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Graphical uncertainty representations
for ensemble predictions
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Abstract
We investigated how different graphical representations convey the underlying uncertainty distribution in
ensemble predictions. In ensemble predictions, a set of forecasts is produced, indicating the range of possible
future states. Adopting a use case from life sciences, we asked non-expert participants to compare ensemble
predictions of the growth distribution of individual children to that of the normal population. For each individual
child, the historical growth data of a set of 20 of its best matching peers was adopted as the ensemble predic-
tion of the child’s growth curve. The ensemble growth predictions were plotted in seven different graphical
formats (an ensemble plot, depicting all 20 forecasts and six summary representations, depicting the peer
group mean and standard deviation). These graphs were plotted on a population chart with a given mean and
variance. For comparison, we included a representation showing only the initial part of the growth curve with-
out any future predictions. For 3 months old children that were measured at four occasions since birth, parti-
cipants predicted their length at the age of 2 years. They compared their prediction to either (1) the population
mean or to (2) a ‘‘normal’’ population range (the mean 6 2(standard deviation)). Our results show that the
interpretation of a given uncertainty visualization depends on its visual characteristics, on the type of estimate
required and on the user’s numeracy. Numeracy correlates negatively with bias (mean response error) magni-
tude (i.e. people with lower numeracy show larger response bias). Compared to the summary plots that yield a
substantial overestimation of probabilities, and the No-prediction representation that results in quite variable
predictions, the Ensemble representation consistently shows a lower probability estimation, resulting in the
smallest overall response bias. The current results suggest that an Ensemble or ‘‘spaghetti plot’’ representa-
tion may be the best choice for communicating the uncertainty in ensemble predictions to non-expert users.
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Introduction

Multivariate time-series forecasting has important

applications in many different domains such as econ-

omy, health care, meteorology, seismology, and astron-

omy. Simulation models are a primary tool in the

generation of predictions. When the parameter space

for a simulation is too large or too complex to be fully

explored, an ensemble of runs can give an impression

of the potential range of model outcomes. A visualiza-

tion of such an ensemble of predictions should prop-

erly convey the variability between its members. It is
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still an open research question how an ensemble pre-

diction should be presented graphically so that users

correctly understand and interpret the underlying

uncertainty distribution.1

In two previous studies on visual uncertainty repre-

sentations, we found that the perceived uncertainty

was affected by its graphical representation,2 particu-

larly for probability estimates that fall outside the

Figure 1. Example of a growth chart depicting length and weight development of boys from birth to 36 months (obtained
from http://www.cdc.gov).
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depicted uncertainty range.3 It appears that people

apply a model of the uncertainty distribution that

closely resembles a Bell-shaped (normal) distribution

when a graphical representation of the uncertainty

range provides no explanation what the depiction

exactly indicates.2,3 Of all graphical uncertainty repre-

sentations investigated, ensemble plots resulted in an

internal model that most closely resembled a normal

distribution.2 The perceived probability of ‘‘extreme

values’’ (i.e. values far outside the uncertainty range)

Figure 2. Growth charts for preterm boys born at 32 weeks of gestation. The data are plotted as the growth curves of
one index child (red) and five matched children (black). Shown are the (a) head circumference (cm), (b) length (cm), and
(c) weight (kg) as a function of age (months).
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Figure 3. Example of the graphical growth prediction types used in this study. The represented uncertainty area
corresponds to the range between 2 and 98 percentile peer curves. (a) No growth predictions. (b) Ensemble of matched
peers plots. (c) Solid and (d) dashed outlines of the uncertainty area. Uncertainty area filled with, respectively, (e)
uniform (Band) intensity, (f) intensity Gradient, (g) quasi parallel lines with an increasing spacing (decreasing density)
from the center outward (Thinning Lines), and (h) Error Bars visualization using ‘‘traditional’’ error bars.
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was affected by the visualization type, with denser fills

leading to higher perceived probability of values within

that area.3 In addition, we found that the assumed

(Bell-shaped) model of the uncertainty distribution

depended on a participant’s numeracy: people with

low numeracy tended to adopt a ‘‘flatter’’ interpreta-

tion (i.e. all values are judged more or less equally

probable) than those with high numeracy.2,3 In prac-

tice, this means that people with a low numeracy over-

estimate the probability of extreme values while people

with a high numeracy have a more realistic interpreta-

tion of uncertainty visualizations when these are pre-

sented without any further explanation. The cause of

this effect (which has also been observed in several

previous studies) is still unknown.4–7 Thus, it remains

a challenge to design uncertainty visualizations that

will be correctly interpreted by all users, independent

of their numeracy.

In this study, we adopted a pediatric growth chart

use case to investigate how different graphical repre-

sentations affect the user’s interpretation of the uncer-

tainty distribution underlying a given ensemble

(growth) prediction. Accurate assessment and moni-

toring of growth in children is of critical importance

for early identification of defects associated with trea-

table conditions versus growth variations associated

with normal conditions. Pediatricians and other

healthcare providers typically use growth charts to

monitor a child’s physical development over time.

Conventional growth diagrams represent the distribu-

tion of continuous measures (e.g. height, weight, and

head circumference) against age for a large population

of children as a series of percentile curves (e.g. Figure

1). By plotting a child’s measures in this population

growth chart, they can be compared to the parameters

of children of the same age and sex. This enables both

health professional and parents to determine whether

the child is growing normally (defined as the popula-

tion mean 6 2(standard deviation (SD))) or not,

which may lead to nutritional or therapeutic interven-

tions. Since children generally maintain a fairly

smooth growth curve, growth charts can also be used

to predict a child’s future growth (through extrapola-

tion of the current curve). However, extrapolation

based on large peer populations typically contains con-

siderable variance. To improve the prediction for an

individual child, it has been proposed to base the

extrapolation on a limited set of well-chosen, matched

peers instead of the whole population.8 This new tech-

nique to generate ensemble growth predictions is

known as curve matching9 or similarity-based forecast-

ing.10 The key idea of curve matching is to find peers

(references) in databases that are similar to the current

child in their initial growth curves (measured at multi-

ple moments in time, for example, at birth and at 1, 2,

and 3 months of age) and in a set of covariates that

are known to influence growth (see van Buuren9 for

details of the actual matching procedure). The histori-

cal data of the real growth of the matched (existing)

children provide an ensemble prediction for the

growth pattern of the current child. By providing more

accurate and realistic growth predictions, curve

matching may enhance the interpretation and predic-

tion of individual growth curves. However, it is cur-

rently unknown how the ensemble result of curve

matching should be presented to users (medical pro-

fessionals) and, in particular, to non-experts (parents).

A correct perception of the prediction and its variance

is of utmost importance to reach an accurate decision

whether or not to intervene in a child’s growth.

In our previous studies on graphical uncertainty

representations,2,3 users had to compare a predicted

range to a single value (e.g. in a weather forecast case:

the probability that the temperature will exceed

20�C). However, in many domains (like engineering,

quality control, social sciences, and life sciences), pre-

dictions (with a given uncertainty) must be compared

to a population (with a given variance) and not to a

fixed value. This complicates the task in the sense that

the user should be able to build an internal model

of—and compare—two distributions (the predicted

ensemble distribution to the given population) instead

of only one. In this study, we therefore ask users to

compare the predicted growth of an individual child

(with a given uncertainty) to that of the population of

children (with a given variance) to answer relevant

Figure 4. The response bias (mean response error in %,
with positive values indicating an overestimation) for each
of the eight different uncertainty visualizations. The violin
plot represents the interquartile range (thick black bar in
the center), the 95% confidence interval (thin black line
extending from the black bar), and the median (white dot)
of the response error, together with the kernel density
plot (shaded area) computed over all responses (i.e. for
judgments relative to both the population mean and the
normal range) and over all 16 children (N = 64). Significant
differences are indicated with *.
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questions like ‘‘What is the probability that this child

will become taller/shorter than the average child?’’ and

‘‘What is the probability that this child will become tal-

ler/shorter than what may be considered a normal

length (mean 6 2SD)?’’ We investigate the extent to

which eight different graphical representations (see

Figure 3) convey the underlying uncertainty in an

ensemble of children’s growth predictions. We are inter-

ested in how people interpret these graphical uncer-

tainty representations, whether their interpretation

depends on their numeracy, whether there are biases

(systematic errors) in their interpretation, and, if so,

whether different types of visualization induce different

biases. The key findings of this study are as follows.

Numeracy correlates negatively with bias magnitude

(i.e. people with lower numeracy show larger response

bias). Compared to the summary plots that yield a sub-

stantial overestimation of probabilities, and the No-

prediction representation that results in quite variable

predictions, the Ensemble representation consistently

shows a lower probability estimation, resulting in the

smallest overall response bias. These results are relevant

for other application domains that require a comparison

between two distributions.

Related work

It is still an open research question how ensemble pre-

dictions and their inherent uncertainty should be pre-

sented so that users correctly understand and interpret

the results.1,11–13 Several graphical formats have been

proposed to plot a summary representation of an

ensemble of predictions, such as line graphs with error

bars, glyphs, contour box plots, bar charts, ribbon

plots or fan charts (line graphs with an uncertainty

‘‘band’’), threshold maps (using colorscale or grays-

cale), and summary tables.14–19 Summary representa-

tions provide users an explicit representation of the

spread of the ensemble predictions. However, previous

research has shown that such summary representa-

tions can lead to misinterpretations of the underlying

data distribution.11,12 It appears that the visual charac-

teristics of these representations differentially affect

the user’s interpretation of the underlying uncertainty

distribution.2,3,12,20 A more straightforward approach

than using summary representations is to visualize the

ensemble prediction by plotting a small but representa-

tive subset (e.g. Figure 2) of its members (a ‘‘spaghetti

plot’’ or ‘‘ensemble plot’’). Such a representation pro-

vides users an implicit representation of the spread of

the ensemble members. It appears that users prefer

representations showing individual data sources to

aggregated data representations,21 and they seem to

create an internal (mental) model based on weighted

averaging of the individual data sources,22 leading to

improved inferences.21 In the context of hurricane tra-

jectory prediction visualizations, it has, for instance,

been observed that ensemble plots lead to a more accu-

rate interpretation of the underlying distribution.12,13

However, users may also misinterpret the variability in

this representation as a sign that the data are not very

trustworthy (‘‘anything goes’’23). In this study, we com-

pare the capability of six different graphical summary

representations and ensemble plots to convey the

underlying uncertainty distribution in ensemble predic-

tions. The six selected summary representations are all

commonly used in uncertainty visualizations, and our

previous studies showed that no single one of them sys-

tematically outperforms all the others.2,3

Materials and methods

Participants

In total, 64 people, naı̈ve about the goal of the experi-

ment, participated voluntarily (32 male, 32 female,

aged 19–62 years with a mean age of 36 years). The

participants were recruited randomly from the TNO

database of volunteers and received e10 for their par-

ticipation. There were no inclusion or exclusion cri-

teria. The experimental protocol was reviewed and

Figure 5. As Figure 4, for judgments relative to the
population mean.

Figure 6. As Figure 4, for judgments relative to the
normal range.
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approved by the TNO Internal Review Board on

experiments with human participants (Ethical

Application Ref: TNO-IRB-2015-10-3) and was in

accordance with the Helsinki Declaration of 1975, as

revised in 201324 and the ethical guidelines of the

American Psychological Association. All participants

gave their written consent prior to the experiment.

Participants were asked to report their age, gender,

and their highest level of education completed (seven

categories: 1 = ‘‘primary education/no education,’’

2 = ‘‘lower vocational education,’’ 3 = ‘‘lower second-

ary education,’’ 4 = ‘‘higher secondary education,’’

5 = ‘‘BSc,’’ 6 = ‘‘MSc,’’ and 7 = ‘‘PhD’’).

Data

The Social Medical Survey of Children Attending Child

Health Clinics (SMOCC) cohort is a nationally represen-

tative cohort of 2151 children born in the Netherlands in

1988–1989.25,26 Data were obtained at nine occasions

between birth and 30 months of age. Each record in the

data corresponds to a visit. Records without valid ages or

with missing scores on all developmental indicators were

eliminated. The total number of available records was

16,538, pertaining to 2038 infants.

We selected 16 different children for this experi-

ment (their identifiers in the SMOCC database were

10032, 10089, 13010, 14066, 15069, 15094, 31027,

31029, 34021, 34024, 35033, 52021, 52073, 52091,

70031, and 72010). The selection resulted in an equal

number of children with a high or low probability of

growing taller or smaller than the population mean

(62SD). For each child, we computed a set of 20 best

matching peers based on their sex and initial growth

curve. The data of the 20 matched peers were used to

calculate the predicted mean 6 2SD at several ages.

Measures

Probability estimates. Participants were asked to esti-

mate the probability that the length of a small child

(about 3 months old, that had only been measured at

four previous occasions) would either reach a length

above or below the population mean (questions Q1

and Q2: see Supplementary Material) or the ‘‘normal’’

range (the mean 6 2SD; questions Q3 and Q4) at the

age of 2 years. On each stimulus presentation, partici-

pants reported their probability estimate by placing a

slider along a horizontal bar with endpoints labeled,

respectively, ‘‘Very unlikely’’ and ‘‘Very likely.’’ The sli-

der position was mapped to values between 0 and 100.

Numeracy. Previous research has shown that people’s

understanding of visual uncertainty representations

depends on their level of numeracy.2,3,7 We, therefore,

assessed the participants’ numeracy using seven items

from the Rasch-based numeracy scale listed in Weller

et al.27 This scale measures the ability to understand,

manipulate, and use numerical information, including

probabilities. It correlates with previous (more exten-

sive) objective and subjective numeracy scales, but is a

better linear predictor of risk judgments than prior

measures.27 In this study, item 5 from the original scale

was omitted because it is equivalent to item 4. Each

correct answer was rewarded one point so that the total

score on this test ranges between 0 and 7.

Stimuli

In this section, we describe the eight different uncertainty

visualizations that were investigated in this study: a plot

without any predictions, an ensemble plot showing a

small representative set of predictions, and six summary

plots (for an overview see Figure 3). These visualizations

were all produced by plotting the (predicted) data of an

individual child in the population growth chart based on

the population mean 6 2SD (mimicking the growth

charts that are commonly used). In this type of chart,

lengths within a range of 2SD from the mean are consid-

ered as normal, while lengths that are more than 2SD

above or below the mean are considered as long and

short, respectively, compared to their peers.

A ‘‘No-prediction’’ representation (Figure 3(a)),

showing only the first four length measurements of a

given child, served as a baseline. This representation

only shows the currently available information without

any growth prediction.

The Ensemble representation (Figure 3(b)) shows the

actual growth curves of the 10 best matching peers

resulting from the curve matching procedure, includ-

ing the marks representing the actual measurements.

The six remaining uncertainty visualizations are

summary plots (uncertainty area outlined by solid or

dashed borders or filled with uniform or gradient inten-

sity or with quasi parallel lines or a standard error bars:

see Figure 3(c)–(h)), similar to the ones we previously

investigated in our previous studies on the perceived

uncertainty in, respectively, the spatial position of earth

layers2 and in temperature forecasts.3 The mean and

SD of the set of 20 best matching peers served to con-

struct the predicted uncertainty region for these sum-

mary plots, such that this region had a width of 4SD

around its mean (similar to the population graph). We

included these summary representations since they are

all commonly used in uncertainty visualizations and

our previous studies showed that no single one of them

systematically outperformed all the others. In the rest

of this section, we will discuss the construction of the

six summary representations in more detail.

The Solid Border (Figure 3(c)) and Dashed Border

(Figure 3(d)) visualizations outline an uncertainty
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range with a width of 4SD (i.e. the area between 2 and

98 percentiles) by, respectively, solid or dashed lines.

The Band (Figure 3(e)) and Gradient (Figure 3(f))

visualizations fill this uncertainty range with, respec-

tively, a uniform or a gradient grayscale distribution.

The Thinning Lines (Figure 3(g)) visualization fills

the uncertainty area with lines that are quasi parallel

and with a decreasing density (increasing spacing) from

the center outward. To construct the Thinning Lines

representation, we first determined 11 different points

(lengths) within the 2SD interval at each age at which

the child had been measured, such that (1) these points

were normally distributed over the 2SD interval, (2)

the distance between these points monotonously

increased from the center of the 2SD interval out-

wards, and (3) their midpoint coincided with the med-

ian of the length values thus generated. The Thinning

Lines representation was then obtained by connecting

the midpoints and by connecting points that were an

equal number of steps above or below the midpoints.

The Gradient representation was constructed from

the Thinning Lines representation. Starting at the bor-

ders of the 2SD interval and going toward the center,

the area between each pair of lines was filled with a

transparent fill so that the gradient started light at the

edges and became darker toward the center. Finally,

the Error Bars (Figure 3(h)) visualization uses conven-

tional error bars to delineate the interval between the

between the 2 and 98 percentiles.

The four questions pertaining to the probability

judgments (Q1–Q4: see Supplementary Material)

were distributed over the stimuli such that each ques-

tion was asked for four children (Q1 for 10032, 10089,

13010, and 14066; Q2 for 15069, 15094, 31027, and

31029; Q3 for 34021, 34024, 35033, and 52021; and

Q4 for 52073, 52091, 70031, and 72010). In addition,

the selection was such that each question was asked for

two children with a high probability of growing taller

than the population mean (10032 and 10089 for Q1;

15069 and 31029 for Q2; 34021 and 35033 for Q3;

70031 and 72010 for Q4) and for two children with a

high probability of becoming smaller than the popula-

tion mean (13010 and 14066 for Q1; 15094, 31027

for Q2; 34024 and 52021 for Q3; and 52073 and

52091 for Q4). The predictions for each child were

shown in all eight graphical formats, resulting in a total

of 128 (=16 children 3 8 representations) stimuli. The

stimuli were presented in random order to each parti-

cipant. The images had a size of 800 3 600 pixels.

Procedure

The experiment was performed self-paced and online.

The participants were presented with 128 different

growth diagrams of small children (about 3 months

old) that had only been measured at four points in

time, both with and without predictions of their future

growth. Their task was to interpret these diagrams

and judge the probability that a given child will reach

a certain length at the age of 2 years. The type of

uncertainty estimate (i.e. the probability that the

child’s length at the age of 2 years will either be below

or above the population mean or normal range), the

identity of the child, and the type of uncertainty repre-

sentation varied randomly between stimulus presenta-

tions. On each presentation participants gave their

probability estimates by placing a slider along horizon-

tal bar with endpoints labeled, respectively, ‘‘Very

unlikely’’ and ‘‘Very likely.’’ After, respectively, 48 and

96 stimuli had been presented (i.e. at 1/3 and at 2/3 of

the stimulus presentations), a growth chart was shown

in combination with a control question to test whether

participants were actually paying attention or whether

they were merely responding randomly. These control

questions had the same layout as the four regular

questions, but asked the participants to place the

response slider at one of its endpoints. After judging

all 128 growth curves, the seven-item Rasch-based

numerical test was presented, and the participants

were asked for their demographical data.

Data analysis

The statistical data analysis was done with IBM SPSS

22.0 for Windows (www.ibm.com). For all analyses, a

probability level of p \ 0.05 was considered to be

statistically significant. Using SPSS 22.0, we com-

puted the correct answer (i.e. the actual probability

that a child would be above/below the normal mean/

region at an age of 2 years) for each child from the dis-

tributions of both the normal and the peer popula-

tions. The difference between the participant’s

response and the correct answer (i.e. the response

error) was used for further analysis. The data with this

article is publicly available at figshare (growth esti-

mates data) with doi: 10.6084/m9.figshare.4052373.

Results

A Shapiro–Wilk test of normality showed that the data

were not normally distributed. Therefore, we used

non-parametric tests to further analyze the data.

Overall performance

Figure 4 shows the response bias (mean response

error) for each of the eight different uncertainty visua-

lizations, combined over all estimates (i.e. both relative

to the mean and normal range of the population),

over all 16 stimuli, and over all 64 observers. A
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Friedman test showed that there was a significant

difference between the eight different visualizations:

x2(7) = 51.828; p \ 0.001. A post hoc analysis

showed that the Ensemble visualization differed sig-

nificantly from all other visualizations: it had the

lowest median overall bias (an overestimation of

probabilities by 2.5%; p \ 0.001, with a medium

effect size: Cohen’s d = 0.52). There were no signifi-

cant differences between the remaining seven visuali-

zations. Hence, overall the bias resulting from all

summary representations was similar to the bias in

the absence of an uncertainty representation.

Effect of comparison to the mean or to the
range

Next, we investigated whether the response bias dif-

fered for the different types of comparisons the respon-

dents were asked to make (i.e. a judgment relative to

the normal mean or relative to the normal range of the

population).

Figure 5 shows the response bias when respondents

were asked to compare the prediction to the popula-

tion mean (Q1 and Q2). Performance is generally

acceptable with a median value close to 0. A Friedman

test showed that the Ensemble representation yielded

significantly more negative bias (an underestimation of

probabilities by 3.7%; p \ 0.001) for judgments

relative to the mean than the other methods:

x2(7) = 56.424; p \ 0.001, with a medium effect

size: Cohen’s d = 0.56. This means that users under-

estimated the probability that a child will either

become taller or shorter than the population mean

when basing their judgments on the Ensemble repre-

sentation. All other methods yielded biases closer

to zero (ranging between 21.40% and 1.75%;

p \ 0.001), meaning these representations induce

only small systematic biases for this type of judgment.

Figure 6 shows the response bias when respondents

were asked to compare the prediction to the popula-

tion range (Q3 and Q4). Generally, all visualizations

show a large overestimation with (except for the

ensemble plot) a median bias larger than 10%, while

this estimation is critical for this specific use case since

it directly relates to the question whether or not to

intervene in a child’s growth. A Friedman test showed

that the Ensemble visualization yielded a significantly

smaller bias for judgments relative to the population

range (an overestimation of probabilities by 8.6%;

p \ 0.001) than the other methods (overestimation

ranging between 13.1% and 16.7%); p \ 0.001:

x2(7) = 57.074; p \ 0.001, with a small effect size:

Cohen’s d = 0.32. This means that users could better

estimate the probability what a child’s length will be

relative to the population range when basing their

judgments on the Ensemble representation.

The general picture that arises from these results is

that there is a general overestimation of probabilities

and that the ensemble plot generally results in lower

estimates than the seven other plots, leading to an

underestimation for comparisons to the population

mean and a reduced overestimation for comparisons

to the population range. An important question is why

the ensemble plot leads to lower estimations.

Effect of numeracy and education

Numeracy showed a negative correlation with bias

magnitude: the Spearman correlation was r = 0.406

6 0.001. Numeracy correlated only weakly with edu-

cation level (r = 0.24) and education level only weekly

with bias (r = 0.18). This confirms earlier observa-

tions2,3 that numeracy is strongly related to biases in

graphical uncertainty interpretations than education.

Discussion and limitations

In this section, we discuss the results and limitations

of this study, present the conclusions of this study, and

make some recommendations for future work.

Discussion

In this study we investigated how eight different gra-

phical representations of the uncertainty in an ensem-

ble of children’s growth predictions affect the user’s

interpretation and whether they induce any systematic

interpretation biases.

Generally, we find a substantial overestimation of

probabilities (similar to previous studies2,3), which

probably results because people apply a broader inter-

nal probability model. However, it appears that

non-expert users vary widely in their interpretation of

graphical representations of predicted probability dis-

tributions. As a result, there is a large variation in the

estimated probabilities between different visualizations

and types of judgments.

Compared to the seven other visualizations investi-

gated in this study (six summary uncertainty rep-

resentations and the absence of an uncertainty

representation), the Ensemble representation shows a

lower probability estimation, resulting in the smallest

overall (i.e. over all judgment tasks and cases tested)

response bias (a small overestimation of probabilities

in all judgment tasks). More specifically, the ensemble

plot shows a substantial reduction in the overestima-

tion for comparisons relative to the population range

(the most relevant questions in this use case since esti-

mates outside the population range considered normal
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may lead to interventions) and only a small underesti-

mation for comparisons relative to the mean of the

population. Although the ensemble plot yields the

(overall) best performance, the importance of different

underestimations and overestimations may be use-

case dependent. For none of the specific children and

questions investigated, we found a significant differ-

ence among the six summary plots. In other words,

although they may offer benefits compared to No-pre-

diction, they all score similarly and equal or lower than

the ensemble plot. The results of the No-prediction

visualizations differed significantly from the results

obtained with the other prediction visualizations in

several conditions. However, there appears to be no

systematic pattern in the response bias for the No-

prediction plot: the estimation seems to a large degree

determined by the pattern seen in the initial data

points, which make the predictions variable, resulting

in the occurrence of both significant underestimations

as well as overestimations.

The results of this study confirm earlier reports that

the interpretation of a visualization of an uncertainty

distribution depends on its visual characteristics2,3,12

and that visualization providing access to individual

predictions lead to less-biased estimates.11,22 In addi-

tion, it appears that the type of estimate required (e.g.

relative to the mean or normal range of a population)

also differentially affects the relative observer perfor-

mance with different visualizations. It has been sug-

gested that this may be a result of the variations in

feature saliency between the different representations.11

Further research is needed to clarify the nature of this

relation. It is also not clear why exactly the ensemble

plot leads to lower estimates than the summary visuali-

zations. Additional research may show whether this

finding reflects the shape of the internal model of the

uncertainty distribution that users construct.2,3

We found that numeracy correlated negatively with

bias magnitude. This means that probability estimates

produced by people with lower numeracy differ more

from the predicted probability than estimates given by

people with higher numeracy. This result agrees with

the earlier finding that people with relatively low

numeracy have a ‘‘flatter’’ (or more dispersed) inter-

pretation of the underlying uncertainty distribution

than those with higher numeracy.3 Our result that

numeracy correlated only weakly with education level

agrees with previous findings28 and with the observa-

tion that—even among highly educated samples—the

ability to solve basic numeracy problems is (on aver-

age) relatively poor.29

Given the present finding that the Ensemble repre-

sentation induced the smallest overall response bias, it

appears that this representation may be the best choice

for communicating the uncertainty in ensemble

predictions to non-expert users. It seems that this rep-

resentation effectively communicates essential unpre-

dictability through the metaphor of ‘‘multiple possible

outcomes.’’

Limitations and future work

We limited our study to eight different uncertainty

visualizations which were tested for 16 different cases

(children). This resulted in 128 decisions per partici-

pant. For an online experiment, this is already quite a

large number of trials. The inclusion of more visualiza-

tions or a larger number of cases would have resulted

in an excessively large number of trials which might

have discouraged participants from finishing the

online experiment. Note that we only included chil-

dren that were outliers in the sense that they all had an

increased probability of becoming shorter or taller than

the average or normal length. Assuming a Gaussian dis-

tribution, the number of children who are outliers in

length are actually quite small (4%, by construction).

Hence, the base probability of abnormality is also quite

low. The class bias in our set of stimuli (100% outliers)

could induce the adoption of an observer response bias

toward outliers, a regression toward the mean, or simply

in no response adjustment at all. These responses are

mutually exclusive and predict different effects: a regres-

sion to the mean will result in an underestimation of

being an outlier, while a response bias toward outliers

will result in an overestimation of outlier probability. A

future study including a (much larger) well-balanced sti-

mulus set may provide more insight into these effects.

We hypothesized that, in the absence of additional

information, the shape of the initial curve may deter-

mine the estimated outcome. However, it is not possible

to establish a relation based on the limited number of

cases investigated here. A future study can investigate

this hypothesis by systematically varying the position

(relative to the normal range), length, and direction (ten-

dency to go upward or downward) of the initial curve.

Similarly, ensemble representations may establish

more trust in a forecast if several members indicate the

same magnitude and direction. A future study may

investigate this effect by systematically varying the frac-

tion of curves with a similar tendency.
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