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Quantum simulators are essential tools for understanding 
complex quantum materials. Platforms based on ultracold 
atoms in optical lattices and photonic devices have led the 
field so far, but the basis for electronic quantum simulators is 
now being developed. Here, we experimentally realize an elec-
tronic higher-order topological insulator (HOTI). We create a 
breathing kagome lattice by manipulating carbon monoxide 
molecules on a Cu(111) surface using a scanning tunnelling 
microscope. We engineer alternating weak and strong bonds 
to show that a topological state emerges at the corner of 
the non-trivial configuration, but is absent in the trivial one. 
Different from conventional topological insulators, the topo-
logical state has two dimensions less than the bulk, denoting 
a HOTI. The corner mode is protected by a generalized chiral 
symmetry, which leads to a particular robustness against per-
turbations. Our versatile approach to designing artificial lat-
tices holds promise for revealing unexpected quantum phases 
of matter.

Quantum simulators—systems that can be engineered and 
manipulated at will—are useful platforms for verifying model 
Hamiltonians and understanding more complex or elusive quan-
tum systems1,2. The simulation of the Bose–Hubbard model and 
the superfluid–Mott-insulator transition in a two-dimensional 
(2D) optical lattice loaded with 87Rb atoms opened the path for 
the use of ultracold atoms as quantum simulators3. Since then, 
triangular, honeycomb, kagome and other types of optical lattices 
have been loaded with bosons and/or fermions, and many inter-
esting quantum states of matter have been simulated4. Quantum 
simulators were also realized in trapped ion5 and photonic sys-
tems6, among others. By contrast, progress on electronic systems 
was achieved only very recently. A few years ago, the first artifi-
cial electronic lattice was built by positioning carbon monoxide 
(CO) molecules on a Cu(111) surface, confining the surface-state 
electrons to a honeycomb lattice7. The technique was inspired by 
the pioneering construction of quantum corrals using scanning 
tunnelling microscope (STM)-based manipulations of adatoms8.  
This was followed by other electronic and spin lattices con-
structed by atomic manipulation in the STM, such as atomic spin 
chains9,10, the Lieb lattice with s orbitals11,12 and p orbitals13, the 
quasicrystalline Penrose tiling14 and the Sierpiński gasket with a 
fractional dimension15.

In addition to manipulating the geometry and the dimensional-
ity, it is desirable to engineer and control topological properties16 
in electronic systems. Topological insulators, superconductors and 

semimetals have attracted enormous attention in recent decades, 
and their potential use in quantum computers has caused a frantic 
interest in these systems17. In their best known form, topological 
insulators are materials that are insulating in the bulk and host topo-
logically protected states in one dimension lower than the bulk18.  
A first example of engineered electronic topological insulators  
established by controlled fabrication on the nanoscale is the one-
dimensional (1D) Su–Schrieffer–Heeger (SSH) chain12. However, 
recently it was proposed that another class of topological systems 
exists, the so-called electronic higher-order topological insulators 
(HOTIs), in which the topological states emerge in at least two 
dimensions lower than the bulk19. In this way, 0D corner (1D hinge) 
states were predicted and subsequently observed in a 2D20 (3D21) 
topological insulator. HOTIs have been experimentally realized in 
photonic20,22,23, phononic24, topolectrical circuit25, microwave circuit26  
and acoustic27,28 systems.

Here, we present the artificial realization of an electronic HOTI. 
Specifically, we create and characterize a breathing kagome lattice29. 
This lattice, shown in Fig. 1a, is described by three sites in a unit cell 
(grey hexagon) with a nearest-neighbour (NN) intracell hopping ta 
and intercell hopping tb (red and blue lines, respectively). The next-
nearest-neighbour (NNN) hopping tnnn is indicated in purple only 
at the top of the lattice (for clarity). In our finite triangular lattice, 
the corner sites are represented by a blue colour, whereas the edge 
sites are indicated in yellow and the bulk sites in green. The Bloch 
Hamiltonian (without NNN hopping) of this model reads
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where ε is the on-site energy, k the crystal momentum, and a1 = (1, 0) 
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 are the lattice vectors. The full tight-binding 
Hamiltonian that describes the experimentally realized lattice is 
given in the Supplementary Information. The bulk band structure 
is shown in Fig. 1b. The regular kagome lattice exhibits a spectrum 
with a Dirac cone and a flat band. The alternating hopping strengths 
in the breathing kagome lattice ta ≠ tb open a bandgap between the 
bottom and middle bands at the K-point, as displayed for realistic 
values ta = 28.5 meV and tb = 75 meV. The otherwise flat top band is 
dispersive due to a non-negligible tnnn = 8.8 meV (see Methods and 
Supplementary Information).
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For the finite-sized lattice, we distinguish two cases. If ta > tb, 
the lattice configuration is topologically trivial; if the values of the 
hopping amplitudes are switched, that is ta < tb, the lattice is topo-
logically non-trivial. In the topological phase, the weakly coupled 
edge and corner sites are predicted to accommodate edge states 
and zero-energy corner modes29,30, respectively. The edge of the 
lattice is similar to a 1D SSH model and exhibits gapped bands. In 
the gap of both the bulk and the edge, three symmetry-protected 
zero-energy modes arise, which are localized at each of the corners 
of the lattice.

Usually, the protection of zero-energy topological states is possi-
ble in insulators or superconductors that exhibit a symmetric spec-
trum. In topological superconductors, the particle-hole symmetry 
enforces this spectral symmetry and pins the energies of Majorana 
bound states exactly at zero energy in its Bogoliubov–de Gennes 
spectrum. In insulators, bipartite lattices provide such spectral sym-
metry. The bipartite character of a crystal, often known as chiral 
symmetry, protects an integer number of zero-energy states in 1D 
systems such as the SSH model (see Supplementary Information). 
Recently it was shown that when additional crystalline symmetries 
are present, bipartite lattices can also protect zero-energy corner 
states in 2D HOTIs20. The kagome lattice, however, is not a bipar-
tite lattice but consists of three sublattices A, B and C (see unit cell 
in Fig. 1a). This poses a conundrum because this lattice exhibits 
higher-order zero-energy states at 60° corners in the topological 
configuration, despite the absence of the chiral symmetry associ-
ated with bipartite lattices. The protection of these zero-energy 
corner states can be explained by a generalized chiral symmetry, 
which relies on the fact that the kagome lattice is tripartite28 (see 
Supplementary Information).

Now we turn to the experimental realization of the electronic 
breathing kagome lattice. Figure 1c,d presents the configuration of 
CO molecules (black) on Cu(111) (grey background) used to con-
strain the surface-state electrons to the non-trivial and trivial lattice 
geometry, respectively. Since the CO molecules act as a repulsive 
barrier to the 2D electron gas at the Cu(111) surface, they are posi-
tioned to form the anti-lattice of the kagome. The distance between 
the artificial lattice sites of the kagome lattice is chosen to be 
3

ffiffiffi
3

p
a  13:3

I
Å, where a ≈ 2.56 Å denotes the Cu(111) NN distance. 

Strong hopping (solid lines) is established by a wide connection 
between the sites, while the hopping is weaker (dashed lines) for 
a narrow connection, implemented by an increased number of CO 
adsorbates. The experimental realization of the non-trivial and triv-
ial breathing kagome lattice is shown in the constant-current STM 
images in Fig. 1e,f. As a guide to the eye, the artificial lattice sites 
and the NN hopping are indicated. Differential conductance spec-
tra were acquired above the bulk (green), edge (yellow) and corner 
(blue) artificial lattice sites and normalized by the average spectrum 
taken on clean Cu(111)7. We first discuss the spectra acquired above 
the non-trivial lattice (see Fig. 1g, solid lines). The bulk spectrum 
(green) shows a peak around a bias voltage of V = −150 mV, which 
corresponds to the lowest bulk band, and a more pronounced peak 
around V = +200 mV, which can be assigned to the middle and top 
bulk bands. The edge spectrum (yellow) exhibits two peaks located 
around V = −20 mV and V = +200 mV, indicating two edge modes. 
This resembles an SSH chain at the edge with two bands, of which 
the top band minimum and bottom band maximum are separated 
by 2(tb − ta) (without orbital overlap). Around V = +75 mV, a mini-
mum of the bulk and edge spectra, the corner spectrum (blue) 
exhibits a maximum. Since there is no on-site potential disorder 
in the artificial lattice due to the atomic precision that we achieve 
in its construction, we attribute this peak to zero-energy modes 
localized at the corners, which are protected by a generalized chiral 
symmetry. Note that this maximum is located at ε = 0.075 eV, which 
denotes the ‘zero-energy’ of this system. In contrast to the non-
trivial lattice, the spectra of bulk, edge and corner sites of the trivial 
lattice are similar (see Fig. 1h, solid lines). These results indicate 
the presence of an electronic zero mode in the non-trivial breathing 
kagome lattice. The differential conductance spectra are reproduced 
by tight-binding calculations of the local density of states (LDOS) 
at the designated artificial lattice sites, displayed underneath the 
experimental spectra in Fig. 1g,h (dashed lines), with the same hop-
ping parameters as used in Fig. 1b. The results are further corrobo-
rated by muffin-tin calculations (see Supplementary Information).

In Fig. 2, we investigate the spatial LDOS at bias voltages cor-
responding to the peak positions in the differential conductance  
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Fig. 1 | Design of the breathing kagome lattice. a, Schematic 
representation of the finite-size breathing kagome lattice, consisting of 
three sublattices A, B and C. The unit cell is indicated by a grey hexagon. 
The tight-binding hopping parameters ta, tb and tnnn are indicated by red, 
blue and purple, respectively. b, Band structure for the bulk of the lattice 
shown in a, calculated using a tight-binding model with tb = 75 meV, 
ta = 0.38tb, tnnn = 0.25tb and ε = 0.075 eV. c,d, Configuration of CO molecules 
(black) on a Cu(111) surface (grey background) to establish artificial lattice 
sites (blue, yellow and green) in a non-trivial (ta < tb) (c) and trivial (ta > tb) 
(d) breathing kagome geometry, respectively. Smaller (larger) hopping is 
indicated by dashed (solid) lines. e,f, Constant-current STM images of the 
realized non-trivial (e) and trivial (f) kagome lattices. Imaging parameters: 
I = 0.3 nA and I = 0.1 nA, respectively, and V = 100 mV. g,h, Normalized 
differential conductance spectra (solid lines) and the LDOS calculated 
using the tight-binding model (dashed lines) for the bulk (green), edge 
(yellow) and corner (blue) sites of the non-trivial (g) and trivial (h) 
breathing kagome lattices, respectively.

Nature Materials | VOL 18 | DECEMBER 2019 | 1292–1297 | www.nature.com/naturematerials 1293

http://www.nature.com/naturematerials


Letters NaTure MaTerIals

spectra. Differential conductance maps acquired above the non-
trivial lattice (Fig. 2a–d) are compared with tight-binding calcula-
tions (Fig. 2e–h) and differential conductance maps of the trivial 
lattice (Fig. 2i–l). At V = −110 mV, the electrons are localized in 
the bulk of the non-trivial kagome lattice. Next, at V = +5 meV, the 
contribution of the bottom edge band is visible. At V = +50 mV, we 
observe the highest intensity at the weakly connected corner sites, 
revealing the corner-localized zero modes. Finally, at V = +145 mV, 
all sites exhibit a similar LDOS, as expected from the spectra. These 
results are in agreement with the tight-binding simulations on the 
non-trivial lattice (Fig. 2e–h). In contrast, the differential conduc-
tance maps obtained above the trivial lattice show a homogeneous 
LDOS at all bias voltages. In particular, the corner sites do not 
exhibit a higher intensity than the other sites at V = +50 mV. The 
shift of the electron probability from the centre to the edges and 
then finally to the corner sites is only seen for the non-trivial lattice 
and fully corroborated by tight-binding and muffin-tin calculations 
(see Supplementary Information).

The zero modes in the kagome lattice are protected by the 
generalized chiral symmetry28 (see Methods and Supplementary 
Information). To investigate their robustness, we perform tight-
binding calculations including only ta and tb, and we set tnnn = 0 for 
simplicity. Furthermore, we set ε = 0 because there is no on-site 
potential disorder among different sites in the experimental lattice. 
We now focus on the top of the lattice, where the corner mode is 
localized on the sublattice C. Figure 3a shows that this zero mode 
has support only on the C sublattice and decays exponentially in the 
neighbouring C sites in the bulk and at the edge (the size of the dots 
represents |ψ|0.2 to allow for a visualization of the decay of the wave 
function; see the Supplementary Information for the exponential 
decay of the wave function). If we now locally break the chiral sym-
metry by introducing a small hopping t2 = 0.05tb, connecting the A–A 
and the B–B sites in the neighbourhood of the top corner, the zero 
mode in C remains unperturbed (see Fig. 3b). However, if we con-
nect C–C neighbours by a hopping t2, thus locally breaking the chiral 
symmetry of the C sublattice, the zero mode in C loses protection,  
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Fig. 2 | Wave function mapping. a–d, Differential conductance maps acquired above the non-trivial breathing kagome lattice at V = −110 mV (a), 
V = +5 mV (b), V = +50 mV (c) and V = +145 mV (d). The standing waves around the lattice originate from scattering of the 2D electron gas outside of the 
lattice with the kagome geometry8. e–h, LDOS maps of the non-trivial lattice at similar energies, simulated using the tight-binding model. i–l, Differential 
conductance maps acquired above the trivial lattice at values of V similar to those in a–d.
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moves away from zero energy and also decays in the A and B sub-
lattices (see Fig. 3c). The other zero modes at the A and B corners 
of the lattice, nevertheless, remain unaffected. However, if the local 
perturbation in C is applied farther away from the corner mode, 
the disturbance is small (see Fig. 3d). Note that the generalized chi-
ral symmetry is not broken by tnnn and the orbital overlap that are 
present in the experiment (see Supplementary Information). These 
results indicate that the generalized chiral symmetry connected to 
a tripartite system offers more protection to the zero modes than 
usual bipartite systems do.

Finally, we show several examples of how these zero modes 
can also be created and destroyed experimentally by introducing 
defects into the lattice (see Fig. 4). The top CO molecule was shifted 
0.256 nm upwards from its previous position, resulting in a small 
shift in ε (see Supplementary Information). In the following discus-
sion, this shift is ignored. In the first defect realization, we remove 
the corner site at sublattice B (bottom-right corner) from the lattice 
by blocking the site with CO molecules (see Fig. 4a–d). Hence, one 
of the zero modes is no longer present (see Fig. 4a). The corner sites 
A and C are not affected by the defect, as shown in the differential 
conductance map at V = +50 meV in Fig. 4d. The generalized chiral 
symmetry is preserved for these modes, as their sublattices remain 
unperturbed. In this way, two zero modes remain by introducing a 
corner defect. Second, we append a protrusion at one edge, host-
ing 120° obtuse angles, breaking the C3 symmetry of the lattice but 
preserving one of its mirror symmetries (see Fig. 4e–h). We observe 
that the edge mode is disrupted around the positions where the 
edge no longer consists of only A and C sites (Fig. 4g). However, 
the corner modes remain unaltered under this perturbation (see  
Fig. 4h). This corroborates that the generalized chiral symme-
try, being a local symmetry, offers a protection mechanism that 
is stronger than the one provided by crystalline symmetries: 
the zero-energy states persist even in the absence of crystalline  

symmetries. Finally, a weakly connected site is added, breaking the 
mirror symmetry of the entire lattice, but preserving the generalized 
chiral symmetry. Again, the three zero-energy modes at the corners 
are resilient. Furthermore, the added weakly connected site at 60° 
(blue) exhibits a fourth zero-energy mode at sublattice A, protected 
by the generalized chiral symmetry. Hence, we show that it is pos-
sible to create and/or destroy zero modes at will.

In fact, under the generalized chiral symmetry, zero modes exist 
whenever a site is only weakly connected to its neighbours (that 
is, connected to other sites by hopping terms of amplitude ta, for 
ta < tb), as happens in all the cases where zero modes exist in Fig. 4. 
Only two zero modes that belong to different sublattices and that 
are in close proximity can hybridize to open a gap. If, however, zero 
modes belonging to the same sublattice are brought together, they 
will remain at zero energy. In this sense, the generalized chiral sym-
metry provides a protection mechanism analogous to the conven-
tional chiral symmetry in bipartite lattices, although in this case the 
existence of three species of zero modes offers more versatility.

The kagome lattice is known to be a fascinating system, mostly 
because it realizes geometric frustration and is conjectured to host 
the elusive spin–liquid phase. Here, we show that a breathing elec-
tronic kagome lattice brings even further surprises. Protected zero 
modes arise at the corners of the lattice, thus realizing a HOTI with 
extreme robustness due to the tripartite character of the general-
ized chiral symmetry. By introducing different types of defects into 
the lattice, zero modes can be manipulated at will, and one can 
tune the system to have an even or odd number of corner modes. 
The large degree of control over artificial lattices provides unique 
opportunities to study electronic topological phases. Our technique 
allows, in principle, the investigation of any breathing 2D lattice. 
Using the LDOS as a clear experimental observable, it is possible 
to detect symmetry-protected edge and corner modes not only 
at the Fermi energy but at all relevant energies of the model. The 
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Fig. 3 | Robustness of the zero mode. a, Localization of the corner mode in the top of a kagome lattice containing 630 sites. The radius of the circles 
indicates |ψ|0.2 to represent the decay of the wave function in a visible way, and the unit cells are indicated with grey hexagons. We use different colours 
to distinguish the sublattices (A is purple, B is orange and C is red). The corner modes exponentially localize on the corresponding sublattice C (see 
Supplementary Information). The spectrum is shown, where the zero modes are indicated with a red line (we set ε = 0 for simplicity in this calculation). 
b, Locally adding an NNN hopping term t2 = 0.05tb between the A sublattice sites and a similar hopping term between the B sublattice sites breaks the 
generalized chiral symmetry for the top sites, but this does not affect the zero mode localized at sublattice site C. c, Breaking the chiral symmetry for the top 
sublattice site C shifts the zero mode to finite energy (green line) and the wave function no longer exponentially localizes only on the sublattice sites C.  
d, Breaking the chiral symmetry in the bulk also destroys the zero mode and the exponential localization, but the effect of this perturbation is less than  
in c. See the Supplementary Information for further analysis on the breaking of these symmetries.
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protection mechanisms and robustness of topological phases can 
also be probed by selectively breaking certain symmetries. This 
can be done locally (for example, via introduction of atomically  
well-defined defects breaking the crystalline symmetry) or globally 
(for example, by applying a magnetic field). Furthermore, it will 
be possible to study the influence of disclinations. For topological 
crystalline insulators, the interplay of topologically protected edge 
modes and edge geometry can be probed. These electronic systems 
are thus complementary to photonic systems, which are designed 
on a much larger scale, and to the cold-atom set-ups, which offer 
great control but require nanokelvin temperatures for their opera-
tion. The progress in the realization of artificial electronic struc-
tures takes a step forward with the inclusion of topology among the 
parameters to be manipulated.
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Methods
Experiments. The STM and spectroscopy experiments were performed in 
a Scienta Omicron Low-Temperature STM system operating in sample-bias 
mode at a temperature of 4.5 K and a base pressure in the 10−11 mbar range. An 
atomically flat Cu(111) surface was prepared by several cycles of Ar+ sputtering 
and annealing and was cooled in the STM head. CO molecules were leaked into 
the chamber for 20 min at a pressure of 1 × 10−8 mbar and adsorbed onto the cold 
surface. The kagome lattices were assembled and characterized using a Cu-coated 
platinum–iridium tip, prepared by gentle contact with the Cu(111) surface. 
CO manipulations were carried out in feedback at bias voltage V = 20 mV and 
current I = 40 nA, following previously reported procedures31–33. STM images were 
obtained in constant-current mode. Differential conductance spectra and maps 
were acquired in constant-height mode using a standard lock-in technique with a 
modulation amplitude of 10 mV root mean square at a frequency of 273 Hz.

Muffin-tin calculations. The muffin-tin model describes the surface-state 
electrons of the Cu(111) as a 2D electron gas confined between circular potential 
barriers (CO molecules) with a height of V = 0.9 eV and a radius R = 0.3 nm. The 
energy and wave functions for this model can be found by numerically solving the 
Schrödinger equation with this potential landscape. Due to the presence of the 
CO molecules, there is a non-zero probability for the surface state electrons to be 
scattered into bulk states of the copper, that is, the CO molecules induce a coupling 
between surface and bulk states. This reduces the lifetime and therefore increases 
the width of the peaks. To account for this effect, a broadening of Γ = 0.08 eV is 
included in the calculations.

Tight-binding calculations. The free electrons in the lattice act as though they 
are confined to certain artificial atom positions due to the placing of the CO 
molecules. We can describe this behaviour within a single-particle tight-binding 
model of connected s orbitals. The Thomas–Fermi screening length for Cu is 
0.05 nm, and therefore the electron correlation effects can be ignored. By making 
a fit to the experimental and muffin-tin spectra, we are able to determine the 
hopping parameters, the on-site energy and the orbital overlap. We find the strong 
and weak hopping values (in the topological phase) tb = 0.075 eV and ta = 0.38tb. 
Furthermore, we obtain tnnn = 0.25tb, ε = 0.075 eV and the orbital overlap between 
NNs sb = 0.22 and sa = 0.9sb. With these parameters, we solve the well-known 
generalized eigenvalue equation Hjψi ¼ ESjψi

I
, where S

I
 is the overlap–integral 

matrix. Next, the LDOS is calculated at each atomic site, in which the broadening 
Γ = 0.08 eV is included to account for bulk scattering. Finally, the LDOS maps are 
calculated by multiplying the LDOS at each site with a Gaussian wave function of 
width σ = 0.45d, where d = 1.33 nm is the distance between two neighbouring sites.

Protection mechanism. The protection of the zero modes is due to an extension of 
the chiral symmetry. The conventional chiral symmetry is expressed as

Γ�1hðkÞΓ ¼ �hðkÞ ð2Þ

where, without loss of generality, one can choose a basis in which the chiral 
operator Γ is a diagonal matrix with entries +1 for one sublattice and −1 for  
the other sublattice. In the breathing kagome lattice, we have an odd number of 

lattice sites in the unit cell; therefore, the chiral symmetry does not hold. The 
concept, however, can be extended to a generalized version of the conventional 
chiral symmetry because the kagome lattice is tripartite. The generalized chiral 
operator Γ3 can now be chosen (by an appropiate choice of ordering in the 
Hamiltonian matrix) to be a diagonal 3 × 3 matrix with entries Γ3 = Diag(1, e2πi/3, 
e−2πi/3) that differentiates three sublattices28. The generalized chiral symmetry is 
then written as

Γ�1
3 h1ðkÞΓ3 ¼ h2ðkÞ;
Γ�1
3 h2ðkÞΓ3 ¼ h3ðkÞ;
h1ðkÞ þ h2ðkÞ þ h3ðkÞ ¼ 0

ð3Þ

Using these equations, it can be shown that Γ�1
3 h3ðkÞΓ3 ¼ h1ðkÞ
I

. If there is an 
eigenstate |ψj〉 that has support in only sublattice j, it will obey

h1jψ ji ¼ Ejψ ji
Γ3jψ ji ¼ eiθj jψ ji

ð4Þ

for θj ¼ 2π
3 ðj� 1Þ

I
, and j = 1, 2, 3. Using these expressions, we find from  

equation (3)

ðh1 þ h2 þ h3Þjψ ji ¼ h1 þ Γ�1
3 h1Γ3 þ Γ�2

3 h1Γ
2
3

� �
jψ ji ¼ 0 ðE þ E þ EÞjψ ji ¼ 0

ð5Þ

from which it follows that E = 0 for any mode that has support only in one 
sublattice. We have verified numerically that all the modes for which we claim 
topological protection have support in only one sublattice (see Supplementary 
Information). In the topological phase, three zero modes exist simultaneously, each 
of which localizes at one of the three sublattices. This generalized chiral symmetry 
does not result in spectral symmetry of the bulk bands. Consequently, bulk bands 
can also have zero energy, but when the bulk bands are degenerate with the zero 
modes (for 1/2 < ta/tb < 1) they do not mix with the localized corner zero modes. 
More details on the protecting symmetry and symmetry-breaking perturbations 
are given in the Supplementary Information.

Data availability
All data are available from the corresponding authors on reasonable request. The 
experimental data can be accessed using open-source tools.
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