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ABSTRACT
Estimation of the volumes of potential future debris flows is a key 

factor in hazard assessment and mitigation. Worldwide, however, 
there are few catchments for which detailed volume-frequency infor-
mation is available. We (1) reconstructed volume-frequency curves for 
10 debris-flow catchments in Saline Valley, California (USA), from a 
large number of well-preserved, unmodified surficial flow deposits, 
and (2) assessed the correlations between lobe-volume quantiles and 
a set of morphometric catchment characteristics. We found statisti-
cally significant correlations between lobe-volume quantiles, including 
median and maximum, and catchment relief, length (planimetric dis-
tance from the fan apex to the most distant point along the watershed 
boundary), perimeter, and Melton ratio (relief divided by the square 
root of catchment area). These findings show that it may be possible 
to roughly estimate debris-flow lobe-volume quantiles from basic 
catchment characteristics that can be obtained from globally available 
elevation data. This may assist in design-volume estimation for debris-
flow catchments where past flow volumes are otherwise unknown.

INTRODUCTION
Debris flows are dense masses of sediment and water that are common 

in mountainous terrain, and they can create low-gradient (<15°) sediment 
fans through repeated deposition over time. Such debris-flow fans are 
preferred locations for development in many mountainous regions (Jakob 
et al., 2005). Estimation of both past and potential future flow volumes on 
fan surfaces is critical for assessment of flow hazard and design of mitiga-
tion measures, because flow volume is a prime control on flow velocity, 
peak discharge, and inundation area (e.g., Iverson et al., 1998; Rickenmann, 
1999; Griswold and Iverson, 2008). A global analysis of debris-flow haz-
ards between 1950 and 2011 showed that the number of fatalities increases 
exponentially with flow volume (Dowling and Santi, 2014). Ideally, we 
should know the full flow volume–frequency distribution, because maxi-
mum volumes are relevant for hazard assessment, while median volumes 
are relevant for sediment budget estimation (Bovis and Jakob, 1999).

Worldwide, however, there are very few catchments for which detailed 
volume-frequency information is available (e.g., Jakob and Friele, 2010; 
Bennett et al., 2014). The debris-flow volume reaching a fan depends on 
the amount of sediment available and the potential of the flow to mobilize 
and transport this sediment, and it is thus a function of catchment mor-
phometry, morphology, and geology as well as hydroclimatic conditions 
(e.g., Hungr et al., 1984; Bovis and Jakob, 1999). In most systems, debris, 
rather than water, availability is the dominant control on flow volume (e.g., 
Jakob and Bovis, 1996; Bovis and Jakob, 1999). Many researchers have 
therefore attempted to correlate debris-flow volume with morphometric 
catchment characteristics, predominantly catchment area and slope and 

channel length (e.g., Hungr et al., 1984; Jakob and Bovis, 1996; Marchi 
and D’Agostino, 2004; Ma et al., 2013). A major shortcoming of these 
correlations is that they are based on only one to a few debris flows per 
catchment, inhibiting estimation of key flow-volume quantiles such as the 
median and maximum. It has been difficult to overcome this issue because 
of both the brevity of observational records relative to typical debris-flow 
return periods and the difficulty of determining flow volume directly, even 
in well-instrumented catchments with frequent flows (Schürch et al., 2011).

Fan surfaces are a potential archive of volume information for a large 
number of flows (e.g., Jakob et al., 2016). Debris flows deposit sediment 
levees and lobes (e.g., Blair and McPherson, 2009), the dimensions of which 
may scale with the volume or peak discharge of the flow (Berti and Simoni, 
2007). Unfortunately, debris-flow deposits are often reworked by postdepo-
sitional sediment transport processes or buried by subsequent flows, both of 
which obscure the original deposit dimensions and hinder volume estimation 
(e.g., Jakob and Bovis, 1996; Blair and McPherson, 2009; de Haas et al., 
2014). In addition, large debris flows tend to spread out to form multiple 
lobe deposits, making it difficult to reconstruct the entire flow volume, 
especially if parts of the deposit are later reworked. As a result, the links 
between fan deposits, flow-volume quantiles, and the potential controls on 
flow volumes have not yet been comprehensively explored.

Here, we used the surfaces of 10 remarkably well-preserved debris-
flow fans in Saline Valley, California (USA), which host numerous un-
modified flow deposits, to (1) create lobe volume–frequency curves from 
hundreds of well-preserved surficial debris-flow deposits, and (2) assess 
the correlation between lobe-volume quantiles and a set of morphometric 
catchment characteristics, in order to explore and develop a method for 
debris-flow design-volume estimation.

STUDY AREA
Saline Valley is a closed extensional basin located at the boundary 

between the Mojave and Great Basin Deserts in southeastern California 
(Fig. 1). The southern and western valley margins host a series of well-
exposed debris-flow fans that have developed in response to accommoda-
tion generation by slip on the Hunter Mountain and Saline Valley faults 
(Oswald and Wesnousky, 2002). We focused on 10 of those fans that 
preserve abundant debris-flow deposits with clear primary flow features 
and negligible secondary modification.

Eight fans, S01–S08, originated from the Nelson Range in the southern 
part of the valley (Fig. 1). The Nelson Range is underlain by the Early 
Jurassic Hunter Mountain quartz monzonite batholith (Oswald and Wes-
nousky, 2002). Fan S03 was fed by two subcatchments, each of which 
contributed sediment to a separate part of the fan surface. We treated those 
two subcatchments and their corresponding fan surfaces as individual 
systems in the analyses presented here.
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A ninth debris-flow fan, N01, originated from the Inyo Mountains in 
the northern part of Saline Valley (Fig. 1). The catchment of this fan con-
sists mostly of Paleozoic marble, quartzite, and chert with a small area of 
quartz monzonite in the catchment headwaters (Conrad and McKee, 1985).

Saline Valley is located in the rain shadow of the Sierra Nevada and 
Inyo Mountain ranges to the west, with mean annual precipitation of 
100–200 mm (PRISM Climate Group, 2015). Historical records in nearby 
Owens Valley show that recent debris flows in the region have been pre-
dominantly triggered by high-intensity summer rainstorms (e.g., Beaty, 
1963; Blair and McPherson, 1998).

DATA COLLECTION AND ANALYSIS
We estimated debris-flow lobe volumes from a gridded lidar data set 

with 0.5 m horizontal cell size (Fig. DR1 in the GSA Data Repository1), 
collected in April 2007 by the National Center for Airborne Laser Map-
ping (NCALM, University of Houston, Texas, USA). Debris-flow lobe 
deposits were manually identified and mapped using hillshade, curvature, 
and local slope maps (cf. Staley et al., 2006; Roering et al., 2013), cross-
checked by field measurements in September 2017 (Fig. DR2). Lobe 
thickness, h (m), was measured by defining the maximum thickness of a 
lobe extracted from elevation cross- and long-profiles, assuming a planar 
bed underneath the lobe deposits (Fig. DR1). Lobe width, w (m), was 
defined as the maximum width of the lobe deposit. The cross-sectional 
area of each debris-flow lobe, Al (m2), was then calculated by assuming 
a trapezoidal cross section (cf. de Haas et al., 2015):

	 Al = 0.75hw.	 (1)

We assumed a conservative uncertainty on Al of 50%, accounting for 
variation between triangular and rectangular cross sections and deviations 
from a planar bed. Iverson et al. (1998) and Griswold and Iverson (2008) 
showed that the cross-sectional area of a debris flow is a semi-empirical 
function of its total volume V (m3):

	 Al = εV 2/3.	 (2)

Based on 15 recent nonburied debris flows, we found ε ≈ 0.1 for the 
Saline Valley fans (R2 = 0.82; Fig. DR3), similar to the ε found by Gris-
wold and Iverson (2008) for 50 nonvolcanic debris flows worldwide. The 
estimated debris-flow volumes are accurate within a factor 2 (Fig. DR3). 
For our calculation, we assumed ε = 0.1 ± 0.025. We used Equation 2 to 
convert the measured cross-sectional areas to total lobe volumes, propa-
gating the errors in Al and ε.

Direct measurement of total flow volumes is generally not possible for all 
but the most recent flows due to burial by more recent deposits. For the same 
reason, we typically cannot identify whether individual flows deposited one 
or multiple lobes. Note that the volume of the largest debris flows, which 

are most likely to have formed multiple lobes, may thus have been under-
estimated (e.g., Blair and McPherson, 1998; de Haas et al., 2016, 2018).

We compared the inferred debris-flow lobe volumes to a wide range 
of morphometric catchment characteristics (Table 1). The lidar data set 
does not cover the full fan catchments, and therefore we used Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
Global Digital Elevation Model (GDEM) data to infer these catchment 
characteristics. This elevation data set is globally available and has a 30 m 
horizontal resolution, ensuring worldwide applicability but limiting our 
analysis to simple catchment characteristics. We assessed the correlations 
between catchment characteristics and the 25, 50, 75, and 99 percentiles 
and maximum lobe-volume quantiles through linear regression.

RESULTS
The number of individual debris-flow lobe deposits identified on the 

fans ranged from 84 on fan S03b to 851 on fan S06 (Fig. 2). The smallest 
reconstructed median debris-flow lobe volume, 140 ± 55 m3, was found on 
fan S03b. The largest median lobe volume, 830 ± 330 m3, was found on 
fan S04. The reconstructed maximum lobe volumes ranged from 4400 ± 
1750 m3 on fan S02 to 92,000 ± 37,000 m3 on fan S07. The volume dis-
tribution curves highlight the variation in the lobe volumes on a single 
fan, which can vary by four orders of magnitude.

Overall, median lobe volume is the quantile that showed the best cor-
relation with catchment characteristics (Fig. 3). Statistically significant 
correlations (p < 0.05) were found between median lobe volume and catch-
ment area, relief, length, perimeter, and Melton ratio (Table DR1). The 
goodness-of-fit (R2) of these correlations ranged between 0.39 and 0.51, 
where Melton ratio performed the best. Statistically significant relations 
were also found between maximum lobe volume and catchment relief, 
length, and perimeter, while the relation with Melton ratio was close to 
significant with p = 0.07. Catchment perimeter, length, relief, and Melton 
ratio generally showed statistically significant correlations with most 
other lobe-volume quantiles, and where correlations were statistically 
insignificant, the p values were nonetheless still typically smaller than 0.1.

We found no statistically significant correlations and poor goodness-
of-fit values, generally below 0.20, between lobe-volume quantiles and 
mean catchment slope, relief ratio, form factor, elongation ratio, and cir-
cularity index (Table DR1).
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Figure 1. Debris-flow fans studied in this work. A: Fans S01–S08, on the southern margin of Saline Valley (California, USA). Fan apex of S05 is 
located at 6°34′28.85″N, 117°38′20.06″W. B: Fan N01, on the northern margin of Saline Valley. Fan apex is located at 36°49′31.66″N, 117°55′21.73″W. 
C: Detail of well-preserved debris-flow deposits on the surface of fan S06. NV—Nevada; CA—California.

1GSA Data Repository item 2019278, supplemental Figures DR1–DR4 and 
Table DR1, is available online at http://​www​.geosociety​.org​/datarepository​/2019/, 
or on request from editing@​geosociety​.org.

TABLE 1. MORPHOMETRIC CATCHMENT CHARACTERISTICS

Catchment attribute Dimensions Symbol and definition

Area m2 Ac
Relief m Hc

Length m Lc

Perimeter m Pc

Mean slope degrees Sc

Melton ratio – Mr = Hc/√Ac

Relief ratio – Rr = Hc/Lc

Form factor – Ff = (Ac/Lc)2

Elongation ratio – Er = (4Ac/π)/Lc

Circularity index – Cr = 4πAc)/Pc
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Our data set showed two outliers in the relationships between lobe 
volume and catchment area, relief, Melton ratio, perimeter, and length, 
corresponding to the two smallest watersheds, S02 and S03b (Fig. 3). 
These outliers had relatively small lobes, which for maximum volume 
were almost one order of magnitude lower than would be expected based 
on the correlations with catchment characteristics.

Based on our very limited sampling, differences in catchment lithology 
did not seem to affect the lobe volume–catchment characteristic relation-
ships in our data set. The flow volumes on fan N01, with a catchment 
that consisted predominantly of metasedimentary rock, followed similar 
relationships with catchment characteristics as those fed from the quartz 
monzonite catchments (Fig. 3).

DISCUSSION
Our results show that, at least in climatically and tectonically similar areas, 

it may be possible to predict debris-flow lobe-volume quantiles, including 
median and maximum, based on catchment relief, perimeter, length, area, and 
Melton ratio. These findings may assist in debris-flow hazard assessment and 
mitigation where data on lobe or flow volumes are otherwise unknown, which 
holds true for the vast majority of catchments. Moreover, our findings may 
help to estimate sediment budgets where such data are otherwise unavailable 
(Bovis and Jakob, 1999). Although our data do not show how climatic and 
lithological conditions may affect lobe-volume quantiles, we suggest that, 
where the flow-volume distribution of a debris-flow system is known, flow-
volume quantiles in neighboring catchments may be reasonably estimated 
based on a catchment relief, perimeter, length, area, or Melton-ratio correction.

Several studies have used catchment characteristics to discriminate 
between the likely predominance of debris-flow and streamflow sediment 

transport. In particular, catchment area (e.g., de Scally and Owens, 2004), 
length (e.g., Wilford et al., 2004), and Melton ratio (e.g., Bertrand et al., 
2013) have demonstrated utility in discriminating the formative fan process. 
Not surprisingly, these are the same catchment characteristics as those 
found here to be capable of predicting debris-flow lobe-volume quantiles.

So why do these catchment characteristics determine process and lobe 
volume? Debris-flow volume is a function of two elements: (1) the volume 
of the initiating failure or failures, and (2) the volume changes, by entrain-
ment and deposition, along the transport path (Jakob et al., 2005). In the 
simplest case, debris flows may initiate on the steep slopes of the upper 
catchment, after which they can grow in volume by eroding sediment while 
traversing through the catchment to finally deposit on the fan. As such, 
for a given initial failure volume, the flow volume entering a fan depends 
on the erosional potential of the debris flow and the amount of material 
available for entrainment (e.g., Jakob et al., 2005). The entrainment rate 
at the base of a debris flow likely increases with bed slope (e.g., Iverson 
and Ouyang, 2015), and therefore flow volume is likely to increase with 
catchment relief (Fig. 3). Similarly, traversal of larger distances by a de-
bris flow through steep channels in a catchment results in larger potential 
for net entrainment (assuming that sufficient bed sediment exists and that 
its density and saturation are sufficient to promote entrainment; Iverson, 
2012) and larger flow volume. This may explain the increasing flow-volume 
quantiles with catchment area, perimeter, and length (Fig. 3). One should 
note, however, that these effects are partly damped because the average 
catchment gradient decreases with catchment area. Similarly, catchment 
length, perimeter, and relief are strongly related and increase logarithmi-
cally with basin area, and the square-root of catchment area scales linearly 
with basin relief, which defines the Melton ratio (R2 > 0.9: Fig. DR4).
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Figure 2. Cumulative lobe 
volume–frequency distri-
butions for each studied 
fan in Saline Valley (Cali-
fornia, USA). Gray bands 
indicate volume error 
range.
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It is important to remember that our estimated volumes are based on 
the cross-sectional areas of individual lobes and will therefore under
estimate the volume of large flows that form multiple depositional lobes 
(e.g., Beaty, 1963; Blair and McPherson, 1998, 2009). Volume estimates 
for flows forming multiple lobes, however, are only possible by direct 
measurement or for the most recent events on a fan surface, which have 
not been buried by subsequent flows. As such, it is currently not possible 
to obtain large data sets of debris-flow volumes corrected for multiple 
lobe formation. It is important to realize, however, that for some hazard 
applications (such as damage to infrastructure), it is volume of sediment 
deposited at a point, rather than the total flow volume, that is most relevant. 
Our approach describes the probability to find a lobe of a given size on a 
debris-flow fan, but for hazard assessment and mitigation, it is also im-
portant to understand the frequency of such flows. To advance the novel 
catchment-morphometry–based method to estimate debris-flow quantiles 
presented here, future research should thus focus on direct estimation of 
flow volume–frequency distributions from a number of debris-flow catch-
ments in diverse climatic and lithological settings.

CONCLUSIONS
We reconstructed debris-flow lobe-volume distributions from a large 

number of well-preserved flow deposits on 10 fans in Saline Valley, Cali-
fornia, and we compared lobe-volume quantiles to a set of morphometric 
catchment characteristics. Our results show that, when controlled for cli-
matic and tectonic setting, lobe-volume quantiles, including the 25, 50, 
and 75 percentiles and the maximum, depend on catchment area, length, 
perimeter, relief, and Melton ratio. This implies that simple catchment 
characteristics, which can be extracted from globally available eleva-
tion data sets, may be used to obtain rough estimates of minimum flow 
design volumes for sediment budgets as well as for hazard assessment 
and mitigation. While these relationships are promising, future research 
should focus on the generation of flow volume–frequency distributions 
from different climatic and lithological settings worldwide against which 
to test the wider application of these estimates.
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