
Eur. Phys. J. Special Topics 227, 1789–1816 (2019)
c© EDP Sciences, Springer-Verlag GmbH Germany,

part of Springer Nature, 2019
https://doi.org/10.1140/epjst/e2019-800186-9

THE EUROPEAN

PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

ESPResSo 4.0 – an extensible software
package for simulating soft matter systems

Florian Weik1,a, Rudolf Weeber1, Kai Szuttor1, Konrad Breitsprecher1,
Joost de Graaf2, Michael Kuron1, Jonas Landsgesell1, Henri Menke1,3, David Sean1,
and Christian Holm1,b

1 Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart,
Germany

2 Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena,
Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

3 Department of Physics, University of Otago, PO Box 56, Dunedin 9054, New Zealand

Received 15 October 2018 / Received in final form 16 November 2018
Published online 8 March 2019

Abstract. ESPResSo is an extensible simulation package for research
on soft matter. This versatile molecular dynamics program was origi-
nally developed for coarse-grained simulations of charged systems
[H.J. Limbach et al., Comput. Phys. Commun. 174, 704 (2006)]. The
scope of the software has since broadened considerably: ESPResSo can
now be used to simulate systems with length scales spanning from the
molecular to the colloidal. Examples include, self-propelled particles in
active matter, membranes in biological systems, and the aggregation
of soot particles in process engineering. ESPResSo also includes solvers
for hydrodynamic and electrokinetic problems, both on the continuum
and on the explicit particle level. Since our last description of version
3.1 [A. Arnold et al., Meshfree methods for partial differential equa-
tions VI, Lect. Notes Comput. Sci. Eng. 89, 1 (2013)], the software
has undergone considerable restructuring. The biggest change is the
replacement of the Tcl scripting interface with a much more power-
ful Python interface. In addition, many new simulation methods have
been implemented. In this article, we highlight the changes and im-
provements made to the interface and code, as well as the new simula-
tion techniques that enable a user of ESPResSo 4.0 to simulate physics
that is at the forefront of soft matter research.

1 Introduction

Soft matter [1–3] is an established field of research that concerns itself with sys-
tems ranging from the nanometer scale up to tens of micrometers, existing on the
interface between physics, chemistry, and biology. These systems are classified as
“soft” because the relevant energy scale of interactions is typically comparable to
the thermal energy, making them easy to deform through the application of external
forces and fields. The broadness of the field is exemplified by the subjects covered

a e-mail: fweik@icp.uni-stuttgart.de
b e-mail: holm@icp.uni-stuttgart.de

https://epjst.epj.org
https://doi.org/10.1140/epjst/e2019-800186-9
mailto:fweik@icp.uni-stuttgart.de
mailto:holm@icp.uni-stuttgart.de

1790 The European Physical Journal Special Topics

therein: polymer science [4,5], colloidal science [6,7], liquid crystals [8,9], biological
physics [10,11], food science [12], material science [13], to name but a few.

Statistical techniques may be employed to describe soft matter systems, as ther-
mal fluctuations and thus Brownian motion play an important role and allow the
system to readily explore phase space. The field has thus proven itself to be a fruitful
playground for shaping the community’s understanding of statistical physics con-
cepts [14,15], as well as emergent non-equilibrium phenomena [16–18]. The delicate
interplay of energy and entropy that is found in many colloidal suspensions leads to
a plethora of complex structural properties that are difficult to grasp with pen and
paper. Indeed, the soft matter community owes a great deal to computer simulations
for its current level of understanding.

The use of computers in soft matter traces its root to first molecular-dynamics
(MD) simulations of phase separation in a system of hard spheres [19,20]. From
these humble beginnings, computer simulation grew out to a new field that bridges
experimental and theoretical efforts. These methods came to their own in soft matter,
as the typical size and nature of the interactions found therein, lend themselves well
to coarse graining. This is a process by which many of the microscopic freedoms that
govern a system may be captured in terms of effective interactions on a larger scale.
The use of effective interactions enables the simulation of emergent effects using
simple models at a fraction of the computation effort that is required to account
for the full microscopic details. This has played a decisive role in elucidating, e.g.,
the guiding principles for phase behavior of complex liquids [21–24], the structure
of ferrofluids [25–28], the structure of polyelectrolytes [29–32], and the swelling of
hydrogels and ferrogels [33–37].

The MD simulation package ESPResSo is one of the most broad, efficient, and
well-suited platforms for the study of coarse-grained models of soft matter. Only
LAMMPS1 [38] and ESPResSo++2 [39] approach ESPResSo in terms of the scope
of their simulation methods and features. Here, we should emphasize that while
ESPResSo is capable of simulating molecular fluids, its scope does not cover atom-
isticly resolved systems. There are a number of better-suited, open-source softwares
available for atomistic simulations, such as GROMACS3 [40–42], NAMD4 [43–45],
and AMBER5 [46,47], to name just a few of the most commonly used ones.

The aim of this paper is to present the improvements made in ESPResSo 4.0
compared to our previous release ESPResSo 3.1 [48]. We have also taken the oppor-
tunity to introduce readers to our software package and encourage them to consider
ESPResSo, both for use in soft matter research, and as a platform for method and
algorithm development. A strong community is key to maintaining and extending a
strong and reliable software for research. We will provide examples of cutting-edge
physics that can be simulated using ESPResSo 4.0, which will hopefully create inter-
est in tyring out ESPResSo and potentially joining our thriving user and developer
community.

In brief, this paper covers the following subjects. We start by giving a broad
introduction to ESPResSo, discussing its history, goals, and community in Section 2.
This will set the background to the developments made for our ESPResSo 4.0 release.
Next, we focus on the new interface (Sect. 3), the interaction with external packages
(Sect. 4), user interaction with the software in terms of visualization and output
(Sects. 5 and 6, respectively), and changes to the new code development procedures

1 https://lammps.sandia.gov
2 http://www.espresso-pp.de/
3 http://www.gromacs.org
4 https://www.ks.uiuc.edu/Research/namd/
5 http://ambermd.org

https://lammps.sandia.gov
http://www.espresso-pp.de/
http://www.gromacs.org
https://www.ks.uiuc.edu/Research/namd/
http://ambermd.org

Particle Methods in Natural Science and Engineering 1791

and practices (Sect. 7) that we adopted with ESPResSo 4.0. Finally, we introduce
the standout physical methods and models that were recently introduced within
ESPResSo: energy minimization routines (Sect. 9), cluster analysis (Sect. 10), chemi-
cal reactions (Sect. 11), polarizable molecules (Sect. 12), and self-propelled particles
(Sect. 13). We end with a summary and outlook in Section 14.

2 Extensible simulation package for research on soft matter
systems

2.1 The idea behind ESPResSo

ESPResSo development began in 2001. Its name is an acronym for Extensible Simu-
lation Package for Research on Soft matter systems, which encapsulates the goal of
the software project:

On the one hand, the original development team wished to create a highly parallel
molecular dynamics program that could deal efficiently with charged bead-spring
models of polymers. At that time, we had learned to master electrostatic interactions
in periodic geometries [49,50] and had also developed other fast electrostatic solvers
for partially periodic geometries [51–57]. The resulting software saw its first use in
the study of polyelectrolyte solutions and charged colloidal suspensions.

On the other hand, the ESPResSo framework was designed to be “extensible”.
That is, its core architecture was created to facilitate the testing and integration
of new algorithms. ESPResSo has seen many additions since 2001, living up to this
extensible character [48]. This includes support for the simulation of hydrodynamic
interactions via an efficient GPU implementation of a lattice Boltzmann solver, rigid-
body dynamics, a scheme for the study of irreversible agglomeration, and electrostatic
solvers that allow for dielectric inclusions or even locally varying dielectric permit-
tivities [48,58–62].

From the start, ESPResSo has a two-fold architecture, which roughly separates the
developer from the user and promotes ease of use: (i) Massively parallel simulation
routines were implemented in the C programming language using the Message Passing
Interface (MPI). These routines scale well up to hundreds of processors on large
computing clusters. They also facilitate the addition of new algorithms, even by
novice developers. (ii) The simulation core exposes a scripting interface to the user,
such that they did not have to directly interact with the core code. This interface was
based on the Tcl language–the most suitable choice at that time to provide easy-to-
use scripting. This gave the user programmatic control over the simulation protocol,
and enabled run-time analysis and visualization in a straightforward manner.

2.2 The motivation for ESPResSo 4.0

Every simulation package has to cope with changing computer architectures and pro-
gramming models, ensure continued ease of development, and cater to users’ expec-
tations concerning interaction with the software. ESPResSo 4.0 is our answer to the
changes in the field of scientific computing that have taken place over the past five
years.

Today, the Python language has become the de-facto standard in scientific com-
puting. There exists a vast ecosystem of third-party Python packages for numeri-
cal algorithms, visualization, and statistical analysis. This motivated us to port the
scripting interface from Tcl to Python for the latest version of ESPResSo, as will
be described in Section 3. We have also updated our online visualization to make

1792 The European Physical Journal Special Topics

the most of ESPResSo 4.0’s new Python interface, see Section 5. Post-processing and
visualization of large data sets is facilitated by the introduction of the HDF5 output
format and parallellized output routines, see Section 6. Finally, the ESPResSo core
has been converted to the C++ programming language, which has had added ben-
efits both in terms of software development practices and in terms of performance,
see Section 7.

To stay at the forefront of the field, it is not only necessary to commit to the
user and development experience, it is also critical to keep up with the ever shifting
interests of the user base. ESPResSo has done so in the past [48] and continues this
effort with the ESPResSo 4.0 release. Our simulation package now covers an even
wider range of physical systems of relevance to modern soft matter research. This
includes non-equilibrium phenomena in active matter, which ESPResSo 4.0 captures
using model self-propelled particles [63–66], see Section 13. Going beyond soft mat-
ter, particle-based methods have attracted interest from the engineering community.
Specifically, this community utilizes MD to model large-scale physical processes such
as soot aggregation [67,68] and air filtration [69], with the aim to improve these pro-
cesses. Section 10 describes the opportunities for these kinds of studies in our latest
release. However, as will become clear shortly, ESPResSo 4.0 is capable of much more.

2.3 The user and developer community

The ESPResSo package was set up as an open software project, committed to open
source development under the GNU General Public License (GPL), a practice that
we continue to adhere to. Users of ESPResSo are supported through mailing lists6
and workshops, such as the annual ESPResSo summer schools, which have between
20 and 40 participants. These workshops are often run as CECAM7 tutorials, jointly
funded through grants from the German Research Foundation through the SFB 716
and the cluster of excellence SimTech (EXC 310). The mailing lists and workshops
also allow the developer team to announce new features implemented in the code
base of ESPResSo to the global research community.

ESPResSo is used by scientists all over the world, which is documented by more
than 431 citations on Web of Science since 2006 and 608 citations on Google Scholar,
as of this writing. Several research groups have contributed algorithms to the core of
ESPResSo, which include: (i) Continuum flow solvers (including ones on GPUs) and
various methods to couple them to MD [70–76]. (ii) Advanced algorithms for rare-
event sampling and the reconstruction of free-energy landscapes [77,78]. (iii) Monte-
Carlo methods [79]. (iv) An interface to Python analysis package MDAnalysis.
(v) Extensions to the support for anisotropic particles. (vi) Methods to calculate
dipolar interactions on the GPU. Significant effort has been made to accommodate
the various sources of these contributions and ensure code quality of ESPResSo 4.0.
This includes putting in place an extended test infrastructure and increasing the test
coverage. Furthermore, all changes to the software, including those made by the core
team, undergo peer review before they are merged, see Section 7.

The latest version of ESPResSo and its documentation can be found on the web-
site http://espressomd.org. Ongoing development is organized through the social
code hosting platform GitHub8, which facilitates contribution handling through its
collaborative features.

6 espressomd-users@nongnu.org
7 https://www.cecam.org/
8 https://github.com/espressomd/espresso/

http://espressomd.org
https://lists.nongnu.org/mailman/listinfo/espressomd-users
https://www.cecam.org/
https://github.com/espressomd/espresso/

Particle Methods in Natural Science and Engineering 1793

3 The Python interface

In recent years, Python has become increasingly popular in the scientific community
as a scripting language, in areas such as machine learning (PyTorch, scikit-learn,
Keras) [80–82], symbolic mathematics (SymPy, SAGE) [83,84], data visualization
(Matplotlib, Mayavi) [85,86], and numerical mathematics (NumPy, SciPy, pandas)
[87,88]. In ESPResSo 4.0, we have therefore decided to switch the interface scripting
language from Tcl to Python. This allows for the quick generation of clear and concise
scripts that can harness the power of third party numerical tools. The ESPResSo
core functionality can be accessed like any other Python module by importing the
espressomd module. The whole architecture is built around the system object which
encapsulates the physical state of the high-performance simulation core.

ESPResSo is a particle-based molecular dynamics simulator, i.e., all fundamental
operations in the simulation setup revolve around particles. Inspired by Python’s list
datatype and the NumPy package [87], we introduced slicing operations on the list
of particles. Many functions also accept lists and automatically broadcast themselves
to the individual list elements. This often reduces the number of lines of code signif-
icantly, e.g., placing several particles at random positions in the simulation box can
now be done in a single line:

import numpy as np

system.part.add(pos=np.random.random ((50, 3)) * system.box_l)

print(system.part[:].pos)

In Python, functions can be passed to other functions as arguments. ESPResSo 4.0
makes use of this, e.g., for particle selection using a user-specified criterion:

charged_particles = system.part.select(lambda p: p.q != 0.0)

Because the NumPy package [87] is very popular in numerical computing, includ-
ing in undergraduate courses, we designed the interface for maximal compatibility.
This allows the user to directly pass on values returned from ESPResSo functions
to a variety of NumPy routines, e.g., to compute the mean, standard deviation, or
histograms.

We further make use of the object-oriented programming capabilities of Python.
Instead of commands having an immediate effect, the user instantiates objects of
a class and adds these objects to the system instance. For example, when the user
creates an object for the electrostatic solver, it is not immediately active, but has
to be added to the list of actors first. This new design aims to reduce dependencies
between different parts of the user-provided simulation script and eliminate issues
related to the order of commands.

4 Integration with external packages

4.1 Using ESPResSo with other Python packages

As we already mentioned earlier, the ESPResSo Python interface was designed with
NumPy in mind and most functions return datatypes which are compatible with the
routines offered by NumPy. These routines are well-maintained and supported by

1794 The European Physical Journal Special Topics

a large community with numerous online resources and introductory material. One
example are various statistics routines. These include mean, variance and median
calculations, but also numpy.histogram(). As an example, a probability distribution
of inter-particle distances can be used to obtain effective potentials via Boltzmann
inversion [89]. Furthermore, the confidence interval estimators from scipy.stats.t.

interval() can be used to control the amount of sampling in a simulation. Random
number generation from numpy.random and scipy.stats can be used, e.g., for setting
up a randomized starting configuration. Linear algebra methods from numpy.linalg

allow for easily calculating the principal axes of and moments of inertia of a set of
particles. Lastly, new interpolated bonded and pair potentials in ESPResSo can be
added by providing NumPy arrays for the energies and forces.

It is also possible to create Jupyter notebooks [90] using ESPResSo. These inter-
active worksheets are popular for teaching and provide a great way to nicely present
results and the generating simulation code alongside. For example the introductory
tutorials for ESPResSo 4.0 are presented in this fashion.

ESPResSo 4.0 provides an interface to the MDAnalysis Python package, which
provides a large number of analysis routines for particle-based data. This includes
the calculation of radial distribution functions, density profiles, and the persistence
length of polymer chains.

4.2 Algorithms for Coulomb and dipolar interactions from the ScaFaCoS library

The treatment of Coulomb and dipolar interactions has always been one of the strong
points of ESPResSo. Electrostatic interactions are inherently important in many soft
matter systems: e.g. colloidal suspensions are often stabilized by means of electro-
static repulsion, the structure of polyelectrolytes depends on the concentration of
charged salt atoms, and electric fields are used for the analysis and separation of
particles in electrophoresis applications.

Being long-ranged, electrostatic interactions have to be treated by specialized
algorithms in systems with periodic and mixed boundary conditions. ESPResSo
already contains implementations of the particle-particle-particle-mesh (P3M) algo-
rithm [91] for fully periodic systems, as well as the electrostatic layer correction
(ELC) [53] and MMM2D [51] scheme for 2D-periodic slit-pore geometries. However,
more algorithms have been developed, designed for particular applications. Many of
these are available in the ScaFaCoS library [92] (Scalable Fast Coulomb Solvers).
ESPResSo 4.0 provides an interface to this library, exposing all provided electrostatic
solvers. Moreover, an extension to the ScaFaCoS library adds solvers for dipolar
interactions with an O(N logN) scaling for periodic, mixed, and open boundary
conditions. With ESPResSo 4.0, this version of the library can be used as a solver
for magnetostatic interactions [93,94]. The dipolar P2NFFT solver for open bound-
aries is of particular relevance to research in magnetic soft matter: properties of such
material can depend on the sample shape due to the demagnetization field [95,96].

5 Online visualization

A graphical representation of the system is of great value when it comes to presenting
results of a simulation study. Also, it is common practice to visualize intermediate
results while setting up the simulation. This saves time, as possible pitfalls related
to positions, directions or orientations can be rectified immediately when discovered
via visualization. Usually, this is done by writing out trajectories or volumetric data
and utilizing external tools like Paraview [97] or VMD [98]. ESPResSo with Python is

Particle Methods in Natural Science and Engineering 1795

Fig. 1. Example of the OpenGL visualizer of ESPResSo for charged particles in a plate
capacitor. Positive (red) and negative (green) ions experience a constant-potential boundary
condition.

Fig. 2. Example of the OpenGL visualizer of ESPResSo for particles advected in a Poiseuille
flow between two walls (Green arrows: particle velocity; blue arrows: fluid velocity).

well suited for this kind of workflow. Furthermore, ESPResSo features two options for
visualizing simulations while they are running, i.e., live or on-line visualization. The
first one uses Mayavi [86], a Python framework for “3D scientific data visualization
and plotting” to visualize particles. Mayavi has a user-friendly graphical interface to
manipulate the visual appearance and to interact with the resulting representation.
Second, ESPResSo 4.0 comes with a 3D rendering engine that uses PyOpenGL [99,
100]. Both visualizers are not primarily intended to produce print-quality renderings,
but rather to give a quick impression of the system setup and the equilibration
process. Two exemplary snapshots are shown in Figures 1 and 2; the corresponding
Python scripts are available in the distribution package of ESPResSo 4.0.

Our OpenGL visualizer has been crafted specifically for use with ESPResSo and
is capable of not only visualizing particles, but also several specific features like

1796 The European Physical Journal Special Topics

constraints, detailed particle properties, the cell system, the domain decomposition
across processors, or fluid flows computed with the lattice Boltzmann method [101]
(Fig. 1). It has a large number of options to adjust colors, materials, lighting, camera
perspective, and many more. Vectorial particle properties can be visualized by 3D
arrows on the particles to display forces, velocities, etc. The OpenGL visualizer can
also be used for offline visualization to display completed simulations.

A unique feature is the ability to interact with the running simulation: Particles
can be queried for their properties in real-time by simply clicking on them in the 3D
window. Most of the system information like active interactions, actors and global
properties can be viewed in the visualization. In the Python script, the user can
assign callback functions to keyboard input, so that all exposed system and particle
properties (e.g., the temperature of the Langevin thermostat or the external force
on a particle group) can be manipulated in real-time for testing and demonstration
purposes. This allows to use ESPResSo also as an educational tool for a broad range
of skill levels from basic physics to advanced simulation methods.

6 Parallel output

Writing trajectories of a large set of particles to disk can be a bottleneck of par-
allel MD simulations. For serial I/O the costs of writing the trajectory include the
communication to gather the data on the node that actually performs the write. A
second aspect of the performance cost is the amount of data that has to be written to
disk. Thus, in ESPResSo 4.0 we added the possibility to write binary files in parallel
using the H5MD specification [102] which utilizes the HDF5 file format [103]. H5MD
files are intended to be self-contained and therefore enhance the portability of simu-
lation output. This more readily allows one to use a wide class of analysis programs.
The implementation is based on a wrapper around the HDF5 library. In typical
ESPResSo simulations, the I/O performance is improved by using parallel output for
particle numbers greater than approximately 104. Writing in this binary format is
significantly faster than more traditional ASCII text. The H5MD files written by
ESPResSo 4.0 may conveniently be read into Python using the H5py module [104].
Simulation trajectories may also be visualized in VMD [98] by using its H5MD plu-
gin. The H5MD output file contains a field that holds the source script that was used
for its creation. Thus the origin of the raw simulation data can always be traced back
to the ESPResSo Python script, which helps tremendously in reproducing data.

For convenience, we still support ESPResSo’s VTF format which outputs system
and particle properties as ASCII text. However, the use of Python as a scripting lan-
guage opens the door to a large number of alternatives. Many aspects of a simulation,
as well as simulation parameters can, for instance, be stored in a structured format
using Python’s pickle module.

7 Software engineering and testing

As outlined in the previous section, the scripting interface is powered by a high-
performance simulation core. The core of previous versions of ESPResSo was imple-
mented in the C programming language. It was only natural to also upgrade the
core in a manner that mirrors the new object-oriented approach of the interface.
Therefore, ESPResSo 4.0 has switched from C to C++. C++ is a modern object-
oriented programming language that allows for a more compact, readable code style.
Just like Python, C++ benefits from an active community and a rich ecosystem of
third-party support libraries, e.g., the Boost libraries [105]. Thus, functionality that

Particle Methods in Natural Science and Engineering 1797

was previously implemented in the simulation core can now be provided externally.
This reduces the code complexity and consequently the maintenance effort.

ESPResSo is designed with high-performance computing in mind. On
high-performance compute clusters, the environment is often times very heteroge-
neous. For example, external libraries provided by different operating systems can
vary noticeably, and only very recent C++ compilers fully support modern standards
like C++11. To ensure that ESPResSo can be built and run on a large variety of differ-
ent setups, it turned out to be necessary to comprehensively test it on different com-
binations of operating systems and compiler versions. ESPResSo has always included
a suite of test cases that could automatically run small simulations to formally verify
the physical correctness of the implementation by comparing to established results.
In ESPResSo 4.0, not only have these tests been extended to cover more code, but
also to specifically test the correctness of certain core aspects, a method called unit
testing.

7.1 Improvements in the simulation core

The ESPResSo code base has been developed continuously for more than 15 years by
a host of contributors of various backgrounds and styles. Thanks to the substantial
overlap of language features between C and C++, it was possible to switch the
language with minimal effort. Even though C and C++ share a common heritage,
the programming paradigms are radically different and we are gradually transforming
the old C code into more modern C++ code.

New language and library features of C++, especially ones which became avail-
able with the C++11 standard, are employed for more concise and expressive design
of our software. ESPResSo is continuously used in day-to-day research activities and
mainly developed by interested domain researchers; hence a gradual modernization
strategy was necessary. Among the many algorithms whose code has been refactored,
one central method is the traversal of particle pairs used for the evaluation of short-
range interactions. In ESPResSo 4.0, the traversal has been separated from the kernel
that evaluates the interactions for each particle pair. Repetition of the complicated
routine for the pair energy, virial, and force calculation in the three types of particle
cell systems supported by ESPResSo is hence avoided. This has been achieved by
replacing several loops over the particles by a single function that takes the kernels
as template parameters. This allows us to test key routines in isolation, indepen-
dent of any interaction potentials. Added benefits to this decoupling are, improved
performance and the ease by which new methods may be introduced by (future)
collaborators.

7.2 Testing

ESPResSo contains a test suite to verify the correctness of the code. Hitherto, these
tests were run by the maintainers before accepting code contributions, but features
without tests were not covered. A formal measurement of the code coverage was intro-
duced because it proved hard to detect which features are untested. In preparation
for this release, we systematically improved coverage of previously untested areas of
code. It is our experience that adding tests to existing code not only ensures correct-
ness, but also improves the user experience by streamlining interfaces and avoiding
inconsistencies and confusion.

For example, ESPResSo’s GPU and CPU lattice Boltzmann (LB) implementa-
tions had few systematic tests. However, this is an important method for many users

1798 The European Physical Journal Special Topics

of ESPResSo, and central for the correctness of many soft matter simulations [106].
We therefore introduced multiple new tests in this area that compare the flow fields
computed by the LB method, as well as its coupling to particles, against station-
ary and time-dependent analytical solutions and reference data. These tests include
direct verification of momentum and mass conservation, as well as validation of the
statistical properties of the fluctuating variant of the LB and particle coupling. This
helped us to improve the existing code as well as its interface.

In addition to the improved integration tests, this release includes some unit tests.
Unit tests help identify issues on the level of individual functions which make up the
algorithms and give more precise information where an issue occurred. This further
allows changing the building blocks of an algorithm or their reuse across different
simulation methods.

7.3 Continuous integration

As mentioned earlier, the development of ESPResSo is organized through GitHub.
Contributors can submit patches to fix a bug or introduce new features by means of a
pull request. Whenever such a pull request is filed, the aforementioned set of unit and
integration tests is automatically run and the outcome is communicated to GitHub
where it is displayed in an informative fashion. This method of automatically running
the test suite for changes is called continuous integration. Many online services exist
which are free to use for open source projects like ESPResSo. Unfortunately, their
free service plans are too limited for the vast variety of setups we need to test.
Therefore we mirror the ESPResSo repository to a private instance of GitLab9. This
instance manages a fleet of dedicated in-house computers and distributes jobs for
each configuration to test. On top of the automated testing, other developers are
tasked with peer review of the patches to ensure a consistent integration into the
code base.

We also try to cover as many combinations of operating systems, compilers,
Python versions, and with and without GPU processors as possible. Our use of the
Clang compiler [107] is particularly noteworthy as it is able to perform static code
analysis to detect a large number of common programming errors and it is able to
generate code to automatically recognize undefined behavior during runtime, thus
often detecting bugs that are hard to discover for a human software developer.

8 External fields

ESPResSo 4.0 implements a new extensible framework for coupling particles to exter-
nal fields, i.e., fields that are not caused by particle interactions. An “external field”
is composed of a field source and a coupling, which can be combined as needed. An
important use case for this feature are particles advected in a prescribed flow field
under the assumption that they do not back-couple to that flow field. An example
are soot particles on the nanometer scale in combustion exhausts [68,108]. Here the
field source would be a flow field specified on a regular grid which is interpolated to
the particle positions. The coupling term would be a viscous friction, combining the
velocity difference between the particle and the flow field and a friction constant to a
force. Further use cases for external fields are complex boundary shapes as they are
found in super-capacitor electrodes as for example described by [109]. In this appli-
cation, electrodes with non-trivial geometry are considered. The electric field caused

9 GitLab is a free, self-hosted platform similar to GitHub, see https://gitlab.com.

https://gitlab.com

Particle Methods in Natural Science and Engineering 1799

Fig. 3. Electric Field lines in a slit pore filled with an ionic liquid.

by the electrodes is pre-computed by solving Poisson’s equation for the system, and
the resulting field is then superimposed on the inter-particles forces in the MD simu-
lations as an interpolated external electric field. A snapshot of particles and electric
field lines in such a system is shown in Figure 3. The feature can also be used for
Lennard–Jones particles in front of convex surfaces. Such a particle can interact with
an extended part of the surface. This cannot be described by ESPResSo’s constraint
feature, which only accounts for an interaction along the surface normal vector.

Let us now look at the two components of external fields in detail. The field
source is described as a global scalar or vectorial field. Either, user-provided data
are interpolated from a regular grid onto the particle positions, a constant value
throughout the full domain is used, or an affine map A according to

u(r) = Ar + b, (1)

with a user-provided matrix A and shift b is evaluated.
The coupling maps a particle property and the value of the field source at the

particle position to a force or potential. In the latter case the force is calculated by
invoking the coupling with the gradient of the field. For example a gravitational field
can be defined as a constant scalar field source coupling to the particle mass.

Presently there are several possibilities for the particle coupling, including but
not limited to a particle’s scalar mass or charge, or the particle’s velocity vector v
using a viscous coupling, e.g.,

Fi = −γ(vi − u). (2)

As a simple example we consider a two-dimensional system comprising particles with
excluded-volume interactions in a square simulation box of side length 2π. We com-
bine interpolated flow field data with a viscous coupling. The flow field is a discretized
static Taylor–Green vortex, specified by

ux = cos(x) sin(y),
uy = − sin(x) cos(y),

(3)

where u is the flow velocity. It has the vorticity

ω ≡ ∇× u = 2 |cos(x) cos(y)| . (4)

1800 The European Physical Journal Special Topics

Fig. 4. Example for the use of external fields in ESPResSo 4.0. We show the stationary
state of particles in a static Taylor–Green vortex flow. The green arrows denote the particle
velocity and direction.

In Figure 4 we show a snapshot of a simulation where the particles were initially
placed at random positions distributed equally over the simulation volume. They are
driven out of the areas with high vorticity ω by inertial forces and accumulate else-
where. A complete simulation script can be found in the supplementary information.

9 Energy minimization

Since bulk molecular dynamics are typically set up with random particle positions,
initial configurations often have a lot of overlap between neighboring particles. This
leads to problems with numerical stability due to very high energies. To remove this
overlap there are two common methods. Limiting the forces between particles to a
maximum value and performing an energy minimization step after the initial setup.
While it was possible to cap the the forces in previous version of ESPResSo, now also
energy minimization by the steepest descent method is available. It allows relaxing the
position as well as the orientation of the particles by running the following iterative
scheme:

∆x,y,z
i = sgn(F x,y,zi) min(γF x,y,zi , ∆max) (5)
xx,y,zi = xx,y,zi +∆x,y,z

i , (6)

while maxi |Fi| ≥ Fmax. Here the xx,y,zi and F x,y,zi are the components of the position
and force of the ith particle. That is the update rule and limits are applied by com-
ponent. γ and Fmax are relaxation parameters provided by the user. The orientation
of the particle is relaxed in a similar fashion. Steepest descent energy minimization
is available as an alternative to the integrator in ESPResSo.

In soft matter simulations the solvent is often treated on a coarse-grained level
using a lattice Boltzmann fluid, which interacts with the particles of the system via so-
called point coupling [106]. This type of coupling limits the maximal coupling strength
for one particle which can lead to unrealistic transport properties for larger objects

Particle Methods in Natural Science and Engineering 1801

Fig. 5. (a) Initial configuration of the particles filling the raspberry. (b) Configuration after
100 steps of energy relaxation. (c) Configuration after 1000 steps.

like colloids. One way to overcome this problem is to use so-called raspberry models
[110], rigid bodies of multiple particles, which couple to the fluid in multiple points
to reduce interpolation artifacts and can achieve higher friction with the fluid. This
can help to obtain better transport coefficients [63,64]. To set up such a raspberry
particle, its volume is filled with particles in a homogeneous manner. A common way
to do this is to put the particles into a spherical constraint, give them a repulsive
interaction and relax the energy. This can now be easily implemented in ESPResSo. As
an example, Figure 5 shows the initial and relaxed configuration of 1400 particles in a
spherical constraint with a soft-core Weeks–Chandler–Andersen interaction. Initially
the particles are placed randomly in a cube contained by the sphere, then the energy
minimization is performed. For the simulation script and detailed parameters please
refer to the supplementary information.

10 Cluster analysis

An analysis of the spatial clustering of particles is an important tool in many fields
of soft matter science. Some examples include the nucleation of crystals [111,112],
clustering of magnetic nanoparticles in magnetic soft matter systems [113–116], and
the irreversible agglomeration of soot particles in combustion processes [67,68,117].
Clusters are typically defined by means of a criterion for a given pair of particles which
takes the form of an equivalence relation. That is, if particles a and b are “neighbors”
and particles b and c are “neighbors”, all three particles belong to a cluster. The pair
criterion is chosen based on the application. For crystallization studies, a local bond
order parameter [118] above a certain threshold on both particles is a common choice.
For magnetic systems, a combination of distance and either dipole configuration or
pair energies are used [114,115]. For the agglomeration of soot particles, the bonds
created by the collision algorithms are used [68].

While it is possible to perform cluster analysis in the post-processing state of
a simulation, this requires the storage of a significant number of snapshots of the
simulation. Due to the potentially large amount of storage space this might take,
as well as the extra time it takes to write the snapshot to disk, this is often not a
good approach. ESPResSo 4.0 therefore introduces an online cluster analysis which
can be run from within the simulation. The implementation is loosely based on the
Hoshen–Kopelman scheme [119], but does not use a lattice. The procedure is as
follows: All pairs of particles are examined. If they are “neighbors” as determined by
a user-specified pair criterion, there are several possible cases.

– If neither particle belongs to a cluster, a new clusters is created and both particles
are marked as members.

– If one particle is part of a cluster and the other is not, the free particle is added
to the cluster.

1802 The European Physical Journal Special Topics

– If the two particles belong to different clusters, a note is made that the two clusters
are one and the same and need to be merged later.

The clusters are labeled by numeric IDs, assigned in ascending order. After all pairs
of particles are examined, the clusters marked as identical in the previous step are
merged. Cluster IDs are traversed in descending order and merged clusters receive
the lower of the two cluster IDs. In this way, the merging can be done in a single
pass. ESPResSo 4.0 currently contains pair criteria based on inter-particle distance,
pairwise short-range energy, and the presence of a bonded interaction. Further criteria
can be added easily. The cluster analysis is organized around a ClusterStructure
object, which provided the methods to run analysis as well as access to the clusters
found. Furthermore, some analysis routines are provided on a per-cluster level, e.g.,
for a cluster’s radius of gyration, fractal dimension, or inertia tensor. Lastly, direct
access to the particles making up a cluster is provided.

As an example, let us consider the simulation of a ferrofluid monolayer, i.e, a two-
dimensional suspension of soft spheres carrying a magnetic dipole at their center. The
example is loosely based on reference [114]. Magnetic particles tend to form chain and
ring-like clusters due to the non-isotropic nature of the dipole-dipole potential. For
simplicity, we define particles as “neighbors” if the distance between their centers is
less than 1.3σ, where σ denotes the particle diameter in the purely repulsive Lennard–
Jones potential [119]. The sample system contains 1000 magnetic particles at an area
fraction of φ = 0.1. The relative strength of the dipolar interactions to the thermal
energy is

λ =
µ0m

2

4πσ3kBT
, (7)

where µ0 denotes the vacuum permittivity and m the particles’ dipole moment. The
dipolar interactions are calculated by means of the dipolar P3M method [120] and
the dipolar layer correction [121]. While the particle positions are confined to a plane,
the magnetic dipoles can rotate freely in three dimensions. This is called a quasi-2D
system.

In Figure 6, a snapshot from the simulation along with a plot of the cluster
composition of the suspension averaged over 1000 snapshots are shown. The full
simulation script is provided in the supplementary information. Please note that the
script is meant as an example. For a scientific study, larger systems, higher accuracies
for the dipolar interactions, and longer sampling times are needed.

11 Particle-based reactions

Chemical reactions can take place in many systems, for example water can autodis-
sociate in positively charged protons and negatively charged OH groups, or there
are other groups that can dissociate only partially in solvents like water, like the
carboxylic group COOH. These groups can be found, for example, in weak poly-
electrolytes, charge stabilized colloids, or proteins [122], and their charging state
depends on the pH-value [123] of the solution. Therefore, the presence of weak
groups in charged polymers (polyelectrolytes) promotes phenomena like protonation-
configuration coupling [124,125]. Protonation-configuration coupling means that the
configuration of a protein or polymer depends on the protonation state of the titrat-
able groups within the polymer. However, the protonation state itself depends on the
configuration. This tight coupling introduces the need to investigate this phenomenon
through computer simulations. Reactions can also give rise to a net attraction of
particles, which are on average charge neutral [126,127]. Here, the net charge of the

Particle Methods in Natural Science and Engineering 1803

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 2 4 6 8 10 12 14 16 18 20

fr
a
c
ti
o
n
 o

f
p
a
rt

ic
le

s

cluster size

Fig. 6. Top: snapshot of the ferrofluid monolayer. Bottom: composition of the suspension
plotted as fraction of particles being part of a cluster of a given size.

particles fluctuates around its mean, thus allowing a particle to be temporarily pos-
itive or negative. This fluctuation effect then induces a net attraction. Investigating
physical phenomena like the above with the correct statistics, requires introducing
particle based reaction schemes in ESPResSo 4.0 which are described in the following.

A typical acidic reaction is shown in Figure 7: an acid particle (HA) may release
a proton (H+), or vice versa, the deprotonated form of the acid (A−) may take up
a proton. Such protonation reactions change the electrostatic charge of the parti-
cles taking part in the reaction. Therefore, ESPResSo with its various electrostatic
solvers [128], is well-suited to investigate electrostatic effects involved in reactions.

The first scheme that allowed for acid-base reactions in thermodynamic equi-
librium using Molecular Dynamics and Monte Carlo simulations appeared in the

1804 The European Physical Journal Special Topics

Fig. 7. The protonated/deprotonated states of a Monte-Carlo reaction step. Target particles
are circled with a dotted line.

1990s [129] in the form of the constant-pH ensemble. Soon after, the reaction ensem-
ble [130,131] was introduced which allows for the simulation of arbitrary chemical
reactions. In both reaction schemes, particle properties (such as the charge) need to
be changed and particles need to be created or deleted based on probabilistic criteria.
The reaction ensemble and the constant-pH method only differ in the probabilistic
criteria [132] and both methods are implemented in ESPResSo 4.0.

In the reaction ensemble, arbitrary reactions can be implemented in the simula-
tion:

z∑
i=1

νisi = 0, (8)

where z chemical species of type si with stoichiometric coefficients νi are react-
ing [133]. The acceptance probability in the reaction ensemble for a reaction from
state r to l is given by [134]

accRE,ξ(l|r) = min
{

1, (V Γ)νξ
z∏
i=1

[
Nr
i !

(Nr
i + ξνi)!

]
exp(−β∆Epot,r→l)

}
, (9)

where Nr
i is the number of particles prior to a reaction and ξ the “extent” of the

reaction which is selected randomly with ξ ± 1 and β = 1/(kBT) proportional to
the inverse of the temperature. Further parameters are the concentration-dependent
reaction constant Γ = c◦ν exp(−β∆G◦) where c◦ is the reference concentration for
which the change in the free enthalpy ∆G◦ is tabulated, the potential energy differ-
ence with ∆Epot,r→l = Epot,r − Epot,l, the volume of the system V and the total
change in the number of molecules ν =

∑
i νi due to the reaction. The corresponding

protonation and deprotonation reactions are usually performed after a fixed number
of MD simulation steps with constant particle numbers [134].

In addition to the above standard reaction ensemble algorithm, we implemented
a rare event sampling method on top of the reaction ensemble [135], called the
Wang–Landau [136] reaction ensemble algorithm. The Wang–Landau scheme is a
so-called flat histogramme technique that samples all states with equal probability.
This modification of the algorithm might prove useful when investigating systems
with metastable states and rare transitions between them.

In the other chemical equilibrium sampling method which is present in literature–
the constant-pH ensemble–the acceptance probability for a reaction HA −−⇀↽−− A− + H+

is given by:

acccpH,ξ(l|r) = min
(
1, exp

[
−β(∆Epot ± (ln(10)/β) (pH− pKa))

])
, (10)

Particle Methods in Natural Science and Engineering 1805

Fig. 8. The titration curve of a linear weak polyacid obtained with the constant pH method.
For increasing pH the acid is less associated. The data are taken from reference [132] and
simulation parameters are described there in more detail.

where pH is the pH of an implicitly imposed proton reservoir, pKa = − log10

exp(−β∆G◦) and where ± is used in the case of a association/dissociation. Addition-
ally the dissociation proposal probability is proportional to the number of dissociable
groups HA, while the association proposal probability is proportional to the number
of deprotonated groups A−.

As a showcase for our ability to simulate chemcial reactions in ESPResSo 4.0 we
present in Figure 8 the titration curve of a linear weak polyelectrolyte. A typical
titration curve which is obtained from experiment shows the degree of dissociation
as a function of pKa−pH. The degree of association n measures how many particles
N are in the associated state HA or in the dissociated state A−: n = N(HA)

NHA+NA−
. At

low pH, a weak acid is mostly associated (n ≈ 1) while at higher pH a weak acid
becomes less and less associated (n ≈ 0).

The reaction ensemble implementation in ESPResSo also allows for simulations
in the grand-canonical ensemble. This is, because the grand canonical simulation
scheme [137] can be represented as a reaction ∅ −−⇀↽−− A with Γ = cbA exp(βµex,b

A),
where cbA is the bulk concentration of the species A and µex,b

A the excess chemical
potential of the species in the bulk. The needed excess chemical potential can be
obtained via the Widoms insertion method [137]. We also implemented this method
in ESPResSo 4.0 . It resembles a reaction which is constantly rejected while observ-
ing potential energy changes due to the insertion of particles. The excess chemical
potential in a homogeneous system is then given by [137]

µex = −kBT ln
(〈
e−β(Epot(N+1)−Epot(N))

〉)
. (11)

12 Including explicit dipolar polarization with Drude oscillators

A particle’s electron density is redistributed by the local electric field, leading to a
nonadditive molecular interaction. Especially the study of ionic liquids (molten salts)
polarization plays a large role. Often, this is effectively included in the force-field

1806 The European Physical Journal Special Topics

Fig. 9. Sketch of the polarizable coarse grained model for the ionic liquid BMIM PF6.

(e.g. via reduced charges) to match continuum properties [138–142]. In systems where
polarization effects are supposed to be inhomogeneous, e.g. at interfaces, incorporat-
ing the dynamic nature of polarization can refine the physical picture. Also simula-
tions of bulk systems can benefit from explicit polarization. For example, the exper-
imental values for the static dielectric constant and the self-diffusion coefficient of
water were accurately reproduced using a polarizable model [143]. Thermalized cold
Drude oscillators [144], available in ESPResSo 4.0, can be used to model this dynamic
particle polarization. The basic idea is to add a “charge-on-a-spring” (Drude charge)
to a particle (Drude core) that mimics an electron cloud which can be elongated to
create a dynamically inducible dipole (see Fig. 9) [145]. The energetic minimum of
the Drude charge can be obtained self-consistently, which requires several iterations
of the system’s electrostatics solver and is usually considered computationally expen-
sive [146]. However, with thermalized cold Drude oscillators, the distance between
Drude charge and core is coupled to a thermostat, so that it fluctuates around the
self-consistent field solution. This thermostat is kept at a lower temperature com-
pared to the global temperature to minimize the heat flow into the system. A second
thermostat is applied on the center of mass of the Drude charge and core system
to maintain the global temperature. The downside of this approach is that usually
a smaller time step has to be used to resolve the high frequency oscillations of the
spring to get a stable system [147]. In ESPResSo, the basic ingredients to simulate
such a system are split into three bonds; their combined usage creates polarizable
compounds:

1. A harmonic bond between charge and core.
2. For the cold thermostat, a Langevin-type thermalized distance bond is used for

the Drude-core distance.
3. A subtract P3M short-range bond to cancel unwanted electrostatic interaction.

The system-wide thermostat has to be applied to the center of mass and not to the
core particle directly. Therefore, the particles have to be excluded from the global

Particle Methods in Natural Science and Engineering 1807

thermostat, which is possible in ESPResSo by setting the temperature and friction
coefficient of the Drude complex to zero. It thus remains possible to use a global
Langevin thermostat for non-polarizable particles. As the Drude charge should not
alter the charge or mass of the Drude complex, both properties have to be subtracted
from the core when adding the Drude particle. In the following convention, we assume
that the Drude charge is always negative. It is calculated via the spring constant k
and polarizability α (in units of inverse volume) with qd =

√
−kα. For polarizable

molecules (i.e., connected particles, coarse grained models etc.) with partial charges
on the molecule sites, the Drude charges will have electrostatic interaction with other
cores of the molecule. Often, this is unwanted, as it might be already part of the
force-field (via partial charges or parametrization of the covalent bonds). Without
any further measures, the elongation of the Drude particles will be greatly affected
by the partial charges of the molecule that are in close proximity. To prevent this,
one has to cancel the interaction of the Drude charge qd with the partial charges
of the cores qpartial within the molecule. This can be done with the subtracts P3M
short-range bond, which is also used to cancel the electrostatics between Drude core
↔ qcore and Drude charge qd. This ensures that only the dipolar interaction inside
the molecule remains. The error of this approximation increases with the share of
the long-range part of the electrostatic interaction. In most cases, this error is neg-
ligible comparing the distance of the charges and the real-space cutoff of the P3M
electrostatics solver. In ESPResSo, helper methods assist setting up this exclusion. In
combination with particle polarizability, the Thole correction [148] is often used to
correct for overestimation of induced dipoles at short distances. Ultimately, it alters
the short-range electrostatics of P3M to result in a damped Coulomb interaction
potential

V (r) =
qiqj
r

[
1− e−sr

(
1 +

sr

2

)]
. (12)

The Thole scaling coefficient s is related to the polarizabilities αk and Thole damping
parameters ak of the interacting species via

s =
(ai + aj)/2
(αiαj)1/6

· (13)

Note that for the Drude oscillators, the Thole correction should be applied only for
the dipole part ±qd added by the Drude charge and not on the total core charge,
which can be different for polarizable ions. Also note that the Thole correction acts
between all dipoles, intra- and intermolecular. Again, the accuracy is related to the
P3M accuracy and the split between short-range and long-range electrostatics inter-
action. ESPResSo assists with the bookkeeping of mixed scaling coefficients and has
convenient methods to set up all necessary Thole interactions.

13 Active particles

In ESPResSo 4.0 it is possible to simulate active systems, wherein individual particles
constantly transduce (internal) energy to perform work in the form of motion. The
combination of this self-propulsion with particle interactions gives rise to unique
out-of-equilibrium behaviors, of which living systems offer a wealth of examples:
mammals, fish and birds [149–153], as well as microorganisms [154–161]. The last
decade and a half have seen the rapid development of man-made counterparts to
microorganisms, following the first experimental realizations of “chemical swimmers”
by [162] and [163], respectively. These artificial swimmers reduce the complexity of

1808 The European Physical Journal Special Topics

living matter, but still display signature features of being out of equilibrium, such as
the ability to perform work [164] and motility-induced phase separation [165,166].

Significant progress has been made both theoretically and computationally in
understanding the individual and collective behavior of swimmers using simple mod-
els. Arguably the most famous of these is the Vicsek model [167], followed closely by
the active Brownian model [168–170]. In our developments, we have drawn inspiration
from the Active Brownian Model (ABM) and created a variant thereof: The Active
Langevin Model (ALM), which we will describe here. This ALM can also be cou-
pled to the ESPResSo (GPU) lattice Boltzmann (LB) fluid dynamics solver [48,70] to
account for the characteristic dipolar flow field that is associated with self-propulsion
by microorganisms [171,172] as well as chemical swimmers [173]. Our implementa-
tion [65] is similar to the sub-lattice approach introduced by Nash et al. [174,175].
We refer to this extension as the hydrodynamic ALM (HALM) and we will briefly
touch upon it here.

The ALM equation of motion for the translation of the ith swimmer’s center of
mass ri is given by:

M
∂2

∂t2
ri = −Γ t

∂

∂t
ri + f ûi −

∑
j 6=i

∇V (rij ,Qi,Qj) + ξi,t(t). (14)

Here, we assume that the swimmer is fully shape anisotropic and we have intro-
duced the following quantities: the mass M , the translational diffusion tensor Γ t,
a (co-rotating) unit vector that gives the direction of self-propelled motion ûi, the
self-propulsion force f , and swimmer–swimmer interaction potential V . The latter
depends on the separation rij ≡ |ri−rj | and orientation of the swimmers, as specified
by quaterions Qi. Thermal noise is introduced via ξi,t(t), which satisfies 〈ξi,t(t)〉 = 0
and 〈ξi,t(t) ⊗ ξj,t(t′)〉 = 6kBTΓ tδijδ(t − t′). The equation of motion for quater-
nions is lengthy and well-described in reference [176], it is therefore not reproduced
here.

Figure 10a shows a representation of an ALM swimmer. Each particle is assigned
a direction of self-propulsion ûi, along which it experiences a constant force FALM =
f û. This self-propulsion force balances against the friction exerted by the implicit
solvent, Ffric = Γ tU , leading to persistent directed motion with swim speed U = |U |.
Individual swimmers can have different propulsion forces and/or friction matrices in
ESPResSo 4.0, providing users with tremendous flexibility in creating mixtures with
a range of mobilities.

A swimmer’s direction of self-propulsion may be changed by rotational Brownian
motion or by torques, either from external fields or collisions. The former leads to
enhanced diffusion [163] as shown in Figure 10b. ALM in ESPResSo 4.0 currently
does not allow for the coupling of translational and rotational degrees of freedom,
as required for the simulation of L-shaped [177] and chiral swimmers [178]; future
releases will bring such functionality. Lastly, note that ALM is not fully damped
(Fig. 10b), i.e., there is an inertial component to the dynamics, which is uncommon
in simulating (large) colloidal particles. However, ALM approaches the fully damped
ABM when the friction coefficient is chosen to be large. In this limit, the time step
should be suitably small to ensure that the algorithm produces the correct physics.

HALM introduces coupling between ALM and an LB fluid to account for hydrody-
namic interactions between swimmers, particles, and obstacles. In developing HALM
we have drawn inspiration from the work of Nash et al. [174,175], who formulated
a similar coupling to an LB fluid for the ABM. A directional self-propulsion force
is applied to the particle, similar to the way this is done in ALM. In LB, a single
point particle gains an effective radius [179] or rather an inherent friction by coupling
to the grid. This friction counter-balances the propulsive force leading to a constant

Particle Methods in Natural Science and Engineering 1809

Fig. 10. The Active Langevin Model (ALM). (a) A two-dimensional (2D) schematic of a
shape anisotropic ALM self-propelled particle. The balance of self-propulsion force f û and
fluid friction Γ tU , leads to a constant swim speed U . (b) The mean-squared displacement
〈r2〉 as a function of time t of a passive Langevin particle (blue) and ALM swimmer (red),
with error bars indicating the standard error. In the passive case, the ballistic regime 〈r2〉 ∝
t2 transitions to a diffusive regime 〈r2〉 ∝ t around the ballistic-to-diffusion crossover time
tB, as indicated by the grey vertical line. The ballistic regime is stretched by the activity
and enhanced diffusion sets on a time scale associated with rotational diffusion tR.

swim speed. However, this also leads to force onto the LB fluid, while self-propulsion
in a fluid should be force free. Therefore, a counter-force is applied to the LB fluid
to ensure that momentum is not transferred into it globally, see Figure 11. This
force/counter-force pair induces a flow field with the typical leading-order dipolar
contribution that characterizes self-propulsion. Figure 11 illustrates two combina-
tions of the force pair leading to the well-known puller and pusher dipolar flow fields,
representing, e.g., algae [171,180] and spermatozoa [181], respectively. We refer to
reference [65] for full details of the implementation.

The reason for introducing ALM and HALM here, rather than relying on Brown-
ian dynamics, is related to the way particles in ESPResSo couple to the LB fluid. Using
these algorithms in tandem, the effect of the hydrodynamic interactions between
swimmers may be disentangled, in much the same way as was done for passive
particles [182]. Careful tuning of the relevant hydrodynamic parameters and the self-
propulsion forces is key to reproducing low-Reynolds number hydrodynamic solu-
tions, we refer to reference [183] for an in-depth discussion. These authors have
verified that the Nash et al. implementation [174,175] and HALM have the same
near-field flow characteristics, long-range hydrodynamic retardation effects, and par-

1810 The European Physical Journal Special Topics

Fig. 11. Sketches of two types of force-free hydrodynamic ALM (HALM) swimmers. Pusher
and puller swimmers result from a change in the placement of the counter force (blue arrow)
with respect to the swimmer’s center, on which a propulsive force (red arrow) is applied.
These forces are resolved sub-lattice (gray mesh) and interpolated to achieve the flow fields,
as sketched using black arrows. The inherent friction of the swimmer’s body with the lattice
Boltzmann fluid leads to a persistent motion with a well-defined swim speed. The similarity
of this figure to Figure 4.1 from R. Nash’s Ph.D. thesis [175] is intentional and emphasizes
the inspiration for our algorithm.

ticle dynamics [184]. Thus, the inertial component to HALM does not significantly
affect the dynamics of our model.

ALM and HALM can both be used in conjunction with the raspberry method
of creating shape-anisotropic particles [63,64,110,185]. This enables, for example, the
study of the effect of polarization and roughness on motility-induced clustering [186].
HALM combined with raspberry particles leads to hydrodynamic multipole moments
beyond the leading dipole moment for the self-propulsion of shape-anisotropic parti-
cles in fluids [65]. This property has been exploited to determine the effect of these
hydrodynamic moments on the motion of these swimmers in confining geometries [66],
as well as their interaction with passive particles in their surrounding [65,183]. The
use of raspberry particles in combination with HALM removes most of the lattice arti-
facts that point-particle HALM suffers from [65]. We therefore recommend employing
this combination within ESPResSo to properly account for any rigid body dynamics
in a fluid, including rotational coupling due to shape anisotropies.

14 Conclusions

In this work, we outlined the major revisions that ESPResSo 4.0 has undergone,
and the benefits that the user will experience from these changes. These include
the reimplementation of the user interface in Python and an overhaul of the core
architecture to modern software development paradigms. We have also reported new
features and presented them accompanied by specific use cases. This enables the
simulation of systems at the forefront of soft matter research, including active matter
and catalytic reactions.

We foresee a bright future for ESPResSo as a software package and as a research
project. Together with our collaborators, we will further improve the documentation
and usability of this platform. In addition, algorithmic improvements are planned,
which include: (i) Adaptive grid refinement to the electrokinetics code. (ii) A load-
balancing scheme for efficient simulation of heterogeneous systems. (iii) Lees-Edwards

Particle Methods in Natural Science and Engineering 1811

boundary conditions for rheological measurements. We cordially invite new users
to try out ESPResSo as a simulation tool for their research and participate in its
continued development.

The current status of the package and the latest tutorials and documentation
can be found on the project website http://espressomd.org, or on GitHub https:
//github.com/espressomd/.

We would like to acknowledge more than 100 researchers who contributed over the last
fifteen years to the ESPResSo software, and whose names can be found on our website http:

//espressomd.org or in the AUTHORS file distributed with ESPResSo. We are also grateful
to our colleagues of the SFB 716 for numerous suggestions for extending the capabilities of
ESPResSo and in helping us to improve our software. As part of a collaboration [108], Milena
Smiljanic contributed code to the cluster analysis framework, particularly to the analysis
routines on the single cluster level. CH, KS, and FW gratefully acknowledge funding by
the German Science Foundation (DFG) through the collaborative research center SFB 716
within TP C5, the SimTech cluster of excellence (EXC 310), and grants HO 1108/25-1,
HO 1108/26-1, AR 593/7-1, HO 1108/28-1. MK, JdG, and CH thank the DFG for funding
through the SPP 1726 Microswimmers–From Single Particle Motion to Collective Behavior.
JdG further acknowledges funding from an NWO Rubicon Grant (#680501210) and a Marie
Sk lodowska-Curie Intra European Fellowship (G.A. No. 654916) within Horizon 2020. The
simulations were partially performed on the bwUniCluster funded by the Ministry of Science,
Research and Arts and the Universities of the State of Baden-Württemberg, Germany,
within the framework program bwHPC.

Author contribution statement

Supervision: CH; Funding Acquisition, CH; Resources, CH; Conceptualization: CH,
RW, and FW. Writing: All authors contributed to the preparation of the manuscript.
Software and Validation: FW, RW, and KS are core developers of ESPResSo. The
main code contributors of individual features discussed in this article are the
following. Test infrastructure: KS, MK. Visualization: KB, MK. Particle-based reac-
tions: JL. Drude oscillators: KB. External fields: FW. Steepest descent energy min-
imization: FW. Cluster analysis: RW. Active particles: JdG, HM. H5MD parallel
output: KS. VTF output: DS. A full list of code contributions can be found at
https://github.com/espressomd/espresso/graphs/contributors.

References

1. P.G. de Gennes, Rev. Mod. Phys. 64, 645 (1992)
2. M. Doi, Soft matter physics (Oxford University Press, Hardcover, 2013)
3. J.-L. Barrat, J.-P. Hansen, Basic concepts fo simple and complex liquids (Cambridge

University Press, Cambridge, 2003)
4. M. Doi, S.F. Edwards, in The theory of polymer dynamics (Oxford University Press,

1988), Vol. 73
5. M. Rubinstein, R.H. Colby, Polymer physics (Oxford University Press, Oxford, UK,

2003)
6. E.J. Verwey, J.T.G. Overbeek, Theory of the stability of lyophobic colloids (Elsevier,

Amsterdam, 1948)
7. H. Löwen, J. Phys.: Condens. Matter 13, R415 (2001)
8. S. Chandrasekhar, Liquid crystals (Cambridge University Press, Cambridge, 1992)
9. I.V. Hamley, Introduction to soft matter (Wiley, Chichester, 2003)

10. P. Nelson, Biological physics – energy, information, life (Freeman, New York, 2004)

http://espressomd.org
https://github.com/espressomd/
https://github.com/espressomd/
http://espressomd.org
http://espressomd.org
https://github.com/espressomd/espresso/graphs/contributors

1812 The European Physical Journal Special Topics

11. I. Levental, P.C. Georges, P.A. Janmey, Soft Matter 3, 299 (2007)
12. J. Ubbink, A. Burbidge, R. Mezzenga, Soft Matter 4, 1569 (2008)
13. S. Polarz, M. Antonietti, Chem. Commun. 22, 2593 (2002)
14. K. Kroy, E. Frey, Ann. Phys. 14, 20 (2005)
15. D. Frenkel, Science 296, 65 (2002)
16. U. Seifert, Rep. Progr. Phys. 75, 126001 (2012)
17. M.E. Cates, Rep. Progr. Phys. 75, 042601 (2012)

18. É. Fodor, M. Marchetti, Physica A 504, 106 (2018)
19. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957)
20. B. Alder, T. Wainwright, Phys. Rev. 127, 359 (1962)
21. P. Pusey, W.C. Poon, S. Ilett, P. Bartlett, J. Phys.: Condens. Matter 6, A29 (1994)
22. M.A. Bates, D. Frenkel, J. Chem. Phys. 109, 6193 (1998)
23. R. van Roij, M. Dijkstra, J.-P. Hansen, Phys. Rev. E 59, 2010 (1999)
24. M.E. Leunissen, C.G. Christova, A.P. Hynninen, C.P. Royall, A.I. Campbell, A. Imhof,

M. Dijkstra, R. van Roij, A. van Blaaderen, Nature 437, 235 (2005)
25. P.J. Camp, J.C. Shelley, G.N. Patey, Phys. Rev. Lett. 84, 115 (2000)
26. Z. Wang, C. Holm, H.W. Müller, Phys. Rev. E 66, 021405 (2002)
27. S.H.L. Klapp, M. Schoen, J. Mol. Liq. 109, 55 (2004)
28. M. Klinkigt, R. Weeber, S. Kantorovich, C. Holm, Soft Matter 9, 3535 (2013)
29. M.J. Stevens K. Kremer, Phys. Rev. Lett. 71, 2228 (1993)
30. A.V. Dobrynin, M. Rubinstein, S.P. Obukhov, Macromolecules 29, 2974 (1996)
31. U. Micka, C. Holm, K. Kremer, Langmuir 15, 4033 (1999)
32. H.J. Limbach, C. Holm, K. Kremer, Europhys. Lett. 60, 566 (2002)
33. S. Schneider, P. Linse, Eur. Phys. J. E 8, 457 (2002)
34. Q. Yan, J.J. de Pablo, Phys. Rev. Lett. 91, 018301 (2003)
35. B.A. Mann, R. Everaers, C. Holm, K. Kremer, Europhys. Lett. 67, 786 (2004)
36. R. Weeber, S. Kantorovich, C. Holm, Soft Matter 8, 9923 (2012)
37. R. Weeber, M. Hermes, A.M. Schmidt, C. Holm, J. Phys.: Condens. Matter 30, 063002

(2018)
38. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)
39. H.V. Guzman, H. Kobayashi, N. Tretyakov, A.C. Fogarty, K. Kreis, J. Krajniak,

C. Junghans, K. Kremer, T. Stuehn, arXiv:1806.10841 (2018)
40. H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43

(1995)
41. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen,

J. Comput. Chem. 26, 1701 (2005)
42. S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts,

J.C. Smith, P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 29,
845 (2013)

43. M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R.D. Skeel, K. Schulten, Int.
J. Supercomput. Appl. 10, 251 (1996)

44. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)

45. J.C. Phillips, J.E. Stone, K.L. Vandivort, T.G. Armstrong, J.M. Wozniak, M. Wilde,
K. Schulten, in Proceedings of the 1st first workshop for high performance technical
computing in dynamic languages (IEEE Press, New York, 2014), p. 6

46. D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, I.T.E. Cheatham, S. DeBolt,
D. Ferguson, G. Seibel, P. Kollman, Comput. Phys. Commun. 91, 1 (1995)

47. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev,
C. Simmerling, B. Wang, R. Woods, J. Comput. Chem. 26, 1668 (2005)

48. A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Röhm, P. Košovan,
C. Holm, in Meshfree methods for partial differential equations VI, Lecture Notes
in Computational Science and Engineering, edited by M. Griebel, M.A. Schweitzer
(Springer, Berlin Heidelberg, 2013), Vol. 89, pp. 1–23

49. M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)
50. M. Deserno, C. Holm, J. Chem. Phys. 109, 7694 (1998)

https://arxiv.org/abs/arXiv:1806.10841

Particle Methods in Natural Science and Engineering 1813

51. A. Arnold, C. Holm, Comput. Phys. Commun. 148, 327 (2002)
52. A. Arnold, C. Holm, Chem. Phys. Lett. 354, 324 (2002)
53. A. Arnold, J. de Joannis, C. Holm, J. Chem. Phys. 117, 2496 (2002)
54. A. Arnold, J. de Joannis, C. Holm, J. Chem. Phys. 117, 2503 (2002)
55. A. Arnold, C. Holm, in Advanced computer simulation approaches for soft matter sci-

ences II, Advances in polymer sciences, edited by C. Holm, K. Kremer (Springer,
Berlin, 2005), Vol. II, pp. 59–109

56. A. Arnold, C. Holm, J. Chem. Phys. 123, 144103 (2005)
57. A. Arnold, B.A. Mann, C. Holm, in Computer simulations in Condensed Matter: from

Materials to Chemical Biology, Lecture Notes in Physics, edited by M. Ferrario, G. Cic-
cotti, K. Binder (Springer, Berlin, Germany, 2006), Vol. 1, pp. 193–222

58. S. Tyagi, A. Arnold, C. Holm, J. Chem. Phys. 127, 154723 (2007)
59. S. Tyagi, A. Arnold, C. Holm, J. Chem. Phys. 129, 204102 (2008)
60. C. Tyagi, M. Süzen, M. Sega, M. Barbosa, S.S. Kantorovich, C. Holm, J. Chem. Phys.

132, 154112 (2010)
61. A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz, C. Holm,

Entropy 15, 4569 (2013)
62. F. Fahrenberger C. Holm, Phys. Rev. E 90, 063304 (2014)
63. L.P. Fischer, T. Peter, C. Holm, J. de Graaf, J. Chem. Phys. 143, 084107 (2015)
64. J. de Graaf, T. Peter, L.P. Fischer, C. Holm, J. Chem. Phys. 143, 084108 (2015)
65. J. de Graaf, H. Menke, A.J. Mathijssen, M. Fabritius, C. Holm, T.N. Shendruk,

J. Chem. Phys. 144, 134106 (2016)
66. J. de Graaf, A.J. Mathijssen, M. Fabritius, H. Menke, C. Holm, T.N. Shendruk, Soft

Matter 12, 4704 (2016)
67. G. Inci, A. Arnold, A. Kronenburg, R. Weeber, Aerosol Sci. Technol. 48, 842 (2014)
68. G. Inci, A. Kronenburg, R. Weeber, D. Pflüger, Flow, Turbul. Combust. 98, 1065

(2017)
69. C. Schober, D. Keerl, M.J. Lehmann, M. Mehl, in Proceedings of the VII international

conference on coupled problems in science and engineering, edited by M. Papadrakakis,
E. Oñate,B. Schrefler (InternationalCenter forNumericalMethods inEngineering,2016)

70. D. Röhm, A. Arnold, Eur. Phys. J. Special Topics 210, 89 (2012)
71. I. Cimrák, M. Gusenbauer, T. Schrefl, Comput. Math. Appl. 64, 278 (2012)
72. I. Cimrak, M. Gusenbauer, I. Jančigová, Comput. Phys. Commun. 185, 900 (2014)
73. I. Cimrák, I. Jancigová, K. Bachratá, H. Bachratỳ, in III International conference

on particle-based methods–fundamentals and applications particles (2013), Vol. 2013,
pp. 133–144

74. G. Rempfer, G.B. Davies, C. Holm, J. de Graaf, J. Chem. Phys. 145, 044901 (2016)
75. A. Guckenberger, M.P. Schraml, P.G. Chen, M. Leonetti, S. Gekle, Comput. Phys.

Commun. 207, 1 (2016)
76. C. Bächer, L. Schrack, S. Gekle, Phys. Rev. Fluids 2, 013102 (2017)
77. K. Kratzer, A. Arnold, R.J. Allen, J. Chem. Phys. 138, 164112 (2013)
78. K. Kratzer, J.T. Berryman, A. Taudt, J. Zeman, A. Arnold, Comput. Phys. Commun.

185, 1875 (2014)
79. S. Samin, Y. Tsori, C. Holm, Phys. Rev. E 87, 052128 (2013)
80. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, A. Lerer, Neural information processing systems (2017)
81. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12, 2825
(2011)

82. F. Chollet, Deep learning with Python (Manning Publications Co., Greenwich, 2017)
83. A. Meurer, C.P. Smith, M. Paprocki, O. Čert́ık, S.B. Kirpichev, M. Rocklin, A. Kumar,

S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller,
F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel,
V. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, A. Scopatz, PeerJ Comput.
Sci. 3, e103 (2017)

1814 The European Physical Journal Special Topics

84. W. Stein, D. Joyner, ACM SIGSAM Bull. 39, 61 (2005)
85. J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007)
86. P. Ramachandran, G. Varoquaux, Comput. Sci. Eng. 13, 40 (2011)
87. E. Jones, T. Oliphant, P. Peterson, et al., SciPy: open source scientific tools for Python,

2001–2019
88. W. McKinney, in Proceedings of the 9th Python in science conference, edited by

S. van der Walt, J. Millman (2010), pp. 51–56
89. D. Reith, M. Pütz, F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003)
90. T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J. Frederic,

K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,
C. Willing, in Positioning and power in academic publishing: players, agents and agen-
das, edited by F. Loiyides, B. Schmidt (IOS Press, London, 2016), pp. 87–90

91. R.W. Hockney, J.W. Eastwood, Computer simulation using particles (IOP, London,
1988)

92. A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver,
I. Kabadshow, F. Gähler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts,
G. Sutmann, Phys. Rev. E 88, 063308 (2013)

93. F. Nestler, Appl. Numer. Math. 105, 25 (2016)
94. R. Weeber, F. Nestler, F. Weik, M. Pippig, D. Potts, C. Holm, arXiv:1808.10341

(2018)
95. Y.L. Raikher, O.V. Stolbov, JMMM 258/259, 477 (2003)
96. K. Morozov, M. Shliomis, H. Yamaguchi, Phys. Rev. E 79, 040801 (2009)
97. U. Ayachit, The ParaView guide: a parallel visualization application (Kitware, Inc.,

USA, 2015)
98. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)
99. M. Fletcher, R. Liebscher, PyOpenGL–the Python OpenGL binding, 2005

100. D. Shreiner, OpenGL reference manual: the official reference document to OpenGL,
version 1.2, 3rd edn. (Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999)

101. D. Röhm, Lattice Boltzmann simulations on GPUs, diplomarbeit (University of
Stuttgart, Germany, 2011)

102. P. de Buyl, P.H. Colberg, F. Höfling, Comput. Phys. Commun. 185, 1546 (2014)
103. The HDF Group, Hierarchical data format, version 5, http://www.hdfgroup.org/

HDF5/

104. A. Collette, Python and HDF5 (O’Reilly, 2013)
105. Boost C++ libraries, https://www.boost.org (1998–2019)
106. B. Dünweg, A.J.C. Ladd, in Advanced computer simulation approaches for soft matter

sciences III, Advances in Polymer Science (Springer-Verlag Berlin, Berlin, Germany,
2009), Vol. 221, pp. 89–166

107. Clang: a C language family frontend for LLVM, https://clang.llvm.org/
108. M. Smiljanic, R. Weeber, C. Holm, A. Kronenburg, Eur. Phys. J. Special Topics.

Submitted
109. K. Breitsprecher, C. Holm, S. Kondrat, ACS Nano 12, 9733 (2018)
110. V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)
111. M. Radu, T. Schilling, Europhys. Lett. 105, 26001 (2014)
112. K. Kratzer, A. Arnold, Soft Matter 11, 2174 (2015)
113. K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Nat. Mater. 2,

88 (2003)
114. J.J. Cerdà, S. Kantorovich, C. Holm, J. Phys.: Condens. Matter 20, 204125 (2008)
115. R. Weeber, M. Klinkigt, S. Kantorovich, C. Holm, J. Chem. Phys. 139, 214901 (2013)
116. J.G. Donaldson, S.S. Kantorovich, Nanoscale 7, 3217 (2015)
117. A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Combust. Flame 161, 1849 (2014)
118. W. Lechner, C. Dellago, J. Chem. Phys. 129, 114707 (2008)
119. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)
120. J.J. Cerdà, V. Ballenegger, O. Lenz, C. Holm, J. Chem. Phys. 129, 234104 (2008)
121. A. Bródka, Chem. Phys. Lett. 400, 62 (2004)

https://arxiv.org/abs/arXiv:1808.10341
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://www.boost.org
https://clang.llvm.org/

Particle Methods in Natural Science and Engineering 1815

122. W. Richtering, Smart Coll. Mater. 133, 9 (2006)
123. J.M. Berg, Biochemistry, 8th edn. (Freeman, New York, NY, USA, 2015)
124. M. Castelnovo, P. Sens, J.-F. Joanny, Eur. Phys. J. E 1, 115 (2000)
125. C. Shi, J.A. Wallace, J.K. Shen, Biophys. J. 102, 1590 (2012)
126. M. Lund, B. Jönsson, Biochemistry 44, 5722 (2005)
127. M. Lund, B. Jönsson, Quart. Rev. Biophys. 46, 265 (2013)
128. H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704

(2006)
129. C.E. Reed, W.F. Reed, J. Chem. Phys. 96, 1609 (1992)
130. E.R. Smith, J. Stat. Phys. 77, 449 (1994)
131. J.K. Johnson, A.Z. Panagiotopoulos, K.E. Gubbins, Mol. Phys. 81, 717 (1994)
132. J. Landsgesell, C. Holm, J. Smiatek, Eur. Phys. J. Special Topics 226, 725 (2017)
133. P. W. Atkins, J. de Paula, Physical chemistry (Oxford Univ. Press, Oxford, UK, 2010)
134. C. Heath Turner, J.K. Brennan, M. Lisal, W.R. Smith, J. Karl Johnson, K.E. Gubbins,

Mol. Simul. 34, 119 (2008)
135. J. Landsgesell, C. Holm, J. Smiatek, J. Chem. Theory Comput. 13, 852 (2017)
136. F. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001)
137. D. Frenkel, B. Smit, Understanding molecular simulation, 1st edn. (Academic Press,

San Diego, 1996)
138. I. Leontyev, A. Stuchebrukhov, Phys. Chem. Chem. Phys. 13, 2613 (2011)
139. J. Schmidt, C. Krekeler, F. Dommert, Y. Zhao, R. Berger, L. Delle Site, C. Holm,

J. Phys. Chem. B 114, 6150 (2010)
140. F. Dommert, K. Wendler, R. Berger, L.D. Site, C. Holm, Chem. Phys. Chem. 13, 1625

(2012)
141. F. Dommert, C. Holm, Phys. Chem. Chem. Phys. 15, 2037 (2013)
142. M. Kohagen, P.E. Mason, P. Jungwirth, J. Phys. Chem. B 120, 1454 (2016)
143. G. Lamoureux, E. Harder, I. Vorobyov, B. Roux, A. MacKerell, Chem. Phys. Lett.

418, 245 (2006)
144. G. Lamoureux, B. Roux, J. Chem. Phys. 119, 3025 (2003)
145. J.R. Bordin, R. Podgornik, C. Holm, Eur. Phys. J. Special Topics 225, 1693 (2016)
146. H. Yu, T. Hansson, W.F. van Gunsteren, J. Chem. Phys. 118, 221 (2003)
147. P. Mitchell, D. Fincham, J. Phys.: Condens. Matter 5, 1031 (1993)
148. B.T. Thole, Chem. Phys. 59, 341 (1981)
149. D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (2000)
150. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,

V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Proc. Natl.
Acad. Sci. 105, 1232 (2008)

151. Y. Katz, K. Tunstrøm, C. Ioannou, C. Huepe, I. Couzin, Proc. Natl. Acad. Sci. 108,
18720 (2011)

152. J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, in Traffic and granular flow ’11,
edited by V.V. Kozlov, A.P. Buslaev, A.S. Bugaev, M.V. Yashina, A. Schadschneider,
M. Schreckenberg (Springer, Berlin, Heidelberg, 2013), p. 241

153. J. Silverberg, M. Bierbaum, J. Sethna, I. Cohen, Phys. Rev. Lett. 110, 228701 (2013)
154. D. Woolley, Reproduction 126, 259 (2003)
155. I. Riedel, K. Kruse, J. Howard, Science 309, 300 (2005)
156. A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102

(2007)
157. M. Polin, I. Tuval, K. Drescher, J. Gollub, R. Goldstein, Science 325, 487 (2009)
158. V. Geyer, F. Jülicher, J. Howard, B. Friedrich, Proc. Natl. Acad. Sci. 110, 18058 (2013)
159. R. Ma, G. Klindt, I. Riedel-Kruse, F. Jülicher, B. Friedrich, Phys. Rev. Lett. 113,

048101 (2014)
160. M. Reufer, R. Besseling, J. Schwarz-Linek, V. Martinez, A. Morozov, J. Arlt,

D. Trubitsyn, F. Ward, W. Poon, Biophys. J. 106, 37 (2014)
161. J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota,

V.A. Martinez, W.C. Poon, Coll. Surf. B: Biointerfaces 137, 2 (2016)

1816 The European Physical Journal Special Topics

162. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao,
T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

163. J.R. Howse, R.A. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys.
Rev. Lett. 99, 048102 (2007)

164. C. Maggi, J. Simmchen, F. Saglimbeni, J. Katuri, M. Dipalo, F. De Angelis, S. Sanchez,
R. Di Leonardo, Small 12, 446 (2016)

165. I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett.
108, 268303 (2012)

166. J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936
(2013)

167. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226
(1995)

168. W. Ebeling, F. Schweitzer, B. Tilch, BioSystems 49, 17 (1999)
169. J. Stenhammar, A. Tiribocchi, R. Allen, D. Marenduzzo, M. Cates, Phys. Rev. Lett.

111, 145702 (2013)
170. X. Zheng, B. Ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Phys.

Rev. E 88, 032304 (2013)
171. K. Drescher, R. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101

(2010)
172. K. Drescher, J. Dunkel, L. Cisneros, S. Ganguly, R. Goldstein, Proc. Natl. Acad. Sci.

108, 10940 (2011)
173. A.I. Campbell, S.J. Ebbens, P. Illien, R. Golestanian, arXiv:1802.04600 (2018)
174. R. Nash, R. Adhikari, M. Cates, Phys. Rev. E 77, 026709 (2008)
175. R.W. Nash, Efficient lattice Boltzmann simulations of self-propelled particles with

singular forces, Ph.D. thesis, The University of Edinburgh, 2010
176. N.S. Martys, R.D. Mountain, Phys. Rev. E 59, 3733 (1999)
177. F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe,

H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)
178. H. Wensink, V. Kantsler, R. Goldstein, J. Dunkel, Phys. Rev. E 89, 010302 (2014)
179. P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)
180. E. Harris, The chlamydomonas sourcebook: a comprehensive guide to biology and lab-

oratory use (Elsevier Science, Amsterdam, 2013)
181. V. Kantsler, J. Dunkel, M. Polin, R.E. Goldstein, Proc. Natl. Acad. Sci. 110, 1187

(2013)
182. D. Röhm, S. Kesselheim, A. Arnold, Soft Matt. 10, 5503 (2014)
183. J. de Graaf, J. Stenhammar, Phys. Rev. E 95, 023302 (2017)
184. J. de Graaf, J. Stenhammar, Pers. Commun. (2017)
185. A. Chatterji, J. Horbach, J. Chem. Phys. 122, 184903 (2005)
186. S.E. Ilse, C. Holm, J. de Graaf, J. Chem. Phys. 145, 134904 (2016)

https://arxiv.org/abs/arXiv:1802.04600

	1 Introduction
	2 Extensible simulation package for research on soft matter systems
	3 The Python interface
	4 Integration with external packages
	5 Online visualization
	6 Parallel output
	7 Software engineering and testing
	8 External fields
	9 Energy minimization
	10 Cluster analysis
	11 Particle-based reactions
	12 Including explicit dipolar polarization with Drude oscillators
	13 Active particles
	14 Conclusions

