
How Teachers Would Help Students to Improve Their Code
Hieke Keuning

Open University of the Netherlands
and Windesheim University of

Applied Sciences
hw.keuning@windesheim.nl

Bastiaan Heeren
Open University of the Netherlands

bastiaan.heeren@ou.nl

Johan Jeuring
Utrecht University and Open
University of the Netherlands

j.t.jeuring@uu.nl

ABSTRACT
Code quality has been receiving less attention than program cor-
rectness in both the practice of and research into programming
education.Writing poor quality codemight be a sign of carelessness,
or not fully understanding programming concepts and language
constructs. Teachers play an important role in addressing quality
issues, and encouraging students to write better code as early as
possible.

In this paper we explore to what extent teachers address code
quality in their teaching, which code quality issues they observe and
how they would help novices to improve their code. We presented
student code of low quality to 30 experienced teachers and asked
them which hints they would give and how the student should
improve the code step by step. We compare these hints to the
output of professional code quality tools.

Although most teachers gave similar hints on reducing the algo-
rithmic complexity and removing clutter, they gave varying subsets
of hints on other topics. We found a large variety in how they
would solve issues in code. We noticed that professional code qual-
ity tools do not point out the algorithmic complexity topics that
teachers mention. Finally, we give some general guidelines on how
to approach code improvement.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Software engineering education;

KEYWORDS
Programming education; code quality; refactoring

ACM Reference Format:
Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How Teachers
Would Help Students to Improve Their Code. In Innovation and Technology in
Computer Science Education (ITiCSE ’19), July 15–17, 2019, Aberdeen, Scotland
UK. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3304221.
3319780

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319780

1 INTRODUCTION
An increasing number of studies have focused on the quality of pro-
grams written by novices, as opposed to the correctness of student
programs, which has had quite some attention in research the past
decades [7, 16]. These studies show that student programs contain
a substantial amount of various quality issues, which often remain
unsolved [8, 11, 15]. While there has not been much research into
the reasons why quality issues remain unsolved, one can imagine
that students are satisfied once their solutions pass all tests. They
might not even be aware of quality aspects such as maintainability,
performance and testability, or simply do not know how to satisfy
them. Although a wealth of tools exists to analyse and refactor
code, they are often not targeted at novices. Therefore, teachers
play an important role in raising awareness of quality issues and
encouraging students to improve functionally correct code.

There is little information on how to support students with
improving the quality of their code, andwhat teachers consider to be
a high-quality program.We conducted a study inwhichwe collected
this knowledge from experts. We asked 30 experienced educators
who teach programming how they perceive the role of code quality
in their courses. We showed them a number of functionally correct
programs that have several issues related to quality, and asked them
which hints they would give to help improve the program. We also
asked them to describe the steps they would want the student to
take to refactor the program into an improved version.

This paper (1) gives insight into how teachers assess the quality
of novice programs, (2) shows how their hints compare to feed-
back generated by tools, (3) analyses how teachers would rewrite
poor student code, and (4) describes how they would approach this
rewriting in a stepwise way. These insights can be used to improve
the development of courses and tools.

Section 2 gives some background and discusses related work.
Section 3 describes the research questions, and how we collected
and analysed the data. Section 4 shows the results for each research
question, which are discussed in Section 5. Section 6 concludes and
describes future work.

2 BACKGROUND AND RELATEDWORK
This section establishes the meaning of central terms used in this
paper and summarizes related work on code quality in education.

2.1 Code quality terms and definitions
Code quality deals with the directly observable properties of source
code, such as algorithmic aspects (flow, expressions, language con-
structs) and structure (decomposition, modularization). Some exam-
ples of code quality issues are (1) duplicated code, (2) an expression
that could be shortened, and (3) unnecessary conditional checks.

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

119

https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3304221.3319780

Although layout and commenting are certainly indicators of code
quality, these aspects are beyond the scope of our study.

Fowler [10] uses the term code smells to describe characteristics
in code that might indicate that something is wrong with the design
of functionally correct code, which can have an impact on its quality.
In the long term, low quality code may affect software quality
attributes such as maintainability, performance and security. There
are many tools available (e.g. PMD, SonarQube, Resharper, linters)
to automatically detect quality issues and code smells in a program.

Code refactoring is improving code step by step while preserving
its functionality. The well-known work by Fowler [10] describes a
collection of refactorings, mainly focused on the structure of the
code. Code Complete [13], a well-known handbook for software
construction, describes refactorings on multiple levels: data-level
(e.g. inline an expression), statement-level (e.g. use return instead
of a loop control variable), routine-level (e.g. extract method), class
implementation, class interface and system-level. Some IDEs offer
support for refactorings, such as renaming variables and extracting
methods. These IDEs execute a refactoring in a single step, which
would not give novices much insight into how refactoring works.

An ITiCSE working group [5] investigated which quality aspects
are considered important by teachers, students and developers. In
our study we zoom in on how teachers assess the quality of student
code, focussing on data-, statement- and routine-level refactorings,
which are most relevant for the programs that beginners write.

2.2 Code quality in education
Multiple studies have investigated the quality of student programs.
Pettit et al. [15] analysed submissions to an automated assessment
system and found that several complexity metrics increased with
every submission. Keuning et al. [11] detected many quality issues
in over 2 million student programs, which were hardly ever fixed.
Whether the student used a quality tool or not did not decrease
the amount of issues. Breuker et al. [6] found no clear quality
improvement between the code of first- and second-year students.
De Ruvo et al. [8] investigated a set of 19.000 code submissions
on 16 semantic style indicators, which address small issues such
as unnecessary return statements, and too complex if-statements.
They found instances in both code of novices and more experienced
students. Luxton-Reilly et al. [12] investigated differences between
correct solutions to programming exercises, identifying variation
in structure, syntax and presentation. The authors found that even
for simple exercises there are numerous variations in structure, and
in some instances the teacher’s solution was not the most popular
one among students.

Although professional code quality analysers and refactoring
tools are being used in education (e.g. [14]), there are also some
tools designed specifically for education that give feedback on code
quality, such as Style++ [2], FrenchPress [3], and AutoStyle [20].
AutoStyle gives stepwise feedback on how to improve the style of
correct programs, based on historical student data.

Educators have designed several projects that teach students
about refactoring, usually for more advanced students [1, 9, 17, 19].
Experienced educators studied the quality of object-oriented exam-
ples in Java textbooks [4]. They found several issues, in particular
related to object-oriented thinking.

3 METHOD
The research questions this study addresses are:
RQ1 To what extent do teachers address code quality in their

programming courses?
RQ2 What kind of hints related to code quality do teachers give

to students, and how do these hints compare to the output
of code quality tools?

RQ3 Which (stepwise) approach do teachers suggest to help stu-
dents improve their programs, and what does the final im-
proved program look like?

3.1 Study design
We designed a questionnaire1 in which participants answer five
questions about themselves and four short questions on the role
of code quality. Next, we give our definition and scope of code
quality and present three student programs of poor quality (see
Section 3.1.1). We ask (1) how they would assess the program, (2)
which hints they would give, and (3) how they would want the
student to improve the program step by step, by typing the code
after each step. We tested the questionnaire with a teacher who
is not involved in this research, and adjusted the questionnaire
according to his feedback.

We invited university teachers with at least two years of experi-
ence in teaching CS/programming-related courses to participate in
our study. We did not ask professional programmers, because they
do not necessarily have experience with teaching programming.
We sent our invitation to 66 teachers from various institutes and
countries, and asked them to forward the invitation to colleagues
and other acquainted teachers.

3.1.1 Programs. The first exercise was taken from another study,
including the most popular student solution (see Program 1) [12].
Its description is: ‘Implement the sumValues method, which adds up
all numbers from the array parameter, or only the positive numbers
if the positivesOnly boolean parameter is set to true.’

We designed the second exercise ourselves: ‘Write the code for
the method unevenSum. This method should return the sum of
the numbers at an uneven index in the array that is passed as a
parameter, until the number -1 is seen at an uneven index.’ We
collected 78 solutions from an institution one of us works at. We
composed the first solution (Program 2a) by mixing a number of
actual student solutions. Program 2b is an actual correct student
solution (with variable names translated into English).

We ran three well-known static analysis tools on the three pro-
grams: PMD with the full set of rules, Checkstyle, and SonarLint2
with default checks and full checks. Because Checkstyle always
reported a subset of the PMD and/or SonarLint messages (besides
layout), we omit Checkstyle messages from this paper.

3.2 Data analysis
We analysed the answers to the open question on which hints
a teacher would give both qualitatively and quantitatively. We la-
belled the hint topics using an open coding method, and categorized

1The questionnaire can be found at www.hkeuning.nl/ImproveCode
2pmd.github.io/pmd-6.9.0, checkstyle.sourceforge.net (version 8.14), www.sonarlint.
org/eclipse (version 4)

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

120

www.hkeuning.nl/ImproveCode
pmd.github.io/pmd-6.9.0
checkstyle.sourceforge.net
www.sonarlint.org/eclipse
www.sonarlint.org/eclipse

0

5

10

15

20

Pay attention Assess

Yes, it is a major aspect

Yes, but it has a minor role

No

Figure 1: Responses to questions ‘Do you pay attention
to code quality while teaching programming to first- and
second-year students?’ and ‘Do you explicitly assess/grade
code quality aspects in programming assignments?’

them using the rubric by Stegeman et al. [18]. This rubric has been
developed for assessing student code quality, based on a model
with ten criteria. We assigned each topic to one of the four criteria
that deal with algorithms and structure, which are flow (nesting,
code duplication), idiom (choice of control structures, reusing li-
brary functions), expressions (complexity, suitability data types)
and decomposition. The open coding was performed by one author.
Another author checked the labelling of a randomly chosen 10% of
the hints (with 89% agreement), and differences were discussed.

For the question on improving the program stepwise we per-
formed a series of actions on the submitted programs. First, we
removed steps in which the code was not changed (possibly a copy-
paste issue). Next, because most participants probably did not use
a compiler, we corrected syntax errors such as missing brackets
and misspelled names, and converted to Java syntax (all given pro-
grams were written in Java, although we did not explicitly mention
this). We also corrected some other small errors that were clearly
unintentional. All programs were tested with a set of test cases. We
assigned each program to a cluster based on the control flow of
the program (loops, conditionals, branching and methods), because
control flow shows the main structure and complexity of a method
(the scope of the programs in our study). Clustering allows us to
investigate similarities and differences without being distracted by
details. We identified transformations as the add/edit/delete steps
between two adjacent program states in a sequence.

4 RESULTS
4.1 Background of teachers
In total, 30 participants took part in our study. All participants teach
programming and other CS-related courses in 3 different countries:
The Netherlands (27), Sweden (3) and China (1). The 28 participants
that reported their institute, teach at 15 different institutes: 10 in
The Netherlands, 4 in Sweden and 1 in China, with between 1 and
5 teachers per institute. A few teach at more than one institute
and country. The teachers have between 2 and 33 years of teaching
experience, with an average of 11.4 years, and a median of 9 years. A
total of 90% teach first year courses, 80% teach second year courses,
and 70% teach courses for students in their third year or higher.

4.2 Role of code quality (RQ1)
We asked teachers if code quality appears in the learning goals
of their first- and second-year programming courses, to which

0

5

10

15

20

25

30

Program 1 Program 2a Program 2b

Acceptable, does not need
to be improved

Acceptable, but could be
improved

Unacceptable, should be
improved

Figure 2: Responses to question ‘How would you assess this
solution in a formative situation (e.g. feedback during a lec-
ture or lab)?’ for all three programs.

23 replied with ‘yes’ and 7 with ‘no’. Figure 1 shows to what ex-
tent teachers address and assess code quality aspects. Code quality
clearly has a smaller role in assessment than in teaching.

A total of 11 out of 30 teachers do not advise or prescribe tools
that deal with code quality/refactoring to their students. The 19
that do advise or prescribe tools, mostly mention static analysis
tools (e.g. SonarQube, Checkstyle, linters) and IDE functionality or
their plugins (e.g. Resharper). To a minor extent testing and code
reviewing is mentioned. All tools mentioned are professional tools,
and not explicitly intended for education.

4.3 Program hints and steps (RQ2 and RQ3)
4.3.1 Program 1. Running PMD on Program 1 reports that the for
could be replaced by a foreach, and that unnecessary comparisons
in boolean expressions should be avoided. SonarLint only reports
on the equals true. Figure 2 shows how the teachers would assess
this solution in a formative situation. Most teachers (25) answered
‘acceptable, but could be improved’.

We asked the teachers to describe all hints they would give to
a student to improve this program. Table 1 shows all hint topics
and the number of mentions. For the issue that was pointed out the
most, the flow inside the loop, some participants focussed more on
the duplication, and others more on the complex if-structure.

Next, we asked the teachers how they would want the student to
edit (refactor) the program step by step. In total 3 teachers did not
provide any steps: 1 found the method specification itself problem-
atic, the others did not give a reason. The remaining 27 teachers
provided 2.8 steps on average, with a median of 3 (min 1, max 5)
and a total of 76 program states, of which 11 were incorrect.

Regarding the type of loop, 10 teachers transformed the for into
a foreach at various stages of the process, always as a single step
in which nothing else was done. As a last step, 2 teachers replaced
the loop by a functional style solution, calling a higher-level sum
function on the array. Teachers mentioning this approach mostly
said that they would only suggest it to more advanced students.

Regarding the flow in the loop, in 8 final programs the duplicated
sum increment was still present. Removing the duplication by merg-
ing the ifs into a single statement, was often done as an early step,
after removing the ==true. In 2 cases a continue was used to skip a
value that should not be added. However, we noticed merging the
ifs was problematic: all 11 incorrect programs contained a merging
mistake. Some of those mistakes were fixed in a next step.

We assigned each (intermediate) program to a cluster based on
its control flow, identifying 13 clusters. The final programs were

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

121

Program 1: Most popular solution to exercise 1.

1 int sumValues(int [] values ,

2 boolean positivesOnly) {

3 int sum = 0;

4 for (int i = 0;i < values.length;i++) {

5 if (positivesOnly == true) {

6 if (values[i] >= 0) {

7 sum += values[i];

8 }

9 }

10 else {

11 sum += values[i];

12 }

13 }

14 return sum;

15 }

Table 1: Hint topics for program 1, as reported by 30 teachers. Indented
topics are more specific.

Category Description Count
Expressions Remove equals true (line 5) 20

Do not add 0 to sum (line 6) 2
Flow Improve flow in loop 1

Improve nested ifs (line 5–12) 17
Remove duplicated sum += .. (line 7 and 11) 11

Idiom Change type of loop (line 4) 11
Use a higher-level function 3

Decomposition Move common code to method 2
positivesOnly check to method (line 5) 2

Other General 2
Misc. mentioned once (various categories) 5

Table 2: Correct end clusters for program 1.

Start:
for

if
if

else
return

12x:
for/foreach

if
return

3x:
for/foreach

if
if

else
return

2x:
for/foreach

if
continue

return

6x:
Others

distributed over 10 clusters; excluding 4 incorrect final programs,
we counted 9 clusters, as shown in Table 2.

4.3.2 Program 2a. PMD reports three ‘dataflow anomalies’ for the
total and stop variables in Program 2a. PMD considers this a
low-priority issue that might not be problematic. PMD also points
out equals false and the self-assignment. SonarLint with default
settings also reports on equals false and even gives two messages on
the self-assignment. With full checks, it mentions that the if-else if
(lines 7–11) should end with an else, and a constant should be used
for magic number 2.

The program contains a functional error regarding the stop con-
dition. We instructed participants to ignore this error when answer-
ing the questions. However, the first 10 participants did not see
this note and read that it was a correct solution. Figure 2 shows the
response to the question on formatively assessing the solution, to
which most teachers (23) answered it was unacceptable. The fact
that the solution was incorrect could have contributed to this score.

Table 3 shows the hint topics for this program. Teachers often
mentioned improving the complex flow in the loop, exiting from
the loop when the stop condition was met, changing the loop type
and removing clutter in the expressions.

Looking at the edit steps, 28 teachers provided 3.0 steps on av-
erage (min 1, max 5), with a median of 3 steps and a total of 83
program states. Two teachers did not provide any steps (they did
not know what to suggest or what a student would have to do). Of
the 83 program states, 8 were not functionally correct according
to either stop condition (-1 or negative). We excluded 1 of the 28
sequences from the analyses below because it had unclear steps.

Although we did not explicitly ask this, 15 teachers tried (some-
times unsuccessfully) to fix the functional error. Most of them (11)
started fixing in the first step; 3 of the others first removed clutter.

In general, almost all clutter (the else with self-assignment, the re-
dundant if) was removed by everyone mostly in the first or second
step. The ==false was mostly removed as part of another step.

The loop type was changed into a while 8 times at various stages
of the process, and 1 teacher replaced the loop by recursion. Almost
all participants changed the program to exit from the loop when
the stop condition was met: 5 used a break, 5 used a return, and a
majority of 14 added a stop condition to the loop header. Exiting
from the loop was also done at various stages. The stop variable
was eliminated from 20 sequences, and 7 kept it.

In total 20 clusters were identified, and the final programs were
in 12 clusters. Table 4 shows the 10 final clusters if we exclude the
5 incorrect final programs.

4.3.3 Program 2b. Running PMD on the body of Program 2b re-
ports multiple dataflow anomalies, and reports that the variable
number could be made ‘final’. SonarLint with full checks mentions
magic number 2 on line 7. Figure 2 shows the formative assessment.

The hint topics for this program are shown in Table 5. The main
topics were exiting from the loop when the stop condition is met,
improving the complex flow in the loop, removing the duplicated
increment, and replacing the foreach by another type of loop.

For the steps, 26 teachers provided 2.9 steps on average (min 1,
max 5), with a median of 3 steps and a total of 76 program states.
Of the 4 teachers that did not provide steps, 2 teachers advised that
the student should start over instead of rewriting the program. The
other 2 did not give a reason.

Teachers made multiple mistakes rewriting this program: of
the 76 program states, 21 functionally incorrect programs were
created by 10 teachers. The majority of the mistakes were related
to incorrect indexing (not looping through only the odd indices).
This mistake was often made in a step that also transformed the
foreach into a for. We excluded 2 sequences from the analyses below
because they had unclear steps, leaving 24 valid sequences.

Although in 2a the for-loop was mostly kept, followed by a few
while-loops, in 2b we only counted 9 for-loops and 2 while-loops.
The foreach was kept 13 times. Transforming the foreach into a
for was mostly done in the first step, transforming to while was
always done after a transformation into a for. Of the 11 that used a
for or while, 6 skipped the even indices by incrementing the index

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

122

Program 2a: Solution to exercise 2.

1 int unevenSum(int [] array) {

2 int total = 0;

3 boolean stop = false;
4
5 for (int i = 1;i < array.length;i = i + 2) {

6 if (stop == false) {

7 if (array[i] >= 0) {

8 total += array[i];

9 } else if (array[i] < 0) {

10 stop = true;
11 }

12 }

13 else {

14 total = total;

15 }

16 }

17 return total;

18 }

Table 3: Hint topics for program 2a.

Category Description Count
Expressions Remove self assignment (line 14) 12

Remove equals false (line 6) 7
Use compound operator += (line 5) 2

Flow Exit from loop when done 20
Improve flow in loop 6
Remove redundant if (line 9) 10
Remove unnecessary else (line 13–15) 7
Reverse if-else (line 6–15) 2

Idiom Change type of loop (line 5) 8
Other Fix functional error stop condition 13

General hints 9
Add tests 3
Misc. mentioned once (various categories) 7

by 2. For the remaining, 14 kept the modulo check, 2 introduced a
boolean that switched between true and false, and 2 made a mistake.

Exiting from the loop was solved rather differently than in pro-
gram 2a: more teachers used a break (10 vs. 5) and fewer teachers
(6 vs. 14) added a stop condition to the loop header. This step was
usually done somewhat later in the sequence.

All but 1 teacher removed the duplicated increment, mostly in
an early step. Sometimes this was done in 2 steps: first moving the
increment outside the if-else, followed by reversing the if-else and
removing the then empty else. Transforming the foreach into a for
also eliminates the duplication by moving the increment to the loop
header.

Variables were renamed in a few cases: 4 renamed answer to sum
or total, and value was occasionally renamed to done or stop if
it was still used. Renaming was done at various stages.

In total we identified 31 clusters, and the final programs were in
14 clusters. Excluding 8 buggy final programs, we counted 11 clus-
ters, as shown in Table 4. We would expect that the final programs
after improving 2a match those of 2b (the error from 2a does not
have to affect the cluster). However, only 5 participants ended in
the same cluster for program 2a and 2b.

5 DISCUSSION
In this section we answer the research questions and discuss the
results in more depth.

RQ1. The results of RQ1 show that while code quality is certainly
an important topic for most teachers, its role is smaller in the
summative assessment of student code.

RQ2. Based on teacher feedback on three low-quality implemen-
tations of simple methods, the hints that teachers would give deal
with improving control flow, choosing representative names, using
suitable language constructs, removing clutter, and optimising the
algorithm. Although some hint topics are mentioned by a major-
ity, other topics are only mentioned by much smaller subgroups,
implying that teachers do not consider the same things important.
This finding contradicts Nutbrown and Higgins’ claim that their
assessors were in agreement on assessment criteria [14].

Table 4: Correct end clusters for program 2a and 2b.

Program 2a (n=22)
Start:
for

if
if
else

if
else

return

6x:
for/while
return

4x:
for/while

if
else

return

2x:
for

if
else
break

return

2x:
for

if
return

else
return

2x:
for

if
else

return
return

2x:
for

if
break

return

4x:
Others

Program 2b (n=16)
Start:
for

if
else

if
if

return

4x:
foreach/for

if
if

break
return

2x:
foreach/for

if
if
if

return

2x:
for/while
return

8x:
Others

Regarding the form of the feedback, we noticed several aspects.
Hints were often formulated as a question, such as ‘Is there any
code duplication that you could remove?’ The amount of detail
considering why something should be improved varied: for trans-
forming a for into a foreach, an example with more motivation is:
‘If we are traversing all values in the array, couldn’t we use another
type of loop?’ Other hints mention that the ‘other type of loop’ is a
foreach, and some even provide the syntax of the foreach header.

When comparing teacher hints to what professional tools report,
we see many differences. Tools do not give feedback with increasing
detail as teachers would do. Issues related to control flow and algo-
rithmic optimisations are not pointed out by tools. A main reason
is that tools do not know what the code they analyse should do.
Also, default tool settings usually have high thresholds, so minor
issues such as small duplicated blocks are usually not reported. Our

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

123

Program 2b: Actual student solution to exercise 2.

1 int unevenSum(int[] array) {

2 int answer = 0;

3 int index = 0;

4 boolean value = true;
5
6 for(int number: array) {

7 if(index % 2 == 0) {

8 index ++;

9 } else {

10 if(number == -1) {

11 value = false;
12 }

13 if(value) {

14 answer = answer + number;

15 }

16 index ++;

17 }

18 }

19 return answer;

20 }

findings support and complement the finding of Nutbrown and
Higgins that static analysis tools miss context-specific issues [14].

RQ3. While others have already shown the great diversity in
student solutions (e.g. [12]), our study also shows this diversity
in teacher solutions. Remarkable is the difference in final states
for program 2a and 2b that solve the same problem. Program 2b
was probably the most problematic, and this starting point could
have influenced the final program. For example, about half of the
teachers kept the foreach in 2b, but a foreach is never introduced
in 2a. Perhaps there are simply multiple ways that are equally fine,
however, not all hints seem to be addressed in the final programs for
program 2b. Finally, some teachers could have lost their focus for
the last program, which would also explain the number of mistakes.

The large variety in steps and final programs makes it difficult
to give an approach on how to improve a problematic program.
General guidelines we can extract from the data are: remove clutter
first, fix errors early, keep testing along theway (even teachersmake
mistakes), rename to meaningful names, and do larger refactorings
later one step at a time. Starting over could sometimes be advisable.
However, learning why a program has flaws, and how to address
those flaws step by step could be a valuable learning experience.
We provide some examples of stepwise improvement sequences
with hints for the programs discussed in this paper online.3

If educators want to assess code quality, there should be agree-
ment on what a high-quality program is. Code quality should not be
a teacher’s personal preference. One could argue that quality is not
that important for novices, however, we argue that several issues
pointed out in the previous section are caused by misunderstanding
certain language constructs. Improving a solution may be a valuable
way of learning more about how a programming language works.
Although the issues mentioned in this paper are of a low level, and
the topic of ‘refactoring’ is mostly associated with restructuring
complex object-oriented software, we advise to start refactoring
early with the statement/method level, to the class level later in a
study program.

3www.hkeuning.nl/ImproveCode

Table 5: Hint topics for program 2b.

Category Description Count
Flow Exit from loop when done 14

Improve flow in loop (line 7–16) 5
Remove value variable 3
Reorder conditionals (line 7–16) 3
Improve flow in else (line 10–16) 2

Duplicated increment (line 8 and 16) 9
Skip even indices 6

Idiom Change type of loop (line 6) 14
Other General hints 9

Rename variable 7
Misc. mentioned once (various categories) 9

5.1 Threats to validity
Because we only discussed three programs, we cannot generalise
to all novice programs. However, the programs cover a broad set of
constructs, and in this study we particularly aimed to make code
quality, a potentially vague topic, more concrete by working with
actual code. Conducting interviews could give us higher-quality
data, but would not have given us insight into the diversity of the
responses. It would be an interesting next step to discuss the various
responses with the teachers to arrive at a more general view of
which hints to give and which steps to take.

This study does not consider the responses of students to hints.
A teacher would possibly adapt and give a more concrete hint
when a student does not understand the initial hint. This was even
mentioned by some participants in their responses. There might
also be some differences between the type of hints for absolute
beginners and second-year students.

6 CONCLUSION AND FUTUREWORK
This paper describes a study in which we asked teachers for their
opinion on the quality of student code and how they would help
students to improve it. While teachers find the topic of code qual-
ity important, they have different views on how to improve code.
Teachers mostly agree on issues related to reducing algorithmic
complexity and removing clutter, but they give different subsets of
hints. Professional code quality tools do not point out these algo-
rithmic complexity topics that teachers mention. We also discussed
the great diversity in the final programs, which is influenced by
the initial state of the code, and derived some general guidelines in
how to approach an improvement sequence.

In future work we intend to use our findings to build better
tools that help students improve the quality of their code. This
research also calls for more debate on what a high-quality solution
would look like for a novice. Experiments in the classroom with
students are required to further study howwe should learn students
to improve their code, to which this study contributes.

ACKNOWLEDGMENTS
This research is supported by the Netherlands Organisation for
Scientific Research (NWO), grant number 023.005.063.

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

124

www.hkeuning.nl/ImproveCode

REFERENCES
[1] Shamsa Abid, Hamid Abdul Basit, and Naveed Arshad. 2015. Reflections on

Teaching Refactoring: A Tale of Two Projects. In Proceedings of ITiCSE. 225–230.
https://doi.org/10.1145/2729094.2742617

[2] Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Jarvinen. 2004. Supporting
students in C++ programming courses with automatic program style assessment.
Journal of Information Technology Education: Research 3 (2004), 245–262.

[3] Hannah Blau and J. Eliot B. Moss. 2015. FrenchPress Gives Students Automated
Feedback on Java Program Flaws. In Proceedings of ITiCSE. 15–20. https://doi.
org/10.1145/2729094.2742622

[4] Jürgen Börstler, Marie Nordström, and James H Paterson. 2011. On the quality
of examples in introductory Java textbooks. ACM Transactions on Computing
Education (TOCE) 11, 1 (2011), 1–21. https://doi.org/10.1145/1921607.1921610

[5] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara
Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar.
2017. "I know it when I see it" Perceptions of Code Quality. In Proceedings of
ITiCSE, Working Group Reports. 70–85. https://doi.org/10.1145/3174781.3174785

[6] Dennis Breuker, Jan Derriks, and Jacob Brunekreef. 2011. Measuring Static
Quality of Student Code. In Proceedings of ITiCSE. 13–17. https://doi.org/10.1145/
1999747.1999754

[7] Neil CC Brown and Amjad Altadmri. 2017. Novice Java programming mistakes:
large-scale data vs. educator beliefs. ACM Transactions on Computing Education
(TOCE) 17, 2 (2017), 7. https://doi.org/10.1145/2994154

[8] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B. Rowe, and
Nasser Giacaman. 2018. Understanding Semantic Style by Analysing Student
Code. In Proceedings of the Australasian Computing Education Conference. 73–82.
https://doi.org/10.1145/3160489.3160500

[9] Serge Demeyer, Filip Van Rysselberghe, Tudor Girba, Jacek Ratzinger, Radu
Marinescu, Tom Mens, Bart Du Bois, Dirk Janssens, Stéphane Ducasse, Michele
Lanza, et al. 2005. The LAN-simulation: a refactoring teaching example. In
International Workshop on Principles of Software Evolution. IEEE, 123–131. https:
//doi.org/10.1109/IWPSE.2005.30

[10] Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[11] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality Issues
in Student Programs. In Proceedings of ITiCSE. 110–115. https://doi.org/10.1145/
3059009.3059061

[12] Andrew Luxton-Reilly, Paul Denny, Diana Kirk, Ewan Tempero, and Se-Young
Yu. 2013. On the Differences Between Correct Student Solutions. In Proceedings
of ITiCSE. 177–182. https://doi.org/10.1145/2462476.2462505

[13] Steve McConnell. 2004. Code Complete: A Practical Handbook of Software Con-
struction, Second Edition. Microsoft Press.

[14] Stephen Nutbrown and Colin Higgins. 2016. Static analysis of programming
exercises: Fairness, usefulness and a method for application. Computer Science
Education 26, 2-3 (2016), 104–128. https://doi.org/10.1080/08993408.2016.1179865

[15] Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck.
2015. An Empirical Study of Iterative Improvement in Programming Assignments.
In Proceedings of SIGCSE. 410–415. https://doi.org/10.1145/2676723.2677279

[16] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Transactions
on Computing Education (TOCE) 18, 1, Article 1 (2017), 1:1–1:24 pages. https:
//doi.org/10.1145/3077618

[17] Suzanne Smith, Sara Stoecklin, and Catharina Serino. 2006. An Innovative
Approach to Teaching Refactoring. In Proceedings of SIGCSE. 349–353. https:
//doi.org/10.1145/1121341.1121451

[18] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a rubric
for feedback on code quality in programming courses. In Proceedings of the Koli
Calling International Conference on Computing Education Research. ACM, 160–164.
https://doi.org/10.1145/2999541.2999555

[19] Sara Stoecklin, Suzanne Smith, and Catharina Serino. 2007. Teaching Students to
Build Well Formed Object-oriented Methods Through Refactoring. In Proceedings
of SIGCSE. 145–149. https://doi.org/10.1145/1227310.1227364

[20] Eliane S. Wiese, Michael Yen, Antares Chen, Lucas A. Santos, and Armando Fox.
2017. Teaching Students to Recognize and Implement Good Coding Style. In ACM
Conference on Learning @ Scale. 41–50. https://doi.org/10.1145/3051457.3051469

Session 2B: Programming ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

125

https://doi.org/10.1145/2729094.2742617
https://doi.org/10.1145/2729094.2742622
https://doi.org/10.1145/2729094.2742622
https://doi.org/10.1145/1921607.1921610
https://doi.org/10.1145/3174781.3174785
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/2994154
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1109/IWPSE.2005.30
https://doi.org/10.1109/IWPSE.2005.30
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/3059009.3059061
https://doi.org/10.1145/2462476.2462505
https://doi.org/10.1080/08993408.2016.1179865
https://doi.org/10.1145/2676723.2677279
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/1121341.1121451
https://doi.org/10.1145/1121341.1121451
https://doi.org/10.1145/2999541.2999555
https://doi.org/10.1145/1227310.1227364
https://doi.org/10.1145/3051457.3051469

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Code quality terms and definitions
	2.2 Code quality in education

	3 Method
	3.1 Study design
	3.2 Data analysis

	4 Results
	4.1 Background of teachers
	4.2 Role of code quality (RQ1)
	4.3 Program hints and steps (RQ2 and RQ3)

	5 Discussion
	5.1 Threats to validity

	6 Conclusion and future work
	Acknowledgments
	References

