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Microscopic theory of magnon-drag electron flow in ferromagnetic metals

Terufumi Yamaguchi and Hiroshi Kohno
Department of Physics, Nagoya University, Nagoya 464-8602, Japan

Rembert A. Duine
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

and Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 1 December 2018; revised manuscript received 5 March 2019; published 19 March 2019)

A temperature gradient applied to a ferromagnetic metal induces not only independent flows of electrons and
magnons but also drag currents because of their mutual interaction. In this paper, we present a microscopic
study of the electron flow induced by the drag due to magnons. The analysis is based on the s-d model, which
describes conduction electrons and magnons coupled via the s-d exchange interaction. Magnetic impurities are
introduced in the electron subsystem as a source of spin relaxation. The obtained magnon-drag electron current
is proportional to the entropy of magnons and to α − β (more precisely, to 1 − β/α), where α is the Gilbert
damping constant and β is the dissipative spin-transfer torque parameter. This result almost coincides with the
previous phenomenological result based on the magnonic spin-motive forces, and consists of spin-transfer and
momentum-transfer contributions, but with a slight disagreement in the former. The result is interpreted in terms
of the nonequilibrium spin chemical potential generated by nonequilibrium magnons.
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I. INTRODUCTION

Transport phenomena in ferromagnetic metals exhibit sur-
prisingly rich physics as unveiled by intensive studies in
spintronics. This is largely because they involve transport
of not only charge and heat but also spin angular momen-
tum. In the presence of magnetization textures, applying an
electric current induces magnetization dynamics because of
spin-transfer torques that the spin current of electrons ex-
erts on the magnetization [1,2]. In turn, a time-dependent
magnetization induces spin and charge currents of electrons
via spin-motive forces that are reciprocal to the spin-transfer
torques [3]. Even when the (equilibrium) magnetization is
uniform, its thermal/quantum fluctuations, i.e., spin waves
or magnons, can interact with electrons. Moreover, transport
through an inhomogeneous region induces nonequilibrium
spin accumulation, both in electrons and magnons, which then
induce diffusion spin currents. The concept of “spin chemical
potential” [4] and “magnon chemical potential” [5] have been
introduced to describe such effects.

One of the important effects in the interplay of electrons
and magnons in transport phenomena are drag effects. When
subjected to a temperature gradient, electrons and magnons
flow not only independently but also by dragging each
other. Thermoelectric measurements indicate the presence of
magnon-drag contributions in Fe [6], NiCu [7], NiFe [8],
and in Fe, Co, and Ni [9]. Theoretical studies include both
phenomenological [7,10,11] and microscopic [12] ones. In
particular, phenomenological studies based on the spin-motive
force picture [10,11] indicate the importance of the dissipative
β parameter, which stems from spin relaxation of electrons.
Microscopic treatment of spin-relaxation effects requires the
consideration of so-called vertex corrections, beyond the

simple self-energy (damping or scattering-time) effects, as
noted in the study of current-induced spin torque [13,14], but
such studies are not available yet for the drag effects. In a
related work, which studies spin torques due to magnons, a
careful treatment of the spin-relaxation effects revealed an
additional contribution not obtained in a phenomenological
analysis [15]. Therefore, one may expect an analogous situa-
tion also in magnon-drag transport phenomena.

In this paper, we present a microscopic analysis of
magnon-drag electric current (or electron flow) induced by
a temperature gradient. Using the s-d model that describes
conduction electrons interacting with magnons, we calculate
the electric current caused by magnons that are driven by
the temperature gradient. The temperature gradient is treated
by its mechanical equivalent, a fictitious gravitational field,
introduced by Luttinger [16]. The obtained result consists
of two terms, which may be interpreted as due to the spin-
transfer effect and the momentum-transfer effect, as in the
phenomenological theory [11]. However, as to the former
(spin-transfer effect), there is a quantitative difference, and
our result is proportional to α − β (or 1 − β/α), where α

is the Gilbert damping constant. It vanishes, and changes
sign, at α = β, which agrees with the intuitive notion that
the case α = β is very special as recognized in the stud-
ies of current-induced spin torques [2]. To the best of our
knowledge, the present result provides the first example that
this is also the case for the inverse effect, i.e., that the case
α = β is very special also for the magnetization-dynamics-
induced electron current. This may mostly be of conceptual
importance, but it will acquire a practical one if one can
determine the value of β/α from magnon-drag experiments.
We interpret the results in terms of the spin chemical potential
induced by magnons. In the course of our study, we give an
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argument that justifies Luttinger’s prescription by an explicit
calculation.

The organization of the paper is as follows. In Sec. II, we
describe the microscopic model and some calculational tools
such as Green’s functions. In Sec. III, we outline the micro-
scopic calculation of magnon-drag electron flow. The result
is discussed in terms of spin-motive force and spin chemical
potential. In Sec. IV, we revisit the phenomenological theory
based on the spin-motive force, and compare the result with
our microscopic result. In Sec. V, we give an alternative
analysis which “derives” the spin chemical potential. Details
of the microscopic calculations are presented in Appendices
A and B. In Appendix C, we reanalyze the phenomenological
theory in another way using the stochastic Landau-Lifshitz-
Gilbert equation.

II. MODEL

A. Hamiltonian

We consider a system consisting of conduction electrons
and magnons in a ferromagnetic metal with uniform equilib-
rium magnetization. The Hamiltonian is given by

H = H0
el + Hmag + Hsd , (1)

H0
el =

∫
dr

[
1

2m
(∂ic

†)(∂ic) + c†(Vimp − μ)c

]
, (2)

Hmag =
∑

q

ωqa†
qaq, (3)

Hsd = −Jsd

∫
drc†(S · σ)c, (4)

where c = t (c↑, c↓) and c† = (c†
↑, c†

↓) are annihilation and
creation operators of the electrons, aq and a†

q are those of
magnons, m and μ are the mass and the chemical potential
of the electrons, ωq = Jq2 + � is the magnon dispersion with
exchange stiffness J and energy gap �, S = Sn (|n| = 1)
is the localized spin with magnitude S, σ = (σ x, σ y, σ z ) are
Pauli matrices, and Jsd is the s-d exchange coupling constant.
We consider low enough temperature and assume S is con-
stant. Hereafter we use M ≡ Jsd S and n instead of S. For Vimp,
we consider both nonmagnetic and magnetic impurities,

Vimp(r) = ui

∑
i

δ(r − Ri ) + us

∑
j

S j · σδ(r − R′
j ), (5)

where S j is the impurity spin located at position R′
j . We

average over the impurity positions, Ri and R′
j , as usual, and

the impurity spin directions,

Sα
i Sβ

j = δi jδαβ ×
{

S2
⊥ (α = β = x, y),

S2
z (α = β = z).

(6)

The s-d exchange interaction describes the exchange-splitting
in the electron spectrum, and the electron-magnon scattering,

Hsd = −M
∫

drc†σ zc + Hel−mag, (7)

Hel−mag = M
∫

dr

[
1

s0
a†aσ̂ z −

√
2

s0
(aσ̂− + a†σ̂+)

]
, (8)

FIG. 1. (a) Self-energy of electrons, 	. (b) Self-energy of
magnons, 
. (c) Spin vertex �α renormalized by impurity-ladder
corrections. (d) Four-point vertex �σσ ′ , which we call the diffusion-
type vertex correction, or simply, the diffusion propagator. The
solid (wavy) lines represent electron (magnon) propagators, and the
dashed line with a cross represents impurity scattering.

where s0 = S/r3
0 is the spin density of the magnetization, r0

the lattice constant, σ̂ = c†σc, and σ̂± = (σ̂ x ± iσ̂ y)/2. We
consider electron-magnon interaction to be dominant over
magnon-impurity scattering, and neglect the latter. This is
motivated by the fact that in metals the Gilbert damping is
orders of magnitude larger than in insulators.

Thus the total Hamiltonian is given by

H = Hel + Hmag + Hel−mag, (9)

Hel =
∫

dr
[

1

2m
(∂ic

†)(∂ic) + c†(Vimp − μ)c − Mc†σ zc

]
.

(10)

B. Green’s function

The Green’s functions of electrons Gkσ (iεn) and magnons
Dq(iνl ) are given by

Gkσ (iεn) = 1

iεn + μ − k2/2m + σM − 	σ (iεn)
, (11)

Dq(iνl ) = 1

iνl − ωq − 
q(iνl )
, (12)

with Matsubara frequencies, εn = (2n + 1)πT and νl =
2π lT , and self-energies, 	σ (iεn) and 
q(iνl ), for the elec-
trons and magnons, respectively.

We assume the electron self-energy is dominated by im-
purity scattering and treat it in the Born approximation
[Fig. 1(a)]. Thus, 	R

σ (ε) = 	σ (ε + i0) = −iγσ , with

γσ = π (�1νσ + �2νσ̄ ) ≡ 1

2τσ

(13)

and

�1 = niu
2
i + nsu

2
s S2

z , �2 = 2nsu
2
s S2

⊥. (14)

Here, ni (ns) is the concentration of nonmagnetic (magnetic)
impurities, and νσ is the density of states of spin-σ electrons.
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The magnon self-energy comes from the electron-magnon
scattering [Fig. 1(b)]. Expanding with respect to the wave
vector q and the frequency ν of magnons, we write


q(ν + i0) = −
[
δS

S
+ i

α

z

]
ν + δJq2 + O(ν2, q4). (15)

Here, δS, δJ , and z ≡ S/(S + δS) are the renormalization
constants for spin, the exchange stiffness, and wave function,
respectively, of the magnons. Also, α is the Gilbert damping
constant calculated as [13]

α = πnsu
2
s

[
2S2

z ν↑ν↓ + S2
⊥(ν2

↑ + ν2
↓)

]
z/s0. (16)

Here and hereafter, we assume the s-d exchange coupling M
is much larger than the spin-relaxation rate [15].

As seen from Hel−mag [Eq. (8)], the natural expan-
sion parameter in the electron-magnon problem is s−1

0
(or S−1). In this paper, we focus on the leading con-
tributions, which are O(s−1

0 ). [As seen below, we need
two electron-magnon scattering vertices in the magnon-
drag process, giving ∼(s−1/2

0 )2 = s−1
0 .] Since δS and δJ are

O(s−1
0 ), we set z = 1 and δJ = 0 in the magnon Green’s

function.

III. MICROSCOPIC CALCULATION

A. Thermal linear-response theory

To treat the temperature gradient in the linear response
theory, we introduce Luttinger’s (fictitious) gravitational
potential ψ , which couples to the energy density h(r)
of the system [16]. The coupling is described by the
Hamiltonian

H′ =
∫

drh(r)ψ (r, t ). (17)

We consider the case ψ (r, t ) = ψQ,ωei(Q·r−ωt ), where Q and
ω are the wave vector and the frequency of ψ , and write the
linear response of a physical quantity A to ψ as

〈A〉ψω = −〈A; h(−Q)〉ω+i0ψQ,ω, (18)

where h(−Q) is the Fourier component of h(r). The response
function 〈A; B〉ω+i0 is obtained from

〈A; B〉iωλ
≡

∫ T −1

0
dτeiωλτ 〈Tτ A(τ )B〉eq (19)

by the analytic continuation, iωλ → ω + i0, where A and B
are arbitrary operators. Here, T is the temperature and 〈· · · 〉eq
represents the average in thermal equilibrium. Hereafter we
use 〈· · · 〉 instead of 〈· · · 〉eq for simplicity. Using the continuity
equation,

∂t h(r) + ∂i jQ
i = 0, (20)

which defines the heat-current density jQ
i , we rewrite Eq. (18)

as a linear response to (−∂iψ ) [17],

〈A〉ψω = Ki(ω + i0) − Ki(0)

iω

(
−∂iψ − ∂iT

T

)
Q
, (21)

Ki(iωλ) = 〈
A; jQ

i (−Q)
〉
iωλ

. (22)

Here, we introduced the temperature gradient ∂iT through the
combination −∂iψ − ∂iT/T . This is justified for operators
A of which the average vanishes naturally in the equilib-
rium state, where ∂iT/T + ∂iψ = 0 holds [16,17]. There-
fore, the response to (−∂iT/T ) is obtained as the response
to (−∂iψ ) [16].

B. Magnon-drag process

Specializing to the present model, Eq. (9), we find from
Eq. (20) that the heat-current density jQ

i consists of two parts,
jQ
i = jQ

el,i + jQ
mag, one for the electrons ( jQ

el,i) and one for
magnons,

jQ
mag,i = −J[ȧ†(∂ia) + (∂ia

†)ȧ], (23)

where ȧ = ∂t a.
In this paper, we are interested in the magnon-drag process,

which corresponds to taking the magnon heat-current density
jQ
mag,i for jQ

i in Eq. (22). As for A in Eq. (22), we focus on the
electron (number) current density,

jel,i = h̄

2mi
[c†(∂ic) − (∂ic

†)c]. (24)

Therefore, we consider

〈 jel,i〉drag = Ki j (ω + i0) − Ki j (0)

iω

(
−∂ jψ − ∂ jT

T

)
, (25)

Ki j (iωλ) = 〈
jel,i(Q); jQ

mag, j (−Q)
〉
iωλ

, (26)

i.e., the correlation function between the electron (num-
ber) current and the magnon heat current. Here jel,i(Q) and
jQ
mag, j (−Q) represent their respective Fourier components.

The combination −∂ jψ − ∂ jT/T in Eq. (25) indicates that the
current vanishes in the equilibrium state, in which −∂ jψ −
∂ jT/T = 0 (Einstein-Luttinger relation) holds. We will verify
this form by an explicit calculation in Secs. V A and V B.

The relevant magnon-drag processes are shown diagram-
matically in Fig. 2(a). These are the leading contribution with
respect to 1/s0, and expressed as

Ki j (iωλ) = 2M2

s0
T

∑
l,q

u j

{(
iνl + iωλ

2

)
Dq(iνl + iωλ)Dq(iνl )

− 1

2
[Dq(iνl + iωλ) + Dq(iνl )]

}
Ei,

(27)

where ui = 2Jqi is the magnon velocity, ωλ is the Matsubara
frequency of the external perturbation ψ , and we have set
Q = 0 for simplicity. The terms linear in Dq are “corrections”
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FIG. 2. Feynman diagrams for Ki j (iωλ) [Eq. (26)], which de-
scribe the magnon-drag processes. The solid (wavy) lines represent
the electron (magnon) Green’s functions. (a) Processes for Q = 0.
The gray triangles are defined in Fig. 1(c). (b) Additional processes
that contribute when Q �= 0. The gray rectangle (or trapezoid) repre-
sents the diffusion propagator �σσ ′ defined in Fig. 1(d). The diagrams
in (b) vanish for Q = 0, but contribute for finite Q and lead to
Eq. (57).

arising from the δ function in the relation [17]

〈Tτ a(τ )ȧ†〉 = −〈Tτ ȧ(τ )a†〉 = d

dτ
D(τ ) + δ(τ ). (28)

These terms, combined with the first term (∼DqDq) in
the curly brackets, lead to {· · · } = {ωq + 1

2 [
q(iνl + iωλ) +

q(iνl )]}DqDq. This amounts to making a replacement, iνl +
iωλ/2 → ωq, in the first term if the self-energies are ne-
glected.

The last factor Ei in Eq. (27) is the electron part coming
from the electron triangles in Fig. 2(a),

Ei = T
∑
n,k

vi[Gk↓(iεn + iωλ)�−
↓↑Gk−q,↑(iεn − iνl )

× �+
↑↓Gk↓(iεn) + Gk↑(iεn + iωλ)�+

↑↓

× Gk+q,↓(iεn + iνl + iωλ)�−
↓↑Gk↑(iεn)], (29)

where vi = ki/m is the electron velocity and �±
σσ ′’s are the

renormalized spin (σ±) vertices; see Appendix A for the defi-
nition. After the analytic continuations, iνl → ν and iωλ →
ω + i0, an expansion is made with respect to ω and/or ν.
From Eq. (25), we are primarily interested in the ω-linear
terms. The factor ω comes either from the magnon part or
from the electron part. Hence we write

Ki j (ω + i0) − Ki j (0)

� 2M2

s0

iω

2π

{ ∫
dν

(
−∂n

∂ν

)
ν

∑
q

u jD
R
q (ν)DA

q (ν)E (2)
i − 2

∫
dνn(ν)ν

∑
q

u j Im

[
DR

q (ν)DR
q (ν)

E (1)
i (ω) − E (1)

i (0)

−iω

]

− 1

2

∫
dν

(
−∂n

∂ν

) ∑
q

u j
[
DR

q (ν) + DA
q (ν)

]
E (2)

i + 2
∫

dνn(ν)
∑

q

u j Im

[
DR

q (ν)
E (1)

i (ω) − E (1)
i (0)

−iω

]}
, (30)

where n(ν) = (eν/kBT − 1)−1 is the Bose-Einstein distribution
function. The terms in the second line are the corrections men-
tioned above. E (1)

i is obtained from Ei by the analytic continua-
tion, i(νl + ωλ) → ν + ω + i0 and iνl → ν + i0, and E (2)

i by
i(νl + ωλ) → ν + ω + i0 and iνl → ν − i0. In the term with
E (2)

i , ω is picked up from the magnon part, whereas in the term
with E (1)

i , ω is obtained from the electron part.
At this point, it is worth noting that not only DRDA but also

DRDR appears in Eq. (30) for the pair of magnon propagators.
This is not surprising in diagrammatic calculations as being
done here, but seems incompatible with the spin-motive force
picture, in which there should be a causal relationship between
the magnetization dynamics and the resulting current (see
Sec. IV).

We retain low-order terms with respect to ν, which is
justified because the magnon energy ν is typically small
compared to the electron Fermi energy. Deferring the details
to Appendix B, the electron part has been calculated as

E (2)
i = 1

(2M )2

σ↑ − σ↓
e2

{2βelν − iω(1 + iβel )}qi, (31)

E (1)
i � 1

(2M )2

σ↑ − σ↓
e2

(−iωqi ) + E (1)
i (0), (32)

where σσ = e2(v2
Fσ /3)νσ τσ is the conductivity of electrons

with spin σ ,

βel = πnsu2
s

M

[(
S2

⊥ + S2
z

)
ν+ + P−1(S2

⊥ − S2
z

)
ν−

]
(33)

is the so-called β parameter that parametrizes the dissipative
corrections to the spin-transfer torque [13,14] and to the
Berry-phase spin-motive force [18,19]. We define ν± = ν↑ ±
ν↓ and P = (σ↑ − σ↓)/(σ↑ + σ↓). For the present purpose, we
can discard the ω-linear term in E (2)

i . It will be used in Sec. IV
when we discuss the spin-motive force.

The magnon part is calculated by using

1

2π

∫
dν

(
−∂n

∂ν

)
ν2

∑
q

uiq jD
R
q DA

q = 1

2α
TSmagδi j, (34)

1

π

∫
dνn(ν)ν

∑
q

uiq j Im
[(

DR
q

)2] = Emagδi j, (35)
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1

π

∫
dνn(ν)

∑
q

uiq j Im
[
DR

q

] = �magδi j, (36)

where Emag = ∑
q ωqn(ωq) is the energy density, �mag =

kBT
∑

q ln(1 − e−h̄ωq/kBT ) is the thermodynamic potential
density, and Smag = −∂�mag/∂T is the entropy density of
magnons. Thus the magnon-drag electron (number) current is
obtained as

〈 jel,i〉drag = − 1

2s0

σ↑ − σ↓
e2

[
Emag − βel

α
TSmag− �mag

]
(−∂iψ )

= − 1

2s0

σ↑ − σ↓
e2

(
1 − βel

α

)
TSmag(−∂iψ ), (37)

where we used �mag = Emag − TSmag. Note that �mag, which
arises as “corrections” here, turned the energy Emag into the
entropy TSmag, and the result depends on magnons only
through their entropy. This is the main result of this paper.

C. Result

A physical result is obtained by replacing ∂iψ by ∂iT/T ,

〈 jel〉drag = − 1

2s0

σ↑ − σ↓
e2

(
1 − βel

α

)
TSmag

(
−∇T

T

)
(38)

= − 1

2s0

σ↑ − σ↓
e2

(
1 − βel

α

)
∇�mag. (39)

In the second line, we noted Smag = −∂�mag/∂T and as-
sumed that �mag is position (r) dependent only through the
local temperature, T = T (r).

The obtained magnon-drag current, Eq. (39), is propor-
tional to σ↑ − σ↓ [20]. This indicates that the magnons exert
on the electrons a spin-dependent force,

Fσ = − σ

2s0

(
1 − βel

α

)
∇�mag, (40)

where σ = 1 or −1 depending on the electron spin projection,
σ =↑ or ↓. Some discussion will be given in Sec. IV in
relation to the spin-motive force.

Equation (40) has the form of a total gradient, suggest-
ing that it is of diffusive nature and is induced by a spin-
dependent, nonequilibrium chemical potential,

δμσ = σ

2s0

(
1 − βel

α

)
δ�mag, (41)

where δ�mag is the deviation of �mag from its thermal-
equilibrium value. In Sec. V B, we will give a further analysis
that supports this picture of the spin chemical potential.

IV. PHENOMENOLOGY BASED ON SPIN-MOTIVE FORCE

In this section, we revisit the phenomenology based on
the spin-motive force along the lines of Refs. [10,11], and
compare the result with the microscopic result. The physical
pictures that emerge from the microscopic study are also
discussed.

When the magnetization vector n varies in space and time,
it exerts a spin-dependent force, ±Fi, on electrons, where

Fi = h̄

2
[n · (ṅ × ∂in) − βṅ · ∂in]. (42)

This is called the spin-motive force. The first term is the
“Berry phase term” and the second term with a dimensionless
coefficient β is the dissipative correction, which we call the β

term [18,19,21]. (β is equal to βel [Eq. (33)], but we continue
to use these notations: βel for the microscopically calculated
one, and β for the phenomenologically introduced one.) These
effects are reciprocal to the current-induced spin torques; the
former is reciprocal to the spin-transfer torque, and the latter
to its dissipative correction.

Spin waves, or magnons, can also be the origin of the spin-
motive force. Although they are fluctuations, they will induce
a net electron current

〈 jel,i〉smf = σ↑ − σ↓
e2

〈Fi〉, (43)

if the average survives, 〈Fi〉 �= 0. This will contribute to the
magnon-drag electron current. Here we assume a uniformly
magnetized state at equilibrium, n|eq = ẑ, and consider small
fluctuations δn around it, such that n = ẑ + δn. With magnon
operators, {a, a†} = (s0/2)1/2(δnx ± iδny), we rewrite Fi as

Fi = i

2s0
[−ȧ†∂ia + (∂ia

†)ȧ] − β

2s0
[ȧ†∂ia + (∂ia

†)ȧ]. (44)

As noted previously [10,11], the second term is essentially
the magnon heat current jQ

mag,i [Eq. (23)]. Here we note that
the first term is expressed by the magnon energy, hmag =
i(a†ȧ − ȧ†a)/2, and the magnon current jmag,i = −iJ[a†∂ia −
(∂ia†)a]. Thus,

Fi = 1

2s0

{
∂ihmag + 1

2J

∂

∂t
jmag,i + β

J
jQ
mag,i

}
. (45)

Let us evaluate each term in Eq. (45) for a steady
state with a temperature gradient. Since the first term has
a spatial derivative ∂i, we evaluate it in the local equilib-
rium state as 〈hmag〉 = Emag(T ), which depends on r through
the local temperature T = T (r). This leads to ∂i〈hmag〉 =
(∂Emag/∂T )(∂iT ). The second term vanishes in the steady
state because of the overall time derivative. The third term
is evaluated as 〈 jQ

mag,i〉 = −κ∂iT with the magnon heat con-
ductivity κ . This is calculated using, e.g., the Kubo-Luttinger
formula as [22]

κ = 1

T

∫
dν

2π

(
−∂n

∂ν

)
ν2

∑
q

u2
xDR

q DA
q = J

α
Smag, (46)

where we used Eq. (34). This expression for κ in terms of
magnon entropy also follows from an intuitive argument.
Following Drude, and with a slight reformulation using a dis-
tribution function, one may express the magnon heat-current
density at position x as [23]

jQ
x (x) = 1

2

∑
q

uxωq[n(x − uxτ ) − n(x + uxτ )], (47)

where n(x) is the Bose distribution function defined with
a local temperature T (x), τ = (2αωq)−1 is the lifetime of
magnons, and the temperature gradient is assumed in the
x direction. The first term represents the energy flow
from the left region, and the second term from the right,
which are due to magnons that experienced their last col-
lision at x ± uxτ ; the factor 1/2 is there because half of

094425-5



YAMAGUCHI, KOHNO, AND DUINE PHYSICAL REVIEW B 99, 094425 (2019)

FIG. 3. Feynman diagrams for the electric current induced by
magnetization dynamics. Arrows in the electron lines (solid lines) are
suppressed for simplicity. (a) Nonlinear response to the (classical)
magnetization dynamics. The wavy lines represent the perturbations
due to (classical) magnetization. Because of causality (retarded
response), the incoming Matsubara frequencies should satisfy the
conditions νl + ωλ > 0 and −νl > 0 [25]. (b) Part of the diagram of
the present magnon-drag process (Fig. 2). The wavy lines represent
(quantum) magnon propagators. Note that the flow of the Matsubara
frequency in the lower magnon line is reversed compared to (a).
The same causality relation as (a) leads to the analytic continua-
tion D(iνl + iωλ)D(iνl ) → DR(ν + ω)DA(ν ) for the pair of magnon
propagators, and this is associated with E (2)

i given by Eq. (31).

magnons at x ± uxτ (namely, those with qx > 0 or qx <

0) propagate to x. Expanding as n(x − uxτ ) − n(x + uxτ ) �
−2uxτ (∂n/∂T )(∂T/∂x) and using Eq. (B16), one has

κ = 1

2α

∂

∂T

∑
q

u2
xn(ωq) = J

α
Smag, (48)

in agreement with Eq. (46).
Taken together, we obtain

〈Fi〉 = 1

2s0

{
−∂Emag

∂T
+ β

α
Smag

}
(−∂iT ). (49)

The same result has been obtained by other methods; see
Appendix C. Therefore, we may conclude that any (phe-
nomenological) theories starting from the spin-motive force
lead to Eq. (49). The first term is somewhat different from the
one obtained in Ref. [11], and gives a slight revision to it (see
Appendix C 3).

We now compare Eq. (49) with the microscopic result,
Eq. (38). One readily sees a disagreement in the first term;
namely, the entropy Smag appears in the microscopic result
instead of ∂Emag/∂T in the phenomenological result.

To identify the origin of the difference, let us look at
the Feynman diagram. To calculate the spin-motive force,
one calculates the electric current induced by magnetization
dynamics [18]. This can be done by considering small fluc-
tuations δn around the uniform magnetization, and looking
at the second-order (nonlinear) response to δn [24]. This is
expressed diagrammatically in Fig. 3(a), and the response
function is given by E (2) in Eq. (31). Therefore, the induced
current is calculated as

〈 jel,i〉 = 2M2

s0
E (2)

i aq,ν+ωa∗
−q,−ν, (50)

where {a, a∗} is a classical (c-number) counterpart of {a, a†}
defined just above Eq. (44), and the subscripts indicate their
wave vector and frequency. This leads to Eq. (44), hence to
Eq. (42). Therefore, the spin-motive force is described by
the ν- and ω-linear terms in E (2)

i . The appearance of E (2)
i

(originally from the magnon-drag calculation) in the nonlinear

response here is due to the matching of the causality relation-
ship; see Fig. 3(b) and the caption thereof.

On the other hand, in the present magnon-drag process,
the first term comes from the ω-linear term in E (1)

i , not
from the ω-linear term in E (2)

i ; the latter is irrelevant for the
magnon-drag DC electron current. Since E (1)

i is accompanied
by DRDR (not DRDA), the physical interpretation of this term
(in the magnon-drag current) does not necessarily rely on the
causal relationship to the magnetization dynamics. In fact,
the spin-transfer process may be understood to occur in the
quasi- or local-equilibrium situation, as will be discussed in
the paragraph containing Eq. (64).

V. SPIN CHEMICAL POTENTIAL

In this section, we give an alternative argument that intro-
duces a spin chemical potential. This is intended to comple-
ment the heuristic discussion in Sec. III C.

Our strategy here is as follows. In the microscopic the-
ory, statistical quantities such as the chemical potential and
temperature, which characterize the distribution function, can-
not be handled easily. Instead, we can disturb the system
by “mechanical” perturbations (which are described by the
Hamiltonian and thus controllable theoretically) and then ob-
serve the result. By examining how the distribution function is
deformed, we may read off the change of statistical parameters
such as chemical potential and temperature. For example, an
inhomogeneous potential (or electric field) induces a density
modulation. This effect is described by an inhomogeneous
change of chemical potential, and appears in the current as
a diffusion current [21].

In the following, we examine the possibility that the
magnon-drag effects are described in a similar manner. We
first illustrate the procedure using a simple model (Sec. V A),
and then consider the present problem of magnon-drag pro-
cess (Sec. V B). In both cases, we take the ψ field as a
mechanical perturbation.

A. Electron-only process: Effective temperature

We begin by reviewing the relation between the gravita-
tional field ∂iψ and temperature gradient, ∂iT . For simplicity,
we consider a (spin-unpolarized) free electron system subject
to nonmagnetic impurities, forgetting about magnons and
even the magnetization (exchange splitting). We calculate the
electron density δnel and current density 〈 jel,i〉ψω induced by
the disturbance ψ having finite Q (and ω). In this case, it
is essential to consider the diffusion-type vertex corrections
[Fig. 1(d)], hence the diagrams shown in Fig. 4. The results
are given by

δnel =
∫

dε

(
−∂ f

∂ε

)
εη(ε), (51)

〈 jel,i〉ψω =
∫

dε

(
−∂ f

∂ε

)
εσ (ε)(−∂iψ )Q

−
∫

dε

(
−∂ f

∂ε

)
εD(ε)[∂iη(ε)]Q, (52)
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FIG. 4. Feynman diagrams for the electron density δnel [Eq. (51)]
and the current density jel,i [Eq. (52)] induced by ∇T . hel and jQ

el,i

are the Hamiltonian density and heat current density, respectively,
of the conduction electrons. The shaded rectangle represents the
diffusion-type ladder vertex correction due to impurities [Fig. 1(d)],
which describes diffusive motion of the electrons.

where

η(ε) = − ν(ε)
D(ε)Q2

D(ε)Q2 − iω
ψQ (53)

describes “diffusive corrections” which arise since Q is
finite. We defined e2σ (ε) = e2(v2

F/3)ν(ε)τ (ε) and D(ε) =
(v2

F/3)τ (ε), which are the Boltzmann conductivity and the dif-
fusion constant, respectively, evaluated at energy ε (measured
from the chemical potential μ).

If we consider a local modification of temperature, T →
T + δT (r), the electron density changes by

δnel =
∫

dεν(ε)[ f (ε; T + δT ) − f (ε; T )]

� δT

T

∫
dεν(ε)ε

(
−∂ f

∂ε

)
. (54)

In the “slow” limit ω → 0, Eq. (51) may be compared with
Eq. (54), and we may identify the effective temperature
change δTQ by

− lim
ω→0

D(ε)Q2

D(ε)Q2 − iω
ψQ = δTQ

T
. (55)

This is nothing but the Einstein-Luttinger relation, ψQ +
δTQ/T = 0, that holds in the equilibrium state (under a static
potential, ψQ). Using this δTQ, we may rewrite Eq. (52) as

〈 jel,i〉ψω =
∫

dε

(
−∂ f

∂ε

)
εσ (ε)(−∂iψ )Q

−
∫

dε

(
−∂ f

∂ε

)
εD(ε)ν(ε)

(
−∂iT

T

)
Q

=
∫

dε

(
−∂ f

∂ε

)
εσ (ε)

(
−∂iψ − ∂iT

T

)
Q
. (56)

This shows the “equivalence” of the mechanical force ∂iψ and
the statistical force ∂iT/T , that forms the basis of Luttinger’s
thermal linear-response theory.

B. Magnon-drag process: Spin chemical potential

Let us apply a similar procedure to the magnon-drag pro-
cess. For this purpose, we calculate the magnon-drag electron
current in response to a spatially modulated potential, ψ ∝
ψQei(Q·r−ωt ), with finite wave vector Q. As in the preceding

subsection, we consider the diffusion-type vertex corrections
and the diagrams in Fig. 2(b). The result is obtained as

〈 jel,i〉drag = − 1

2s0

σ↑ − σ↓
e2

(
1 − βel

α

)
TSmag(−∂iψ )

− ∂i(D↑δn↑
el + D↓δn↓

el ), (57)

where

δnσ
el = σ

2s0

σσ

e2

(
1 − βel

α

)
TSmag

Q2

Dσ Q2 − iω
ψQ (58)

is the change of the electron density (of spin σ ) caused by
the perturbation ψQ, and Dσ = (v2

Fσ /3)τσ is the diffusion
constant. From the form of Eq. (58), it is natural to regard
the density change δnσ

el as caused by the change of the
electrons’ chemical potential, instead of temperature as in
Eq. (54). Namely, Eq. (58) in the “slow” limit, ω → 0, may
be compared with

δnσ
el =

∫
dενσ (ε)[ f (ε; T μ + δμσ ) − f (ε; T, μ)]

�
∫

dενσ (ε)

(
−∂ f

∂ε

)
δμσ � νσ δμσ , (59)

where δμσ is the change in (spin-dependent) chemical poten-
tial. From the comparison, we may identify [26]

δμσ = σ

2s0

(
1 − βel

α

)
TSmagψQ, (60)

= σ

2s0

(
1 − βel

α

)
TSmag

(
−δTQ

T

)
. (61)

In the second line, we used the Einstein-Luttinger relation,
ψQ = −δTQ/T . Note that Eq. (61) is consistent with Eq. (41).
Using Eq. (61) for δμσ in Eq. (59), we rewrite Eq. (57) as

〈 jel,i〉drag = − 1

2s0

σ↑ − σ↓
e2

(
1 − βel

α

)
TSmag(−∂iψ )

+ 1

e2
σ↑(−∂iδμ↑) + 1

e2
σ↓(−∂iδμ↓) (62)

= − 1

2s0

σ↑ − σ↓
e2

(
1 − βel

α

)
TSmag

×
(

−∂iψ − ∂iT

T

)
. (63)

This reproduces the form of Eq. (25).
The nonequilibrium chemical potential δμσ is spin depen-

dent, δμ↑ = −δμ↓ (because of the overall factor σ = ±1).
Thus the electrons feel the effects of the nonequilibrium
magnons as a “spin chemical potential,” or spin accumulation,
μs = μ↑ − μ↓. This is quite natural since the local change δT
in temperature modulates the magnon density, and the balance
of the “reaction”

m + e↑ � e↓ (64)

shifts in the left or the right direction. Here, m, e↑, and e↓
represent a magnon, an electron with spin up, and an electron
with spin down, respectively. If we focus on the electrons (e↑
and e↓), this is precisely controlled by the chemical-potential
difference, μ↑ − μ↓. This process corresponds to the first
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term (the spin-transfer term) of (1 − α/βel ) in Eq. (63). The
absence of the causality relationship, as discussed at the end
of Sec. IV, may be due to the local equilibrium nature of this
process.

The second term (proportional to βel/α) acts in the op-
posite way; it increases the density of up-spin (down-spin)
electrons in the hotter (colder) region. Let us interpret this
effect in terms of momentum transfer process. For this, we
consider the effects of magnon flow. The magnons flow from
the hotter to the colder region, and will scatter electrons into
the colder region. If a magnon is absorbed by an electron, the
scattered electron has down spin and flows downstream. This
means that the down-spin electrons flow to colder regions and
this effect will increase the density of down-spin electrons
in the colder region. There is also a reverse process: if a
down-spin electron emits a magnon and flips its spin, and
if the magnon flows downstream, the up electron will flow
upstream. This process will increase the density of up-spin
electrons in the hotter region.

VI. SUMMARY

In this paper, we studied magnon-drag electron flow in-
duced by a temperature gradient. The analysis is based on
a microscopic model that contains spin relaxation, and on
the linear response theory due to Luttinger that exploits a
gravitational potential ψ . The obtained result is physically
interpreted in terms of the spin-transfer process and the
momentum-transfer process from the magnons to the elec-
trons. It is found that the effect of nonequilibrium magnons
yields a nonzero spin chemical potential of the electrons. In
the process, we gave a microscopic procedure that leads to the
Luttinger form of the response, namely, a combination of the
form −∂iψ − ∂iT/T . We supplemented the analysis with a
phenomenological one that is based on the spin-motive force,
and found that the agreement with the microscopic result is
good for the dissipative β term, but differs slightly for the
Berry-phase (spin-transfer) term.
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APPENDIX A: VERTEX CORRECTIONS

In this Appendix, we calculate the vertex corrections to
the electron spin σ± due to impurity potentials in the ladder
approximation. The renormalized vertex �±

σ σ̄ satisfies

(�±
σ σ̄ )ab = (σ±)σ σ̄ + �0Y

ab
σ σ̄ (�±

σ σ̄ )ab, (A1)

where (σ+)↑↓ = (σ−)↓↑ = 1 (other elements vanish),

�0 = niu
2
i − nsu

2
s S2

z , (A2)

and Y ab
σ σ̄ = ∑

k Ga
kσ Gb

kσ̄ with σ̄ = −σ . We write the Green’s
function as Ga

kσ = (iεa + σM − h̄2k2/2m − 	a
σ )−1, where

a, b specify retarded (R) or advanced (A), namely, a = R for
εa > 0, and a = A for εa < 0. Writing the self-energy as

	a
σ = �1ga

σ + �2ga
σ̄ , (A3)

with �1 = niu2
i + nsu2

s S2
z , �2 = 2nsu2

s S2
⊥ [Eq. (14)], and ga

σ =∑
k Ga

kσ , we evaluate Y ab
σ σ̄ as

Y ab
σ σ̄ = gab

σ σ̄

iεba − 2σM + 	ab
σ σ̄

, (A4)

where εba = εb − εa, gab
σσ ′ = ga

σ − gb
σ ′ , and 	ab

σσ ′ = 	a
σ − 	b

σ ′ .
Then, from Eq. (A1), we obtain

(�±
σ σ̄ )ab = (σ±)σ σ̄

1 − �0Y ab
σ σ̄

= iεba − 2σM + 	ab
σ σ̄

iεba − 2σM + �ab
σ σ̄

(σ±)σ σ̄ , (A5)

where �ab
σσ ′ = �a

σ − �b
σ ′ with

�a
σ = (�1 − �0)ga

σ + �2ga
σ̄

= 2nsu
2
s

(
S2

z ga
σ + S2

⊥ga
σ̄

)
. (A6)

Explicitly, �+ and �− are given by

(�+
↑↓)ab = iεba − 2M + 	ab

↑↓
iεba − 2M + �ab

↑↓
, (A7)

(�−
↓↑)ab = iεba + 2M + 	ab

↓↑
iεba + 2M + �ab

↓↑
. (A8)

(Other elements vanish, �+
↓↑ = �−

↑↓ = 0, etc.) Therefore,

Ga
k↑(�+

↑↓)abGb
k↓ = Ga

k↑ − Gb
k↓

iεba − 2M + �ab
↑↓

, (A9)

Ga
k↓(�−

↓↑)abGb
k↑ = Ga

k↓ − Gb
k↑

iεba + 2M + �ab
↓↑

. (A10)

For example,

GR
k↑(�+

↑↓)RAGA
k↓ = GR

k↑ − GA
k↓

−2M + �RA
↑↓

� − 1

2M

(
1 + �RA

↑↓
2M

)(
GR

k↑ − GA
k↓

)
,

(A11)

GR
k↓(�−

↓↑)RAGA
k↑ = GR

k↓ − GA
k↑

2M + �RA
↓↑

� 1

2M

(
1 − �RA

↓↑
2M

)(
GR

k↓ − GA
k↑

)
. (A12)

In the second lines, we assumed that �ab’s, which are on
the order of spin relaxation rate, are much smaller than the
exchange splitting M.
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APPENDIX B: DETAILS OF MICROSCOPIC CALCULATION

In this Appendix, we present the details of the calculation of the magnon-drag electron current. It is divided into the electron
part and the magnon part.

1. Electron part

As described in the text, the electron part, given by Eq. (29), contributes in two different ways, E (2)
i ≡ Ei(q, ν − iη; ω + 2iη)

and E (1)
i ≡ Ei(q, ν + iη; ω + iη), where η is a positive infinitesimal. For the magnon-drag contribution, the former is calculated

by setting ω = 0 and retaining the ν-linear terms, and the latter by setting ν = 0 and retaining the ω-linear terms. They are given,
respectively, by

E (2)
i = ν

2π
q�(E ′

i� + E ′′
i�), (B1)

with

E ′
i� = −i

∑
k

viv�[GR
↓{(�−

↓↑)RR(GR
↑ )2(�+

↑↓)RA − (�−
↓↑)RA(GA

↑ )2(�+
↑↓)AA}GA

↓

+ GR
↑{(�+

↑↓)RR(GR
↓ )2(�−

↓↑)RA − (�+
↓↑)RA(GA

↓ )2(�−
↓↑)AA}GA

↑ ], (B2)

E ′′
i� = −

∑
k

viv� Im[GR
↓ (�−

↓↑)RR(GR
↑ )2(�+

↑↓)RRGR
↓ + GR

↑ (�+
↑↓)RR(GR

↓ )2(�−
↓↑)RRGR

↑ ], (B3)

and

E (1)
i � 1

2π
q�

∑
k

viv�[−GR
↓ (�−

↓↑)RA(GA
↑ )2(�+

↑↓)AAGA
↓ + GR

↑ (�+
↑↓)RR(GR

↓ )2(�−
↓↑)RAGA

↑ ], (B4)

where GR(A)
σ = GR(A)

kσ
(0).

To calculate E ′
i�, we use Eqs. (A9) and (A10) and the approximations as in Eqs. (A11) and (A12) valid for weak spin relaxation

(compared to M). With short notations, �ab = �ab
↑↓ and �̃ab = �ab

↓↑, we write

E ′
i� � i

(2M )2

∑
k

viv�

[(
1 + �RA − �̃RR

2M

)
(GR

↓ − GR
↑ )(GR

↑ − GA
↓ ) −

(
1 + �AA − �̃RA

2M

)
(GR

↓ − GA
↑ )(GA

↑ − GA
↓ )

−
(

1 + �RA − �̃AA

2M

)
(GR

↑ − GA
↓ )(GA

↓ − GA
↑ ) +

(
1 + �RR − �̃RA

2M

)
(GR

↑ − GR
↓ )(GR

↓ − GA
↑ )

]

� i

(2M )2

∑
k

viv�

[
�1

2M
GR

↑GA
↑ − �2

2M
GR

↓GA
↓ − 2i Im{(GR

↑ − GR
↓ )2}

]
, (B5)

where �1 ≡ �RA − �RR + �̃RA − �̃AA and �2 ≡ �RA −
�AA + �̃RA − �̃RR, and we retained the leading terms with
respect to the electron damping. On the other hand, E ′′

i� is
calculated as

E ′′
i� � − 2

(2M )2

∑
k

viv� Im[(GR
↑ − GR

↓ )2]. (B6)

Therefore, we have

E ′
i� + E ′′

i� = i

(2M )2

∑
k

viv�

[
�1

2M
GR

↑GA
↑ − �2

2M
GR

↓GA
↓

]

= iδi�

(2M )2

2π

e2

[
�1

2M
σ↑ − �2

2M
σ↓

]
. (B7)

Here we noted

∑
k

viv�GR
σ GA

σ = δi�
v2

Fσ

3

πνσ

γσ

= δi�
2π

e2
σσ , (B8)

with σσ = e2(v2
Fσ /3)τσ being the conductivity of spin-σ elec-

trons. From Eq. (A6), we have �1 = 2�RA
↓↓ and �2 = 2�RA

↑↑
with �RA

σσ = −4π insu2
s (S2

z νσ + S2
⊥νσ̄ ), and thus

�1

2M
σ↑ − �2

2M
σ↓ = −2iβel(σ↑ − σ↓), (B9)

where βel is given by Eq. (33). Using these relations in
Eq. (B1), we obtain

E (2)
i = βel

ν

2M2
qi

σ↑ − σ↓
e2

. (B10)

The ω-linear terms in E (2)
i [as given in Eq. (31)], which

contribute to the spin-motive forces, can be obtained in a
similar way.
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Similarly, we obtain

E (1)
i � 1

2π

1

(2M )2
q�

∑
k

viv�[GR
↑GA

↑ − GR
↓GA

↓ ]

� 1

(2M )2
qi

σ↑ − σ↓
e2

. (B11)

2. Magnon part

For the magnon part, we encounter the following integrals,

I1 = 1

2π

∫
dν

(
−∂n

∂ν

)
ν2

∑
q

uiq jD
R
q (ν)DA

q (ν), (B12)

I2 = 1

π

∫
dνn(ν)ν

∑
q

uiq j Im
{[

DR
q (ν)

]2}
, (B13)

I3 = 1

π

∫
dνn(ν)

∑
q

uiq j Im
[
DR

q (ν)
]
. (B14)

To calculate I1, we use DR
q (ν)DA

q (ν) � (π/αν)δ(ν − ωq).
Then,

I1 � 1

2α

∑
q

ωquiq j

(
−∂n

∂ν

)
ν=ωq

= 1

2α
T

∂

∂T

∑
q

n(ωq)uiq j . (B15)

By noting (∂/∂qi )kBT ln (1 − e−h̄ωq/kBT ) = n(ωq)ui, we see

∑
q

n(ωq)uiq j =
∑

q

q j
∂

∂qi
kBT ln

(
1 − e−h̄ωq/kBT

)
= −δi j�mag, (B16)

where

�mag = kBT
∑

q

ln
(
1 − e−h̄ωq/kBT

)
(B17)

is the thermodynamic potential of magnons. Therefore,

I1 = − 1

2α
δi jT

∂

∂T
�mag = 1

2α
δi jTSmag, (B18)

where Smag = −∂�mag/∂T is the entropy (density) of
magnons.

For I2, we use ui(DR)2 = ∂DR/∂qi and Im DR
q (ν) �

−πδ(ν − ωq), and calculate as

I2 = −δi j

π

∫
dνn(ν)ν

∑
q

Im
[
DR

q

]

� δi j

∑
q

ωqn(ωq)

= δi jEmag. (B19)

Similarly, I3 is calculated as

I3 � −
∑

q

uiq jn(ωq) = δi j�mag. (B20)

APPENDIX C: SEMICLASSICAL ANALYSIS BASED ON
SPIN-MOTIVE FORCE

In this Appendix, we calculate

〈Fi〉 = 1

s0
{Im〈ȧ†∂ia〉 − βRe〈ȧ†∂ia〉} (C1)

semiclassically using the stochastic Landau-Lifshitz-Gilbert
(LLG) equation. This method has been used in the calculation
of magnonic spin torques [27,28].

1. Formulation

The stochastic LLG equation is given by

ṅ = −Jn × ∂2
i n + n × h − αn × ṅ, (C2)

where n is the magnetization unit vector, and h is the Langevin
noise field that satisfies the fluctuation-dissipation theorem,

〈hi(r, t )hj (r′, t ′)〉 = 2αs0T δi jδ(r − r′)δ(t − t ′), (C3)

where T is the temperature. We consider the case that the tem-
perature is nonuniform and assume T in Eq. (C3) is position-
dependent, T = T (r), and calculate 〈Fi〉 that is proportional to
∂iT .

In the complex notation, a = (s0/2)1/2(δnx + iδny) and
h = hx + ihy, Eq. (C2) becomes

iȧ = (−J∂2
i + �

)
a + αȧ − 1√

2s0
h(r, t ), (C4)

where � is the magnon energy gap, and h satisfies

〈h(r, t )h∗(r′, t ′)〉 = 4αs0T (r)δ(r − r′)δ(t − t ′). (C5)

Using the retarded Green’s function DR that satisfies[
i∂t + J∂2

i − � − α∂t
]
DR = δ(r − r′)δ(t − t ′), (C6)

Eq. (C4) is solved as

a(r, t ) = − 1√
2s0

∫
dt ′

∫
dr′DR(r − r′, t − t ′)h(r′, t ′).

(C7)

In the Fourier representation, DR
q (ν) = (ν − ωq + iαν)−1,

where ωq = Jq2 + �, it reads

aq(ν) = − 1√
2s0

DR
q (ν)h(q, ν), (C8)

and a∗ is given by the complex conjugate of Eq. (C7).
For a quantum system (in the present case, magnons),

we consider the Fourier transform of Eq. (C3) with re-
spect to time, wherein the temperature is replaced as T →
ν
2 coth ν

2T = ν[n(ν) + 1
2 ] for the Fourier component of fre-

quency ν. Its gradient is thus replaced as

∂iT → ν

(
∂n

∂T

)
∂iT . (C9)
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2. Calculation of 〈Fi〉
To obtain 〈Fi〉, it is sufficient to calculate 〈ȧ†∂ia〉. With Eq. (C8), this proceeds as follows,

〈ȧ†(r, t )∂ia(r, t )〉 =
〈
∂t

[
− 1√

2s0

∫
dt1

∫
dr1DR(r − r1, t − t1)h(r1, t1)

]∗

×∂i

[
− 1√

2s0

∫
dt2

∫
dr2DR(r − r2, t − t2)h(r2, t2)

]〉

= 1

2s0

∫∫
dt1dt2

∫∫
dr1dr2[∂t D

R(r − r1, t − t1)]∗[∂iD
R(r − r2, t − t2)]〈h∗(r1, t1)h(r2, t2)〉

= 4αs0

2s0

∫
dt1

∫
dr1[∂t D

R(r − r1, t − t1)]∗[∂iD
R(r − r1, t − t1)]T (r1)

= 2α

∫
dt1

∫
dr1

∑
q,q′,q1

∫∫
dνdν ′

(2π )2
iν ′iqiD

A
q′ (ν ′)DR

q (ν)Tq1
ei(q′−q+q1 )·r1 e−i(ν−ν ′ )(t−t1 )ei(q−q′ )·r

= 2α
∑
q,q1

∫
dν

2π
iν · i

(
qi + q1,i

2

)
DR

q+q1/2(ν)DA
q−q1/2(ν)Tq1

eiq1·r, (C10)

where DA
q (ν) ≡ [DR

q (ν)]∗ = (ν − ωq − iαν)−1. We are interested in the term linear in q1, which, combined with Tq1
, gives the

temperature gradient. Thus,

〈ȧ†(r, t )∂ia(r, t )〉 � α
∑
q,q1

∫
dν

2π
iνDRDAiq1,iTq1

eiq1·r + 2α
∑
q,q1

∫
dν

2π
iνiqiu j2i Im[(DR)2DA]

q1, j

2
Tq1

eiq1·r, (C11)

where DR = DR
q (ν) and DA = DA

q (ν). With the replacement (C9), we obtain

〈ȧ†(r, t )∂ia(r, t )〉 � α(∂iT )
∂

∂T

{
i
∑

q

∫
dν

2π
ν2n(ν)DRDA − 2

∑
q

∫
dν

2π
qiu jν

2n(ν) Im[(DR)2DA]

}
. (C12)

Using the relations ∑
q

∫
dν

2π
ν2n(ν)DRDA �

∑
q

∫
dν

2π
ν2n(ν) · π

αν
δ(ν − ωq)

= 1

2α
Emag (C13)

and ∑
q

∫
dν

2π
ν2n(ν)qiu j Im[(DR)2DA] =

∑
q

∫
dν

2π
ν2n(ν)qiu j Im

[
DR 1

2iαν
(DA − DR)

]

�
∑

q

∫
dν

2π
ν2n(ν)qiu j Im

[
1

2iαν
DRDA

]

� − 1

4α2

∑
q

qiu jn(ωq)

= 1

4α2
�magδi j, (C14)

where �mag is given by Eq. (B17), we obtain

〈ȧ†∂ia〉 = 1

2

(
∂iT

T

)
T

∂

∂T

[
iEmag − 1

α
�mag

]

= 1

2

(
∂iT

T

)[
iT

∂

∂T
Emag + 1

α
TSmag

]
. (C15)

From Eq. (C1), this leads to

〈Fi〉 = 1

2s0

{
−∂Emag

∂T
+ β

α
Smag

}
(−∂iT ). (C16)
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3. Comparison with the previous study

To compare the phenomenological result (C16) obtained
here with the one obtained previously [11], let us consider
the case T � �, where every quantity shows power-law
dependence on temperature T . In this case, T (∂Emag/∂T ) �
(1 + d/2)Emag and TSmag � (1 + 2/d )Emag, and Eq. (C16)

becomes

〈Fi〉 = − 1

2s0

(
1 + d

2

)(
1 − 2

d

β

α

)
Emag

(
−∂iT

T

)
. (C17)

Compared with the result of Ref. [11], the coefficient of β/α

is different by a factor of 2.
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