for small molecule 
drugs, but there is only one trial in which a protein drug, 
human recombinant alkaline phosphatase (hRESCAP), has 
been administered to healthy volunteers [37]. A major concern 
regarding microdosing with targeted therapies is the expecta-
tion of nonlinear pharmacokinetics as is seen for monoclonal 
antibodies [38, 39]. Target-mediated drug disposition (TMDD) 
of these drugs causes poor linearity in the low dose range by 
saturated target binding and CL pathways [40]. However, 
TMDD could also occur for small molecules when the target 
is expressed at relatively high concentrations and the com-
pound has a high affinity for this target [41]. An example of 
such a drug is warfarin, a small molecule with high affinity to 
vitamin-K epoxide reductase. Nonlinearity due to TMDD is 
reflected in nonlinear Vd and t½, while the exposure is well-
predicted from the microdose [24]. Although very few small 
molecules show this type of nonlinearity, one should be aware 
of the possible implications of TMDD for microdose trials.

Based on all data available, it is difficult to describe spe-
cific drug characteristics that influence the predictability of 
microdose pharmacokinetics. When performing a microdose 
study, guidance on the predictive value may be derived from 
preclinical data. In their decision tree model, Bosgra et al. 
[42] showed how to integrate available preclinical data by 
combining information on dissolution, active transport or 
metabolism, and protein binding. Of 10 previously published 
cases, this decision tree was able to identify drugs with non-
linear pharmacokinetics. Combining microdose trials with 
preclinical data, as well as modeling and simulation meth-
ods, may improve the reliability of decision making in the 
future.

5 � Conclusion

In this review, we questioned whether the pharmacokinetics 
in a clinically relevant therapeutic dose could be predicted 
from a microdose. Additionally, we incorporated drug char-
acteristics in order to explain causes of nonlinearity. Overall, 
94% of intravenously administered drugs and 68% of orally 
administered drugs displayed linear pharmacokinetics within 
the twofold criterion. Nonlinearity was caused by saturation 
of the enzyme and transporter systems, especially intestinal 
and hepatic efflux and uptake transporters. The high degree 
of success regarding linear pharmacokinetics confirms the 
strength of phase 0 microdose trials in gaining early phar-
macokinetic data, thereby providing safety and reducing 
developmental costs.
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