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Abstract. After giving a pedagogical review we clarify that the stochastic approach to infla-
tion is generically reliable only at zeroth order in the (geometrical) slow-roll parameter ε1 if
and only if ε22 � 6/ε1, with the notable exception of slow-roll. This is due to the failure of the
stochastic ∆N formalism in its standard formulation. However, by keeping the formalism in
its regime of validity, we showed that, in ultra-slow-roll, the stochastic approach to inflation
reproduces the power spectrum calculated from the linear theory approach.
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1 Introduction

After a renewed interest of primordial black holes (PBH) as dark matter (DM) candidates
[1], ultra-slow-roll (USR) [2, 3] has attracted a great deal of attention as a transient phase
of single-field inflation. Indeed, while an initial slow-roll (SR) phase of inflation predicts the
observed cosmic microwave background radiation (CMB), a subsequent USR trajectory of
the inflaton can generate a peak in the power spectrum of curvature perturbations, at scales
smaller than those of the CMB [4]. Although the amplitude of this peak can be several
order of magnitudes larger than the one of the CMB’s power spectrum, it can nevertheless
still be small enough not to invalidate linear perturbation theory. Gravitational collapse
into PBHs requires the curvature perturbations to be already in the non-linear regime at
super-horizon scales, when the above peak is generated. Assuming a Gaussian distribution
for the amplitude of cosmological perturbations, rare non-linear fluctuations are statistically
generated and, if certain conditions are met [5], they would collapse into PBHs at horizon
re-entry. The abundances of these PBHs is clearly related to the hight of the generated peak
and therefore a minimal value of it is required in order to have enough DM at later times [5].

One might question whether the Gaussian assumption is justified [6]. In case of a
smooth transition between the SR and USR phase it has been proven that it is [7]. The
second question that might come naturally into mind is whether or not the effects of quantum
diffusion arising from non-linear quantum effects could be large enough to spoil the predictions
of the linear quantum theory calculated in an USR inflationary phase. The suspicion that
this might happen comes from the fact that in USR the inflaton potential is exactly flat.
In this case, the inflaton velocity is completely dominated by Hubble friction and, as time
passes, it becomes exponentially suppressed. Therefore, additional quantum kicks generated
by non-linear interactions in the effective Lagrangian of the inflaton, might eventually become
significant, thus changing appreciably the prediction of the power spectrum obtained by the
linear analysis.
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A natural framework to study this question is stochastic inflation [8]. The first paper
asking whether or not quantum diffusion would be important in the context of PBHs formation
was [9]. Although from the study of [9] one would be tempted to extrapolate that quantum
diffusion effects are important in USR, this would not necessarely be true as the perturbations
in SR and USR behave quite differently. A subsequent paper [10] assumed that, at order zero
in the slow-roll parameters, the power spectrum of curvature perturbations is exactly the
same as the one calculated by linear perturbation theory. We shall show that is correct since,
without any slow-roll terms, the equations governing the inflaton in the stochastic approach
are linear. However, this result is at odds with [11]. In the latter paper, the power spectrum
of curvature perturbations in Fourier space, has been calculated as if curvature perturbations
would be constant at super-horizon scales. However, this is unfortunately not correct for the
cases of USR (and slower) trajectories. Using instead the fact that scalar field fluctuations
are constant at super-horizon scales and that at the zeroth order in the slow-roll parameters
stochastic inflation is linear, allows us to reconstruct the power spectrum of the curvature
perturbation with the reassuring result that it matches the one from the linear perturbation
analysis.

Having settled that, at zeroth order in slow roll parameters, the power spectrum can be
obtained by studying the free (quantum) diffusion. However, one may still wonder whether
slow-roll and nonlinear corrections give us more information. Unfortunately, the stochastic
framework in USR and in constant-roll is not valid at the first sub-leading (linear) order
in slow-roll parameters and thus other quantum field theory methods should be used. This
observation constitutes one of the main results of our paper.

Throughout this work we use natural units in which the speed of light c = 1, the reduced
Planck constant ~ = 1 and we often express the Newton constant G in terms of the reduced
Planck mass, MP = 1/

√
8πG ' 2.45× 1018 GeV.

2 Review of stochastic inflation

For inflation one usually considers one (or several) scalar field(s) φ called the “inflaton” which
dominates the energy density of matter in the early universe. Here we will however focus on
the single field case. The action of such a system is then

S =
1

16πG

∫
d4x
√
−gR+

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ− V (φ)

]
. (2.1)

On a FRW background ḡµν is given by

ḡµν = diag
(
− 1, a2(t), a2(t), a2(t)

)
, (2.2)

while the equation of motion for the homogeneous scalar field φ0(t) ≡ 〈φ(t, ~x)〉 is(
∂2

∂t2
+ 3H

∂

∂t

)
φ0(t) + V ′(φ0) = 0 , (2.3)

with a = a(t) the scale factor andH = H(t) is the Hubble parameter that obeys the constraint
and dynamics imposed by gravity

H2 =
ρφ

3M2
P

, Ḣ = −
ρφ + Pφ

2M2
P

, (2.4)
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where ρφ =
φ̇20
2 + V (φ0) and Pφ =

φ̇20
2 − V (φ0) are the energy density and pressure of the

spatially homogeneous part of the inflaton fluid, respectively.
It is convenient to present here equations (2.3) and (2.4) in conformal time dτ = dt/a

since they will be useful throughout this work,(
∂2

∂τ2
+ 2H ∂

∂τ

)
φ0(τ) + a2V ′(φ0) = 0 , (2.5)

H2 =
ρφ

3M2
P

a2 , H′ = −
ρφ + 3Pφ

6M2
P

a2 , (2.6)

where H′ = ∂H
∂τ and where we made use of,

∂

∂t
=

1

a

∂

∂τ
,

∂2

∂t2
=

1

a2

(
∂2

∂τ2
−H ∂

∂τ

)
, H =

a′

a
= Ha . (2.7)

Since inflation occurs when the field rolls very slowly compared with the expansion of the
universe [12], the usual way of studying (2.3) is the SR approximation [13], where one neglects
the acceleration of the field (d2φ0/dt

2), so that the scalar is pulled by a nearly flat potential.
In the USR case instead the potential is essentially flat

(
dV (φ0)/dφ0 = 0 = d2V (φ0)/dφ2

0

)
so

the acceleration of the field becomes important.
Usually, in the standard description of inflation, one supposes the homogeneous part of

the field to follow a classical trajectory whereas the small deviations from homogeneity are
treated quantum mechanically [14]. However, one could expect a modification in the classical
trajectory of the field due to quantum effects [15, 16]. In order to incorporate these quantum
effects to the classical trajectory, the stochastic formalism was born [8, 17, 18].

The basic idea of stochastic inflation is to reduce a suitably coarse-grained evolution of
the full quantum inflaton field dynamics to a much simpler, but almost equivalent, stochastic
problem. This is done by splitting the inflaton into a quantum short-scales part, in which
the field is fully quantum but for which perturbative methods apply, and a stochastic large-
scale part, in which the field is influenced by the quantum sector by receiving kicks from an
approximately Markovian stochastic force.

Before introducing the Langevin equation, which is the dynamical equation of the
stochastic infrared field, it is useful to remind the reader about the linear quantum field
theory computation in both SR and USR.

2.1 The Mukhanov-Sasaki equation for linear perturbations

We can now consider small fluctuations to the inflationary trajectory. Since the stochastic
formalism studies only the quantum deviations of the inflaton with respect to its classical
trajectory, we will consider the spatially flat gauge where the scalar field can be split as a
background value φ0 and a fluctuation δφ, whereas the scalar metric fluctuations are set to
zero.

In this gauge 1 one has [19]

S =

∫
Ldτd3x =

1

2

∫ (
v′2 + v∆v +

z′′

z
v2

)
dτd2x , (2.8)

1One can show [19] that, up to boundary terms, Eq. (2.8) is the gauge invariant action for the Mukhanov
variable v = a[δφ+ (φ̇0/H)]ψ, where ψ Is the spatial gravitational potential perturbation.
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where v = aδφ, z = (aφ′0)/H and ∆ =
∑

i ∂
2
i is the spatial Laplacian operator.

In terms of slow-roll parameters

z = a
φ′0
H

= a
√

2ε1MP , (2.9)

z′′

z
= H2

(
2− ε1 +

3

2
ε2 −

1

2
ε1ε2 +

1

4
ε22 +

1

2
ε2ε3

)
, (2.10)

where we have used the geometric definitions

ε1 =
φ′20

2H2M2
P

= − ∂

∂N
lnH , ε2 =

ε′1
ε1H

=
∂

∂N
ln(ε1) , ε3 =

ε′2
ε2H

=
∂

∂N
ln(ε2) .

(2.11)
and the number of e-folds dN = Hdt = Hdτ has been used as a time variable.

In SR εi+1,εi � 1 and therefore(
z(SR)

)′′
z(SR)

= H2

(
2− ε1 +

3

2
ε2 +O(ε2i )

)
. (2.12)

The situation is substantially different in USR. It is easy to see that

ε
(USR)
1 =

(
∂φ
∂N

)2

2M2
P

∝ e−6N

H2
. (2.13)

This result allows us to compute ε(USR)’s of higher order:

ε
(USR)
2 =

d

dN
ln(ε

(USR)
1 ) =

1

ε
(USR)
1

dε
(USR)
1

dN
= −6 + 2ε

(USR)
1 ,

ε
(USR)
3 =

1

ε
(USR)
2

dε
(USR)
2

dN
= 2ε

(USR)
1 ,

ε
(USR)
4 =

1

ε
(USR)
3

dε
(USR)
3

dN
= ε

(USR)
2 ,

... . (2.14)

Equations (2.14) can be written in a compact way:

ε(USR)
n = −6 + 2ε

(USR)
1 , when n even ,

ε(USR)
n = 2ε

(USR)
1 , when n>1 and odd . (2.15)

In this case we finally have(
z(USR)

)′′
z(USR)

= H2
(

2− 7ε
(USR)
1 +O((ε

(USR)
1 )2)

)
. (2.16)

We immediately see then that (z(USR))
′′

z(USR) and (z(SR))
′′

z(SR) differ already at order ε1.
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2.1.1 Solution of the Mukhanov Sasaki equation

In order to integrate out the short wavelength modes, we will need the solution of the
Mukhanov-Sasaki equation (MS), obtained by varying the action (2.8) with respect to v. By
defining the new rescaled variable v ≡ (−τ)1/2s, the MS equation in Fourier space becomes{

τ2 ∂
2

∂τ2
+ τ

∂

∂τ
+

[
k2τ2 −

(
1

4
+
z′′

z
τ2

)]}
s(τ, k) = 0 . (2.17)

During inflation ν2 = 1
4 + z′′

z τ
2 is an adiabatic function of time 2. In other words its rate

of change is much smaller than the Hubble rate. Thus, approximating it as a constant, the
solutions can be written in terms of Hankel functions of the first and second kind H(1)

ν (−kτ)

and H(2)
ν (−kτ), i.e.

s(τ, k) = (−τ)−1/2v(τ, k) = C1(k)H(1)
ν (−kτ) + C2(k)H(2)

ν (−kτ) . (2.18)

The variation of ν in time would introduce a decaying mode that we discard.
In order to set the constants C1(k) and C2(k) one uses the Bunch-Davies vacuum by

noticing that at very short scales the system behave like an harmonic oscillator and therefore
can be easily quantized. By doing that, one obtains that the magnitude of the quantum
fluctuations in spatial Fourier space δφk(τ) are given in terms of the mode functions

ϕk(τ) =
vk(τ)

a
=

√
−τ
a

√
π

4
H(2)
ν (−kτ) , (2.19)

as

δφk(τ) = akϕ(τ, k) + a†−kϕ
∗(τ, k) , (2.20)

with ak and a†k being the usual quantum creation and annihilation operators.

2.2 The Langevin equation

The stochastic formalism uses the separate universes approach [20] which consists into two
separate assumptions: (a) at super-Hubble scales spatial gradients can be neglected (b) the
evolution of the gauge invariant scalar perturbations is well approximated by a Klein-Gordon
equation in a local FRW space-time. The scalar field equation in this separate universe
approach is then (2.3): (

∂2

∂t2
+ 3H

∂

∂t

)
φIR + V ′(φIR) = 0 . (2.21)

Note that in the equation above we have denoted the inflaton field as φIR because we are
talking about the φ modes with comoving wavelength λc ∼ 1/k larger than the Hubble radius.

In the stochastic approach the IR modes receive stochastic kicks from short-wavelength
modes (UV modes), where the separate universe approach does not hold. As the short scale

2Adiabaticity is respected both during SR and USR, but may be broken at the transition between the two.
Even though potentially interesting, in this work we do not consider consequences of the possible break down
of adiabaticity during the transition.
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modes are in the perturbative regime, to leading (linear) approximation in the UV modes,
schematically one ought to solve the following equation,

KG(φIR) +MS(φUV ) = 0 , (2.22)

where KG stands for the operator in (2.3), and MS the Mukhanov-Sasaki (MS) operator
discussed earlier, MS ≡ (1/a3)[∂2

τ −∆− (z′′/z)]a.
Equation (2.22) can be written in conformal time as follows,(

∂2

∂τ2
+ 2H ∂

∂τ

)
φIR + a2V ′(φIR) +

1

a

(
v′′ −∆v − z′′

z
v

)
= 0 , (2.23)

where here v = aδφUV and where z′′

z is defined in (2.10).
We can now modify the second parenthesis in (2.23) in order to solve the MS equation

for δφUV instead of for v. The calculation is straightforward and the result is:(
∂2

∂τ2
+ 2H ∂

∂τ

)
φIR + a2V ′(φIR)+[

∂2

∂τ2
+ 2H ∂

∂τ
+H2

(
− ∆

(Ha)2
− 3

2
ε2 +

1

2
ε1ε2 −

1

4
ε22 −

1

2
ε2ε3

)]
δφUV = 0 . (2.24)

It has been shown in [21, 22], that the correct stochastic time is N3. In this case (2.24)
becomes, (

∂2

∂N2
+ (3− ε1)

∂

∂N

)
φIR +

V ′(φIR)

H2

+

[
∂2

∂N2
+ (3− ε1)

∂

∂N
+

(
− ∆

(Ha)2
− 3

2
ε2 +

1

2
ε1ε2 −

1

4
ε22 −

1

2
ε2ε3

)]
δφUV = 0 . (2.25)

Let us now give a more formal definition for φIR and δφUV :

φIR(τ,x) =

∫
d3k

(2π)3/2
θ(σa(τ)H(τ)−k)e−ik·xφk(τ) , (2.26)

δφUV (τ,x) =

∫
d3k

(2π)3/2
θ(k−σa(τ)H(τ))e−ik·xφk(τ) , (2.27)

where σ � 1 is a dimensionless cutoff scale and θ is the window function, which for simplicity
is taken here to be the Heaviside function. With these definitions we get[

∂2

∂N2
+ (3− ε1)

∂

∂N
− ∆

(Ha)2

]
φIR+

V ′(φIR)

H2

= −
∫

d3k
(2π)3/2

e−ik·x
[
2
∂

∂N
θ(k−σaH)

∂

∂N
φk(N)

]
−
∫

d3k
(2π)3/2

e−ik·x
[
(3− ε1)

(
∂

∂N
θ(k−σaH)

)
φk

]
−
∫

d3k
(2π)3/2

e−ik·x
[(

∂2

∂N2
θ(k−σaH)

)
φk

]
, (2.28)

3Note however that in Ref. [21], as well as in related references, the authors neglect the second time
derivative of the scalar, which is correct in slow-roll inflation, but not in more general situations such as
considered here.
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where we have already substituted the solution of the second line in Eq. (2.25) for the UV
field. Defining the stochastic forces ξ1(N,x) and ξ2(N,x) as

ξ1 = σaH(1−ε1)

∫
d3k

(2π)3/2
δ(k−σaH)e−ik·xφk(N) , (2.29)

ξ2 = σaH(1−ε1)

∫
d3k

(2π)3/2
δ(k−σaH)e−ik·x

∂φk(N)

∂N
, (2.30)

equation (2.28) becomes:[
∂2

∂N2
+ (3−ε1)

∂

∂N

]
φIR +

V ′(φIR)

H2
= (3−ε1)ξ1 +

∂ξ1

∂N
+ ξ2 ≡

3H

2π
ξ , (2.31)

where we made use of, ∂
∂N θ(k−σaH) = −σaH(1−ε1)δ(k−σaH) . Since the linear field φk is

Gaussian, so are the stochastic forces. Thus we have that 〈ξi〉 = 0 with correlations

〈ξ1(N1,x1)ξ1(N2,x2)〉 = (σaH)3

2π2 (1−ε1) |ϕ(τ, k)|2k=σaH
sin(σaHr)
σaHr δ(N1−N2) , (2.32)

〈ξ2(N1,x1)ξ2(N2,x2)〉 = (σaH)3

2π2 (1−ε1)
∣∣∣∂ϕ(τ,k)

∂N

∣∣∣2
k=σaH

sin(σaHr)
σaHr δ(N1−N2) , (2.33)

〈ξ1(N1,x1)ξ2(N2,x2)〉 = (σaH)3

2π2 (1−ε1)
(
ϕ(τ, k)∂ϕ

∗(τ,k)
∂N

)
k=σaH

sin(σaHr)
σaHr δ(N1−N2) , (2.34)

where r = ‖x1−x2‖. 4 The correlators are Markovian in the time domain and their decay
on super-Hubble scales can be modelled by the top-hat window function, WTH(t, r) = θ(1−
σaHr), see footnote 4.

Note that Eq. (2.31) can be also equivalently found via the Hamiltonian formalism
[24, 25] where the momenta and the field satisfy two distinct first order differential equations.
Stochastic and Hamiltonian formulations are then equivalent, as long as one keeps track on
the separate noise contributions ξ1 and ξ2.

2.2.1 Regime of validity

In this section we will prove that the stochastic approach in USR (and in constant-roll) can
only be used at zeroth order in the slow-roll parameters due to the failure of the separate
universe approach at leading order in ε1. This differs from the SR case where the separate
universe approach is valid at leading order in ε1.

As we have already mentioned, in the separate universe approach, the IR field evolves
in a perturbed, but still of a FRW-type, Universe, and its evolution equation follows a Klein-
Gordon equation in that separate Universe. The question is then whether the linearisation of
(2.31), once the noises are switched off, reproduces the MS equation.

We will now expand φIR = φ0 + δφIR and plug it in the homogeneous part of equation
(2.31), obtaining

2
δH

H

[
d2φ0

dN2
+ (3−ε1)

dφ0

dN

]
− δε1

∂φ0

∂N

+
∂2δφIR
∂N2

+ (3−ε1)
∂δφIR
∂N

+
δV ′(φ0 + φIR)

H2
+O(δφ2

IR) = 0 . (2.35)

4The precise spatial dependence of the noise correlators (given by sin(σaHr)/(σaHr) in Eqs. (2.32–2.34))
depends on the window function used [23]. The oscillations in (2.32–2.34)) are due to the sharp momentum
cutoff imposed by the Heaviside theta function. Had we used a smooth window function, we would have
obtained a function that smoothly interpolates between one when r � 1/(σaH) and zero when r � 1/(σaH),
which can be approximated by the top-hat window function, WTH(t, r) = θ(1 − σaHr).
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Keeping in mind that generally we are not in attractor inflation – i.e. ∂φIR/∂N must be
taken as independent of φIR – we have,

δH

H
' 1

6M2
P

[
dφ0

dN

∂δφIR
∂N

+
V ′(φ0)

H2
δφIR

]
=

√
2ε1

6MP

[
∂δφIR
∂N

−
(

3−ε1+
ε2
2

)
δφIR

]
δV ′

H2
' V ′′(φ0)

H2
δφIR =

[
6ε1 −

3

2
ε2 − 2ε21 +

5

2
ε1ε2 −

1

4
ε22 −

1

2
ε2ε3

]
δφIR

δε1 '
φ̇0δφ̇IR
H2M2

P

− 2ε1
δH

H
=

√
2ε1

3MP

[
(3−ε1)

∂δφIR
∂N

+
(

3ε1−ε21+
1

2
ε1ε2

)
δφIR

]
. (2.36)

Upon inserting these results into (2.35) we get,5

∂2δφIR(N)

∂N2
+

(
3− ε1 +

1

3
ε1ε2

)
∂δφIR
∂N

+

[
−3

2
ε2 +

1

2
ε1ε2 −

1

4
ε22 −

1

2
ε2ε3 +

1

3
ε21ε2 −

1

6
ε1ε

2
2

]
δφIR +O(δφ2

IR) = 0 . (2.37)

This equation differs in two important aspects from the equation obeyed by the linearized
cosmological perturbations δφ, which can be inferred from (2.25) to read (in the limit when
k � aH),[

∂2

∂N2
+ (3−ε1)

∂

∂N
+

(
−3

2
ε2 +

1

2
ε1ε2 −

1

4
ε22 −

1

2
ε2ε3

)]
δφ(N,x) +O(δφ2) ' 0 : (2.38)

A. While the Hubble damping in the equation for the scalar cosmological perturbation (2.38)
is γ = 3− ε1, there is an additional damping of second order in slow-roll parameters in
the stochastic equation of δγstoch = ε1ε2/3 and

B. While the effective mass term in Eq. (2.38) is m2

H2 = −3
2ε2 + 1

2ε1ε2 −
1
4ε

2
2−1

2ε2ε3, the
effective mass term in the stochastic equation (2.37) has additional terms that are cubic
in slow roll parameters, δm

2
stoch
H2 = 1

3ε
2
1ε2 − 1

6ε1ε
2
2.

The important lesson to take from these observations is that, while in slow roll approximation
stochastic ∆N formalism, reproduces correctly the dynamics of the IR quantum field, this is
not so in more general cosmological backgrounds such as inflation in non-attractor regime.
This disagreement can be traced back to the different constraint structure of the homogeneous
(zero) modes and inhomogeneous modes of the system gravity plus scalar matter. We post-
pone a detailed study of this question for future work. Needless to say is that a disagreement
at the linear order necessarily implies a disagreement at the quantum loop level implying that
the stochastic ∆N formalism does not solve the question of how to stochasticize the quantum
gravity of inflation.

In the following subsections we study in some detail the differences in the predictions of
stochastic ∆N formalism in SR and USR regimes.

5Notice that δε1 is not uniquely specified by stochastic ∆N formalism. Had we interpreted δε1 as, δε1 =
−δ∂N [ln(H)] = −∂Nδ[ln(H)], we still would not have obtained the correct linear equation (2.38) for δφ.
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USR. In USR where ε(USR)
1 ∝ e−6N

H2 and hence ε(USR)
2 = −6 + 2ε

(USR)
1 , ε(USR)

3 = 2ε
(USR)
1

and Eq. (2.37) gives,

∂2δφIR
∂N2

+ 3

(
1− ε(USR)

1 +
2

9
(ε

(USR)
1 )2

)
∂δφIR
∂N

= 0 , (2.39)

or, in conformal time[
∂2

∂τ2
+H

(
− 2ε1 +

2

3
ε21

) ∂
∂τ
−
(
z̄(USR)

)′′
z̄(USR)

]
(aδφIR) = 0 , (2.40)

where (
z̄(USR)

)′′
z̄(USR)

= H2

(
2− ε(USR)

1 +
2

3
(ε

(USR)
1 )2

)
. (2.41)

As we clearly see (2.41), calculated via the separate universe approach, differs from (2.16),
calculated via the MS equation, at leading (linear) order in ε1. In addition, (2.40) contains
an anti-damping term that is linear in slow roll. Therefore the separate universe formalism,
and thus the stochastic formalism, fails at leading order in slow-roll to reproduce the correct
evolution of the linear fluctuations obtained from the quantum field theory approach.

We would like here to briefly mention the constant-roll case (CR). There φ̈

3Hφ̇
= ε2−2ε1

6 =

constant. Constant roll is supported only by a specific class of inflationary potentials [26]. In
some of these potentials ε1 decreases and ε2 reaches a non-negligible constant which can be
any value. Because of this, again, the stochastic formalism fails beyond the zeroth order in
ε1. In addition, to keep δm2

stoch
H2 � 1 so to be able to use the stochastic formalism at least at

zeroth order in ε1, we want δmstoch to be small so we get the constraint (at leading order in
ε1 � 1)

ε22 �
6

ε1
. (2.42)

For typical values of ε2 that are found in models of inflation related to PBHs formations,
(2.42) implies that during the CR or USR phase ε1 � 10−1.

SR The same comparison can be now easily done in SR. In this case one can see that if we
keep ourselves to first order in ε1 we get from (2.37), rewritten in conformal time,[
∂2

∂τ2
−
(
z̄(SR)

)′′
z̄(SR)

]
(aδφIR) = 0 , where

(
z̄(SR)

)′′
z̄(SR)

= H2

(
2− ε(SR)

1 +
3

2
ε2 +O((ε

(SR)
1 )2)

)
,

(2.43)

which, because in SR ε2 � 1, matches the linear analysis at leading (linear) order in slow-roll
but – as one can easily show – does not match at second order in slow roll.

In summary, we have shown that the stochastic ∆N formalism reproduces correctly the
linear dynamics of scalar cosmological perturbations to linear order in slow-roll parameters
(albeit it fails at higher order) in SR, but it fails to reproduce correctly the corresponding
dynamics at leading linear order in slow-roll parameters in USR and CR regimes. The origin
of that failure can be traced back to the fact that stochastic ∆N formalism does not correctly
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incorporate the gravitational constraints. That this is so can be seen e.g. from the fact that
in stochastic ∆N formalism the effective mass of δφIR field vanishes in USR in which V ′′ = 0
(see Eq. (2.39)). However, as one can easily convince oneself from Eq. (2.38), the true scalar
cosmological perturbations have a non-vanishing effective mass even when V ′′(φ) = 0 (the
mass is given by m2 = −2ε1H

2(3− ε1)), which is generated by the gravitational constraint.

2.2.2 Final version of the Langevin equation for USR

Having found out that the stochastic formalism during USR is only valid at zeroth order in
ε1, by using the solution (2.19) at this order we obtain

〈ξ1(N1)ξ1(N2)〉 '
(
H

2π

)2

δ(N1 −N2) , (2.44)

〈ξ2(N1)ξ2(N2)〉 ' 0 , (2.45)
〈ξ2(N1)ξ1(N2)〉 ' 0 . (2.46)

Finally, by using (2.44)-(2.46) in (2.31) we have

∂2φIR
∂N2

+ 3
∂φIR
∂N

=
3H

2π
ξ(N) , (2.47)

where we have approximated, ξ1 ≈
(
H
2π

)
ξ, ξ2 ' 0 so that 〈ξ(N)ξ(N ′)〉 ≈ δ(N −N ′).

We immediately see that (2.47) is linear in φIR. The reason is that all the non-linearities
are hidden in the slow-roll parameters that cannot be evaluated exactly at this level. Nev-
ertheless, precisely as in the SR case, they only provide negligible corrections to the power
spectrum that, by consistency, should match the power spectrum calculated in the quantum
field theory approach to the linear theory. This is what we are going to show next.

3 Stochastic power spectrum in USR

Defining VN = e3N ∂φIR
∂N , we can write (2.47) as a couple of first order stochastic differential

equations:

VN = e3N ∂φIR
∂N

, (3.1)

∂VN
∂N

=
3H

2π
e3Nξ(N) . (3.2)

Integrating (3.2) we get

VN (N)− VN (0) =

∫ N

0

3H

2π
e3N ′ξ(N ′)dN ′ , (3.3)

where VN (0) is the classical value of the velocity of the field at the beginning of the USR
phase, i.e. VN (0) = ∂φIR(0)

∂N = φ̇IR(0)
H(0) =

√
2ε1(0)MP , so that:

VN (N) =

∫ N

0

3H

2π
e3N ′ξ(N ′)dN ′ +

√
2ε1(0)MP . (3.4)

– 10 –



From (3.1) we have ∂φIR
∂N = e−3NVN (N), setting φIR(0) = 0 (the theory is shift invariant) we

obtain

φIR(N) =

∫ N

0
e−3N ′′VN (N ′′)dN ′′ =

∫ N

0
e−3N ′′dN ′′

[∫ N ′′

0

3H

2π
e3N ′ξ(N ′)dN ′ +

√
2ε1(0)MP

]
.

(3.5)

As we are interested in the fluctuations around the homogeneous mean value, i.e. the power
spectrum of the fluctuations, we will consider the following quantity:

φIR(N)− 〈φIR(N)〉 = δφIR(N) =

∫ N

0
e−3N ′′dN ′′

∫ N ′′

0

3H

2π
e3N ′ξ(N ′)dN ′ . (3.6)

The power spectrum of the scalar perturbations is then proportional to the two-point cor-
relation function 〈δφIR(N)δφIR(N̄)〉N→N̄ . Using the statistical properties of the noise ξ we
get

〈δφIR(N)δφIR(N)〉 =
H2

4π2

(
N − 1

2
− e−6N

6
+ 2

e−3N

3

)
. (3.7)

Because we are only considering the stochastic formalism at leading order in slow-roll param-
eters, we need to consistently neglect the decaying modes that are proportional to powers of
ε1
ε∗1
, where ε∗1 is the slow-roll parameter at crossing horizon. Then we finally get

〈δφIR(N)δφIR(N)〉 =
H2

4π2

(
N − 1

2

)
. (3.8)

The linear growth in N can be easily understood. Equations (3.8) gives the two point function
in real space, which grows as N = ln(a) since – as time grows – more and more modes cross
the Hubble radius, thereby explaining the ln(a) growth in real space.

3.1 Comparison with the linear analysis

The power spectrum Pχ of a field χ is defined as

〈χ2〉 =

∫
dk

k
Pχ . (3.9)

In USR, the power spectrum calculated by the use of linear analysis is, in Fourier space, [27]

Pδφ =
H2

4π2

(
1 +O

(
ε
(USR)
1

))
. (3.10)

The two point correlation function (3.8) is given in real space and strictly speaking for in-
finitely long wavelength, therefore an anti-Fourier transformation of (3.8) would not make
sense.

Nevertheless, we can make use the fact that Pδφ is dominated by the constant mode in
USR already after one e-foldings. In that case, P only depends from the value it acquires at
the Hubble crossing. Then, since d ln k = Hdt = dN , we can calculate the power spectrum
from the definition (3.9) by taking its derivative with respect to N [28]. We then immediately
obtain

Pδφ '
d

dN
〈δφIRδφIR〉 '

H2

4π2
. (3.11)

– 11 –



Since the quantum kick is only active after one e-fold [28] and at the same time the constant
mode dominates after roughly one e-fold, the power spectra (3.10) and (3.11) are, within
our approximations, the same. This allows us to conclude that stochastic inflation has no
significant effects during the USR regime of inflation. Note that, even if we had, somehow
inconsistently considered the exponentially decaying terms from (3.7), these would be exactly
matched with the “decaying" modes appearing in the linear solution of the MS equation, as
it should.

Finally then, given that the stochastic power spectrum of δφ matches the one of the
linear analysis, we are now allowed to use the linear gauge relation ζ = aδφ

z that relates the
curvature perturbations ζ to the scalar field perturbation δφ. Then the power spectrum of
the curvature perturbation generated by quantum diffusion effects at linear level reads,

Pζ '
H2

8π2ε1M2
P

. (3.12)

such that – as expected – it reproduces correctly the power spectrum of the canonically
quantised curvature perturbation, but no corrections to it.

In this section we have found that the stochastic evolution at zeroth order in the slow-roll
parameters exactly reproduces what we expect from the quantum field theory result. This is
what one should expects as for a flat potential and at zeroth order in the slow-roll parameters,
there are no self-interactions terms of the scalar field. Of course, the self-interactions are
important beyond the linear lever, but that is beyond the scope of our paper.

4 Conclusions

In this paper we have shown that the separate universe approach, where perturbations are
supposed to follow a local Klein-Gordon equations in a separate FRW universe generically fails
at leading (linear) order in the slow-roll parameters and at any orders whenever ε22 & 6/ε1.
This immediately implies the generic failure of the stochastic approach. The failure of the
standard stochastic ∆N formalism does not imply that it cannot be correctly re-formulated.
In fact, the general idea that spatial gradients can be neglected on long wavelengths it is
clearly correct for any local gravitational theory. Thus, one could use it as a starting point
for a successful construction of a novel stochastic ∆N formalism.

In USR ε22 � 6/ε1 and thus the stochastic approach can be used at zeroth order in
slow-roll parameters. There, because the potential is flat, the scalar field is effectively free
in any local universe immediately implying that the higher order stochastic effects should
be small. Indeed, by directly calculating the two-point correlation function of the inflaton
in the stochastic formalism in USR, we show that this, up to negligible slow-roll corrections,
coincides with the power spectrum calculated by linear perturbation theory. This proves that,
in USR and at the zeroth order in slow-roll parameters, the entire leading order contribution
to the power spectrum of the curvature perturbation is captured by the free quantum diffusion
of the inflation. This result can then be used to obtain a rough estimate for the formation
of PBHs [4]. Because the jump in the spectral index of the mode function at the SR-USR
transition is O(ε1), we do not expect the result to change significantly when the SR-USR
matching is properly included in the analysis6

6Note that the conclusion may be different for a test field in an ultra-slow roll background, see e.g. [9].
The SR-USR mode matching is expected to generate a mixing between the growing and decaying modes that

– 12 –



As we have already commented in the introduction, our result (3.12) differs from the
equivalent one found by [11]. The mistake in [11] is rooted in the use of the approach of
[28] to translate the real space 〈ζ2〉, calculated with stochastic methods, to the Fourier space.
Although this is correct in SR, where the super-horizon ζ is constant, in USR ζ is dominated
by the growing mode and therefore the approach advocated in [28] cannot be used.

A separate question that has been asked in [10] was whether subleading quantum diffu-
sion effects might change the predictions of the PBHs abundances calculated in USR. Given
the fact that at the zeroth order in the slow-roll parameters the predictions from stochastic
inflation precisely match the ones from the quantum field theory of linear perturbations, it
should be obvious that, free quantum diffusion should suffice to get a rough estimate of the
PBH abundance. This point of view is not shared by [10]. There, the authors have promoted
the power spectrum of the curvature perturbation P, which is in the linear theory an ex-
pectation value of the two point function, to a stochastic variable. Thus, in their case, any
derived quantity of it must be re-mediated. We disagree on this precisely because P is already
a mediated quantity depending only on the initial conditions for the stochastic evolution.

To conclude, any corrections to the free quantum diffusion in the calculation of PBHs
abundances reside in the slow-roll corrections to the stochastic inflation, which are bound to
be small as they are slow-roll suppressed. However, nonlinear (loop) quantum gravitational
effects may still be significant [9, 29]. In order to calculate them, one would then have to
estimate their production either by performing a loop QFT calculation or within a suitably
improved stochastic framework that properly takes account of the gravitational constraints.
The principle obstacles on how to construct such a framework are discussed in [30, 31].

A Derivation of the noises at leading order in slow-roll

Since in SR inflation the separate Universe approach is valid at leading order in slow-roll
parameters, we provide here the stochastic forces at this order.

The procedure to find them is exactly the same as done before. We start from (2.32)-
(2.34) but now using the mode function (2.19) up to first order in ε1

ϕ(τ, k) =
1

a

√
−πτ

4
H(1)
ν (−kτ) , with ν =

3

2
+ ε1 . (A.1)

Then, we finally get

〈ξ1(N1)ξ1(N2)〉 '
[
1 + 2

(
ψ(0)

(
3

2

)
− log(σ/2)− 1

2

)
ε1

](
H

2π

)2

δ(N1 −N2) , (A.2)

〈ξ2(N1)ξ2(N2)〉 ' 0 , (A.3)

〈ξ2(N1)ξ1(N2)〉 ' ε1
(
H

2π

)2

δ(N1 −N2) , (A.4)

where ψ(0) is the digamma function.

is suppressed as ε1, and hence can be neglected at the leading (zeroth) other analysis in slow roll. If one is
interested in the effects that are linear in slow roll parameters however, the mode matching should be included.
This cannot unfortunately be done in the current stochastic approach. We intend to address this interesting
question in the context of quantum field theory of inflation elsewhere.
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