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Meta-analysis of Lagged Regression Models: A
Continuous-time Approach

Rebecca M. Kuiper and Oisín Ryan
Utrecht University

In science, the gold standard for evidence is an empirical result which is consistent across multiple
studies. Meta-analysis techniques allow researchers to combine the results of different studies. Due
to the increasing availability of longitudinal data, studying lagged effects is increasingly popular
also in meta-analytic studies. However, in current practice, little attention is paid to the unique
challenges of meta-analyzing these lagged effects. Namely, it is well known that lagged effects
estimates change depending on the time that elapses betweenmeasurement waves. This means that
studies that use different uniform time intervals between observations (e.g., 1 hour vs 3 hours or 1
month vs 2 months) can come to very different parameter estimates, and seemingly contradictory
conclusions, about the same underlying process. In this article, we introduce, describe, and
illustrate a new meta-analysis method (CTmeta) which assumes an underlying continuous-time
process, and compare it with current practice.

Keywords: Meta-analysis, first-order vector autoregressive (VAR(1)) model, cross-lagged
panel model (CLPM), continuous-time SEM, differential equation model

INTRODUCTION

In science, the gold standard for evidence is an empirical
result which is consistent across multiple studies. Meta-
analysis techniques allow researchers to combine the results
of different studies, usually in the form of effect-size esti-
mates, to render a more accurate estimate of this effect size in
the population (Borenstein, Hedges, Higgins, & Rothstein,
2009; Wolf, 1986). Recent work has broadened the scope of
traditional meta-analysis to include structural equation mod-
eling (SEM) based techniques, using the correlation matrices

reported by empirical studies to build (weighted) path models
of interest (cf. Cheung, 2015; Viswesvaran & Ones, 2007).

One popular class of longitudinal SEMmodels is based on
the estimation of (first-order) lagged effects, such as the
vector-autoregressive (VAR(1); Hamilton, 1994) and cross-
lagged panel models (CLPMS; Bollen & Curran, 2006;
Mayer, 1986). Typically, researchers use these models to
assess the Granger-causal relationships between pairs of vari-
ables, through the estimation of cross-lagged regression para-
meters (Granger, 1969; Rogosa, 1979, 1980). These lagged
effects models are increasingly targeted for meta-analytic
studies (for instance, Jacobson & Newman, 2017;
Maricuţoiu, Sulea, & Iancu, 2017; Masselink et al., 2018;
Nohe, Meier, Sonntag, & Michel, 2015). In current practice,
however, little attention is paid to the unique challenges of
meta-analyzing models estimated from repeatedmeasurement
data. Specifically, it is well known that lagged regression
models suffer from the problem of time-interval dependency,
that is, the fact that the parameter estimates change depending
on the time that elapses between measurement waves (Gollob
& Reichardt, 1987; Kuiper & Ryan, 2018; Pelz & Lew, 1970;
Voelkle & Oud, 2013). This means that studies using different
time intervals between observations (e.g., 1 hour vs 3 hours or
1 month vs 2 months) can come to very different parameter
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estimates, and seemingly contradictory conclusions, about the
same underlying process.

In the dynamic modeling literature, researchers have pro-
posed the use of continuous-time (CT) models to overcome the
time-interval problem (Boker, 2002; Boker, Neale, & Rausch,
2004; Chow et al., 2005; Oravecz, Tuerlinckx, &
Vandekerckhove, 2009; Oud, 2002; Oud & Delsing, 2010;
Voelkle, Oud,Davidov,&Schmidt, 2012). This approach expli-
citlymodels lagged parameters between observedmeasurement
waves as a non-linear function of i) dynamic relationships
operating on a moment-to-moment basis and ii) the time inter-
val that elapses between waves. This means that CT models
offer the possibility to map results from studies using different
measurement regimes onto a single underlying set of dynamic
relationships. While this feature makes CT modeling an attrac-
tive possibility for the meta-analysis of lagged relationships, so
far CT models have only been applied to individual studies.

In this paper, we introduce, describe, and illustrate a new
meta-analysis method for lagged-regression models which
assumes an underlying continuous-time process. We imple-
ment this new methodology in an easy-to-use R package
CTmeta and associated Shiny applications (Chang, Cheng,
Allaire, Xie, & McPherson, 2019; R Core Team, 2019). We
begin by briefly reviewing meta-analysis in the context of
discrete-time (DT) lagged regression models, and the pro-
blems which arise in this practice due to time-interval
dependency. Second, we describe the CT approach to
lagged models, and propose a meta-analysis technique
based on this approach. Third, we demonstrate the applica-
tion of our new CT meta-analysis method and compare its
performance to current best practice methods.

BACKGROUND

We first briefly introduce the core concepts of meta-analysis
and, second, the most commonly model used for lagged
regression analysis, the so-called first-order vector auto-
regressive (VAR(1)) model or the cross-lagged panel
model (CLPM). Third, we describe the challenge of meta-
analyzing these models due to the time-interval dependency
problem. The focus of the remainder of this article is on
creating and illustrating a solution for this challenge.

Meta-Analysis

Meta-analysis aims to synthesize evidence from several dif-
ferent studies, usually in the form of a statistical parameter or
set of parameters (e.g., an effect size measure or standardized
regression parameter(s)) estimated from different samples, to
come to an overall estimate of some population parameter(s)
(cf. Becker &Wu, 2007; Borenstein et al., 2009). In principle,
meta-analysis combines evidence from different studies by
taking a weighted average of their parameter estimates, with

the contribution of each study being weighted by the amount
of information or certainty in a given estimate, as reported by
or inferred from properties (e.g., the sample size) of that study.
This weighting procedure can be applied univariately (via
WLS) or multivariately (via GLS) to take into account depen-
dencies between the parameters which are a target of themeta-
analysis. For a more in-depth treatment of these weighting
procedures, the reader is referred to Becker and Wu (2007)
and Demidenko, Sargent, and Onega (2012).

As well as the method of weighting parameter estimates,
meta-analytic techniques primarily differ depending on the
underlying model that is assumed for the/a population para-
meter of interest: Researchers can assume a single underlying
parameter, in a fixed-effects (FE) analysis, or a distribution of
population parameters, in a random-effects (RE) model. The
former can be seen as a special case of the latter, in which all
variance in parameter estimates is assumed to come from
sampling variance alone. For a further overview of meta-
analytic techniques, see for instance Borenstein et al. (2009)
and Becker and Wu (2007). In this paper, we will introduce
a meta-analytic technique that can facilitate both FE and RE
models, with both uni- and multi-variate weighting.

The Discrete-time VAR(1) Model

When researchers have multiple repeated measurements of
some set of variables, a popular choice of model with which
to analyze these data is based on lagged regression parameters.
These lagged effects describe the relationship between current
observations and past observations: when current observations
are regressed on those directly preceding them, these models
can be described as first-order. In the context of panel data
(i.e., data for a large number of participants but with relatively
few observations spaced far apart in time), this is referred to as
the cross-lagged panel model (CLPM); and, in the context of
time-series data (i.e., single-subjects data with many observa-
tions at a higher frequency), this is referred to as the (discrete-
time) first-order vector autoregressive (DT-VAR(1)) model.
As both models are conceptually very similar, we use only the
DT-VAR(1) terminology throughout. Figure 1 depicts
a bivariate DT-VAR(1) model as a path model.

Let yi;m be the vector with q observed variables for
individual i (i ¼ 1; . . . ;N) at measurement occasion m. In
the DT-VAR(1) model, this vector is regressed on the pre-
ceding observation through

yi;m ¼ ci þΦyi;m�1 þ εi;m (1)

where ci is a q-vector of intercepts which is related to the

mean of yi;m by μi ¼ ðI �ΦÞ�1ci; εi;m represents a q-vector
of errors for measurement m that are independent and identi-
cally distributed: εi;m,ð0;ΣεÞ; and Φ is the q� q matrix of
lagged regression parameters, that is, autoregressive (ϕjj) and
cross-lagged (ϕjk ; j�k) effects.1 For time-series data of
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a single individual (N ¼ 1), Equation 1 is only identified
when m � 2 and Φ is assumed to remain invariant over
time. In the panel data setting, we further assume throughout
that the lagged effects matrix Φ and the residual variance
matrix Σε are fixed across time and equal across all indivi-
duals. Notably, we make no restrictions on whether the
intercepts vary across individuals, as specified in the popular
random-intercept CLPM (Hamaker, Kuiper, & Grasman,
2015), or whether they are equal across individuals (ci ¼ c).
In the former case, this model is only identified for m � 3.

The parameters of lagged effects models have become
increasingly the target of meta-analytic studies (e.g.
Maricuţoiu et al., 2017; Masselink et al., 2018; Nohe et al.,
2015). Typically, when researchers estimate a lagged regression
model, their primary aim is to compare the size and sign of the
estimated cross-lagged parameters (Φ); where the relative
strength is often referred to as “causal dominance” (Bentler &
Speckart, 1981; Finkel, 1995; Hamaker et al., 2015; Rogosa,
1980). For example, Moberly and Watkins (2008) investigate
which of momentary ruminative self-focus (RSF) and negative
affect (NA) can be considered the ‘driving force’ of the pair, by
comparing the size of the cross-lagged effects of RSF and NA
on each other at the next measurement occasion. The meta-
analysis of Nohe et al. (2015) aims to synthesize evidence from
multiple different studies on the reciprocal lagged relationships
between work-family conflict and strain. The main motivation
for this meta-analysis is to come to a more conclusive conclu-
sion regarding ‘causal dominance’ relations between this pair of
variables in the population.

As a necessary first condition for this comparison to be
sensible, one should use standardized lagged parameters to
obtain parameters that are on the same scale and thus
comparable (Bentler & Speckart, 1981). As such, we will
throughout treat the population standardized lagged para-
meters as the target of any meta-analytic technique. Details
on how to calculate the standardized parameters from cor-
relation matrices is given in Appendix A.

Time-interval Dependency: A Headache for
Meta-analysts

A major obstacle for any meta-analytic study of lagged effects
is the well-known time-interval dependency problem. This
refers to the phenomenon that studying the same underlying
dynamic process can result in autoregressive and cross-lagged
parameter estimates of different signs, size, and relative order-
ing due only to the use of different time intervals between
measurements (Chatfield, 2004; Dormann & Griffin, 2015;
Gollob & Reichardt, 1987; Hamilton, 1994; Kuiper & Ryan,
2018; Oud, 2002). Stated otherwise, these lagged parameters
are a function of the time interval and are therefore denoted by
ΦðΔtÞ in the remainder. We can understand this problem with
reference to the path model in Figure 1. If we were to fit
a model on every second measurement wave, as if we would
have measured every, say, 2 hours instead of 1 hour, we would

come toΦðΔt ¼ 2Þ ¼ ΦðΔt ¼ 1Þ2, a well-known result from
both the time-series literature Hamilton (1994) and path-tracing
rules (Bollen, 1989). Because of the matrix multiplication,
elements inΦðΔt ¼ 2Þ are a sum ofmultiple different products
of parameters in the original matrix ΦðΔt ¼ 1Þ: For instance,
leaving the subscript i out for ease of notation, the cross-lagged
parameter relating y1 to y2 at the longer time interval, that is,
ϕ21ð2Þ, can be found by path-tracing rules to equal
ϕ11ð1Þϕ21ð1Þ þ ϕ21ð1Þϕ22ð1Þ. The lower our sampling rate,
the more paths must be traced through to connect y1 to y2 and
so the more complex this function becomes. As such, the
parameter estimates yielded using different time intervals are
not directly comparable, as they describe fundamentally
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FIGURE 1 A graphical representation of a bivariate single-subject VAR(1) model.

1 Depending on the setting, researchers may specify the initial value y0
as either fixed or drawn from the stationary distribution of y, a function of
Φ and Σε (cf. Hamerle et al., 1991) As the focus of the methods described
in this paper are on the meta-analysis of Φ, the methods described here are
applicable regardless of choice of initial value, as well as fixed or random
intercepts, as long as the same approach is used across all studies in the
meta-analysis. This ensures that the lagged regression parameters are in
principle comparable, that is, they are estimates of the same population
quantity.
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different structural relationships between different variables
(e.g., y2 an hour later or y2 2 hours later).

The implications of the time-interval problem for meta-
analysis is immediately apparent: Taking a weighted average
of studies which use different time intervals may result in a set
of parameters which do not accurately reflect the true under-
lying process for any time interval. As a corollary, even if
researchers were to analyze only studies that use the same
time interval, the relative ordering of cross-lagged parameter
estimates, in terms of their absolute values, and thus the
substantive conclusions drawn about the underlying process,
may not generalize to any other time interval: The cross-
lagged effect of y1 on y3 may be larger than the reciprocal
effect for some intervals (ϕ13ðΔtÞ > ϕ31ðΔtÞ, "Δt < sÞ) and
smaller for others (ϕ13ðΔtÞ < ϕ31ðΔtÞ, "Δt > sÞ).

Currently, there is no established best practice for deal-
ing with different time intervals in the meta-analysis of
lagged regression models. Broadly, there appear to be four
different approaches used in the literature:

1. Ignore Ignoring the time interval (e.g., Masselink
et al., 2018); sometimes this is done as a first step
(e.g., Jacobson & Newman, 2017; Maricuţoiu et al.,
2017; Nohe et al., 2015).

2. Linear Including the time interval as linear predictor
(i.e., moderator) of the effect (cf. Card, 2019).

3. Quadratic Including the time interval as linear and
quadratic moderator of the effect (cf. Card, 2019).

4. Dummy Doing separate analyses for each of the
unique time intervals (groups) used by the studies
in the meta-analysis (e.g., Maricuţoiu et al., 2017;
Nohe et al., 2015) or, equivalently, using dummy
moderator variables for each time-interval group.2

However, each of these approaches are problematic in princi-
ple because 1) when ignoring the time interval, you weight
incomparable parameter estimates; 2) the linear approach
cannot capture the non-linear relationships between the
lagged effects and the time interval, that is, the non-linear
relationship implied by exponentiating a matrix (as will
become clear in the next section); 3) the quadratic approach
also fails to capture the exponential relationship; and 4) doing
separate analyses reduces your certainty/power because you
split your data, and does not produce a model which describes
how these parameter estimates relate to one another.

What is missing from the literature is a technique which
takes account of the well-known time-interval problem in
a principled way, allowing for the non-linear relationships

between lagged parameters at different time intervals. In the
remainder of the paper, we propose and illustrate a meta-
analysis method based on a continuous-time VAR(1) model
for this purpose.

CONTINUOUS-TIME META-ANALYSIS

In this section, we review continuous-time models, which
follow a generalization of the logic described in the above
subsection regarding measuring less frequently. Then, we
briefly describe our proposed meta-analytic technique,
which assumes an underlying data-generating CT model.

Continuous-time Models: A Primer

Continuous-time (CT) modeling overcomes the time-interval
dependency problem by explicitly taking the time-interval
dependent nature of the relationships between variables at
different measurement occasions into account (Boker &
Laurenceau, 2006; Oravecz et al., 2009; Oravecz, Tuerlinckx,
& Vandekerckhove, 2011; Oud & Delsing, 2010; Voelkle &
Oud, 2013). Conceptually, the CT model assumes that the
processes of interest take on values and, moreover, influence
each other at every moment in time, not only on the occasions
at which the researcher measures them. As such, we can say
that infinitely many latent values of these processes are present
between each measurement occasion. Multiple authors have
argued that psychological processes in particular may be more
appropriately modeled as CT rather than DT processes (Boker
& Laurenceau, 2006; van Montfort, Oud, & Voelkle, 2018).

We can model these processes using first-order differential
equations, where the change over a very small time interval
(i.e., the derivative) is a function of the value of the processes at
that moment in time. This first-order differential equation can
be thought of as a DT-VAR(1) model over an infinitesimally
small time interval between measurement occasions: the corre-
sponding effects matrix describing the dynamics is denoted by
A and is called the drift matrix (see Oravecz et al., 2011; Oud&
Delsing, 2010; Voelkle & Oud, 2013, for more details).

The first-order stochastic differential equation can also
be represented as a (single-subject) CT-VAR(1) model also
referred to as the multivariate Ornstein-Uhlenbeck process:

dyðtÞ
dt

¼ αþ AyðtÞ þΩ
dwðtÞ
dt

: (2)

where α is a q-vector with intercepts of the differential equa-
tion model, and the q� q drift matrix A contains the CT-VAR
(1) lagged parameters which relate the values of the variables
in y at a particular time t to the derivative (i.e., rate of change)
in yðtÞ with respect to time. In case of a stable and therefore
stationary process, the eigenvalues of A are negative. The last
term on the right-hand side of Equation 2 is the continuous-
time version of a random error process that are independent
and identically distributed, but maybe contemporaneously

2 In an FE model, doing separate analyses for each time-interval group
is the same as using dummy variables to account for the time interval.
However, in case of a RE model, including dummy variables uses one
random effect and thus results in one variance of that random effect (τ̂2),
while doing separate analyses per time-interval group uses a random effect
per analysis and thus renders a τ̂2 per time-interval group.
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correlated. For a detailed discussion and for details on how
this model can specified as a multi-subject panel data model
and estimated in a SEM-framework, see, among others, Boker
(2002) and Oud and Delsing (2010).

While the DT and CT models represent distinct ways of
modeling longitudinal processes, the DT and CT lagged
effects (i.e., ΦðΔtÞ and A, respectively) are related in the
following way:

ΦðΔtÞ ¼ eAΔt; (3)

where ΦðΔtÞ and Δt are as defined above; e is the matrix
exponential (if q>1; Moler & Van Loan, 2013); and A the
q� q drift matrix. The crucial aspect is that the lagged regres-
sion parameters are a non-linear function of the drift matrix.
This means that the lagged regression parameters at any time
interval in the DT model are a result of taking the appropriate
power (using the exponential function and the time interval)
of the lagged relationships at a very short time interval.

Under the condition that the eigenvalues of ΦðΔtÞ are
real and lie between zero and one, the mapping from DT-
VAR(1) effects matrix to the underlying CT drift matrix in
Equation 3 is unique (Hamerle, Nagl, & Singer, 1991;
Kuiper & Ryan, 2018). This means that, using the lagged
parameters which are obtained at a particular time interval
Δt can be said to directly imply a set of lagged parameters
at any different time interval Δt�:

ΦðΔt�Þ ¼ ðeAΔtÞΔt
�

Δt

¼ ðΦðΔtÞÞΔt
�

Δt : (4)

Stated otherwise, one can use these equations to transform the
parameter estimates for a given interval to a new set of para-
meters corresponding to a different time interval. This is the
core of our proposed method and we will refer to the new set of
parameters as transformed lagged parameters. Notably, if the
eigenvalues ofΦðΔtÞ are complex or when at least one of them
is negative, then this transformation is only unique and possi-
ble, respectively, whenΔt� is a whole-numberedmultiple ofΔt.
A more detailed discussion on the conditions under which this
is (uniquely) possible is given by Kuiper and Ryan (2018).

Continuous-time Meta-analysis: CTmeta

If we are willing to assume an underlying CT process, the
results from studies using different time intervals (e.g.,
ΦðΔt ¼ 1Þ, ΦðΔt ¼ 2Þ, and ΦðΔt ¼ 3:5Þ) can all be
mapped back to one underlying effects matrix A. This
means that, using the CT-VAR(1) model, results from stu-
dies using different time intervals can be considered infor-
mative about one another in a principled way: We can use
the (transformed) standardized lagged effects from all stu-
dies in a single meta-analysis.

As we believe that researchers are primarily interested in
lagged effects matrices and how they change depending on the
time interval, our method involves approximating the CT func-
tion ΦðΔtÞ over different values of Δt. We do this by making
use of Equation 3 and mapping each Φ matrix, and their
covariance matrices, back onto a target time interval or set of
time intervals, generally taken to be the time intervals of sub-
stantive interest or which are present in the meta-analyzed
studies. Per time interval, the corresponding standardized
lagged effects are then weighted in the normal way (using the
aforementioned covariance matrices) to obtain the overall esti-
mates (and their covariance matrix). This procedure can be
repeated for each target time interval of interest, each time
using all of the input study parameters in the calculation of the
weighted overall estimates for that time interval. In the discus-
sion, we address some advantages of this approach over the
direct meta-analysis of the drift matrix.

This method for continuous-time meta-analysis of lagged
regression parameters is implemented in the R-package
CTmeta, available for download from https://github.com/rebec
cakuiper/CTmeta, the github page of the first author. To apply
the CTmetamethod, researchers need sets of parameters’ point-
estimates from different studies aswell as the covariancematrix
of those sets of parameters. Appendix B describes how these
can be retrieved from either the same-time-moment (contem-
poraneous) and lagged correlations between all variables or,
alternatively, the (un)standardized lagged parameter estimates
with either the residual covariance matrix or the contempora-
neous covariancematrix. These functions are also implemented
in the CTmeta R-package, as well as in Shiny applications
described in more detail in Appendix C.

ILLUSTRATION AND COMPARISON

In contrast to the four commonly used meta-analysis
approaches, the CTmeta method proposed above would seem
advantageous because it 1) explicitly accounts for the various
different time intervals used by studies in the meta-analysis, 2)
accounts for the non-linear relationship between the time inter-
val and the lagged variables, and 3) employs all sets of reported
parameters to estimate a single underlying matrix of dynamics.
Here, we illustrate the application of CTmeta, and compare its
performance to the current best practice in this field. Our illus-
tration consists of simulated data which mimics the set-up of
a published empirical meta-analysis. The code to reproduce all
of the analyses shown below is available on https://github.com/
rebeccakuiper/CTmeta-analysis_Example_and_Simulation,
the github page of the first author.

Example Data Set

Suppose we are interested in meta-analyzing a set of studies
with q ¼ 2 variables (e.g., work engagement and burnout).
These two variables are assumed to have a contemporaneous
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pairwise correlation of corðy1m; y2mÞ ¼ 0:3, and the dynamic
relationships between these two variables can be described by
a CT-VAR(1) model with drift matrix

A ¼ �0:79 0:36
0:60 �1:03

� �
:

This corresponds to the following population ΦðΔtÞ for
Δt ¼ 1 and 2:

Φð1Þ ¼ 0:50 0:15
0:25 0:40

� �
and Φð2Þ ¼ 0:29 0:14

0:23 0:20

� �
:

Using Equation 3, we can derive the discrete-time matrix
ΦðΔtÞ for any time interval Δt. This is plotted (using the
Shiny web application of Kuiper (2018b)) in Figure 2.

The primary aim of any meta-analysis applied to this
process is to recover this underlying function, at time inter-
vals for which the data is available, as closely and reliably as
possible. The secondary aim is to capture the form of this
underlying function beyond those time intervals where data
was available (where model assumptions/extrapolation are
more heavily relied on). To evaluate the CTmeta method, we
mimic a typical setting for meta-analysis on longitudinal
studies where studies of different sample sizes use different
time intervals of measurement and thus obtain different sets
of lagged regression parameter estimates. This allows us to
see with one analysis how different meta-analysis methods
perform when different amounts of information of the under-
lying process is available (i.e., more or larger studies for
some time intervals than others).

We base our design on Maricuţoiu et al. (2017), who per-
formed a meta-analysis on the estimated cross-lagged relation-
ships between work engagement and burnout in 25 panel data
studies, with a wide range of study-specific time intervals

between measurement occasions, Δts 2 1
365;3

h i
years, and a

range of study-specific different sample sizes, Ts 2 ½67; 2897�,
where the subscript s is used as study indicator. Based on the
characteristics of these studies, shown in full in Table 1, we
generate data for the studies which will be the target of our
meta-analysis. For each target study, we generate Ts measure-
ments from a VAR(1) model with lagged parameters ΦðΔtsÞ
(based on the drift matrix given above) using the R-package
tsDyn (Fabio Di Narzo, Aznarte, & Stigler, 2009).3 We then fit
a DT-VAR(1) model to each data set using the vars package
(Pfaff, 2008). The parameter estimates from each simulated
data set serve as input to the meta-analysis methods assessed
in the following.
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FIGURE 2 The lagged regression parameters ΦðΔtÞ of the bivariate
example as a function of the time interval Δt.

TABLE 1
The Study-specific Sample Sizes Ts and Study-specific Time

Intervals Δts (in Years) Used in the Working Example

Study (s) Ts Reported Time Interval Δts

1 643 12 months 1
2 651 12 months 1
3 473 12 months 1
4 387 4 months, 2.5 months and 6.5 months 1

3

5 18 9 months 3
4

6 209 12 months 1
7 2897 12 months 1
8 160 2 months 1

6

9 1964 36 months, 48 months 3
10 848 12 months 1
11 926 12 months 1
12 274 8 months 2

3

13 433 24 months 2
14 256 1 day 1

365

15 409 24 months 2
16 926 12 months 1
17 162 2 months 1

6

18 262 14 months 14
12

19 247 12 months 1
20 102 10 months 10

12

21 171 48 months 4
22 201 12 months 1
23 309 12 months 1
24 77 1 month 1

12

25 67 8 months 2
3

3 Note that Maricuţoiu et al. (2017) meta-analyze contemporaneous and
lagged correlations. They meta-analyze correlations for multiple studies,
where in each study these correlations are based on multiple persons (for
two waves, rendering six correlations; and sometimes averaged over multiple
waves to again obtain six correlations). For the sake of simplicity, we will use

their study-specific number of persons as our study-specific number of
measurements (denoted by Ts).
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With this input,we can compare the performances of the four
current best-practice meta-analysis approaches (i.e., ignore,
linear, quadratic, and dummy method) to the CTmeta method,
in terms of recovering the true underlying lagged relationships
across different intervals. For each of the five methods, we use
a GLS approach in weighting the parameter estimates to
account for dependencies within each set of lagged regression
parameters. The covariance matrices of the (transformed) stan-
dardized lagged effect parameters, necessary for the GLS
approach, are calculated based on the derivations shown in
Appendix B. The GLS meta-analysis method, using the rma.
mv function of the metafor package in R (Viechtbauer, 2010),
renders the full covariance matrix of the parameter estimates
and thus allows us to calculate elliptical 95% confidence inter-
vals, which take into account the covariances of the parameter
estimates. If one would disregard these covariances and com-
bine the univariate 95% confidence intervals per parameter
estimate based on only the variances, one obtains the simulta-
neous confidence interval, which covers more than 95%. As an
example, in case of two parameter estimates, the elliptical 95%
confidence interval is an ellipses and the simultaneous confi-
dence interval is a rectangle covering this ellipses and thus
covers parameter estimate combinations that are not part of
the true, multivariate 95% confidence interval. Therefore, we
will use the elliptical 95% confidence intervals (from now
referred to as 95CI), which can be used to properly quantify
the uncertainty in parameter estimates for each method.

Comparison of Methods

Figures 3 and 4 depict the results of the five different meta-
analyses, where subfigures (a) through (d) show the overall
estimates of ϕ11, ϕ12, ϕ21 and ϕ22, respectively. The overall
lagged effect parameters for each of the 12 unique time inter-
vals are denoted by dots and the triangles depict the upper and
lower bound of the corresponding 95CI. Each meta-analysis
method is depicted by a different color, and for clarity, the
ignore, linear, and quadratic meta-analysis results are shown
in Figure 3, while the dummy method and CTmeta results are
shown in Figure 4. For each method, we compare how these
capture the true, population lagged effects at different inter-
vals, denoted by a green line in each figure.

Ignoring Time Interval

We start with aggregating the 25 sets of four parameter
estimates ignoring the time interval. Since we neglect the
time interval, there is one overall estimate per parameter,
indicated by red dots in Figure 3, which lie consequently on
a horizontal line. Similarly, the 95CI (per parameter esti-
mate) is the same for all time intervals. When inspecting
the overall parameter estimates for time intervals present in
our study, only for ϕ12ð13Þ the 95CI of the overall estimate
contains the true value, while for all other parameters and/
or time intervals it does not.

The overall estimate is a mix of the true parameter
values for each of the used time intervals. Evidently,
a mix of these true parameter values is not particularly
informative about the (underlying) process. This method
leads to a biased overall effect estimate matrix and may
lead to incorrect conclusions regarding dominance (i.e.,
predictive strength) and sign (cf. Kuiper & Ryan, 2018).
Only when (approximately) the same time intervals are
used in each study, this method is valid.

Time Interval as a Linear (and Quadratic)
Moderator

When adding the time interval as a linear predictor, we
obtain per parameter an intercept and slope estimate from
which we can derive the overall estimates per time interval.
The results of this method are depicted in gray in Figure 3.
Note that this, by construction, renders a straight line for
each standardized lagged effect. Thus, using the study-
specific time interval as a linear moderator results in
a linear prediction of a non-linear relationship (cf. green
line and Equation 3). Especially, if the time intervals are far
apart, the linear relationship is a bad prediction. If the time
intervals are close together, one could benefit from the
linear model since there is only one time interval parameter
to be estimated.

From the subfigures, we can see that for each standardized
lagged effect there are many time intervals for which the
95CI does not contain the true population value, that is, for
which the green line is not between the gray lines. When
adding the time interval also as a quadratic predictor, one
obtains (evidently) a non-linear relationship, see the orange
parts in Figure 3. Nevertheless, for only 4 out of 12 time
interval groups, the 95CI contains the true population value.

Time Interval Groups as Dummies

In the working example, we have 12 unique time inter-
vals, that is, G ¼ 12 time interval groups, and thus the
dummy method leads to 12 overall estimates.4 Figure 4
displays the results in black. From the subfigures, we can
see that some of the overall estimates are not very accurate
but the coverage is good: in most instances, the 95CIs does
contain the true population value (green). The reason for
this is that the overall estimate is based on relatively few
observations, resulting in a high(er) standard error of that
overall estimate. Only for the overall estimate of ϕ11 1 1

6

� �
,

the true parameter value lies outside of the 95CI. From the
subfigures, we can see that the certainty of the overall

4Notably, for interpretational and calculational ease, one should use G
dummies and leave the intercept out (instead of including G� 1 dum-
mies). This leads to G overall estimates, namely one per time interval
group, with their covariance matrix (instead of group differences in those
estimates and the covariance matrix of these differences).
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estimate increases with total sample size used for that time
interval group: for Δt ¼ 1, the total number of observations
is the highest and the width of the 95CIs is the smallest.

In estimating each interval-specific overall estimate, the
dummy method only uses information from studies with
that exact time interval, akin to splitting the sample and
performing separate analyses. Therefore, the 95CIs is wider
than when all observations could have been used. Because
of this, 0 is sometimes included in the 95CIs while the true
parameter differs from zero. Another consequence is that
this approach needs more than one study per time interval
group to obtain additional information, otherwise your

overall estimate for that time interval equals the estimate
of that single study.

Continuous-Time Meta-Analysis (CTmeta)

Since the estimates from all studies are all informative
about the underlying process, we use information from all
25 longitudinal studies in the aggregation by meta-analyzing
the transformed lagged parameters. Much like the dummy
analysis method, we perform the meta-analysis technique 12
times, one for each time interval used. However, the input for
each time interval analysis includes all observations, by using

(a) and

(c) and (d) and

and(b)

FIGURE 3 Subfigures (a–d) display one of the four ϕjkðΔtÞs (green line) and its estimated overall standardized lagged effect ϕ̂jkðΔtÞ (dots) together with
their elliptical 95% confidence intervals (triangles) based on the following three methods: ignoring time interval (red), using a linear relationship (gray), and
using a linear and quadratic relationship (orange).
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all transformed lagged parameters at that time interval. The
results are plotted in blue in Figure 4. From the subfigures, we
can see that the overall standardized lagged effects are almost
exactly equal to the true values and that all the 95CIs contain
the true population value. Additionally, the 95CIs do not
contain 0 except for one case: the overall estimate of ϕ12

1
365

� �
.

When comparing this method (blue) to the dummy
approach (black), we see that the 95CIs are much narrower
than the ones of the dummy approach and thus also contain
the value 0 less often. This is of course due to using all
available data from all studies for each of the four lagged
effects.

Comparison of Dummy Method and CTmeta:
Simulation

From the example above, it is clear that only the dummy
method and CTmeta capture the non-linear relationship
between the lagged effects and the time interval. To exam-
ine which of these two methods performs best, we also
conducted a simulation study based on the example
above. We repeated the exact GLS meta-analysis (for the
four lagged effects), as described above, 10,000 times.5

Table 2 shows results of this simulation: the coverage,
bias, and root-mean-square error (RMSE) of both methods

FIGURE 4 Subfigures (a–d) display one of the four ϕjkðΔtÞs (green line) and its estimated overall standardized lagged effect ϕ̂jkðΔtÞ (dots) together with
their elliptical 95% confidence intervals (triangles) based on the following three methods: dummy (black) and CTmeta (blue).
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for each of the four standardized lagged effects and 12
unique time intervals The table shows that both methods
seem to be unbiased and that their coverage rates are
comparable. However, the variance of the dummy method
estimates are much larger, as we can see from the RMSE in
Table 2 (which ranges, depending on the time interval, from
equivalent to 19 times larger than that of CTmeta).

Aswewould expect, given that the CTmetamethod uses all
parameter estimates for every time interval, CTmeta is more
efficient than the dummy method: The 95CI of the dummy
method is wider for all lagged effects and all time intervals
(depending on the time interval, between 1.26 and 15.85 times
wider).As a consequence,we also see that theCTmetamethod
has more power to detect non-zero relationships than the
dummy method: For the dummy analysis, zero is more often
included in the 95CI for non-zero parameters than for the
CTmeta method (for the dummy method the average propor-
tions over the 12 time intervals are 0.07, 0.28, 0.44, and 0.08
for the four respective parameters; while for CTmeta these are
0, 0, 0.06, and 0, respectively, where 0 is only contained in the
95CI for the overall estimate of ϕ21ð1=365Þ). While both the
CTmeta and the dummymethod are unbiased, with acceptable
coverage rates, the CTmeta method outperforms the dummy
method in these other key metrics.

DISCUSSION

In this article, we proposed a new method for the meta-
analysis of lagged regression models which overcomes
the well-known problem of time-interval dependency.
Based on the assumption of an underlying continuous-
time model, we showed that this method outperforms
current best-available methods in a representative
example and simulation study. While many researchers
have explicitly promoted the potential of CT models in
aiding researchers to compare cross-lagged effects in
studies with different measurement regimes (e.g., Oud,
2007), this paper provides the first implementation of
a method by which researchers can use CT models
directly for this purpose. This new method, implemen-
ted in the R package CTmeta and accompanying Shiny
application (Kuiper, 2018a), allows researchers to com-
bine evidence from such studies in a principled way,
and to come to an understanding of how lagged rela-
tionships vary and evolve as a function of the time
interval.

While the current implementation of the CTmeta
method allows for some degree of flexibility regarding
the type of input (correlation matrices, lagged regres-
sion parameters), weighting method (WLS or GLS) and
meta-analysis model (FE or RE), further work is needed
to address common issues which arise in meta-analytic
studies. For example, accounting for studies with more
than one set of parameters estimates (i.e., multiple sam-
ples; as Nohe et al. (2015) have in their selected studies
and account for by using a multilevel meta-analysis).

In the current paper, we focus on the meta-analysis
of cross-lagged and auto-regressive parameters resulting
from fixed effects DT-VAR(1) (CLPM) models. The
standardized lagged effect parameters from the random-
intercept CLPM (RI-CLPM; Hamaker et al., 2015) are
also increasingly the target of meta-analyses (e.g.
Masselink et al., 2018). In these models, random inter-
cepts are used to separate the between from the within-
persons variance components by decomposing observa-
tions into a stable mean, specific to an individual, and
a deviation from that mean at a given time point, and
the DT-VAR(1) model is applied to these latter devia-
tions. The CTmeta method can be readily applied to
lagged parameters estimated from RI-CLPM models
without adjustment. However, the meta-analysis of the
random intercept parameters themselves is not yet
implemented, that is, we did inspect the meta-analysis
of random-intercept parameters (their means and var-
iances). Another, promising extension would for future
studies would be the meta-analysis of random auto-
regressive and cross-lagged effects, such as those
yielded by multilevel DT-VAR(1) models, increasingly
popular in experience sampling studies (e.g., Bringmann
et al., 2013). The CTmeta method can currently only
meta-analyze the fixed auto-regressive and cross-lagged
effects of such models.

At its core, this method leverages assumptions about
the form of the underlying process to achieve gains in
performance in terms of efficiency and power, in com-
parison to the next-best performing dummy variable
method. The key assumption is that the underlying
process is continuous-time in nature. Boker (2002) and
van Montfort et al. (2018), among others, have argued
that psychological processes are more appropriately
conceptualized as CT processes, reflecting the notion
that psychological processes evolve and vary in
a smooth, continuous manner over time. In the current
paper, the simplest possible continuous-time model, the
first-order differential equation with integral solution
the CT-VAR(1), is assumed as the underlying data-
generating mechanism. This is an attractive choice as
the mapping from this CT model to the DT-VAR(1) (and
vice versa) is well-known and unique in many instances.
However, in light of that assumption, two limitations of

5When simulating data, we discarded the samples where the DT-VAR
(tr1) lagged parameter matrix had at least one negative eigenvalue (since
in that case there does not exist a CT equivalent) and where the covariance
matrices were not positive definite (comparable to negative variance; since
in that case, we cannot perform a GLS meta-analysis).

META-ANALYSIS OF LAGGED REGRESSION MODELS 405



T
A
B
LE

2
C
ov

er
ag

e,
B
ia
s,

an
d
R
oo

t-
M
ea

n-
S
qu

ar
e
E
rr
or

(R
M
S
E
)
of

th
e
D
um

m
y
M
et
ho

d
an

d
C
T
m
et
a
M
et
ho

d,
fo
r
E
ac

h
of

th
e
4
S
ta
nd

ar
di
ze

d
La

gg
ed

E
ffe

ct
s
an

d
12

U
ni
qu

e
T
im

e
In
te
rv
al
s

C
on

si
de

re
d
in

th
e
M
et
a-
an

al
ys
is

C
ov
er
ag
e

B
ia
s

du
m
m
y
m
et
ho
d

C
T
m
et
a

du
m
m
y
m
et
ho
d

Δ
t�

ϕ 1
1

ϕ 1
2

ϕ 2
1

ϕ 2
2

ϕ 1
1

ϕ 1
2

ϕ 2
1

ϕ 2
2

ϕ 1
1

ϕ 1
2

ϕ 2
1

ϕ 2
2

1/
36
5

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

−
0.
00
2

0.
00
0

0.
00
0

−0
.0
02

1/
12

0.
99
7

0.
99
5

0.
99
5

0.
99
6

1.
00
0

1.
00
0

1.
00
0

1.
00
0

−
0.
00
6

0.
00
2

0.
00
3

−0
.0
07

2/
12

0.
99
2

0.
99
1

0.
98
6

0.
99
1

0.
99
1

0.
99
7

0.
99
1

0.
99
6

−
0.
01
6

0.
00
0

0.
00
2

−0
.0
16

4/
12

0.
97
7

0.
97
8

0.
96
8

0.
97
0

0.
96
9

0.
98
2

0.
97
0

0.
97
3

−
0.
00
5

0.
00
2

0.
00
4

−0
.0
06

8/
12

0.
96
3

0.
95
9

0.
96
1

0.
95
8

0.
96
9

0.
97
8

0.
97
7

0.
96
8

−
0.
00
1

−
0.
00
1

−0
.0
01

−0
.0
00

9/
12

0.
96
3

0.
96
5

0.
96
2

0.
96
3

0.
97
6

0.
98
4

0.
98
3

0.
97
4

−
0.
01
1

−
0.
00
0

0.
00
3

−0
.0
12

10
/1
2

0.
96
2

0.
96
2

0.
95
4

0.
96
3

0.
96
6

0.
98
0

0.
97
7

0.
97
1

−
0.
00
5

−
0.
00
2

−0
.0
04

−0
.0
02

12
/1
2

0.
94
4

0.
96
5

0.
95
4

0.
96
0

0.
93
3

0.
96
4

0.
95
2

0.
95
6

−
0.
00
0

0.
00
0

0.
00
0

−0
.0
00

14
/1
2

0.
96
3

0.
96
5

0.
95
8

0.
96
9

0.
91
4

0.
96
1

0.
93
7

0.
95
4

−
0.
01
1

−
0.
00
2

−0
.0
02

−0
.0
09

24
/1
2

0.
97
1

0.
98
1

0.
98
4

0.
99
2

0.
95
9

0.
97
4

0.
98
2

0.
99
1

−
0.
02
8

−
0.
00
2

−0
.0
01

−0
.0
25

36
/1
2

0.
99
3

0.
99
7

0.
99
9

1.
00
0

0.
98
9

0.
99
2

0.
99
9

1.
00
0

−
0.
00
7

−
0.
00
5

−0
.0
08

−0
.0
04

48
/1
2

0.
99
9

1.
00
0

1.
00
0

1.
00
0

0.
99
9

1.
00
0

1.
00
0

1.
00
0

−
0.
01
1

0.
00
4

0.
00
7

−0
.0
13

B
ia
s

R
M
S
E

C
T
m
et
a

du
m
m
y
m
et
ho
d

C
T
m
et
a

Δ
t�

ϕ 1
1

ϕ 1
2

ϕ 2
1

ϕ 2
2

ϕ 1
1

ϕ 1
2

ϕ 2
1

ϕ 2
2

ϕ 1
1

ϕ 1
2

ϕ 2
1

ϕ 2
2

1/
36
5

−0
.0
03

0.
00
0

0.
00
0

−
0.
00
3

0.
00
0

0.
00
1

0.
00
1

0.
00
1

0.
00
0

0.
00
1

0.
00
1

0.
00
0

1/
12

−0
.0
01

0.
00
0

0.
00
1

−
0.
00
2

0.
02
9

0.
04
0

0.
03
1

0.
03
6

0.
00
2

0.
01
9

0.
01
9

0.
00
2

2/
12

−0
.0
03

0.
00
0

0.
00
1

−
0.
00
3

0.
02
0

0.
04
4

0.
03
8

0.
02
5

0.
00
3

0.
03
5

0.
03
4

0.
00
3

4/
12

−0
.0
01

0.
00
0

0.
00
1

−
0.
00
1

0.
02
9

0.
07
0

0.
06
4

0.
03
5

0.
00
5

0.
06
0

0.
05
9

0.
00
6

8/
12

−0
.0
03

−
0.
00
1

−
0.
00
3

−
0.
00
1

0.
04
5

0.
10
3

0.
09
9

0.
04
9

0.
00
7

0.
09
0

0.
08
8

0.
00
8

9/
12

−0
.0
03

0.
00
1

0.
00
1

−
0.
00
3

0.
06
4

0.
11
4

0.
11
1

0.
06
8

0.
00
8

0.
09
4

0.
09
2

0.
00
8

10
/1
2

−0
.0
03

−
0.
00
1

−
0.
00
3

−
0.
00
1

0.
09
0

0.
13
0

0.
13
2

0.
09
3

0.
00
8

0.
09
7

0.
09
6

0.
00
8

12
/1
2

−0
.0
00

−
0.
00
0

0.
00
0

−
0.
00
0

0.
01
0

0.
10
1

0.
10
0

0.
01
0

0.
00
8

0.
10
1

0.
10
0

0.
00
8

14
/1
2

−0
.0
03

−
0.
00
0

−
0.
00
0

−
0.
00
2

0.
05
6

0.
11
4

0.
11
7

0.
05
5

0.
00
8

0.
10
2

0.
10
2

0.
00
8

24
/1
2

−0
.0
03

0.
00
0

0.
00
1

−
0.
00
3

0.
03
0

0.
09
0

0.
09
6

0.
02
5

0.
00
8

0.
08
8

0.
09
2

0.
00
6

36
/1
2

−0
.0
02

−
0.
00
1

−
0.
00
2

−
0.
00
1

0.
01
6

0.
06
6

0.
06
7

0.
01
3

0.
00
7

0.
06
2

0.
06
6

0.
00
5

48
/1
2

−0
.0
00

0.
00
0

0.
00
0

−
0.
00
0

0.
04
3

0.
05
4

0.
05
9

0.
03
1

0.
00
5

0.
04
1

0.
04
5

0.
00
4

N
ot
e:

A
va
lu
e
of

(-
)0
.0
00

m
ea
ns

a
va
lu
e
sm

al
le
r
th
an

0.
00
05

in
ab
so
lu
te

se
ns
e.

406 KUIPER AND RYAN



the current methodology are of note here. First, follow-
ing the Nyquist-Shannon theorem (Shannon, 1984) we
must assume throughout that the sampling frequency in
the target studies is sufficiently high to capture the
dynamics of interest. While for oscillating processes, it
is straightforward to derive the necessary sampling fre-
quency (less than or equal to half the wavelength), an
exploration of whether this condition is met in typical
psychological settings is beyond the scope of the cur-
rent paper. Second, when oscillating behavior is present
in the system of interest, as indicated by complex eigen-
values of the lagged effects matrix, the meta-analytic
strategy described in the current paper breaks down (cf.
Hamerle et al., 1991). In that case, there is no unique
mapping from the discrete-time to the continuous-time
effects matrices (that is, the inverse of Equation 3 does
not lead to a unique A). A potential topic for future
research would be to investigate how better to utilize
observations at many unequal time intervals to better
identify oscillating systems (as suggested by Voelkle &
Oud, 2013, Section 1.2). In general, it remains to be
seen how the CTmeta method performs under condi-
tions of model misspecification, be that a non-
continuous-time process or a more complex or higher-
order dynamic process. Future research could poten-
tially generalize the CTmeta method to any continuous-
time model for which the integral solution is known.

The particular implementation of continuous-time
meta-analysis described in the current paper reflects
our beliefs that researchers are primarily interested in
how lagged effects vary and evolve over time. An
alternative approach would be to perform a meta-
analysis directly on the parameters of the CT model,
that is, the drift matrix. As well as entailing potential
difficulties in interpretation, there are a number of prac-
tical considerations which led us to the CTmeta method
described here. Primarily, while the transformation from
DT-VAR(1) lagged effects to the CT-VAR(1) parameters
is known, the transformation of their covariance
matrices is less straightforward. This implies that proper
weighting of evidence from different studies is difficult
to implement and, moreover, it complicates determining
the elliptical/multivariate 95% confidence intervals of
the overall DT-VAR(1) lagged effects. For a further
discussion of this issue, see Appendix D.

Finally, while the CTmeta method allows us to over-
come the issue of time-interval dependency, there remain
a number of unsolved conceptual issues with comparing
cross-lagged effects using meta-analytic techniques. For
example, simple comparison of the size of overall cross-
lagged estimates is a useful first step, but not a principled
hypothesis test of relative magnitudes. Furthermore, while

the interest of researchers applying these methods is typi-
cally in making some inference about (Granger-)causal
relationships (cf. Usami, Murayama, & Hamaker, 2019),
the order of magnitude of cross-lagged effects does not
necessarily ensure the same ordering of ‘causal dominance’
relations: further assumptions are necessary for these
lagged parameters to reflect causal relationships.
Nonetheless, the availability of a method to meta-analyze
cross-lagged parameters from studies with different mea-
surement designs is a necessary first-step on the road to
establishing any reliable conclusions regarding the nature
of these relationships in principle.
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APPENDIX A. STANDARDIZED LAGGED EFFECT
MATRICES VIA (MEAN) CORRELATIONS

In this article, we are interested in meta-analyzing standardized lagged
effects. However, sometimes studies report contemporaneous and lagged
correlations between the variables (see Figure 5b) instead of lagged effects
(see Figure 5a). One possibility is to meta-analyze (the Fisher’s transfor-
mation of) these correlations, as Jacobson and Newman (2017) do.
Another possibility is to transform these to standardized lagged effects
and meta-analyze these. How one should do this (in general) will be
shown in this appendix.

To show how one can obtain ΦðΔtÞ via contemporaneous and lagged
correlations, we rewrite the DT-VAR(1) model as a regression model,
where the predictors X are the lagged (and mean-centered) observations
(i.e., ym�1; e.g. Stress and Anxiety on measurement occasion m� 1) and
the outcomes Y the (mean-centered) current observations (i.e., ym; e.g.
Stress and Anxiety on measurement occasion m). Note that both variables
have either Ts � 1 observations (if single subject and Ts measurement
occasions) or Ns observations (if Ns persons and two waves). Evidently,
X and Y are study-specific and, moreover, will differ when another time
interval is used. For example, if one measures every 2 hours instead of
each hour, every second ‘observation’ is not measured. For readability, we
will leave out the study-specific subscript s and sometimes the dependency

on Δt. Given this notation, the transpose of the DT-VAR(1) lagged effects
matrix can be estimated by

ðX 0 XÞ�1X 0 Y :

Here, we are interested in the standardized lagged effect parameter matrix,
in this article denoted by ΦðΔtÞ. In that case, both X and Y are not only
mean-centered but even standardized (i.e., also have a variance of one).
Let the correlation matrix of Y and X consists of four block matrices (each
of size q� q):

RYY RXY ðΔtÞ
RXY ðΔtÞ0 RXX

� �
;

with RYY the correlation matrix of the Ys (i.e., the contemporaneous correla-
tions of the current variables); RXX the correlation matrix of the Xs (i.e., the
contemporaneous correlations of the lagged variables); and RXYðΔtÞ the
matrix with correlations between the outcome Y and each predictor X (i.e.,
between the current and lagged variables). Using this, the transpose of the DT-
VAR(1) standardized lagged effect parameter matrix is calculated by

ΦðΔtÞ0 ¼ R�1
XXRXY ðΔtÞ: (5)

Note that RYY and RXX are independent of the time interval Δt, since
they are the contemporaneous correlations.6 In contrast, RXYðΔtÞ does
depend on the time interval used, since it contains the lagged correlations
which depend on the time interval. This time-interval dependency can also
be seen from the following:

Φð1Þ0 ¼ R�1
XXRXY ð1Þ;

Φð2Þ0 ¼ R�1
XXRXY ð2Þ; and

Φð2Þ0 ¼ ðΦð1Þ0Þ2

¼ ðR�1
XXRXY ð1ÞÞ ðR�1

XXRXY ð1ÞÞ

¼ R�1
XX ðRXY ð1ÞR�1

XXRXY ð1ÞÞ; hence

RXY ð2Þ ¼ RXY ð1ÞR�1
XXRXY ð1Þ:

As an example, when looking at the first DT-VAR(1) equation of
a bivariate DT-VAR(1) model, Equation 5 states that the two parameters
can be written as:

ϕ11ðΔtÞ ¼
ry1;x1ðΔtÞ � rx1;x2 ry1;x2ðΔtÞ

1� r2x1;x2
;

ϕ12ðΔtÞ ¼
ry1;x2ðΔtÞ � rx1;x2 ry1;x1ðΔtÞ

1� r2x1;x2
:

FIGURE 5 A simplified graphical representation of a bivariate process
with two waves: (a) the cross-lagged panel model and (b) the contempora-
neous and lagged (cross-)correlations.

6 In case of longitudinal single-subject data, RYY and RXX will asympto-
tically equate the covariance matrix of the standardized data including all Ts
measurements (i.e., the stationary/contemporaneous covariance matrix).
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Thus, a meta-analysis combing standardized lagged effect parameters from
multiple longitudinal studies can also be based on studies reporting correla-
tions between the current and lagged observations. In terms of panel data, one
needs the correlation for the variables themselves on the first wave and also
that of the second wave, and the correlations for each variable on wave 1 with
another variable on wave 2. Notably, in case of a bivariate model (i.e., a 2� 2
lagged effects matrix), one needs six correlations (cf. Figure 5b), that is, the
number of lower-triangular elements in a 4� 4 correlation matrix of the four
variables (i.e., the two on the second wave and the two on the first wave).

As an example, consider the longitudinal study of Innstrand,
Langballe, Espnes, Falkum, and Aasland (2008), which is included in
the meta-analysis study of Nohe et al. (2015). One can deduce from
their Table 1 (and using Δt ¼ 2 years) that for the two variables of interest
(WFC and FWC) the lower triangular correlation matrix with two current
and four lagged correlations is:

1

rFWCT2;WFCT2 1

rWFCT1;WFCT2 rWFCT1;FWCT2 1

rFWCT1;WFCT2 rFWCT1;FWCT2 rFWCT1;WFCT1 1

2
666664

3
777775

¼

1

0:40 1

0:63 0:31 1

0:34 0:63 0:41 1

2
666664

3
777775

In the example above, we had only two waves and many persons. There is
also the type of longitudinal study where there are multiple persons and a few
waves (i.e., a few measurement occasions). In that case, the mean correlations
averaged over pairs of consecutive waves are used in the formulas above to
determine the standardized lagged effect parameters. Thus, in a trivariate model
with three waves, one obtains the six correlations for waves 1 and 2 and the six
for waves 2 and 3. Then, one takes the average of these two values for each of
the six correlations. Note that one should not include the correlations based on
wave 1with that ofwave 3.Only consecutive pairs should be taken into account,
because of the time-interval problem. From these six mean correlations (or
better, the 3� 3 mean correlation matrix), the standardized lagged effect para-
meters can be calculated using Equation 5. These equations are incorporated in
the R package CTmeta and in a Shiny applications, see Appendix C.

APPENDIX B. COVARIANCE MATRIX OF
STANDARDIZED LAGGED EFFECTS

In this appendix, we will derive what the expression is for the covariance
matrix of a standardized lagged effects matrix.

B.1 Covariance Matrix of a DT Lagged Effect
To perform a meta-analysis we also need, besides the (transformed)
standardized lagged effects, the variances (or covariance matrix) of the
(transformed) standardized lagged effect parameters; namely, as a weight
for the overall standardized lagged effect parameters but also for the
standard errors (or covariance matrix) of the overall standardized lagged
effect parameters. In case a DT-VAR(1) model is conducted, the standard
errors (i.e., the square root of the variances) of the standardized lagged
effect parameters will be reported. In contrast, in case a study reports
(mean) contemporaneous and lagged correlations which can be trans-
formed to standardized lagged effect parameter (see Appendix A), the

standard errors or variances of the standardized lagged effect parameters
are not directly available. However, one can calculate them.

As will be shown in the next subsection, in general, the variance
expression for a standardized lagged effect estimate in Study s (i.e., for
ϕ̂jk;sðΔtsÞ) is: with R::;s a matrix of (mean) correlations for Study s between
two vectors/matrices mentioned in the subscript—where Y refers to the
current observation and X to the lagged ones—and ðMÞdd the dth diagonal

element of matrix M. The square root of varðϕ̂jk;sðΔtsÞÞ is the standard

error of ϕ̂jk;sðΔtsÞ. Note that for the transformed parameters, one should

use varðϕ̂jk;sðΔt�ÞÞ.

B.1.1 Derivation of Variance Expression
In this subsection, we derive the expression for varðϕ̂jk;sðΔtsÞÞ and

varðϕ̂jk;sðΔt�ÞÞ. For Study s, the q parameters in the jth DT-VAR(1)

equation can be determined by:

ϕ̂j:;sðΔtsÞ ¼ ðϕ̂j1;sðΔtsÞ; . . . ; ϕ̂jq;sðΔtsÞÞ0
¼ R�1

XX ;sðRXY ;sðΔtsÞÞj;

where ðRXY;sðΔtsÞÞj denotes column j in RXY;sðΔtsÞ and contains elements
ðRXY;sðΔtsÞÞ1j to ðRXY;sðΔtsÞÞqj. In regression, the covariance matrix of the

parameter estimates for one outcome is σ2ε ðX0 XÞ�1, where σ2ε is the residual

variance. In terms of correlations, ðX0 XÞ�1 equals R�1
XX;s=ðNs � 1Þ, where Ns

is the number of observations in the regression (where Ns should be replaced
by Ts � 1 in case of longitudinal single-subject data). Using this, it follows

that the sampling covariance matrix of ϕ̂j:;sðΔtsÞ is:

varðϕ̂j:;sðΔtsÞÞ ¼ ðσε;s;jðΔtsÞÞ2
R�1
XX ;s

Ns � 1
;

with ðσε;s;jðΔtsÞÞ2 the residual variance for the jth outcome in Study s,

which also depends on the used time interval Δts. Note that varðϕ̂j:;sðΔtsÞÞ
is a q� q matrix for the jth outcome. The sampling variance of ϕ̂jk;sðΔtsÞ is
the kth diagonal of this matrix (i.e., ðσε;s;jðΔtsÞÞ2 ðR�1

XX ;sÞkk=ðNs � 1Þ); and,
evidently, its square root is the the standard error of ϕ̂jk;sðΔtsÞ.
Furthermore, the vector of residual variances is determined by:

ðσP;sðΔtsÞÞ2 ¼ ðσP;s;1ðΔtsÞÞ2; . . . ; ðσP;s;qðΔtsÞÞ2Þ

¼ diagðRYY ;s � RYX ;sðΔtsÞR�1
XX ;sRXY ;sðΔtsÞÞ ðNs � 1Þ

Ns � q
;

where diagðMÞ denotes the diagonal elements of matrix M. These two
equations render:

varðϕ̂jk;sðΔtsÞÞ ¼
σε;s;jðΔtsÞÞ2 ðR�1

XX ;sÞkk
Ns � q

; with

σε;s;jðΔtsÞÞ2 ¼ ððRYY ;s � RYX ;sðΔtsÞR�1
XX ;sRXY ;sðΔtsÞÞjj:

varðϕ̂jk;sðΔtsÞÞ ¼
ðRYY;s � RYX ;sðΔtsÞR�1

XX ;sRXY;sðΔtsÞÞjj ðR�1
XX ;sÞkk

Ns � q
;

Thus, in case the standard errors of the standardized lagged effect
parameters are not given but the correlation matrix is, one can determine
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the standard errors or variances of the elements in ΦsðΔtsÞ. From the
formula above, it is clear that the variances of the elements in the DT-VAR
(1) standardized lagged effect parameter matrix do not (asymptotically)
equate to 1=ðNs � 3Þ – an expression used by some – and that they depend
on the time interval as well.

In case one wants to calculate the variances of the transformed stan-
dardized lagged effect parameters, one should make use of
RXY;sðΔtÞ ¼ RXX ;sΦsðΔtÞ0. When transforming to ΦsðΔt�Þ, this results in:

varðϕ̂jk;sðΔt�ÞÞ ¼ varðϕ̂jk;sðΔtsÞÞ
ðσε;s;jðΔt�ÞÞ2
σε;s;jðΔtsÞÞ2

:

Note that the expression for the covariance matrix of the vectorized

ΦsðΔtsÞ (i.e., vec ϕ̂j:;sðΔtsÞ) is:

varðvec ΦsðΔtsÞÞ ¼
Σε;sðΔtsÞ � R�1

XX ;s

Ns � q
; with

Σε;sðΔtsÞ ¼ RYY ;s � RYX ;sðΔtsÞR�1
XX ;sRXY ;sðΔtsÞ; stated otherwise

covðϕ̂jk;sðΔtsÞ; ϕ̂lp;sðΔtsÞÞ ¼
ðΣε;sðΔtsÞÞjl ðR�1

XX ;sÞkp
Ns � q

;

where � denotes a Kronecker product:

Σ � Γ�1 ¼
σ11 Γ�1 � � � σ1q Γ�1

..

. . .
. ..

.

σq1 Γ�1 � � � σqq Γ�1

2
64

3
75:

Bear in mind that the diagonal elements of the covariance matrix
varðvec ΦsðΔtsÞÞ equals the variance of ϕ̂jk;sðΔtsÞ, that is, varðϕ̂jk;sðΔtsÞÞ and
note that Σε;sðΔtsÞjj ¼ ðσε;s;jðΔtsÞÞ2. Similar to the univariate case, one can

transform the covariance matrix varðvec ΦsðΔtsÞÞ to obtain the covariance
matrix of the vectorized transformed standardized lagged effect parameters:

covðϕ̂jk;sðΔt�Þ; ϕ̂lp;sðΔt�ÞÞ ¼ covðϕ̂jk;sðΔtsÞ; ϕ̂lp;sðΔtsÞÞ
ðΣε;sðΔt�ÞÞjl
ðΣε;sðΔtsÞÞjl

:

Stated otherwise,

varðΦ̂sðΔt�ÞÞ ¼ varðΦ̂sðΔtsÞÞðΣε;sðΔt�Þ 	 Σε;sðΔtsÞÞ � 1q;

with 	 the elementwise division and 1q a q� q matrix of 1s.
Note that RXX;s and RYY;s will asymptotically equate, and they will be

equal to the contemporaneous correlations matrix, that is, the stationary
correlation matrix (Γ). In that case and using RXY;sðΔtsÞ ¼ RXX;sΦsðΔtsÞ0,
the matrixΣε;sðΔtsÞ reduces toΓ�ΦsðΔtsÞ Γ ΦsðΔtsÞ0, which is the residual
covariance matrix in the DT-VAR(1) model. Consequently, when knowing or
RYY;s, RXY;sðΔtsÞ, and RXX;s orΦsðΔtsÞ and Σε;sðΔtsÞ, orΦsðΔtsÞ and Γs, one
can calculate the covariance matrix ofΦsðΔtsÞ and that of its transformation
ΦsðΔt�Þ. These equations are incorporated in the R package CTmeta and in
two Shiny applications; for more details see Appendix C.

B.2 Covariance Matrix of the Overall DT Lagged Effect
Until now, we inspected the sampling (co)variances for the standardized
lagged effect parameters of one study. We can also inspect the sampling
(co)variances for the overall standardized lagged effect parameters. In
case the full covariance matrix of the vectorized overall standardized

lagged effect parameter is estimated (varðvec Φ̂ðΔt�Þ), as in the multi-
variate/GLS approach, one can also calculate the covariance matrix of
the overall standardized lagged effect parameter for other time intervals
Δt using the formula above (i.e., without doing a meta-analysis per time
interval):

varðvec Φ̂ðΔtÞÞ ¼ Σ̂
�
εðΔtÞ � Γ�1

� ; with (6)

Σ̂
�
εðΔtÞ ¼ Γ� � Φ̂ðΔtÞΓ�Φ̂ðΔtÞ0; and

Γ�1
� ¼ varðvec Φ̂ðΔt�ÞÞ½1:q; 1:q�;

where the latter means the q� q upper left submatrix of the full covar-
iance matrix of the vectorized overall standardized lagged effect para-
meters. This comes down to:

varðϕ̂jkðΔtÞÞ ¼ varðϕ̂jkðΔt�ÞÞ
ðΣ̂�

εðΔtÞÞjj
ðΣ̂�

εðΔt�ÞÞjj
:

Hence, the correction is the same for the standardized lagged effect para-
meters within one outcome (i.e., within outcome j), but differ over outcomes.
Notably, in case one only has the variances of the overall standardized lagged
effect parameters (as is the case when doing a univariate/WLSmeta-analysis),
one cannot transform the variances of the overall standardized lagged effect
parameters as if another time interval was used. In that case, one should do
a meta-analysis per time interval.

When trying this out, the overall covariance matrix varðϕ̂jkðΔt�ÞÞ deviated
a bit from the form ’Σ � Γ�1‘. For example, the elements in

varðvec Φ̂ðΔt�ÞÞ½1 : q; qþ 1 : 2 � q�=varðvec Φ̂ðΔt�ÞÞ½1 : q; 1 : q� resemble
a lot, but do not equate. One can take then the average of these elements as

value for ðΣ̂�
ε ðΔtÞÞ12; and do this for all elements in Σ̂

�
ε ðΔtÞ. More research

might be needed and, therefore, we conducted multivariate meta-analyses per
time interval in the example and simulation study (discussed in the main text).

APPENDIX C. ADDITIONAL TOOLS FOR
PRACTICAL USE

There are two Shiny web applications which can help the researcher in
applying a meta-analysis on transformed standardized standardized
lagged effect parameters. The Shiny web application “Standardizing
and/or transforming lagged regression estimates” Kuiper (2018c) calcu-
lates the standard errors (and full covariance matrix) of the (un)stan-
dardized lagged effect parameter and its transformations. It can do this
(for one study) based on contemporaneous and lagged correlations but
also based on DT-VAR(1) output: standardized or unstandardized
lagged effect estimates and either the stationary or residual covariance
matrix. This can then serve as input for a meta-analysis.

The Shiny application “CT meta-analysis on lagged effects”
Kuiper (2018a) can do the same but also directly conducts the meta-
analysis on standardized lagged effect parameters (using the metafor
package) and takes the standardized or unstandardized lagged effect
estimates and either the stationary or residual covariance matrix as
input but now for multiple studies. You can choose whether you want
to conduct a RE of FE model. By default it performs a FE GLS meta-
analysis model (using the rma.mv function) on the transformed stan-
dardized lagged effect parameters. In case the standardized lagged
effect parameters cannot be transformed, it will use the original ones
and add dummy variables to the meta-analysis model to account for
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the time-interval dependency. When the covariance matrix of the
standardized lagged effect parameters is not positive definite (compar-
able to a negative variance), it will conduct a WLS model (using the
rma.uni function).

The R package CTmeta of Kuiper (2019) also has these functionalities.
For example, with the function ‘CTMA’ one can meta-analyze trans-
formed standardized lagged effects and takes the standardized or unstan-
dardized lagged effect estimates, the stationary, and residual covariance
matrix for multiple studies as input. In case of correlations, one can first
transform these (per study) to the requested input by using the function
‘calc.TransPhi_Corr’.

APPENDIX D. META-ANALYZING THE DRIFT
MATRIX

In the main text, we discuss meta-analyzing transformed standardized
lagged effects. Alternatively, one can meta-analyze the underlying
standardized drift matrix A (i.e., the CT-VAR(1) lagged effects
matrix). For this, the meta-analysis model assumes that the vectorized
matrix vec A is multivariate normally distributed. Since the vectorized
DT lagged effect matrix is, vectorized A is not, but according to the
Central Limit Theorem it will asymptotically be so if the number of
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FIGURE 6 Subfigures (a–d) display one of the four true ϕjkðΔtÞs (green line) and its estimated overall standardized lagged effect ϕ̂jkðΔtÞ when
transforming the overall drift matrix (purple line) together with the elliptical 95% confidence intervals of ΦðΔtÞ for each used time interval (triangles):
one based on small time interval approximation of the covariance matrix in Equation 7 (purple), one on transforming the elliptical 95% confidence intervals
of A (red), and one based an another approximation of the covariance matrix by combining Equations 6 and 7 (blue).

412 KUIPER AND RYAN



observations in your sample is large enough. This means that the
vectorized drift matrix, vec A, converges in distribution to a normal
distribution with a mean equal to the estimated vec A and the covar-
iance matrix equal to the covariance matrix of the estimated vec A
when the sample is large enough.

Furthermore, we need the covariance matrix of vec A in each Study s.
One can use the following approximation:

varðvec AsÞ 
 varðvec ððΦsðΔtsÞ � IÞ=ΔtÞÞwhen time interval Δt goes to 0

¼ varðvec ðΦsðΔtsÞÞÞ=ðΔtÞ2:

This approximation is based on the following approximation of ΦðΔtÞ.

ΦðΔtÞ ¼ expðA ΔtÞ

¼ I þ
X1
k¼1

ðA ΔtÞk
k!


 I þ ðA ΔtÞwhen time interval Δt goes to 0:

When looking at the overall estimates for the example and simulation used
in the main text, the overall estimates are almost equal to the true under-
lying drift matrix.

As we believe that researchers are primarily interested in lagged effects
matrices and how they change depending on the time interval, one would want
to transform the overall drift matrix to an overallΦðΔtÞ for different values of
Δt. This can be straightforwardly done by using ΦðΔtÞ ¼ expðA ΔtÞ. When
looking at the example and simulation used in the main text, the overall
estimates are then almost equal to the true underlying drift matrix. For example,
this is plotted by the purple and green lines, respectively, in Figure 6.

One would also want to obtain the elliptical (i.e., multivariate) 95%
confidence intervals of the overall ΦðΔtÞs. This is unfortunately less
straightforward. One can, for example, use Equation 7 for this, assuming
that this is true for all time intervals (so, also for not infinitesimally small
ones). Or one can transform the elliptical 95% confidence intervals of the
drift matrix (and perhaps also make use of other matrices that render the
same likelihood). Alternatively, one can use Equation 6 at the end of
Appendix B combined with Equation 7. All three methods render very
wide elliptical 95% confidence intervals in the example (see purple, red,
and blue triangles, respectively, in Figure 6) and simulation used in the
main text. Hence, more research is needed.
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