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ABSTRACT

Automatic milking systems (AMS) are installed on 
a growing number of dairy farms worldwide. Manage-
ment to support good udder health might be different 
on farms with an AMS compared with farms milking 
with a conventional milking system, as risk factors for 
mastitis on farms using an AMS may differ. The aim 
of this study was to identify farm level factors asso-
ciated with mastitis on Dutch dairy farms using an 
AMS. In 2008, risk factor data were collected using 
a questionnaire combined with on-farm recordings of 
cow, stall, and AMS hygiene on 135 farms. These risk 
factor data were linked to 4 udder-health-associated 
dependent variables: average herd somatic cell count 
(HeSCCav), variance of the average herd somatic cell 
count (SCC) on test days (HeSCCvar), the average 
proportion of new high SCC cases (NHiSCC), and the 
farmer-reported annual incidence rate of clinical mas-
titis (IRCM). We employed regression models using 
multiple imputation to deal with missing values. Due 
to the high dimensionality of the risk factor data, we 
also performed nonlinear principal component analy-
sis (NLPCA) and regressed the dependent variables 
on the principal components (PC). Good hygiene of 
cows and of AMS were found to be related to a lower 
HeSCCav and less NHiSCC. Effective postmilking teat 
disinfection was associated with a lower NHiSCC. A 
higher bulk tank milk SCC threshold for farmers’ ac-
tion was related to more NHiSCC. Larger farm size 
was related to lower HeSCCvar but higher NHiSCC. 
Negative attitude of farmers to animal health, higher 
frequency of checking AMS, and more time spent on 
viewing computer data were all positively related to 
higher IRCM. An NLPCA with 3 PC explained 16.3% 
of the variance in the risk factor variables. Only the 
first 2 PC were associated with mastitis. The first PC 

reflected older and larger farms with poor cow hygiene 
and AMS hygiene, and was related to higher HeSCCav 
and NHiSCC, whereas the second PC reflected newly 
built smaller farms with poor cow hygiene and low milk 
production, and was associated with higher HeSCCvar 
and NHiSCC, but lower IRCM. Our study suggests 
that many of the risk factors on conventional milking 
system farms are applicable to AMS farms, specifically 
concerning hygiene of the cows and the milking ma-
chine, but on large AMS farms, udder health may need 
more attention than on smaller AMS farms. Multiple 
imputation is instrumental to deal with missing values 
and NLPCA is a useful technique to process high di-
mensional data in our study.
Key words: mastitis, risk factor, automatic milking 
system, nonlinear principal component analysis, 
principal component regression

INTRODUCTION

Bovine mastitis is a multifactorial disease, and nu-
merous papers have been published on management 
factors related to the disease (e.g., Dufour et al., 2012; 
Santman-Berends et al., 2016; Taponen et al., 2017). 
Risk factors for mastitis, according to Barkema et al. 
(1999), can be grouped into 3 categories: factors related 
to (1) exposure to causal pathogens, (2) host resistance 
to infection, and (3) cure of infection. On farms with 
conventional milking systems (CMS), frequently re-
ported risk factors within the first category are, for 
instance, associated with hygiene of cow, milking ma-
chine, and housing (Schukken et al., 1990; Schreiner and 
Ruegg, 2003; Breen et al., 2009), milking procedures 
(Barkema et al., 1999), postmilking teat disinfection 
(Lam et al., 1997; Santman-Berends et al., 2016), and 
milk leakage (Klaas et al., 2005). Risk factors related 
to host resistance to infection are, for example, breed 
(Heringstad et al., 2000), milk production level (Schuk-
ken et al., 1990), and nutrition (Hogan et al., 1993). 
Factors associated with cure of infection include cow, 
pathogen, and treatment-associated factors (Barkema 
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et al., 2006). For instance, parity, strain type (van den 
Borne et al., 2010a), and the time of applying treat-
ment (van den Borne et al., 2010b) are related to the 
cure rate of Staphylococcus aureus infection.

Since the first introduction of automatic milking 
systems (AMS) on commercial dairy farms in 1992, 
the use of AMS has rapidly increased in the Nether-
lands and many other countries (Barkema et al., 2015). 
Many risk factors for mastitis on CMS farms are also 
probably applicable on AMS farms. However, because 
of differences in management between AMS and CMS 
farms, some of the determinants of mastitis may differ 
on AMS farms. For example, on AMS farms, detection 
of clinical mastitis is based on a screening with sensors, 
whereas on CMS farms detection of clinical mastitis is 
done cow side by the farmer during milking. Moreover, 
udder preparation is done automatically on farms with 
an AMS. That means that the process is always carried 
out with the same intensity, whereas at a CMS farm, 
the milker can adjust the process to the circumstances 
(e.g., dirtiness of the udder). Additionally, risk factors 
that are present in both AMS and CMS farms may not 
have the same importance in both systems. Compared 
with the large number of studies on CMS farms, only a 
limited number of studies have been published on risk 
factors for mastitis on AMS farms. Persson Waller et 
al. (2003) reported that the incidence of milk leakage 
is higher on AMS farms than on CMS farms, which 
increases the risk of mastitis. Dohmen et al. (2010) 
indicated that on AMS farms, the hygiene of the cow 
and the milking system were related to udder health. 
Mollenhorst et al. (2011), in a cow-level study, reported 
that the milking interval was related to mastitis occur-
rence in cows milked by an AMS.

Because of differences in management between CMS 
and AMS farms, and because of the important role 
mastitis plays on AMS farms (Hovinen and Pyörälä, 
2011), it is useful to specifically identify factors associ-
ated with udder health on AMS farms. This is gener-
ally done using questionnaires and multiple regression 
analysis. This approach may result in inflated family-
wise type I errors because of the high number of fac-
tors studied. Therefore, principal component analysis 
(PCA) is an appropriate method that can be used to 
replace the large number of factors by a much smaller 
number of components. In questionnaire data, the pres-
ence of categorical variables and nonlinear relationships 
among factors is not rare. Therefore, nonlinear PCA 
(NLPCA), which is a nonlinear equivalent to PCA, 
was developed to deal with categorical variables and 
nonlinear relationships between variables (Linting et 
al., 2007a).

In this paper, we performed a comprehensive explor-
atory study of risk factors for mastitis on AMS farms. 

Due to the high dimensionality of the data resulting 
from the study design, we used NLPCA in addition 
to regression analysis. The aim of this study was to 
identify farm level risk factors for mastitis on Dutch 
dairy farms using AMS.

MATERIALS AND METHODS

Farm Selection and Data Collection

For this study, we used data from an extensive ques-
tionnaire about potential farm-level risk factors for 
mastitis on AMS farms and on farm measurements on 
hygiene of cows, milking machine, and barns, part of 
which was used by Dohmen et al. (2010) in a previous 
study.

About 2,400 (Reinemann, 2008) of the total 21,300 
dairy farms (http: / / www .dutchfarmexperience .com/ 
history -nl -dairy -farming/ ) were using AMS in the 
Netherlands in 2007. Based on other published risk 
factor studies on mastitis [e.g., Schukken et al. (1990) 
with 125 farms, Elbers et al. (1998) with 171 farms, and 
Santman-Berends et al. (2012) with 189 farms], a con-
venience sample of approximately 150 farms was aimed 
for. To reach that number and assuming a response 
rate of 25 to 35%, FrieslandCampina (Amersfoort, the 
Netherlands) approached 400 randomly selected farms 
with an AMS with the request to collaborate in this 
research in 2008. A total of 161 farms (40.3%) were 
willing to participate, and of these 161 farms, 10 farms 
failed to meet the inclusion criteria below, so 151 farms 
were visited. The following selection criteria were used: 
(1) the farm has had an AMS for more than 1 yr and 
performed no conventional milking anymore, and (2) 
the farm was participating in the Dutch milk produc-
tion recording (MPR) system. Data were collected by 
trained veterinary master’s students. In total, 5 students 
were involved in the data collection. All farms were 
visited by a team of 2 of these 5 students, in different 
combinations. The students collecting the data received 
a training session of 1 d. During that day, the question-
naire was explained to the students by the developers of 
the data collection protocol, including the background 
of the questions, the way the data should be retrieved 
from the various software systems, and on the data 
collection in the barns (e.g., hygiene parameters). Dur-
ing the farm visit, questionnaires were completed by 
farmers with the assistance of the students to clarify 
questions if needed. Additionally, hygiene scoring of 
the AMS and of the cows as well as an assessment of 
the functioning of the AMS were performed by pairs of 
students using standardized protocols. For data collec-
tion and hygiene scoring as well as for the evaluation of 
AMS units, protocols were developed in the following 

http://www.dutchfarmexperience.com/history-nl-dairy-farming/
http://www.dutchfarmexperience.com/history-nl-dairy-farming/
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steps: as a first step, 10 Dutch mastitis experts created 
a list of potential risk factors. The list of risk factors 
was summarized in a number of questions and in data 
collection protocols, where existing scoring schemes 
[e.g., described by Schreiner and Ruegg (2003)] were 
used as much as possible. Protocols described how to 
retrieve data from the software systems of the vari-
ous AMS manufacturers. Since the students followed 
the training together and visited the farms in pairs, we 
assumed that this would guarantee a data collection 
procedure that was as consistent as possible. Clinical 
mastitis data were collected based on farmers’ reports, 
and cow SCC data were based on MPR records. Milk 
production information, including cow identification, 
MPR test dates, and milk yield and SCC on test dates, 
were extracted from the Dutch national MPR system 
(CRV, Arnhem, the Netherlands). Milk production 
data in 2008, from 106 to 296 d prior to the farm visit 
(with an average number of MPR test dates per farm 
of 8.5, ranging from 3 to 14) were used in the analysis. 
Data collection protocols, questionnaires, and forms (in 
Dutch) are available from the last author.

Data Cleaning

Of the 151 farms that were visited, 135 farms were 
included in the final analysis. Of the 16 farms that were 
excluded from the analysis, 10 farms had no match of 
the farm identification with the questionnaire, MPR 
information, hygiene scores, or the data on AMS func-
tioning, 4 farms turned out to have been using an AMS 
for less than 1 yr and 1 farm was also using CMS, and 
1 farm had invalid records (no clinical mastitis cases 
during the study period) with regard to the number of 
clinical mastitis cases.

Before analysis, records with test-day milk yield 
or SCC equal to zero (201,557 records), records from 
cows with an impossible parity (parity as 56 or 57; 27 
records), and records from MPR test days with ≤10 
records (93 records) were excluded. Variables with 
more than 5% of missing values (29 variables; Schafer, 
1999) and binary variables with a category having less 
than 8 observations were discarded (24 variables; Lint-
ing et al., 2007b), resulting in a total of 113 risk factor 
variables.

Explanatory Factors

The 113 risk factor variables that were captured us-
ing the questionnaire, hygiene scoring of the AMS and 
of the individual cows and of the barns, as well as from 
the assessment of the functioning of AMS, were evalu-
ated, of which 97 risk factors were derived from the 
questionnaire, 8 risk factors were about AMS hygiene, 

3 about cow hygiene, and 5 about AMS functioning. 
Hygiene scoring was performed on 8 AMS parts for 
each robot, scores ranging from 1 to 4 (1 = clean, 2 = 
slightly dirty, 3 = dirty, 4 = very dirty). The hygiene 
of udder, of thighs and of legs for at least 10 randomly 
selected milking cows was scored (from the cows milked 
by the AMS, 25% were randomly selected before enter-
ing the barn, based on the barn list, to be scored for 
hygiene, with a minimum of 10 cows per farm). The 
hygiene of teats before and after cleaning was scored 
during milking (1 = completely free of dirt or has very 
little dirt, 2 = slightly dirty, 3 = mostly covered in dirt, 
and 4 = completely covered, caked-on dirt) as described 
by Schreiner and Ruegg (2003). The functioning of the 
AMS was evaluated during 10 milkings on each farm 
during the farm visit by scoring 6 different procedures 
of the AMS, all with different scoring protocols. The 
scores for procedure and each farm were averaged for 
the 10 milkings (Dohmen et al., 2010).

Recoding of the hygiene-related variables was per-
formed as follows:

 (1) For hygiene scores of the AMS units, the hygiene 
scores were transformed as dirty (average hy-
giene score of the units greater than 1) or clean 
(average score of 1).

 (2) The hygiene scores of individual cows were ag-
gregated into 3 farm level variables denoting the 
proportion of dirty thighs, udders, or legs per 
farm, with dirty defined as hygiene score >2. 
The threshold for dirty was set as hygiene score 
>2 because only less than 6% of the hygiene 
scores were equal to 1 in each of the variables.

Dependent Variables

The following dependent variables associated with 
udder health were defined: the average herd SCC (HeS-
CCav), the variance of the average herd SCC on each 
MPR test date (HeSCCvar), the average proportion 
of new high SCC cases (NHiSCC), and the farmer-
reported incidence rate of clinical mastitis (IRCM). 
To determine HeSCCav, first, for each farm and each 
test-day the arithmetic mean of SCC was calculated and 
then HeSCCav was calculated by taking the arithmetic 
mean of these test-day arithmetic means. Finally, it 
was log10 transformed. In the Netherlands, farms with a 
geometric mean BMSCC above 400,000 cells/mL in the 
last 3 mo receive a penalty. The HeSCCvar was calcu-
lated for each farm by first calculating the farm average 
of SCC for each test day, then the variation of these 
test day farm-average SCC was calculated for each farm 
and then log10 transformed. New high SCC cows were 
defined as cows with a normal SCC on the previous 
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test day and a high SCC (>150,000 cells/mL for heifers 
and >250,000 cells/mL for multiparous cows) on the 
current test day. The proportion of NHiSCC cows on 
each test day was calculated by dividing the number 
of NHiSCC cows by the number of cows with a SCC 
≤150,000 cells/mL for heifers and ≤250,000 cells/mL 
for multiparous cows on the previous test day. Cows 
newly entered the farm or cows dried off during the 
study period were not considered in the calculation. The 
NHiSCC for each farm was calculated as the arithmetic 
mean of the proportion of NHiSCC cows of each of the 
test days. The annual average IRCM was calculated as 
the farmers’ reported total number of cases of clinical 
mastitis in the past year, divided by the number of 
lactating cows in that year reported by the farmers. We 
calculated the Pearson correlation coefficient between 
each of the 4 dependent variables to check for collinear-
ity between these dependent variables and also knowing 
the correlations among the dependent variables may 
facilitate the interpretation of the β-estimates of the 
same independent variable for different dependent vari-
ables (i.e., the β-estimates to be similar or not).

Statistical Analysis

Risk factors were identified using 2 approaches: (1) 
linear and negative binomial regression models (after 
pre-screening for variable selection in univariable re-
gression analysis) and (2) principal component regres-
sion analysis (PCRA; Massy, 1965). The PCRA was 
performed by regressing the 4 udder-health-associated 
dependent variables to the principal components (PC) 
constructed by NLPCA on the evaluated risk factors.

Regression Analysis with Risk Factor Vari-
ables. In the regression analysis, the 4 udder-health-
associated dependent variables were used as dependent 
variables in 4 different models, and the 113 risk factor 
variables were used as independent variables. Statisti-
cal significance was considered as P < 0.1 in univari-
able regression analysis, using one of the udder health 
variables as the dependent variable and one of the risk 
factor variables as the independent variable, and as P < 
0.05 in multiple regression analysis. Because of missing 
values, and therefore differences in the number of obser-
vations between nested models, leading to incompara-
bility of the model fit, we applied multiple imputation. 
Before imputing the missing values in the data set, we 
used the aggr function from the VIM package version 
4.7.0 (Kowarik and Templ, 2016) in R to check if the 
missing-values pattern fits the assumptions of multiple 
imputation. Multiple imputation with 10 imputations 
for 10 iterations, with other parameters set to default, 
was performed on all variables that were associated 

with one or more of the 4 udder-health-associated de-
pendent variables in the univariable analysis together 
with the 4 udder-health-associated dependent variables 
by using the mice function from the MICE package 
version 2.46.0 (van Buuren and Groothuis-Oudshoorn, 
2011) in R. The default methods for imputation for dif-
ferent types of variables were predictive mean matching 
for numeric data, logistic regression imputation for bi-
nary data or factor with 2 levels, polytomous regression 
imputation for unordered categorical data (factor ≥2 
levels), and proportional odds model for ordered factors 
with ≥2 levels. The imputed values for each variable 
with missing values were inspected by plotting the im-
puted and nonimputed values against iteration number. 
Convergence was evaluated by plotting the mean of the 
imputed values for each variable against the iteration 
number.

Collinearity was evaluated for continuous indepen-
dent variables after the univariable analyses. If 2 con-
tinuous variables had a Pearson correlation coefficient 
>0.7, one of the variables was selected to be included 
in multivariable regression analysis based on the bio-
logical interpretability of the variables. A stepwise 
forward method based on P-value was used for model 
selection for each dependent variable in the multivari-
able regression analysis. Confounding was examined by 
evaluating the change in the β-estimates of variables 
in the model when adding a new variable. A change 
in the β-estimate of more than 20% was deemed in-
dicative of confounding. Confounders were retained in 
the final model. To check robustness, the final models 
that were constructed using multiple imputation were 
rerun using the original data set with missing values 
and the corresponding estimates were compared with 
the models constructed from the imputed data set. We 
used linear regression models for HeSCCav, HeSCCvar, 
and NHiSCC, and a negative binomial regression model 
for IRCM because of the negative binomial distribution 
of IRCM with overdispersion (Schukken et al., 1991). 
The linear and negative binomial regression models are 
described as follows:

 Y = α + β1X1 + β2X2 + ... + βiXi + εi, and 

 log(CM) = α + β1X1 + β2X2 + ... + βiXi   

+ offset[log(herd_size)],

where Y = the continuous dependent variables (HeSC-
Cav, HeSCCvar, or NHiSCC), α = the intercept, βi = 
the regression coefficient for each of the independent 
variables Xi, εi = the residual random error, CM = the 
farmer-reported number of clinical mastitis cases last 
year, and log(herd_size) = the offset term.
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The model assumptions were evaluated as follows: for 
linear regression models, homoscedasticity was evalu-
ated by plotting the standardized residuals against the 
predicted values, normality of residuals was examined 
by Q-Q plots, and linearity was evaluated by plot-
ting residuals against the fitted values for continuous 
variables; for the negative binomial regression model, 
residuals were evaluated by plotting standardized devi-
ance residuals against predicted values.

Principal Component Regression Analysis. 
Because of the low variance explained in the depen-
dent variables in ordinary regression analysis, and also 
to reduce the high dimensionality and to capture the 
underlying structure of the explanatory variables, we 
also did principal components regression (Massy, 1965) 
for which we applied NLPCA on the 113 explanatory 
variables, with missing values imputed as the averages, 
from the Gifi package version 0.3.7 (Mair et al., 2017; 
https: / / rdrr .io/ rforge/ Gifi/ ) in R. In NLPCA, the cat-
egorical variables were transformed into numeric values 
through optimal scaling. These numeric values, referred 
to as category quantifications, for one variable together 
form that variable’s transformation. Nominal or ordi-
nal analysis levels were used for categorical variables 
and spline analysis levels for continuous variables. The 
number of PC was determined by inspecting the scree 
plots of NLPCA solutions with different numbers of 
PC, the interpretability of the PC (Jolliffe, 2002; Lint-
ing et al., 2007b; Linting and van der Kooij, 2012). 
We tested NLPCA with a 3, 4, 5, 6, and 7 dimensional 
solution. The scree plots for the solutions with 4 and 
5 components showed a consistent elbow at the 3rd 
PC in NLPCA with a different number of PC, and the 
eigenvalues of the first 4 PC were all larger than 1. We 
tried to interpret the PC resulting from the NLPCA 
with a different number of PC, and the first 3 PC were 
interpretable. We did not base our selection of the 
PC on the cumulative variance accounted for (VAF) 
criterion, because with 113 explanatory variables even 
smaller cumulative VAF capture the variance that is 

present in a considerable number of variables. Outliers 
were defined as observations with object scores exceed-
ing the range between −3.5 to 3.5 (Linting and van der 
Kooij, 2012). The NLPCA was repeated after deleting 
outliers until no outliers were present anymore. The 4 
dependent udder health variables were then regressed 
on the first 3 PC using negative binomial regression for 
IRCM and linear regression for the other 3 dependent 
variables, respectively. Model selection was performed 
as mentioned above. We did k-fold cross-validation with 
10-fold for the 3 PCRA linear regression models using 
the caret package version 6.0–80 in R. All statistical 
analyses were conducted in R version 3.4.4 (R Core 
Team, 2018).

RESULTS

Descriptive Statistics

In total, 135 farms were included in the analysis, of 
which 69 farms had complete records and 66 farms had 
missing values in at least one variable. The percentage 
of missing values on the 66 farms with missing values 
was on average 1.4%, ranging from 0.8 to 5.1%. Of the 
113 explanatory variables, 70 variables had no missing 
values, whereas 43 variables did have missing values, 
on average 1.9%, ranging from 0.7 to 4.4%. Two farms 
did not have data on IRCM, but no missing values were 
present in other dependent variables.

The general farm characteristics of the 135 partici-
pating farms are provided in Table 1. The correlations 
among HeSCCav, HeSCCvar, and NHiSCC ranged from 
0.44 to 0.74, whereas the correlation between IRCM 
and other 3 dependent variables ranged from 0.097 to 
0.17 (Figure 1).

Regression Analysis with Risk Factor Variables

In the univariable regression analysis, a total of 48 
risk factor variables were found to be associated with 

Table 1. Descriptive statistics of 135 Dutch dairy farms using an automatic milking system (AMS)

Variable Number Mean Minimum Maximum

Number of cows 135 80 22 365
Number of AMS 131 1.6 1 6
Milk quota (× 1,000 kg) 132 796 154 5,000
305-d milk yield (kg) 135 8,952 5,500 11,000
Average herd SCC1 (× 1,000 cells/mL) 135 271.8 83.4 505.3
Variance of average of herd SCC2 (× 107) 135 928 69 5,873
Average proportion of new high SCC cases (%) 135 13.4 4 29.3
Annual incidence rate of clinical mastitis (cases/100 cows per year) 133 27 1.4 135
1Arithmetic mean.
2Variance of the average herd SCC between test days.

https://rdrr.io/rforge/Gifi/
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one or more of the dependent udder health variables 
(with P < 0.1), which are presented in Supplemental 
Table S1; https: / / doi .org/ 10 .3168/ jds .2018 -15327. In 
Table 2, the results of the multiple regression models 
are given, showing that several risk factors were sig-
nificantly associated with multiple dependent variables, 
namely participation in a Salmonella control program, 
the percentage of cows lying outside cubicles, includ-
ing hay in the diet of dry cows, and the moment that 
the farmer stops antibiotic treatment of mastitis cases. 
None of the variables that remained significant in the 
IRCM model were present in any of the other models. 
The adjusted coefficient of determination values of the 
regression models for HeSCCav, HeSCCvar, NHiSCC, 
and IRCM based on the nonimputed data set were 
0.21, 0.18, 0.46, and 0.44, respectively. In general, the 
estimates of models using multiple imputation were 
very similar to the ones using nonimputed data.

Principal Component Regression Analysis

The 3 PC in the NLPCA explained 16.3% of the vari-
ance in the risk factor variables. The component load-
ings for variables with loadings >0.35 or <−0.35 (Hair 
et al., 2009) in 1 or more of the 3 PC are presented in 
Table 3. Most of these variables were related to farm 
size, hygiene of the cows, and hygiene of the AMS. The 
loadings of variables with loadings >0.35 or <−0.35 
are shown in Figure 2. The transformation plots, which 
display the shape of the relationship between the 
original variable and the transformed variable, are in 
Supplemental Figure S1 (https: / / doi .org/ 10 .3168/ jds 
.2018 -15327) for the first PC and Supplemental Figure 
S2 (https: / / doi .org/ 10 .3168/ jds .2018 -15327) for the 
second PC. Many of the transformation plots showed 
linear relationships, but some of the transformation 
plots demonstrated nonlinear relationships.

Figure 1. Pair-wise scatter plot with Pearson correlation coefficient (r) between log10-transformed average herd SCC (HeSCCav), log10-trans-
formed variance of average herd SCC on each test day (HeSCCvar), average proportion of new high SCC cases (NHiSCC), and farmer-reported 
annual incidence rate of clinical mastitis (IRCM) per cow per farm, based on data collected on 135 Dutch dairy farms using an automatic milk-
ing system.

https://doi.org/10.3168/jds.2018-15327
https://doi.org/10.3168/jds.2018-15327
https://doi.org/10.3168/jds.2018-15327
https://doi.org/10.3168/jds.2018-15327
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The variables that loaded high in the first PC were 
mostly related to farm size (5 variables), hygiene of 
the cows (8 variables), and the AMS (8 variables). The 
variables that loaded high in the second PC were related 
to farm size (4 variables), hygiene of cows (3 variables), 
and some other variables. The variables that loaded 
high in the third PC were mostly related to hygiene of 
cows (7 variables). Based on the loadings and the cor-

responding transformation plots of these variables, the 
first PC represented larger farms with poor hygiene of 
cows and AMS, the second PC represented newly built 
smaller farms with poor cow hygiene and low milk pro-
duction, and the third PC represented farms with good 
hygiene of cows. Regression model results of the PC are 
presented in Table 4, showing that PC1 was positively 
associated with HeSCCav and NHiSCC, and PC2 was 

Figure 2. Loading plot for the first principal component (PC1) and the second principal component (PC2) of a nonlinear principal com-
ponent analysis on 113 risk factor variables based on data collected on 135 Dutch dairy farms using an automatic milking system, showing all 
variables with loadings >0.35 or <−0.35 in PC1 or PC2 or both. The explanation of the variable names is given in Table 3.
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positively associated with HeSCCvar, NHiSCC, but 
negatively associated with IRCM. We plotted the PC 
with 4 dependent variables and did not find proof of 
a nonlinear relationship. The adjusted coefficient of 
determination for the regression models with PC for 
HeSCCav, HeSCCvar, NHiSCC, and IRCM were 0.041, 
0.041, 0.086, and 0.089, respectively. The standard de-
viation of RMSE for PCRA models with log10 (HeSC-
Cav) was 0.0358, for log10 (HeSCCvar) was 0.0308, and 
for NHiSCC was 0.0078.

DISCUSSION

In this study, we explored farm level risk factors for 
mastitis on AMS farms by using regression analysis 
and NLPCA. Cow hygiene, as well as hygiene of the 
AMS, were important factors related to various udder 
health parameters. In addition, we found several factors 
related to the farmers’ behavior as well as herd size to 
be determinants of udder health. A previous study by 
Dohmen et al. (2010) was a first analysis on a part of the 
data that specifically aimed at hygiene variables. Other 
factors might also play a role in mastitis on AMS farms, 
so we carried out this study on many more potential 
risk factors. The results, however, confirmed that hy-
giene is important and, in addition, pinpoint that farm 
size is relevant to mastitis on AMS farms. The average 
farm size was 86 in our study, which was somewhat 
lower than 96 in 2002 and 105 in 2003 for dairy farms 
using AMS in Netherlands (Bijl et al., 2007). The udder 
health situation on a farm can be described by various 
parameters, including the 4 dependent variables used in 
our study, HeSCCav, HeSCCvar, NHiSCC, and IRCM. 
Even though bulk tank SCC is a widely used parameter 

for herd level udder health, the bulk tank SCC was only 
available as farmers’ reported values; due to the high 
proportion of missing values in farmers’ reported bulk 
tank SCC (14.8% missing) and also to have a more 
precise estimation of the herd SCC, we calculated the 
herd SCC using DHI data. These herd SCC were not 
weighted by milk production, and even though it did 
not mimic the bulk tank milk SCC completely, the cal-
culated average herd SCC still gives a good approxima-
tion of the BMSCC. The average HeSCCav was 271,828 
cells/mL in our sample, which is higher than average 
HeSCCav of 214,000 cells/mL on Dutch AMS farms 
and 196,000 cells/mL on Dutch CMS farms (Steeneveld 
et al., 2015). We found NHiSCC in our study to be on 
average 13%, ranging from 4 to 29%, which is somewhat 
higher than the 9% (ranging from 0 to 18%) reported 
in a study on 1,903 Dutch CMS dairy farms (Nor et al., 
2014). The IRCM was based on farmers’ retrospectively 
reporting the number of clinical mastitis cases in the 
past year, which may well have been influenced by re-
call bias. Still, the average IRCM of 0.27 in our study is 
in line with the IRCM of 0.28 reported for Dutch CMS 
farms (Lam et al., 2013) and 0.29 for Dutch AMS farms 
(Huijps et al., 2008), although considerably higher than 
the IRCM of 0.20 reported by Mollenhorst et al. (2012) 
on Dutch AMS farms. These parameters, together with 
the general farm characteristics in Table 1, gave us the 
indications that the farms included in our study were 
representative for Dutch dairy farms using AMS.

We calculated HeSCCvar as the variance of the av-
erage herd SCC across test days, a parameter to our 
knowledge not previously studied. The HeSCCvar re-
flects temporal variation of herd SCC, thereby giving 
an estimate of the stability of the udder health situ-

Table 4. Multivariable regression model results for 4 udder health variables with principal components (PC1 
and PC2) from nonlinear principal component analysis on the 113 risk factor variables, based on data collected 
on 134 Dutch dairy farms using an automatic milking system (after excluding 1 outlier farm)

Dependent  
variable  

Independent  
variable

Number  
of farms β1

95% CI

2.50% 97.50%

HeSCCav2  Intercept  5.416 5.394 5.438
 PC1 134 0.028 0.007 0.05

HeSCCvar3  Intercept  9.809 9.745 9.873
 PC2 134 0.081 0.017 0.144

NHiSCC4  Intercept  0.134 0.127 0.141
 PC1 134 0.011 0.004 0.018

  PC2 134 0.007 0.000 0.014
IRCM5  Intercept  −1.241 −1.362 −1.117

 PC2 134 −0.122 −0.24 −0.005
1Estimates of regression coefficient.
2Log10-transformed average herd SCC.
3Log10-transformed variance of average herd SCC on each test day.
4Average proportion of new high SCC cases.
5Farmer-reported annual incidence rate of clinical mastitis.



4532 DENG ET AL.

Journal of Dairy Science Vol. 102 No. 5, 2019

ation. The 3 SCC-based udder health variables were 
significantly associated with each other, but not with 
the IRCM (Figure 1). In our study, we did not find an 
association between IRCM and HeSCCav, which is in 
line with previous research (Barkema et al., 1998; Olde 
Riekerink et al., 2008).

The missing values in the data hampered regression 
modeling, as the number of observations differs between 
nested models, leading to incomparability of the model 
fit. To be able to run all models on the total sample, 
we therefore applied multiple imputation (Sterne et al., 
2009). Although we did not find patterns in the missing 
values in our analysis, it is possible that such patterns 
were present. However, the effect of incorrect assump-
tions on patterns in missing values on the estimates is 
expected to be limited (Collins et al., 2001). A com-
parison of the regression models based on the imputed 
data with the models based on the nonimputed data 
showed that the differences between the estimates were 
negligible. The variables and the direction of the as-
sociation between dependent variables and independent 
variables were the same, only the β-estimate changed 
slightly (with a mean change of β-estimate being 25%, 
with a 95% CI of 14 to 36%). Moreover, with multiple 
imputation, we can use all farms in the model building 
process, which suggests that multiple imputation is a 
useful technique to facilitate the model building process, 
without substantially altering the model results. In the 
data collection process, we did not evaluate the agree-
ment between the 2 students in performing interview 
or scoring. Both of them trained and worked together, 
so even though potential discrepancy in data collec-
tion between the 2 students might exist, we assume 
that this would guarantee an data collection process as 
consistent as possible. Because the questionnaire data 
were collected by the farmers’ recall, lack of accuracy 
might exist. However, we had 28 numerical explanatory 
variables and 1 dependent variable (number of clinical 
mastitis cases last year) based on the farmers’ recall. 
Most of these variables were related to farm size and 
frequency of cleaning AMS units, which were quite 
familiar to farmers. Farmers’ recall of the number of 
clinical mastitis cases might have been problematic; 
however, not all farmers register clinical mastitis cases 
in the Netherlands, so having all farmers recall the 
number of clinical mastitis cases provided us with an 
equal level of uncertainty for all farms. The final re-
gression models contained several variables, several of 
which were hard to interpret in terms of causal associa-
tions. Some of these associations may be confounded, 
but given the high dimensionality of our data, several 
these associations may also have resulted from an in-
flated familywise type I error and expecting to explain 
more variance in the dependent variables, we also ap-

plied principal components regression (Massy, 1965) 
with NLPCA, expecting the PC could explain more 
variance in the dependent variables and avoid problems 
in the interpretation of the regression coefficients that 
are due to multicollinearity. However, the PC in the 
regression models for 4 dependent variables only ex-
plained less than 1% of the variance in the dependent 
variables, and the variables that loaded high in each of 
the PC were quite similar to the variables remained in 
the ordinary regression models, which suggested that 
NLPCA was useful in reducing the dimension of the 
data set, whereas it did not add much to the ordinary 
regression analysis in terms of explaining variance in 
the dependent variables. In the data set, we had vari-
ables measured in different scales (units), and without 
a rescaling to make sure that the all variables have zero 
mean and unit variance, PCA will be biased toward 
giving higher loadings to variables with larger variance. 
Reasons for this low cumulative VAF could be (1) ran-
domness: to some extent, which is always existent in 
epidemiological studies; (2) resolution and accuracy of 
the measurements: we had 28 numerical variables based 
on the farmers’ memory, which could contribute to a 
substantial amount of noise in the data, but on the oth-
er hand because these numerical variables were mostly 
related to farm size and frequency of cleaning AMS 
units (i.e., frequency of cleaning milk tube, frequency 
of cleaning teat cup, and frequency of cleaning camera), 
which were quite familiar to the farmers, we assumed 
that the accuracy of the measurements was acceptable; 
and (3) unobserved factors: we had 10 Dutch mastitis 
experts working together during the study design, and 
all obvious potential risk factors for mastitis on AMS 
farms were included in the questionnaire. But indeed, 
it is still possible that other factors outside our scope 
were still present and unmeasured in our study design. 
There are several potential reasons for the low amount 
of variance in the dependent variables explained by 
the PC. First, the PC extracted from the explanatory 
variables of course have not been strongly associated 
with the dependent variables (Hadi and Ling, 1998). 
In the ordinary multivariable analyses, however, sev-
eral variables that are present in the PC did show a 
strong association with the dependent variables (e.g., 
hygiene of udder and teats). It seems more likely that 
the strength of the causal association of the combined 
set of variables in a PC is lower than that of single vari-
ables. For instance, in the ordinary regression analysis, 
hygiene of the udder and the teats is strongly associ-
ated with udder health, but when these variables were 
combined in PC1 (21 variables with loadings >0.35 or 
<−0.35, of which 6 variables were related to hygiene 
of cows) and PC2 (16 variables with loadings >0.35 or 
<−0.35, of which 2 variables were related to hygiene of 
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cows) with other hygiene-related variables, it may be 
that this causal relation is diluted by other, nonassoci-
ated, variables. In addition, it seems that our analyses 
point out that there are likely to be important drivers 
of udder health in AMS farms other than the factors 
that we measured. Such an unobserved factor can lead 
to a low explained variance. Even though we collected 
data on a large number potential risk factors known 
to be related to udder health in CMS farms as well as 
risk factors that could potentially be related to udder 
health in AMS farms, it is possible that in AMS farms 
there are still factors that have not yet been identified 
in conventionally milking dairies by our expertise in 
the design of this study. This is intriguing and requires 
further research on factors that are specific for AMS 
farms.

Cleaner teats and fewer cows lying outside the 
cubicles were associated with lower HeSCCav in the 
regression model. The NLPCA results indicated that 
not only is cow hygiene associated with lower HeSC-
Cav, but also good hygiene of the AMS is associated 
with lower HeSCCav as well as with less NHiSCC. It 
is known that good hygiene of cows is important. For 
instance, Schreiner and Ruegg (2003) and Sant’anna 
and Paranhos da Costa (2011) found good hygiene 
of cows to be associated with better udder health on 
CMS farms. A dirty udder and a dirty milking machine 
likely increase the chances of new IMI (Cardozo et al., 
2015), resulting in an overall increase in SCC and more 
NHiSCC. Hygiene of the AMS was positively associated 
with hygiene of the cows, suggesting that they have 
determinants in common, such as the farmers’ attitude 
toward cleaning. Better and more frequent manure re-
moval, a sufficient number of cubicles for the number 
of cows, and effective and timely cleaning of the milk-
ing machine are likely to be effective interventions to 
improve udder health (Ruegg, 2006).

The percentage of teats not covered by spray at all 
was positively associated with more NHiSCC (Table 2). 
This is in line with previous work that showed a strong 
effect of postmilking teat disinfection on transmission 
of mastitis pathogens (Lam et al., 1997). In our study, 
the average percentage of teats not covered by spray 
at all was 15.6%. On 13 out of 135 farms (9.6%), all 
teats that were inspected during the farm visit were 
completely missed by the spraying device. This clearly 
suggests that postmilking teat disinfection deserves 
specific attention on AMS farms.

Participating in a Salmonella control program was 
found to be negatively associated with HeSCCav, HeS-
CCvar, and NHiSCC, and participating in a bovine 
diarrhea virus control program was negatively related 
to NHiSCC. Participation in an animal health program 

may have a direct beneficial effect on udder health 
through a reduction of the total disease burden. Alter-
natively, participation in animal health programs may 
also suggest that the farmer is ambitious to improve 
animal health, including udder health, which merely 
reflects an attitude that is likely associated with a lower 
HeSCCav, lower HeSCCvar, and less NHiSCC.

Other variables that reflect to some extent the farm-
ers’ attitude toward herd health, such as the use of 
bacteriological culturing of milk samples, checking the 
functioning of the AMS during milking on a regular 
basis, and checking the AMS in addition to the regular 
checks, were surprisingly positively associated with 
IRCM. It is unlikely that more frequent checking of the 
milking machine leads to more clinical mastitis. Rather, 
a more frequent checking of the milking machine may 
be the result of a high IRCM. On the other hand, the 
higher IRCM to some extent reflects the accuracy of 
the farmer in diagnosing and recording CM, where 
farmers with a stronger motivation to improve udder 
health may actually report a higher IRCM. As farmers’ 
attitudes have been reported to be related to udder 
health on CMS farms (Jansen et al., 2009), interven-
tions that contribute to a more positive attitude toward 
udder health are likely to be effective in also improving 
udder health on AMS farms.

We found that a larger milk quota, which essentially 
represents a larger herd size, was associated with a 
lower HeSCCvar, whereas the number of AMS, also 
a proxy for herd size, was positively related to more 
NHiSCC in the regression analysis. The same associa-
tions were also found with NLPCA. Herd size has been 
studied as a potential risk factor for clinical mastitis 
on CMS farms, but was not found to be significantly 
associated with IRCM (Schukken et al., 1990; Nyman 
et al., 2007). To the best of our knowledge, this is the 
first time herd-size-related variables were found to be 
associated with lower HeSCCvar and more NHiSCC. 
On larger farms, the influence of temporary changes in 
SCC in some animals may be less visible because of the 
large farm size, resulting in a lower HeSCCvar. A larger 
number of animals seems to result in a HeSCCav that 
is less prone to fluctuations because of incidental effects 
on individual animals. Still, farmers with a large herd 
may have less time available per cow for udder health 
preventive measures, which may result in more frequent 
new infections, reflected in a higher NHiSCC. We did 
not find any herd-size-related variables to be associated 
with HeSCCav in the regression models. In the NLP-
CA, however, the first PC summarized information on 
various herd-size-related factors, such as the number of 
cows, milk quota, number of feeding and lying places, 
and number of AMS, and this PC was associated with 
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a higher HeSCCav. Although these results are hard 
to interpret, our results suggest that udder health in 
larger AMS farms is more at risk than in smaller AMS 
farms. Because in many countries currently both the 
herd size and the proportion of farms with an AMS are 
increasing, further studies on dynamics of udder health 
in large AMS herds are needed.

The data that we used for this study are from 2008 
and are therefore relatively old. Naturally, since 2008 
there have been changes in farm structure and mastitis 
management. The farm size of the farms in the current 
study was on average 86 cows. Since 2008 the farm 
size has increased but not considerably. A study us-
ing data from 2013 found an average farm size of 103 
(Steeneveld et al., 2015) and very recent data of 42 
farms associated with the University Veterinary Prac-
tice (Harmelen, the Netherlands) showed an average 
farm size of 93 cows (unpublished data). Similarly the 
udder health status, as represented by the average farm 
SCC did not change much since 2008. The farm average 
SCC of the farms in our study was 271,800 cells/mL, 
whereas this was 214,000 cells/mL in 2013 (Steeneveld 
et al., 2015) and 175,840 cells/mL (geometric mean) in 
2018 (unpublished data). This means that the results 
of the current paper, based upon data from 2008, still 
seem to be valid for current AMS farms.

CONCLUSIONS

Multiple imputation is instrumental to deal with the 
missing values and NLPCA was shown to be a useful 
technique to process high dimensional data in our study, 
which are common problems in questionnaire-based risk 
factor studies. Many of the risk factors identified in this 
study are comparable to those factors described in CMS 
farms, but farm size seems to be a factor that plays a 
specific role on AMS farms. Thus, our findings suggest 
that most of the management for mastitis control on 
CMS farms can be applied to AMS farms, whereas on 
large AMS farms, udder health may need more atten-
tion. Further studies on drivers of mastitis transmission 
in large AMS herds should aim to identify why larger 
AMS herds seem to have poorer udder health.
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