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SUMMARY

Aberrant kinase activity has been linked to a variety
of disorders; however, methods to probe kinase acti-
vation states in cells have been lacking. Until now,
kinase activity has mainly been deduced from either
protein expression or substrate phosphorylation
levels. Here, we describe a strategy to directly infer
kinase activation through targeted quantification of
T-loop phosphorylation, which serves as a critical
activation switch in a majority of protein kinases.
Combining selective phosphopeptide enrichment
with robust targeted mass spectrometry, we provide
highly specific assays for 248 peptides, covering 221
phosphosites in the T-loop region of 178 human ki-
nases. Using these assays, we monitored the activa-
tion of 63 kinases through 73 T-loop phosphosites
across different cell types, primary cells, and pa-
tient-derived tissue material. The sensitivity of our
assays is highlighted by the reproducible detection
of TNF-a-inducedRIPK1 activation and the detection
of 46 T-loop phosphorylation sites from a breast tu-
mor needle biopsy.

INTRODUCTION

Kinases are key regulators of inter- and intracellular communica-

tion, and their inhibitors are critical in targeted therapy and pre-

cision medicine (Blume-Jensen and Hunter, 2001; Garay and

Gray, 2012; Lahiry et al., 2010). Therefore, the capability to

monitor the dynamics of kinase activity is essential to deepen

our understanding of cellular function and could greatly impact

rational drug design. Since the complete cataloging of all human

kinases byManning et al. (2002), an increasing number of studies

have focused on the so-called ‘‘kinome;’’ however, robust

methods to determine kinase activation on a kinome-wide level

are still lacking.
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Initial attempts to measure global kinase activation states

exploited the interaction of kinases with immobilized unspecific

multiplexed inhibitor beads (MIBs), which demonstrated altered

binding affinities upon enzymatic activation (Bantscheff et al.,

2007). This primed various studies to interpret increased MIB

binding affinity as increased kinase activity on a kinome-wide

scale (Stuhlmiller et al., 2015, 2017). However, it was later shown

that MIBs bind kinases largely independent of their activation

status (Ruprecht et al., 2015). In line with this approach, several

studies reported the use of biotin-conjugated acyl-nucleotide

probes for the enrichment of kinases via their ATP-binding pocket

from complex backgrounds (Patricelli et al., 2011; Xiao et al.,

2014). In combination with targeted mass spectrometry (MS),

these methods allow quantification of the expression of >200

kinases; however, they do not directly deduce kinase activity.

Alternative approaches to assess kinome activity involve

analyzing large-scale phosphoproteomics datasets for over- or

underrepresented sequence motifs that can be linked to known

kinase substrates or sequence specificities (Lachmann and

Ma’ayan, 2009; Miller et al., 2008). Indeed, we and others have

utilized such prediction tools to infer kinase activity profiles

(Guo et al., 2011; Zagorac et al., 2018); however, these methods

severely suffer in sensitivity due to lack of knowledge on the ma-

jority of kinase substrates and thus display a strong bias toward

well-studied kinases (Ding et al., 2011). Tackling these limitations

requires the analysis of direct markers for kinase activation.

The majority of protein kinases are regulated through phos-

phorylation of their activation loop (T-loop). The well-studied

functionality of these phosphorylations, in combination with their

high level of evolutionary conservation throughout the entire

kinome, facilitates the use of T-loop phosphorylation as a direct

probe to assess kinase activation states (Nolen et al., 2004). In

principle, T-loop phosphorylation can be detected using phos-

pho-specific antibodies, but their availability is limited to a few

well-studied kinases. Furthermore, T-loop phosphorylations

often remain undetected or cannot be accurately quantified in

large-scale phosphoproteomics studies due to the low abun-

dance of the corresponding peptides.

Sensitive and accurate characterization of selected phosphory-

lation events may be achieved by targeted MS approaches.
). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Previous studies have shown the potential of using targeted quan-

tification of proteins or post-translational modifications (PTMs) as

a highly specific readout for previously characterized biological

functions in yeast (Soste et al., 2014) or human samples (Abelin

et al., 2016). However, both previous approaches heavily rely on

diverse well-characterized or at least empirically established

cellular characteristics (e.g., starvation and proliferation).

Here, we present a targeted MS method for the system-wide

quantification of kinase T-loop phosphorylation levels, providing

a direct and unbiased readout of cellular kinase activation states.

Specifically, our approach combines selected reactionmonitoring

(SRM)-MS with highly specific Fe(III)-immobilized metal affinity

chromatography (IMAC) phosphopeptide enrichment on an auto-

mated platform with parallel phosphopeptide enrichment of up to

96 samples.We demonstrate the general applicability of our strat-

egy by analyzing the activation profiles of 178 kinases in various

cell lines, blood platelets, and a breast cancer biopsy sample.

Our approach allows rapid assessment of bothwell-characterized

and novel biological processes, ranging from high-throughput

diagnosis up to hypothesis-free screening experiments.

RESULTS

Our method currently encompasses robust molecular assays to

accurately quantify 221 phosphorylation sites in the T-loop re-

gion of 178 kinases (Figure 1A; Table S1). This number is primar-

ily based on accessibility of the T-loop phosphopeptides by

trypsin and can be expanded by the use of alternative proteases.

Here, the reported assays represent roughly one-third of the hu-

man kinome (Manning et al., 2002) and will be made available via

Table S2 and are uploaded in Peptide Atlas (Desiere et al., 2006).

Key challenges associated with the detection of T-loop phos-

phorylation in shotgun data sets such as low abundance, unfa-

vorable liquid chromatography (LC)-MS characteristics, and a

high prevalence of tyrosine phosphorylations, have been largely

solved by exploiting the combination of high-specificity phos-

phopeptide enrichment with the unparalleled sensitivity of

nanoLC-SRMon a triple-quadrupoleMS. All assays are available

in a survey and a quantification mode (Figures 1B and 1C). The

survey mode allows for a rapid screening for activation states

of all 178 kinases in a 2 h analysis, while the quantification

mode enables accurate quantification of those kinases observed

in the survey scan and includes confident phosphosite localiza-

tion and a high tolerance for interferences.

To gain insight into the sensitivity of the method, wemeasured

a dilution series of >40 synthetic T-loop peptides spiked into a

background of phosphopeptides enriched from a tryptic

whole-cell digest. The resulting linear calibrations curves were

used to determine the limits of quantification (LOQ) and detec-

tion (LOD), ranging from 0.2 to 10 fmol for the LOD and 0.7 to

34 fmol for the LOQ (Figure 1D; Table S3). Important to mention

here is that several kinase T-loops can become doubly phos-

phorylated, resulting in doubly phosphorylated peptides after

tryptic digestion. In current proteomics workflows, detection of

these doubly phosphorylated peptides can be hampered

because of poor ionization efficiency and inefficient elution

after phosphopeptide enrichment. Our final list of targeted

kinases comprise clinically relevant kinases with inhibitors

approved by the Food and Drug Administration (FDA) such as
Met, Abl, Src, BTK, Jak3, and Kit (Fabbro et al., 2015) (Table

S4) as well as numerous kinases classified as understudied

(Collins et al., 2018) (Figure S1).

As a first assessment, we analyzed the baseline kinome

activation state of three different human cell lines: (1) Jurkat cells,

an immortalized line of T lymphocytes; (2) PC9 cells, a non-small

cell lung cancer cell line; and (3) HEK293T cells, a cell line derived

from human embryonic kidney cells. Without any form of stimula-

tion, we were able to cumulatively detect 52 T-loop phosphoryla-

tion sites (Figure S2). Because of the highly conserved nature of

the kinases’ T-loop sequence, the representative tryptic peptides

are not always unique. Todealwith this ambiguity,we followed the

principle of protein grouping (Nesvizhskii and Aebersold, 2005)

and refer to these instances as kinase groups throughout this

study. For the 52 phosphorylation sites observed, this resulted

in 48 kinase groups (Table S5). Unsurprisingly, a large part of

the 48 detected kinase groups represented kinases crucial for

cell growth under typical culturing conditions, such as cyclin-

dependent kinases (CDKs) andmitogen-activated protein kinases

(MAPKs) as well as the two abundant kinases PDK1 and GSK3.

It is noteworthy that various kinases show cell-type-specific

activation states. For instance, both Jurkat and PC9 cells

showed an increased activity of Ca2+ and diacylglycerol (DAG)-

dependent signaling compared to HEK293T cells, with several

kinases from the Ca2+/calmodulin-dependent protein kinase

(CaMK) group and the protein kinase C (PKC) family being de-

tected in their active state. PC9 cells show increased activation

of tyrosine kinase familymembers such as FAK,Met, and the two

kinase groups ephrin type-A receptors 3, 4, and 5 (EphA3-4-5)

and HCK-Lyn, likely due to elevated tyrosine kinase signaling

via increased EGFR activity (Sharifnia et al., 2014). Zap70, on

the other hand represents a highly tissue-specific kinase, exclu-

sively expressed in cell types associated with the immune sys-

tem, including T cells. Accordingly, here, it was exclusively de-

tected in Jurkat cells, confirming the specificity of our approach.

To benchmark our approach against two established online

tools to predict kinase activity, NetworKIN (Miller et al., 2008)

and KEA2 (Lachmann and Ma’ayan, 2009), we performed a

deep phosphoproteomic shotgun experiment on Jurkat cell ly-

sates detecting a total of >11,600 phosphorylation sites. Both

algorithms rely on detecting substrate motifs or known kinase

substrates in large shotgun phosphoproteomic experiments,

and Figure 2A depicts NetworKIN scores and KEA2 enrichment

results in comparison to abundance values obtained from our

targeted T-loop assay (Table S6). Combined, both algorithms

predicted activity of 18 out of the 31 kinasesmeasured in our tar-

geted kinase assay, performed using a single nanoLC-MS run on

Jurkat cells, confirming the activity of kinases such as GSK3,

PKC, PAK4, CDK1, or ERK1/2. As expected, a large number of

kinases were exclusive to our targeted approach demonstrating

the higher sensitivity of our method. The absence of kinase activ-

ity prediction for numerous kinases by both algorithms can be

attributed to the lack of knowledge on kinase-substrate rela-

tions. This causes the prediction tools to be intrinsically biased

toward well-characterized kinases, neglecting the majority of

phosphorylation sites (KEA2 incorporated only 800 out of

11,600 phosphosites for the enrichment analysis) (Figure S3).

In addition, both prediction tools often disagree, reducing the

reliability of the predicted kinase activations.
Cell Systems 9, 366–374, October 23, 2019 367
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Figure 1. Targeted Quantification of T-Loop Phosphorylation to Determine Kinase Activation
(A) Conserved activation sites were determined based on sequence homologies on a kinome-wide scale. A target list was developed containing phosphorylation

sites accessible by tryptic digest covering 33% of the human kinome. Heavy-isotope-labeled peptides were synthesized for all entries of the target list and used

for nanoLC-SRM assay development.

(B and C) Samples were subjected to tryptic digest and automated phosphopeptide enrichment using Fe(III)-IMAC on an Agilent Bravo AssayMap. Heavy-

isotope-labeled synthetic phosphopeptides were used as internal standards. (B) The surveymode allows screening for kinase activation states for all 178 kinases

in one LC-MS run using a limited number of transitions per peptide. (C) The quantification mode employs more transitions per peptide allowing for accurate

quantification of kinase activation states across different conditions, including confident phosphosites localization and high tolerance to interferences.

(D) LOD and LOQ values were determined for a subset of phosphopeptides exemplified for the peptide GHL-pS-EGLVTK, representing ERK3. Response rates of

the phosphopeptide were determined within a representative phosphopeptide background for known concentrations in triplicate. Variations in the linear re-

gressions were then used to determine LOD and LOQ values according to the formulas LOD = 3Sa/b and LOQ = 10Sa/b (b = slope and Sa = standard deviation of

the intercept). Error bars represent standard deviation observed for triplicate measurements.
Through directmonitoring of T-loop phosphorylations, wewere

able to alleviate this bias resulting in the detection of numerous

understudied kinases in their activated state. Of note, activity

for several kinases predicted by KEA2 or NetworKIN are thus

far not included in our T-loop assays, a shortcoming that can be

overcome by expanding the set of kinases in our approach using
368 Cell Systems 9, 366–374, October 23, 2019
alternative proteases. A few kinases reported by the prediction

tools were included in our assays but not detected (e.g., RSK2,

JNK1, JNK2, and Braf), which could be caused by differences

in timing between T-loop versus substrate phosphorylation or,

more likely, redundancies in kinase-substrate relations, resulting

in false positive predictions as exemplified in Figure S4.
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Figure 2. Probing Kinase Activation in Varying Cellular Systems

(A) Determining kinase activation by targeted measurement of T-loop phosphorylations versus modeling of kinase activities from substrate detection in large

shotgun proteomic datasets: orange bars represent the relative abundance of T-loop phosphorylations in Jurkat cells estimated by their intensity ratio to the

heavy-isotope-labeled standard peptides; green and purple bars represent kinase activity prediction by KEA2 (result as p values, green bars) and NetworKIN

(depicted as highest individual score found for any substrate, purple bars) when applied to a fractionated Jurkat cell sample analyzed in shotgun MS (>11,600

phosphopeptides).

(B) Alterations in kinase activation upon TNF-a treatment: Jurkat cells were grown with and without TNF-a stimulation for 8 h, resulting in an increased rate of cell

death as determined by caspase-3/7 green apoptosis reagent (n = 4 for both groups, error bars depicting standard deviation).

(C) TNF-a induces the recruitment of receptor-interacting protein serine-threonine kinases (RIPKs) to the TNF-receptor complex, resulting in its activation and

initiation of necroptotic signaling.

(D) RIPK1 activation through phosphorylation at S161 measured by SRM under both conditions. Representative SRM traces are shown for unstimulated and

stimulated cells with upper panels representing internal heavy-labeled standard peptides and lower panels representing signals from endogenous peptides (*

indicates neutral loss of phosphoric acid on the fragment ions).

(E) Immunoblot analysis demonstrates equal protein expression levels of RIPK1 under both conditions.

(F) Kinase activity profiling in PAR1-activated human blood platelets: platelets were activated with SFLLRN-NH2 hexapeptide, mimicking thrombin activation for 1

and 5 min, respectively.

(G) Volcano plots depict changes in overall kinase activation upon PAR1 activation of platelets for 1 and 5 min, respectively (significance cutoff p < 0.05).

(H) Signaling network depicts known downstream signaling pathways of PAR1, highlighting key players where increased T-loop phosphorylation could be

monitored in our assay (solid bold green). Baseline PKC activity could be detected for various PKC isozymes but with no significant change in activation upon

PAR1 activation (outlined in dashed bold green).

(I) Bar graphs show representative dynamic regulation of kinase activation for key players in the pathway, i.e., p38a, CaMK2, RAF, ERK, BTK, and TEC

(quantification based on heavy-to-light ratio, normalized on Ctrl sample, error bars depict standard deviation, *p % 0.05; **p % 0.01; ***p % 0.001).
After the successful detection of several T-loop phosphoryla-

tions in unstimulated cells, we reasoned that our technique

should be able to reveal activation of specific kinases from the

steady-state background upon selected stimuli. To demonstrate
this capacity, we treated Jurkat cells with TNF-a for 8 h, which

resulted in increased cell death (Figure 2B). Upon TNF-a stimu-

lation, the receptor-interacting protein serine-threonine kinase

(RIPK) is recruited to the TNF-receptor complex and mediates
Cell Systems 9, 366–374, October 23, 2019 369



apoptosis and/or necroptosis (Annibaldi and Meier, 2018; Holler

et al., 2000) (Figure 2C). Indeed, our method was able to repro-

ducibly detect RIPK1 phosphorylation at S161 already upon

TNF-a treatment for 8 h, a phosphorylation not detectable in

untreated Jurkat cells (Figure 2D). Western blot analysis for

RIPK1 shows no discernible change across the two conditions

at the protein expression level (Figure 2E), advocating RIPK1

activation via its T-loop phosphorylation to mediate apoptosis.

Inhibition of RIPK1 activity by its inhibitor necrostatin-1 (Nec-1),

resulted in reduction of the number of apoptotic cells after 36 h

(Figure S5), highlighting the functional relevance of the observed

kinase activation.

Remarkably, despite the well-characterized role of RIPK1 in

cell death, to the best of our knowledge this represents the first

direct detection by MS of RIPK1 T-loop phosphorylation from

cell lysates. Thus far, the only report of successful MS detection

of phosphorylated S161 in RIPK1 was described by Degterev

et al. (2008) using a protein expression system in combination

with IP, in vitro kinase assay, and phosphopeptide enrichment.

This lack of evidence for RIPK1 activation in the literature primed

us to further investigate its detectability in shotgun MS. Indeed,

even performing a large-scale phosphoproteomics experiment,

including high-pH fractionation, did not enable detection of

RIPK1 phosphorylation at S161 among the >11,600 detected

phosphopeptides. Hence, our targeted approach offers a so

far unachieved sensitivity in measuring S161 RIPK1 activation

upon TNF-a signaling, providing an additional valuable tool to

monitor the complex regulation of cell death.

Next, we wanted to exploit the sensitivity of our method, per-

forming in-depth analyses of rapid kinome dynamics in primary

human cells. We applied our technique to study the mechanism

of PAR1-mediated activation of blood platelets (Figure 2F).

Platelet activation involves various intracellular signaling events;

however, the key step is activation of Phospholipase C (PLC), re-

sulting in an increase in intracellular Ca2+. This in turn activates

PKC and CaMK signaling and results in activation of RAS, via

its translocation to the plasma membrane, which subsequently

activates the MAPK cascade (Grover et al., 2018). By performing

PAR1 activation for 1 and 5 min, we were able to closely monitor

changes in kinase activation states. Overall, we were able to

detect and quantify 32 T-loop phosphorylations in 27 kinase

groups (Figure 2G), including major players of both PKC and

CaMK signaling and the MAPK cascade (Figure 2H; Tables S5

and S7). The well-established nature of the signaling cascade

in combination with the two time points additionally allowed us

to determine interesting basic signaling kinetics (Figure 2I) hint-

ing toward a rapid response by p38 and CaMK signaling upon

PAR1 activation, compared to a slower response by the RAF-

MEK-ERK cascade.

Lastly, our assay allowed us to study activation dynamics of

the two TEC family tyrosine kinases BTK and TEC, both known

to act as major PLCg2 activators upon platelet activation. Both

show an increase in T-loop phosphorylation upon platelet activa-

tion; however, BTK seems to be activated faster and to a larger

extend, corroborating its leading role over TEC established in the

literature (Atkinson et al., 2003).

Since kinases are a major class of drug targets, especially in

cancer where 25 kinase-targeting drugs have been approved

and numerous candidates are under clinical evaluation (Gross
370 Cell Systems 9, 366–374, October 23, 2019
et al., 2015), we wanted to assess the usefulness of our technol-

ogy to study unbalanced activity of kinases in disease. A major

challenge in kinase inhibitor treatment is the (long-term or down-

stream) effect on the rest of the kinome, which consistently leads

to therapy resistance due to adaptation of cellular signaling

networks. To demonstrate the potential of our technology to

shed light on such mechanisms, we next probed kinase activa-

tion upon acquired BRAF inhibitor (BRAFi) resistance in mela-

noma. Roughly half of all melanomas are driven by the

BRAFV600E mutation, resulting in constitutive activity of BRAF ki-

nase activity. Patient treatment with BRAFi shows initial success,

but commonly the clinical benefit is only transient because of

rapid acquisition of drug resistance (Wagle et al., 2011). Here,

we exploit matched patient-derived melanoma cell lines from

treatment-naive, treatment-sensitive, and NRASQ61K-based

resistant tumor states established from patient-derived tumor

xenografts to study BRAF-resistance-driven alterations in kinase

activation states (Figure 3A) (Kemper et al., 2015). Across all

three cell lines, we were able to detect and quantify 39 phospho-

sites representing T-loop phosphorylations of 37 kinase groups

(Table S5). Several of the quantified kinases showed increased

activation in the resistant cell line compared to the treatment-

naive and sensitive cells (Figure 3B; Table S7). Many of them

are known to be involved in growth and proliferation such as

ERK2, MAP2K4, CDK2/CDK3 and NLK, and various members

of the PKC kinase family. Surprisingly, some kinases specifically

activated in the drug resistant cell line have thus far mainly been

linked to tumor suppressing activities such as Chk2 and p38a

(Wagner and Nebreda, 2009).

The most striking activation we observed was that of the ki-

nase ERK4, which was around or below the detection limit in

the sensitive and naive cell lines, however, was found to be

strongly activated (�30 times) upon acquired drug resistance

(Figure 3C). This strong activation remained in resistant cells

upon drug withdrawal. It has been previously observed that

oncogenic RAS increases RNA levels of ERK4 (Kostenko et al.,

2012), although no effect on kinase activation level has been

reported so far. Our results, however, convey the use of ERK4

activation as a potential marker for NRAS-mediated drug

resistance.

The clinical value of our technology ultimately depends on its

direct applicability in primary tissue samples, such as tumor

biopsies. Here, we demonstrate the sensitivity of our approach

by quantifying kinase activation states in a Her2+ breast cancer

patient, analyzing tissue material obtained from half a 14G nee-

dle biopsy taken prior to treatment (Figure 3D). Using a starting

amount of merely 300 mg of protein, we were able to detect

and quantify 46 phosphorylation sites in the T-loop region of

43 kinase groups, spanning a dynamic range of more than 3

orders of magnitude (Figure 3E; Table S5). The detected kinases

include, besides a substantial number of understudied kinases

such as CDK11A, CRK7, DYRK1A, DYRK2, DYRK4, HIPK3,

NEK6, and PKN2 (Collins et al., 2018), various crucial players

in control of growth and proliferation (Figure 3F), a variety of

which are targets for potent novel inhibitors currently in clinical

trials. This includes detection of cdc2/CDK1 and CDK2, which

can be inhibited by Dinaciclib and ERK1 and ERK2, the phos-

phorylation of which can be inhibited by various MEK inhibitors

such as Selumetinib. Both inhibitors are currently in phase III
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Figure 3. Probing Kinase Activation in Patient-Derived Samples
(A) Reorganization of kinase activities upon acquired BRAF inhibitor resistance inmelanoma: matchedmelanoma cell lines were established from patient-derived

xenografts (PDXs) from the same patient before and after acquired resistance to the BRAF inhibitor PLX-4720, giving rise to amodel system comprising treatment

naive, treatment sensitive, and treatment resistant cell lines.

(B) Pairwise comparison of kinase activation between the 3 conditions is depicted as volcano plot using an arbitrary significance cutoff (p < 0.05).

(C) Molecular function of ERK4, which is part of a highly confined molecular system, together with ERK3 andMK5. Bar plots show the detected abundance of the

T-loop phosphorylations for ERK3, ERK4, and MK5 (normalized to values observed in naive cells, error bars depicting standard deviation, *p% 0.05; **p% 0.01;

***p % 0.001).

(D) Determining kinase activation states in a breast cancer needle biopsy: proteins were extracted from half a needle biopsy (<5 mg of tissue), followed by tryptic

digest, phosphopeptide enrichment by Fe(III)-IMAC, and global kinase activation screening by nanoLC-SRM.

(E) The detected kinases span a dynamic range of more than 3 orders of magnitude, as estimated by their intensity ratio to the heavy-isotope-labeled standard

peptide (assuming roughly equimolar internal standard concentration).

(F) Selected kinases detected in their activated state are shown in the context of their molecular signaling pathway according to the Kegg database (outlined in

bold green).
trials. Furthermore, activation is observed for the kinases p38a

and PKA, which have been shown to play crucial roles in inva-

siveness and acquired Herceptin resistance (Donnelly et al.,

2014; Gu et al., 2009). The most intense level of T-loop phos-

phorylation was observed for PKC, which is required for HER2-

mediated NF-kB activation, thus mediating properties of malig-

nancy, such as proliferation, invasiveness, and avoidance of

apoptosis (Pan et al., 2016).

These results demonstrate the clinical potential of our technol-

ogy to molecularly profile diseases such as breast cancer, being

the most frequent cause of cancer deaths among women world-

wide. It is a complex heterogeneous disease, comprising various

subtypeswithdistinct genetic andmorphological features, leading

to differences in treatment response and clinical outcome.Conse-

quently, present standard therapies are insufficient to treat meta-

static disease and rationally chosen drug combinations are

needed (Sachs et al., 2018; Zardavas et al., 2013). We argue that

monitoring kinase activation in such a setting could have a pro-

found impact, uncovering potential novel pharmaceutical targets.
DISCUSSION

In this study, we provide carefully optimized assays for T-loop

phosphorylation on 178 protein kinases, accounting for roughly

one-third of the human kinome. The strength of the technology

lies in the combination of sensitivity, enabling substantial kinome

coverage even from limited starting material (around 150–250 mg

protein per sample) and throughput, using targeted SRM assays

on a relatively simple triple-quadrupole MS instrument. Our

approach is highly adaptable to various research questions

and sample types as it provides enough sensitivity to reliably

quantify kinase activation from limited sample amounts as

encountered when working with primary cells or even clinical

samples. The unbiased nature of the approach facilitates the

detection of numerous understudied kinases (Table S8), allevi-

ating the research bias that is still omnipresent in kinase research

(Edwards et al., 2011). The use of sample fractionation or the

enrichment for specific cell compartments such as nuclei or

the cell membrane will further increase kinome coverage.
Cell Systems 9, 366–374, October 23, 2019 371



Applying this approach, we were able to detect 73 T-loop

phosphorylations for 63 kinase groups reflecting 90 individual ki-

nases across numerous cell types (primary and patient derived)

(Table S5), which, to the best of our knowledge, presents the

largest compendium of kinase activation sites reported to

date. We demonstrate the utility of our technology for exclusive

detection of activated kinases upon selected stimuli or specific

treatment regimes. Our technology reveals, besides known

signaling pathway activation, T-loop phosphorylations of the

elusive RIPK1 S161, dynamic activation of primary blood plate-

lets, rewiring of signal transduction in melanoma upon acquired

drug resistance, and global kinase activity status in a breast can-

cer tumor biopsy sample. In conclusion, we present here a

robust approach to quantify system-wide T-loop phosphoryla-

tions as a proxy for human protein kinase activity in various bio-

logical settings.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Purified Mouse Anti-RIP BD Biosciences Cat#610458; RRID: AB_397831

GAPDH antibody [GT239] (mouse) GeneTex Cat# GTX627408, RRID: AB_11174761

Goat Anti-Mouse Immunoglobulins/HRP Agilent Technologies P044701-2

Biological Samples

Patient derived platelet cells Sanquin Blood Bank https://www.sanquin.org/working-at/production/

blood-bank

Patient derived biopsy from primary breast tumors TRAIN2 clinical trial https://clinicaltrials.gov/ct2/show/NCT01996267

Chemicals, Peptides, and Recombinant Proteins

SpikeMix� Kinase Activation Loops

(Human) - heavy

JPT Germany SPT-KAL-POOL-L-100pm

HRM Calibration Kit Biognosys Ki-3003

TNF-a PeproTech 300-01A

PLX-4720 Selleckchem S1152

PAR1 mimicking hexapeptide SFLLRN-NH2 Peptides International PAR-3676-PI

Nec-1 Merck Cat#480065

Tirofiban Iroko cardio, UK CAS 0144494-65-5

Critical Commercial Assays

Caspase-3/7 green apoptosis reagent Essen Bioscience Cat#4440

Sep-Pak C18 1 cc Vac Cartridge Waters WAT023590

Bio-Rad Protein Assay Kit I Bio-Rad 5000001

PhosSTOP� Merck 4906837001

cOmplete�, Mini, EDTA-free Protease Inhibitor

Cocktail

Merck 11836170001

AssayMap Cartridge Rack, Fe(III)-NTA 5 mL Agilent Technologies Cat#G5496-60085

Pierce� ECL Plus Western Blotting Substrate Thermo Scientific� 32132

Deposited Data

.raw and .wiff data of all experiments SRMAtlas http://www.peptideatlas.org/PASS/PASS01234

Analyzed SRM data within Skyline daily framework SRMAtlas http://www.peptideatlas.org/PASS/PASS01234

MaxQuant Database search output performed on

fractionated Jurkat lysates for motiv analysis

SRMAtlas http://www.peptideatlas.org/PASS/PASS01234

NetworKIN kinase activity prediction This paper Table S6

Quantitative and statistical analysis of SRM assays

performed in MSstats

This Paper Table S5

KEA2 kinase activity predicton This Paper Table S6

Experimental Models: Cell Lines

Jurkat DSMZ ACC 282

HEK293T ATCC Cat#ATCC CRL-3216

PC9 Sigma-Aldrich 90071810-1 VL

M026 Laboratory of Daniel Peeper NKI https://www.nki.nl/divisions/molecular-oncology-

immunology/peeper-d-group/

Software and Algorithms

Skyline daily MacLean et al., 2010b https://skyline.ms/project/home/software/Skyline/

begin.view

MaxQuant (version 1.6.1.0) Cox and Mann, 2008 https://www.maxquant.org/

MSStats Choi et al., 2014 http://msstats.org/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MASCOT Matrix Science http://www.matrixscience.com/

Proteome Discoverer Thermo Fisher www.thermofisher.com

NetworKin Miller et al., 2008 http://netphorest.info

KEA2 Lachmann, and Ma’ayan, 2009 http://www.maayanlab.net/KEA2

Other

25 cm, 75 mm ID PepMap RLSC, C18, 100 Å, 2 mm

particle size column

Thermo Scientific ES802
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Maarten

Altelaar (m.altelaar@uu.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Models
PC9 NSCLC cells (originating from human adenocarcinoma, male) were purchased from Sigma-Aldrich (cat# 90071810-1 VL) and

were cultured in standard Roswell Park Memorial Institute medium 1640 medium (Lonza), containing 10% FBS (Thermo), 2 mM

L-glutamine and 1% penicillin/streptomycin (Lonza), at 37�C in a humidified atmosphere containing 5% CO2. Cells were detached

from the culture surface using trypsin (Lonza), and washed three times with PBS before lysis.

Hek293T cells (embryonic kidney of female fetus purchased from ATCC, cat# ATCC CRL-3216) were seeded at 15% density in

15-cm plates, allowed to adhere in full DMEM (Lonza) containing 10% heat-inactivated fetal bovine serum (Gibco), 2 mML-glutamine

(Lonza) and 20 mM HEPES (Sigma-Aldrich), and cultured to �90% confluence over 2.5 days. Twelve hours prior to harvesting,

growth medium was replaced with fresh pre-warmed full DMEM. At harvesting, no dead or floating cells were visible by microscopic

examination. Cells were washed twice with ice-cold PBS on-plate, detached by trypsin (Lonza), and collected by low-speed centri-

fugation at 200g for 5 min.

Jurkat cells (male, purchased fromDSMZ, ACC 282) were cultured in RPMI-1640media complemented with l-glutamine, 10% fetal

bovine serum, and PenStrep at a density between 5x105 and 5x106 per ml.

PDX melanoma cell lines (M026, M026R) were cultured in RPMI 1640 with HEPES and L-Glutamine supplemented with 10% fetal

bovine serum and Penicillin-Streptomycin. The resistant cell lines were grown in presence of 1 mM PLX-4720 (Selleckchem). When

specified, the cell lines were treated with an IC50 dose (1 mM) of the inhibitors PLX-4720. All cell pellets were stored at -80�C prior to

cell lysis.

Pooled platelet concentrates in plasma (platelet concentrates from 5 donors in ABO blood-group-matched plasma) were obtained

from the Dutch Bloodbank (Sanquin). Multiple platelet concentrates were pooled in three separate pools and processed indepen-

dently. Platelets were isolated as described before (van den Eshof et al., 2017). Briefly, platelet concentrates were centrifuged for

20 min at 120g, to remove remaining red and white blood cells. Next, platelets were washed twice with isolation buffer (36 mM citric

acid, 103 mM NaCl, 5 mM KCl, 5 mM ethylenediaminetetraacetic acid (EDTA), 5.6 mM D-glucose, pH 6.5, containing 0.35% [w/v]

bovine serum albumin (BSA)) by centrifugation for 10 min at 2,000g. Platelets were washed once with Tyrode’s Solution (Sigma),

centrifuged for 10 min at 2,000g and resuspended to a final concentration of 23108 platelets/mL in Tyrode’s Solution supplemented

with tirofiban (1:1000) (Iroko cardio, UK).

Patients Samples
Frozen biopsies were obtained from primary breast tumors of patients undergoing neoadjuvant chemotherapy and dual HER2

blockade in the TRAIN2 trial (NCT01996267) (van Ramshorst et al., 2016). The study had been approved by the ethical committee

and informed consent was obtained from all patients. Approximately fifteen 30 mm frozen sections were prepared with a cryostat

microtome for protein extraction. R/DNase free H2O was used as adhesive instead of a polymer adhesive to eliminate any traces

of polymers in the protein extract. About halfway through the biopsy one or two sections of 6-8 mm were prepared for hematoxylin

and eosin (HE) staining. The HE stained sections were reviewed by a pathologist to estimate the tumor cell percentage of the tissue.

METHOD DETAILS

TNF-a Stimulation and RIPK1 Inhibition
One day prior stimulation, Jurkat cells were seeded at a concentration of 1x106 per ml in fresh media. TNF-a (PeproTech, USA) was

added at a concentration of 100 U/ml for 8 h, after which the cells were washed with ice cold PBS and snap frozen. For the apoptosis
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assay the Jurkat cells were plated at a density of 3x104 cells in a 96 well plate coated with 0.01% poly-l-ornithine. Cells were pre-

incubated with 0.5 mM Necrostatin-1 (Merck), and then stimulated with TNF-a at a concentration of 100U/ml in the presence of

2.5 mMCaspase-3/7 green apoptosis reagent (Essen Bioscience). Apoptosis wasmonitored using the IncuCyte Zoom system (Essen

Bioscience) every hour for 48 h. Each well was divided into four views, and the number of green fluorescent cells was counted using

the IncuCyte Zoom software (Essen Bioscience).

RIPK1 Immunoblot Analysis
Cell pellets were lysed by sonication in Urea buffer (8 M Urea, 50 mM ammonium bicarbonate, protease inhibitor Cocktail Complete

(Roche), phosphatase inhibitors PhosSTOP (Roche)) and protein concentration was determined using a Bradford assay (Bio-Rad).

Immunoblotting was performed using 12% Criterion XT precast gel (Bio-Rad) and nitrocellulose membrane. All blocking steps

were performed using 5% milk in TBS-Tween (Tris-buffered saline (pH 7.5) with 0.1% Tween (Biorad)). GAPDH (GeneTex, RRID:

AB_11174761) and RIPK1 (BD Biosciences, RRID: AB_397831) were used as primary antibodies, goat anti-mouse immunoglobu-

lins/HRP (Agilent Technologies) was used as secondary antibody. Protein detection was performed using the ECL Plus Substrate

(Pierce) and an Amersham Imager AI600 for chemiluminescence imaging.

PAR1 Activation of Pooled Platelets
Platelets were activated with 50 mMPAR1 peptide (SFLLRN-NH2, Peptides international) or negative control (Tyrode’s solution) for 2

or 5min at 37�C in a thermomixer (Eppendorf). Activation was stopped by lysis of the platelets by addition of 2 times (% v/v) 1.5x SDC

lysis buffer (1.5% SDC, 15 mM TCEP, 60 mM Chloroactamide, 150 mM tris(hydroxymethyl)aminomethane (Tris) pH 8.5, 1.5% phos-

phatase and protease inhibitor cocktail (Thermo Scientific)). Platelet lysates were snap frozen and stored at -80�C.

Sample Preparation and Phosphopeptide Enrichment
Frozen cell pellets and patient biopsy were lysed, reduced and alkylated in lysis buffer (1% sodium deoxycholate (SDC), 10mM tris(2-

carboxyethyl)phosphinehydrochloride (TCEP)), 40 mM chloroacetamide (CAA), and 100 mM TRIS, pH 8.0 supplemented with phos-

photase inhibitor (PhosSTOP, Roche) and protease inhibitor (cOmplete mini EDTA-free, Roche). Cells were heated at 95�C and son-

icatedwith a Bioruptor Plus (Diagenode) for 15 cycles of 30 s. Bradford protein assay (Bio-Rad Protein Assay Kit I, Bio-Rad) was used

to determine protein amount. To avoid digestion bias, samples were split into aliquots containing equal amount of protein. Proteins

were digested overnight at 37�Cwith trypsin (Sigma-Aldrich) with an enzyme/substrate ratio of 1:50 and lysyl endopeptidase (Wako)

with an enzyme/substrate ratio of 1:75. SDC was precipitated with 2% formic acid (FA) and samples were desalted using Sep-Pak

C18 cartridges (Waters). Subsequently samples were dried in vacuo and stored at -80�C until further use.

Phosphorylated peptides were enriched using Fe(III)-NTA cartridges 5 mL (Agilent technologies) in an automated fashion using the

AssayMAPBravo Platform (Agilent Technologies) as previously described (Post et al., 2017). For all samples, 250 mg of peptides were

used as input for one cartridge, except for the biopsy sample where only approximately 150 mg of protein was available per cartride in

order to allow for analyses in both, survey and quantification mode. In brief, Fe(III)-NTA cartridges were primed with 200 mL of 0.1%

TFA in ACN and equilibrated with 250 mL of loading buffer (80% ACN/0.1% TFA). Samples were dissolved in 200 mL of loading buffer

containing 100 fmol synthetic isotope labelled t-loop standard peptides and loaded onto the cartridge at a loading speed of 5 mL/min.

Subsequently columns were washed with 250 mL loading buffer and eluted with 35 mL of 10% ammonia directly into 35 mL of 10%

formic acid. Samples were dried down and stored at �80�C until LC–MS analysis.

LC-MS/MS Setup
Spectral libraries were partly acquired on a TripleTOF 5600 (Sciex) coupled to an Agilent 1290 Infinity System (Agilent Technologies)

adapted to nanoflow conditions by using a split flow setup as described in Cristobal et al. (2012). The system was operated with in-

house packed trap column (Dr. Maisch Reprosil C18, 3 mm, 2 cm 3 100 mm) and analytical column (Agilent Poroshell 120 EC-C18,

2.7 mm, 50 cm 3 75 mm). The split flow was adapted to achieve 300 nl/min flow at the front end of the column upon applying a flow

rate of 0.2 mL/min. 0.6% acetic acid in water (Milli-Q, Millipore) was used as buffer A an 0.6% acetic acid, 80% ACN was used as

buffer B. Upon injection, peptides were trapped at 5 mL/min during 5 min with 100% solvent A (0.1% FA in water) before being sepa-

rated on the analytical column.

All remaining measurements were executed on a TSQ-Vantage (Thermo Fisher) coupled to an Easy-nLC 1000 (Proxeon, Odense,

DK). LC configuration was in one-column setup (25 cm, 75 mm ID PepMap RLSC, C18, 100 Å, 2 mm particle size column (Thermo

Scientific, Odense, DK)). Formic acid (0.1%, Merck, Darmstadt, Germany) in deionized water (Biosolve, Valkenswaard, NL, ULC/

MS grade) was used as solvent A, 0.1% formic acid in acetonitrile (Biosolve, Valkenswaard, NL, ULC/MS grade) as solvent B. All

measurements were performed at 200 nl/min flow rate and all samples were analyzed with injection volumes of 2 mL containing

10% FA.

Spectral Library Generation
SRM assay development was guided by a spectral library generated in house. This provided confirmation of the synthesized peptide

sequence and essential information about LC and MS characteristics of each peptide. For this spectral library generation, the heavy

labeled phosphopeptides were mixed with 1x HRM Calibration KIT and analyzed in data-dependent mode on two different LC-MS

setups. (1) Crude peptides were analyzed on a 5600 TripleTOF (Sciex). LC-MS setup and data acquisition methods were used as
Cell Systems 9, 366–374.e1–e5, October 23, 2019 e3



previously described (Schmidlin et al., 2016). In brief, peptides were separated on a 2 h gradient analyzed in TOP20 mode (selection

criteria: intensity > 50 cps, charge stateR 2+, dynamic exclusion 15 s). (2) Crude peptides were analyzed on a TSQVantage (Thermo)

in data-dependent acquisition mode operated at TOP2. Survey scans were acquired in Q3MS mode (1.5 s, 0.4 Da fwhm) spanning

the 375-1350m/z range. The TOP2 most abundant ions were analyzed in MS/MS mode (selection criteria: intensity > 1000 counts, 5

repeats at 3 s, 2 min dynamic exclusion). Results of both acquisition types were subjected to database search using Mascot ac-

cessed by Proteome Discoverer (version 1.4). Parameters were set to tryptic digest, allowing for up to three missed cleavages, using

carbamidomethyl cysteine as fixedmodification and allowing for serine/threonine/tyrosine phosphorylationmethionine oxidation and

C-terminal isotope labels. Precursormass tolerance andMS/MS tolerancewere set to 50 ppmand 0.15 Da respectively for TripleTOF

files and to 0.9 Da for TSQ files. Results were filtered using Percolator (K€all et al., 2007) to an FDR below 1%. Spectral libraries were

built in Skyline from both searches.

SRM Assay Development
All assays were developed and optimized on a TSQVantage as previously described (deGraaf et al., 2015; Soste et al., 2014). In brief,

the most intense fragment ions found in the spectral libraries were directly used as initial transitions, multiplexing up to 3-10 transi-

tions per precursor. Those initial SRM assays were applied to the synthetic peptide library enabling subsequent optimization of mul-

tiple parameters such as collision energy and RT scheduling. Initial assays for a few peptides not identified in either of the spectral

library were constructed from theoretically possible y- and b-ions in combination with their most likely precursor charge states.

Extensive manual validation of phosphosites localization isomers was performed, including the use of site determining ions as tran-

sitions. Collision energies were optimized for each transition individually in an empirical way assisted by Skyline (Maclean et al.,

2010a). Instrument specific CE parameters were used as a starting point (CE = 0.03m/z + 2.905 for doubly charged precursors

and CE = 0.038m/z + 2.281 for precursor charges of three and higher) to scan through different normalized collision energy values

using a step size of one.

T-Loop Detection in Various Sample Types
Dried samples were reconstituted in 3 mL of 10% formic acid, containing 0.1x/mL iRT peptides. Injection volumes for all analyses were

kept at 2 mL. LC-MS analysis contained the following steps: Analytical column equilibration (3 mL 100%Buffer A at 600 bars) followed

by sample loading onto the column (loading volume 6 mL at 600 bars). Phosphopeptides were separated on a gradient from 2% to

25% B in 100 min, followed by a column washing step ramping up from 25% to 100% B in 5 min followed by 100% B for 15 min. To

avoid carryover and monitor LC performance at least 1 BSA run was scheduled after each analysis. Samples within one experiment

were analyzed in randomized order by defining and injection order based on random numbers prior to the analysis. Retention time

scheduling was dynamically adapted to reflect the instrument state prior to sample analysis. Low confidence survey runs applied low

transition numbers per peptide (�3) in short scheduling windows (4 min) applying long cycle times (4 s). High confidence quantifica-

tion runs applied less target peptides with a higher number of transitions per peptide (up to 7, including phosphosite localization spe-

cific ions), longer scheduling windows (6-10 min) and shorter cycle times (2.5-3 s).

Experimental Design and Replicates
Proof of concept experiments for Jurkat, PC9 and Hek293T cells were based on a single cell culture experiment (n = 1) as they did not

involve accurate quantification. Sample preparation was performed in at least 2 replicas to facilitate separation into survey and quan-

tification runs. Quantitative experiments were performed in triplicates (n = 3) on a cell culture level including lysis and tryptic digestion.

For each sample, two processing replicas were prepared on the level of phosphopeptide enrichment which were independently

analyzed by LC-MS resulting in n = 6 injection replicas per condition. Additional phosphopeptide enrichments were performed for

survey analyses when sufficient sample amount was available. To avoid missing condition-specific kinase activation states at least

one sample per condition was measured in survey mode. Specific experimental designs were as follows: for TNF-a stimulation in-

dependent cell culture of n = 3 with TNF-a stimulation and n = 3 without any stimulation were performed. Likewise, PDX-derived cells

were grown independently in triplicates (n = 3) for each of the 3 conditions respectively (n = 9). Analysis of the breast cancer needle

biopsy was performed from a single sample (n = 1). The sample was split into 2 processing replicates prior to phosphopeptide enrich-

ment to allow for analysis in survey and quantification mode.

SRM Data Assessment
All SRM experiments were analyzed using Skyline (MacLean et al., 2010b). Signal quality was assessed visually, primarily relying on

sequence similarity between heavy labeled standard peptides and endogenous peptides. Key points used were perfect co-elution of

both peptide forms in terms of retention time and peak shape in combination with a high similarity of the relative intensities of tran-

sitions found in the heavy and the endogenous peptides (rdotp > 0.9). Signals for endogenous peptide forms not matching these

criteria were excluded, unless the result indicated a clear on/off state between different conditions (RIPK1 and ERK4) in which

case noise levels were used as a quantitative readout.

Determining LOD and LOQ Values
LOD and LOQ values of selected peptides were determined using dilution series of stable isotope labeled peptides spiked into Jurkat

matrix samples. Jurkat cells were cultured, lysed and digested as described above. 200 mg of cell digest were enriched for
e4 Cell Systems 9, 366–374.e1–e5, October 23, 2019



phosphopeptide by Fe(III)-NTA and spiked with increasing amounts of the heavy isotope labeled phosphopeptide library (10 amol,

100 amol, 1 fmol, 5 fmol, 10, fmol, 50 fmol, 100 fmol). Samples for each quantity of heavy peptide spike-ins were prepared in trip-

licates. A subset of 44 heavy isotope labeled peptides were quantified in all samples by scheduled SRM using 3-7 transitions per

peptide. Summed areas under the curve of all transitions were used as quantitative readout as reported by Skyline. Peaks were as-

sessed visually, and representative noise area values were selected for spike-in amounts below the LOD. Linear regressions were

performed for each peptide individually per sample replicate as well as combined for all replicas. LOD and LOQ values were deter-

mined according to the following equations: LOD= 3Sa/b and LOQ = 10Sa/b using b as the sensitivity (slope of the linear regression of

all replicas combined) and Sa as the standard deviation of the intercept (determined for each regression individually) (Shrivastava and

Gupta, 2011). To avoid skewing of the linear regressions, for each peptide only the highest spike-in amount below the LOD was

included in the analysis.

Jurkat-Cells Shotgun Analysis
2 mg of cell digest from TNF-a treated Jurkat cell lines was fractionated on a high-pH (HpH) reversed-phase C18 column (Gemini 3

mm C18 110 Å, 1003 1.0 mm, Phenomenex) coupled to an Agilent 1100 series (Agilent Technologies) on a 60 min gradient. 67 frac-

tions of 1 min each were collected and concatenated into five pools as previously described (Batth et al., 2014). These were dried

down in vacuo and subjected to phosphopeptide enrichment as described above. DDA analysis was performed on a Q Exactive

HF (Thermo Scientific) coupled to an Easy-nLC 1000 (Proxeon, Odense, DK), configured as described above. All LC settings and

methods including analysis time and gradient were identical to the ones used during the SRM analysis. The mass spectrometer

was operated in data-dependent acquisition mode containing a survey scan from 375 to 1600m/z (resolution 60,000, max injection

time 20 ms, AGC target 3e6) acquired in profile mode. MS/MS spectra (HCD, 27% normalized collision energy at a target value of

50,000 ions, resolution 30,000) were recorded for the 12 most intense peaks using a 1.4m/z isolation window. Data was analyzed

by Maxquant (version 1.6.1.0) with the integrated Andromeda search engine. Trypsin was specified as enzyme and up to twomissed

cleavages were allowed. Cysteine carbamidomethylation was set as a fixed modification, while methionine oxidation and protein

N-term acetylation were set as variable modifications. Phosphorylation on serine, threonine and tyrosine was also selected as var-

iable modification. The mass tolerance was set to 4.5 ppm for precursor ions, and to 20 ppm (FTMS) for fragment ions. Peptide and

protein identification were set to 1% FDR, and the minimum score for modified peptides was set to 40.

Web-Based Kinase Activity Prediction
KEA2 (http://www.maayanlab.net/KEA2) was used to predict kinase activity from shotgun data using enrichment analysis (Lachmann

and Ma’ayan, 2009). Phosphosites detected by MaxQuant were used as data input. Enrichment analysis was performed using Liter-

ature Based Kinase-Substrate Library with Phosphosites option. NetworKIN analysis was performed on the same dataset (http://

netphorest.info) (Miller et al., 2008). In the subsequent data visualization, only the highest score detected per kinase was considered.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all SRM assays, the ratios between analyte and internal standard were used as quantitative readout. Unless otherwise specified

significance analysis was performed with MSstats (Chang et al., 2012). The analysis entailed log2-transformation of the intensity

values, followed by testing for abundance differences between different conditions using a linear-mixed effects model. An arbitrary

cutoff of p % 0.05 was considered significant. For individual bar plots quantitative peptide abundance were exported from Skyline

(normalized based on internal standards). Bars represent average and error bars represent standard deviation. Significance is indi-

cated according to the adjusted p-value output provided by MSstats.

DATA AND CODE AVAILABILITY

The datasets generated during this study are available at Peptide Atlas PASS01234 (http://www.peptideatlas.org/PASS/

PASS01234).
Cell Systems 9, 366–374.e1–e5, October 23, 2019 e5

http://www.maayanlab.net/KEA2
http://netphorest.info
http://netphorest.info
http://www.peptideatlas.org/PASS/PASS01234
http://www.peptideatlas.org/PASS/PASS01234

	High-Throughput Assessment of Kinome-wide Activation States
	Introduction
	Results
	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Cell Models
	Patients Samples

	Method Details
	TNF-α Stimulation and RIPK1 Inhibition
	RIPK1 Immunoblot Analysis
	PAR1 Activation of Pooled Platelets
	Sample Preparation and Phosphopeptide Enrichment
	LC-MS/MS Setup
	Spectral Library Generation
	SRM Assay Development
	T-Loop Detection in Various Sample Types
	Experimental Design and Replicates
	SRM Data Assessment
	Determining LOD and LOQ Values
	Jurkat-Cells Shotgun Analysis
	Web-Based Kinase Activity Prediction

	Quantification and Statistical Analysis
	Data and Code Availability



