On the Nature of Links between
Requirements and Architectures:

Case Studies on User Story Utilization in
Agile Development

S. Molenaar

S. Brinkkemper
A. Menkveld

T. Smudde

R. Blessinga
F. Dalpiaz

Technical Report UU-CS-2019-008
August 2019

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

On the Nature of Links between Requirements
and Architectures: Case Studies on User Story
Utilization in Agile Development

Sabine Molenaar, Sjaak Brinkkemper, Abel Menkveld, Thijs Smudde, Remmelt Blessinga, Fabiano Dalpiaz

Abstract—Communication between requirements engineers
and software architects is experienced as problematic. In this
paper we present the Requirements Engineering for Software
Architecture (RE4SA) model as a tool that supports the com-
munication between these two roles. In the RE4SA model,
requirements are expressed as epic stories and user stories,
which are linked to modules and features, respectively, as their
architectural counterparts. By applying the RE4SA model to a
multi-case study, we investigate the nature of the relationships
between the requirements and the architectural artifacts. Based
on the gained experience, we put forward nine hypotheses for
further research on the utilization of user stories in agile RE.

I. INTRODUCTION

Communication flaws within a development team are con-
sidered one of the most important issues in requirements
engineering (RE) and are sometimes identified as the main
cause for project failure, according to the NaPiRE project [1].
In a 2014 study, Smith and colleagues found that 47% of
unsuccessful projects failed due to poor requirements manage-
ment [2]. Similarly, volatile requirements have been called one
of the main issues in the software industry in recent history
[3], [4]. The ‘evil circle’ principle [5] states that problems
in the RE process do not remain isolated, but rather echo
throughout a development process. Other major contributors
to project failure include scope creep due to inadequate
requirements, poor communications within the project team or
among the stakeholders, and key internal stakeholders leaving
the project [6]. Finally, proper architecture documentation can
help prevent architectural drift and erosion, reduce costs and
improve software quality [7].

Nuseibeh recognized that requirements specification and
design cannot be separated due to their inter-dependencies
[8]. The Twin Peaks model describes how requirements and
architecture are defined concurrently, yet being separate spec-
ifications, with the former guiding the latter and the latter
constraining the former. The Reciprocal Twin Peaks extends
this work for agile development and explains why the syn-
ergy between requirements and artifacts matters. In short, a
development process has to manage a continuous flow of
requirements, as well as a continuously changing architecture
[9]. Consistency between the two helps prevent misunder-
standings in the development team. However, realizing this
consistency should not burden the involved stakeholders with
excessive work as the improvement in communication is meant
to prevent incorrect implementations, rework and wasting time,
money and potential other resources. Therefore, tools are

needed to achieve consistency between the artifacts. Software
architecture demands good requirements engineering, which
can only be guaranteed if proper communication exists.

While Nuseibeh and Lucassen identified challenges and
explained how RE and SA can support each other, they did not
provide any specific approaches for tackling these challenges.
As a remedy, we present explicit concepts and relationships
that can be utilized to link requirements and architectures.

The remainder of this paper is structured as follows. In Sec-
tion II, we present the RE4ASA model, alongside its theoretical
background, rationale and objectives. Subsequently, we discuss
the feasibility and applicability in Section III by means of a
multi-case study. This section also explains how the model
can be applied, our main findings and the observed benefits.
The empirical work serves as the basis for us to draw nine
hypotheses that will guide future work (Section 1V). Finally,
Section V summarizes our contribution and discusses the main
challenges we have identified.

II. THE RE4SA MODEL

In an attempt to facilitate good communication within the
development team, we propose the Requirements Engineer-
ing for Software Architecture (RE4SA) model, visualized in
Fig. 1. RE4SA was assembled on the basis of tight collabora-
tion with industrial partners in the software products domain,
and it combines artifacts (like user stories and features) that
we found often employed in their work practices.

i O O
When... H I —
Iwant... Epic story <:i(> Module = :
50 that... ! —

! @ o
Asa.. :
T want to... User story < ﬁ > Feature
(so that...) :

Requirements Software
Engineering Architecture

Fig. 1. The Requirements Engineering for Software Architecture model.

A. Concept

Similar to the Twin Peaks model, the RE4SA model
links the RE process of a software product to its Software
Architecture (SA). More specifically, it describes the links
between Epic Stories (ESs) [10] and User Stories (USs) [11]
in the requirements and modules and features in the func-
tional architecture [12], respectively. Essentially, the problem
space, which describes the requirements and their intended
behavior, is related to the solution space that defines how
intended behavior is implemented in a system and thus how
requirements are satisfied [13]. ESs can be used to describe the
modules in the architecture, while USs introduce more detail
by describing the features of a software product. We define a
functional architecture as a description of “the system by its
functional behavior and the interactions observable with the
environment” [12]. Examples of functional architectures are
illustrated in the top two levels of Fig. 4 and Fig. 5.

B. Illustration

As an example, consider a navigation app. Some of its
implemented features (white boxes) are visualized in Fig. 2.
An ES, consisting of the three parts problematic situation,

select car
set travel mode

select public trans.
Route
Planner

determine route

determine route show traffic impact‘

file route

file travel expense

Expense
Filing

calculate expense |

Fig. 2. Example of a feature diagram extension.

collect expenses

motivation and expected outcome, can be written to extend the
functionality of the app: “When I have to file for expenses to
my employer, I want to have all my routes and local expenses
registered, so that I can collect my expense data and minimize
effort for filing.” Using this ES it is possible to include the
“Expense Filing” module in the software architecture. Going
into the requirements process, the aforementioned ES can be
refined by the following two USs. “As a consultant, I want to
file my travel expenses, so that I have complete expense and
travel data with minimal effort”, using the verbs and nouns
of the US this results in the “file travel expense” feature,
which is part of the “Expense Filing” module. Subsequently,
“As a consultant, I want to collect my expenses of the past
month, so that I can get an overview of my monthly costs”
can also be added. In addition, the existing functionality of
the app needs to be extended in order to support these new
features. In its current form, the app does not keep track
of the user’s previous routes, which is necessary in order to

file the expenses. The following US can be added to remedy
this: “As a consultant, I want to file a route, so that I can
calculate the costs of that route for my employer”. The three
newly added features described by the previous ES and USs
are illustrated as gray boxes in Fig. 2. Features are not only
grouped based on their functionality, their naming can also
be utilized to determine their position. For instance, the “file
route” feature is part of the “determine route” composite
feature within the “Route Planner” module. The keyword here
is ‘route’. On the other hand, the architectural elements related
to the newly introduced ES all contain the word ‘expense’ or
a variation thereof. Figure 2 illustrates the way ESs and USs
can be transformed into functional architecture components
and also serves as a simple means to discuss the position of
the new functionality as well as the impact on the current
implementation of the system.

C. Expected Benefits

REA4SA is intended to improve communication between
product managers and software architects or product owners
through (1) simple communication means, (2) clear structural
guidelines, and (3) consistent domain terminology. The objec-
tive of the RE4SA model, however, is not limited to improving
communication. Gayer et al. argued for the need of dynamic
architecture creation. This architecture allows for traceability
in order to make software more maintainable, changeable and
sustainable [14]. By establishing a relationship between ESs
and modules and USs and features respectively, traceability
is supported, with little documentation and effort required.
The conflicts between architects and requirements engineers
has been the subject of research before, such as in the case
of the RADAR tool [15]. RADAR supports requirements and
architecture decision analysis in an attempt to reduce struggle
and miscommunication among stakeholders. As opposed to
designing a new modeling language and analysis approach,
we apply knowledge and techniques that already have a high
adoption in the RE4SA model, in order to minimize the need
for change and training in industry. USs, for instance, were
found to often be one of the requirements documents used
in agile methods [16]. The validity and applicability of the
RE4SA model are discussed based on three case studies,
presented in Section III.

III. CASE STUDIES: FIRST EXPERIENCES WITH RE4SA

To support the envisioned relevance and benefits argued in
the previous sections, we present an industrial multi-case study
that illustrates how RE4SA can be applied and that helps
us develop the model and formulate hypotheses for future
research. The three cases encompass different apps; while the
selection is based on industrial availability, all of them target
business consumers, and each studies a different use case of
RE4SA: (i) modeling requirements and architectures prior to
developing software, (ii) extending an existing product, and
(iii) recovering an architecture. Case study findings on RE4SA
are numbered and presented in bold.

A. Modeling for a Start-up

The first case is concerned with a software start-up in
the context of intelligent greenhouses. To support modeling
activities for the start-up’s software, the RE4SA model was
applied, which resulted in the formulation of 31 ESs and
96 USs. Based on the formulated RE artifacts, a functional
architecture was developed that consisted of 31 modules. Dur-
ing this activity, the start-up’s founder observed that Finding-
A.1: ES formulation leads to module identification. Prior to
development, the artifacts were discussed with the system’s
stakeholder to determine their value. Most importantly, it
became apparent that none of the artifacts alone provided
sufficient information to about the system to be developed.
However, when taken together, the artifacts sufficiently provide
a comprehensive overview, which provides evidence on the
synergies between RE and SA, leading to the finding F-
A.2: RE and SA artifacts shall be used in conjunction in a
synergistic fashion.

Furthermore, this case has produced additional insight into
how RE4SA should be applied to a development process.
Firstly, it is important to determine the level of abstraction
in terms of ESs and USs. Information to fully define the
abstraction level is lacking prior to development, so instead
it is important to distinguish between the ES and US level.
Moreover, an ES should categorize at least two USs, otherwise
the formulation of the ES is superfluous. This implies that if an
ES contains only one US, the ES is formulated on an incorrect
level of abstraction and should be reformulated to fit the US
template instead. This may seem trivial, but is crucial to the
structure of RE4SA given the levels of abstraction. Once this
distinction is established, ESs can be written, followed by USs.
F-A.3: the level of abstraction should be established prior to
developing the RE artifacts.

The ESs were found to be especially useful in the modeling
and subsequent naming of modules in the functional archi-
tecture. Names for modules could often be derived from the
nouns and verbs included in the ESs, which does not only
simplify the modeling process, but also facilitates linking RE
artifacts to the functional architecture, F-A.4: module names
can be derived from ESs. Likewise, the verbs and nouns
used to formulate USs can be adopted to name features (as
illustrated in Section II-B), F-A.5: feature names ought to be
derived from USs. The formulation of ESs is often functional
in nature, which lends itself to mapping them to a functional
architecture, while still allowing the requirements engineers
to work from a problem-oriented perspective. In addition
to designing modules, ESs can support the specification of
information flows between said modules too, as shown in
Table I.

The (problematic) situation, motivation and expected out-
come formulated in an ES can be utilized to determine the
input flow, module name and output flow respectively. F-
A.6: ESs provide naming suggestions for all elements in a
functional architecture: modules, input flows, and output flows.
An ES can be translated into functional architectural elements

TABLE 1
INFORMATION FLOWS AND MODULES FORMULATED BASED ON ESS.
. Module
Epic Story Input flow | Output flow

When using a neural network, I
want to gather and format data
continuously, so that the Al can
interpret the data.

Data Manager

sensor output,
weather report,
growth model

climate data

When there is new prediction
data available, I want to run it
through a trained neural network,
so that I can make yield
predictions.

Harvest Predictor

climate
data

prediction

When I have a yield prediction,

I want to plan the right course of
action, so that I can set the right
climate conditions.

Action Planner

prediction

instructions:
humidity,
light, CO2

When receiving a humidity
instruction, I want to determine

Humidity Action Management

ventilation on

a course of action, so that I can 'humldl'ty timer, pump
.1 nstruction .
control humidity systems. on timer
as illustrated in Fig. 3.
climate prediction
data Harvest
. —
Predictor
Problematic PR Expected
situation Motivation outcome

Fig. 3. ES to module translation in a functional architecture.

B. Extending a Software Product

The RE4SA model was also applied to a software company
that determines the value of real estate and wanted to extend
their software product with valuation analysis. The architec-
tural artifacts were limited to tacit knowledge repositories, so it
was unclear which existing modules and features were relevant
for creating the software extension. Therefore, it was necessary
to recover the functional architecture of the current system
manually. The existing modules (28) have been modeled as
feature diagrams, with 121 atomic features in total.

Extending the functional architecture with new modules
resulted in several findings. First, the clarity of the visual
representation was found to ease the communication between
product manager and technical lead through the use of explicit
architectural components. Second, the diagrams highlight
which modules the extension depends on to implement new
features. The development team confirmed that the functional
architecture was helpful in discussions among stakeholders,
leading to the finding F-B.1: the concepts in the RE4SA model
are suitable for functional architecture recovery.

Then, the RE4SA model was applied to establish a func-
tional architecture that satisfied the requirements of the soft-
ware product extension. These requirements were elicited by
the product manager, directly from customers of the software
product. 23 USs were created and subsequently categorized

in eight ESs. The functional architecture of the current sys-
tem, illustrated in Fig. 4 positions the extension on three
different levels of abstraction. These models identify parts

Nasation
hcceptance

Naluation

aluations. appraisers,

\Valuation and!
Portiolio
Montoring

\Custormer And)

ses
Regisiaton

Rea) Estate Valuaor

Fig. 4. Three-layered functional architecture of a real estate valuation tool.

the implemented system will be affected by the extension.
Furthermore, the required interactions (modeled as information
flows) with other modules are captured in the top level. The
functional architecture enables a clear focus for sprint planning
on developing well-defined components of the system and
stakeholder validation of the architecture. F-B.2: the functional
architecture allows sprint planning to focus on specific com-
ponents. Moreover, thanks to the separation of concerns that
RE4SA promotes, F-B.3: units of the software can be tested
individually and thereby promotes re-usability. Furthermore,
the functional architecture could be used to determine which
parts of the system are (not) affected by the software product
extension, F-B.4: the functional architecture has an appropriate
level of abstraction that enables predicting the impact of new
requirements on the existing system. Based on this evaluation
of the RE4SA model in practice, there appears to be F-B.5: a
1-to-1 mapping between ESs and modules, and between USs
and features.

C. Architecture Recovery of a Web Application

In a recent study, Tamburri and Kazman affirmed that “both
theory and practice suggests that maintaining good quality
software architectures is non-trivial” [17]. For web applica-
tions the problem may be even worse: proper documentation
is rare, because well-known software engineering practices
are seldom adopted by web developers and there is a high
employee turnover rate [18]. To improve the understanding of

these applications or systems, reverse engineering and system
visualization techniques have been proposed [18].

The RE4SA model was applied to recover a functional
architecture from the Graphical User Interface (GUI) of a web
application. The application, a tournament planner with nearly
25,000 lines of code, was modeled in a feature diagram using
the GUI as input for architecture recovery. Then, the website
hierarchy and the principles of the RE4ASA model were used
to group the 199 atomic features into eight modules. Each
module embodies a manageable and well-defined functionality
that can be developed relatively independently from other
modules [19]. Sub modules (21) were added for six modules
to further differentiate between features and to facilitate the
interpretation of the model by different stakeholders. The
created interactive visualization of the model, shown in Fig. 5,
was found by an interviewee at the company to help improve
the communication between the stakeholders by allowing them
to discuss specific components of the architecture, instead of
a list with discussion points. Moreover, there is no need for
all the stakeholders to understand the code. Therefore, we
could conclude that F-C.1: the layered architecture recovered
using the RE4SA model facilitates communication between
stakeholders.

ToumamenRemits | mah
Proceng e |

\ v \ s | w1\
NS\ ot \ o\, Maagement |\
\
\

B playing field

Fig. 5. Three-layered functional architecture of a web application, recovered
based on the GUL

During this case study, a crowdsourcing platform was used
for the elicitation of new requirements in the form of USs.
One user requested: “As an organizer I want to set a unique
start time of a playing field for each match day’’. The current
“set start time of playing field” feature does not allow this.
If this feature would be implemented, it would require two
new sub features (“set start time per day” and ‘“‘set overall

start time”) with an alternative relationship to the feature
above: exactly one of the sub features must be selected. F-
C.2: the relationship between USs and features facilitates the
positioning of new features in the functional architecture.

Mapping USs to features makes it easier to analyze which
parts of the architecture are affected by evolving requirements.
Furthermore, once the requirements have been mapped to the
architecture, their location in the architecture and relation to
the type of architectural component can support development
estimations of USs. For instance, USs that are linked to atomic
features were found to be relatively easy to implement by all
stakeholders, while USs that require a new sub module are
more complex and require more time to develop and imple-
ment. F-C.3: applying the RE4SA model facilitates impact
forecasting in the context of changing requirements. Although
no automation for creating and maintaining the traceability
between the requirements, architecture and code was used,
the case study shows how the RE4SA model can serve as a
basis for communication and for the further analysis on the
linguistic relationship between USs and features.

IV. HYPOTHESES

We have proposed a model that relates RE to SA in order
to improve communication between stakeholders and support
software development. The RE4SA model was proven to be
promising based on a multi-case study, however, coincidence is
still a factor and the relationships have not yet been sufficiently
investigated. For instance, the strength of the relationships and
their cardinalities are still unclear. Furthermore, the multi-case
study that was presented previously was conducted on a small
scale over a short period of time. To be able to accurately refine
the links, large scale and long term research are required. In
case of the latter, this could involve a study that examines
the design and maintenance phase of a software development
project, as opposed to one or the other. Moreover, we envision
additional purposes for the model as well.

Based on the insight gained during the multi-case study,
we have formulated nine hypotheses for future research in
categories structure, requirements, architecture, and develop-
ment process, presented in Table II. While the existence of
relationships between the artifacts was confirmed, the exact
nature of these relationships require further refinement as well
as their cardinalities. The hypothesized cardinalities on the
artifact structuring in the RE4SA model are shown in a meta-
model in Fig. 6.

We hypothesize that ESs and modules should contain two or
more USs and features respectively. If this rule is violated it is
likely that an incorrect level of abstraction is used. Secondly,
we expect that a US and a feature both belong to one ES or
module. Based on the quality framework designed for USs,
it is reasonable to assume that a US describes one feature,
since a US of sufficient quality should express a requirement
for exactly one feature [20]. Similarly, we expect an ES to
describe only one module. On the other hand, we hypothesize
that features and modules are described by one RE artifact,
as we expect that the abstraction level may be inaccurate if

TABLE II
HYPOTHESES FOR FUTURE RESEARCH.
ID | Hypothesis | Findings
Structure
Hi ESS and modules contain at least two USs or A3, C.1
eatures.
H2 There is a 1..1 relationship between ESs and Al A2,
) modules and USs and features. A.6, B.5
H3 USs and featurgs belong to exactly one ES or A3, C.1
module respectively.
Requirements
The application of the RE4SA model effectively
HA4 . . . B4,C3
supports impact analysis of new requirements.
HS There exists a linguistic relationship between A2, A4,
' names of RE and SA artifacts. AS
Architecture
The RE4SA model supports architecture recovery
H.6 s B.1
activities.
The application of the RE4SA model effectively
H.7 S C2
supports positioning of new features.
Development process
The RE4SA model can be utilized to guide and
HS8 | | . . B.3
support testing activities.
The RE4SA model uses appropriate levels of
abstraction so that it can be embedded in
H.9 L B.2
software product management activities, such as
release planning.

. describes p
Epic story Module
1.1 1.1
H.2
1.1 H.3 H.3 1.1
o> H.1 H.A a.*
describes p
User story Feature
1.1 H.2 1.1

Fig. 6. Meta-model of the relationships between the RE4SA concepts,
illustrating the hypotheses.

multiple RE artifacts are required to describe one module or
feature. The hypothesized cardinalities (H.1-H.3) will be tested
by conducting empirical research. Multiple case studies will
analyze real-world artifacts in order to precisely define the
links between the concepts.

A natural progression of this research is to analyze how
change impact can be supported, especially in the context of
impact forecasting and automated requirements traceability.
H.4 focuses on the maintenance and evolution phase of a
software product and will therefore require a fully imple-
mented system with existing development artifacts as a case
study. Likewise, we aim to investigate how to generate (partial)
artifacts to facilitate software development. We hypothesize
(H.5) that both these objectives can be achieved by developing
a complete picture of the artifact structures included in the
model, as well as by conducting research on linguistic analyses
of the artifacts and the potential discovery of linguistic patterns
and links. These structures will be investigated using linguistic
analysis techniques such as Part-of-Speech tagging and NLP.

Regarding architectures, functional architecture recovery was
performed twice during the multi-case study presented earlier.
However, this recovery was not the objective of the study
and was also not performed in a structured manner. In order
to properly test H.6, architecture recovery activities need to
be performed (following a rigorous method) on a real-life
case study and subsequently replicated using other cases.
The RE4SA model can also be applied to design a method
for software product design and development. This could be
effective for keeping the software architecture up to date, and
deciding where to position new features in the software. H.7
will be tested by examining existing systems that need to
be extended or updated through means of a case study. It is
expected that during all of these studies, artifacts will need to
be developed. Finally, case B and C have hinted at the RE4SA
model’s usefulness for release planning and guiding the testing
process, stating that parts of the software can be tested some-
what independently and can provide separate functionality. H.8
requires case studies to assess the applicability and feasibility
of utilizing the RE4SA model for testing activities, as well
as expert interviews or surveys to evaluate the usability and
reliability. Finally, H.9 will be tested based on additional
literature research to determine how the model can be utilized
and whether it uses the appropriate levels of abstraction, as
well as case studies to validate these applications.

V. CONCLUSION

In this study on the links between requirements and architec-
tures we propose a model with the objective to solve communi-
cation issues as well as supporting the software development
process, best illustrated by the RE4SA model. A multi-case
study was performed to verify the accuracy and applicability of
the model in various contexts. The cases have also shown that
the use of the model, and its underlying principles, supports
multiple activities, such as: determining the level of abstraction
for modeling the system, name derivations, identifying infor-
mation flows, recovery of functional architectures, modeling
extensions of an existing system, traceability between artifacts
and impact forecasting. The most important results are the
hypotheses for future research we formulated through the use
of the multi-case study.

A few challenges related to the RE4SA model need to
be addressed. Firstly, we need to study broader usage in
large projects, since it was only applied in smaller cases up
to this point. One of the main contributors to the expected
hesitance of practitioners is the availability of a software
architecture, more specifically, a functional architecture. On
the other hand, the principle does rely on existing concepts
that already have a wide adoption. As of yet we are not
familiar with how the model can or should be applied in
different development contexts. In similar fashion, there are no
guidelines on how to apply the model. By this we mean that
the starting point can vary and that the order of subsequent ac-
tivities should not be fixed, since the development team should
decide on the appropriate sequence of development activities.
Finally, the software development process is not finished after

eliciting requirements and designing the architecture. Future
work should also focus on whether the RE4SA model can
and should be extended in order to support more software
product management activities, such as the design of technical
architectures, feature programming, or release planning.

REFERENCES

[1] D. Méndez Ferndndez et al., “Naming the pain in requirements engi-
neering,” Empirical software engineering, vol. 22, no. 5, pp. 2298-2338,
2017.

[2] A. Smith, D. Bieg, and T. Cabrey, “PMI’s pulse of the profession®) in-
depth report: Requirements management—a core competency for project
and program success,” Project Management Institute, Newtown Square,
PA, 2014.

[3] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Communications of the ACM, vol. 31, no. 11,
pp. 1268-1288, 1988.

[4] D. Zowghi and N. Nurmuliani, “A study of the impact of requirements
volatility on software project performance,” in Ninth Asia-Pacific Soft-
ware Engineering Conference, 2002. 1EEE, 2002, pp. 3-11.

[5]1 T. Gilb and S. Finzi, Principles of software engineering management.
Addison-wesley Reading, MA, 1988, vol. 11.

[6] D. L. Hughes, Y. K. Dwivedi, N. P. Rana, and A. C. Simintiras, “Infor-
mation systems project failure—analysis of causal links using interpretive
structural modelling,” Production Planning & Control, vol. 27, no. 16,
pp. 1313-1333, 2016.

[7]1 C.C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S. Crouch,
E. Y. Nakagawa, C. Becker, and C. Carrillo, “Software sustainability:
Research and practice from a software architecture viewpoint,” Journal
of Systems and Software, vol. 138, pp. 174-188, 2018.

[8] B. Nuseibeh, “Weaving together requirements and architectures,” Com-
puter, vol. 34, no. 3, pp. 115-119, 2001.

[91 G. Lucassen, F. Dalpiaz, J. M. Van Der Werf, and S. Brinkkemper,

“Bridging the twin peaks: the case of the software industry,” in Proceed-

ings of the Fifth International Workshop on Twin Peaks of Requirements

and Architecture. 1EEE Press, 2015, pp. 24-28.

G. Lucassen, M. van de Keuken, F. Dalpiaz, S. Brinkkemper, G. W.

Sloof, and J. Schlingmann, “Jobs-to-be-done oriented requirements

engineering: a method for defining job stories,” in International Working

Conference on Requirements Engineering: Foundation for Software

Quality. Springer, 2018, pp. 227-243.

M. Cohn, User Stories Applied: for Agile Software Development.

wood City, CA, USA: Addison Wesley Professional, 2004.

S. Brinkkemper and S. Pachidi, “Functional architecture modeling for

the software product industry,” In: European Conference on Software

Architecture, pp. 198-213, 2010.

S. Apel and C. Kistner, “An overview of feature-oriented software

development.” Journal of Object Technology, vol. 8, no. 5, pp. 49-84,

2009.

S. Gayer, A. Herrmann, T. Keuler, M. Riebisch, and P. O. Antonino,

“Lightweight traceability for the agile architect,” Computer, vol. 49,

no. 5, pp. 64-71, 2016.

S. A. Busari and E. Letier, “Radar: A lightweight tool for requirements

and architecture decision analysis,” in Proceedings of the 39th Inter-

national Conference on Software Engineering. 1EEE Press, 2017, pp.

552-562.

I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A

systematic literature review on agile requirements engineering practices

and challenges,” Computers in human behavior, vol. 51, pp. 915-929,

2015.

D. A. Tamburri and R. Kazman, “General methods for software ar-

chitecture recovery: a potential approach and its evaluation,” Empirical

Software Engineering, vol. 23, no. 3, pp. 1457-1489, 2018.

A. E. Hassan and R. C. Holt, “Architecture recovery of web applica-

tions,” in Proceedings of the 24th International Conference on Software

Engineering. ACM, 2002, pp. 349-359.

D. L. Parnas, “On the criteria to be used in decomposing systems into

modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,

1972.

G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,

“Improving agile requirements: the quality user story framework and

tool,” Requirements Engineering, vol. 21, no. 3, pp. 383-403, 2016.

[10]

[11] Red-

[12]

[13]

[14]

[15]

[16

[17]

[18]

[19]

[20]

