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A B S T R A C T

Altered cognitive performance is considered an intermediate phenotype mediating early life adversity (ELA)
effects on later-life development of mental disorders, e.g. depression. Whereas most human studies are limited to
correlational conclusions, rodent studies can prospectively investigate how ELA alters cognitive performance in
several domains. Despite the volume of reports, there is no consensus on i) the behavioral domains being affected
by ELA and ii) the extent of these effects. To test how ELA (here: aberrant maternal care) affects specific be-
havioral domains, we used a 3-level mixed-effect meta-analysis, and thoroughly explored heterogeneity with
MetaForest, a novel machine-learning approach. Our results are based on>400 independent experiments, in-
volving ∼8600 animals. Especially in males, ELA promotes memory formation during stressful learning but
impairs non-stressful learning. Furthermore, ELA increases anxiety-like and decreases social behavior. The ELA
phenotype was strongest when i) combined with other negative experiences (“hits”); ii) in rats; iii) in ELA models
of ∼10days duration. All data is easily accessible with MaBapp (https://osf.io/ra947/), allowing researchers to
run tailor-made meta-analyses, thereby revealing the optimal choice of experimental protocols and study power.

1. Introduction

Early life adversity (ELA) is a consistent risk factor of psychiatric
disorders (Kessler et al., 2010; Teicher et al., 2016), and it is regularly
associated with poorer cognitive outcomes later in life (Masson et al.,
2016; Nelson et al., 2007; Vargas et al., 2018). Indeed, impaired cog-
nitive processing is a prominent feature of psychopathologies (Masson
et al., 2016; Millan et al., 2012; Monfils and Holmes, 2018), e.g. dys-
regulated contextual memory in post-traumatic stress disorder
(Liberzon and Abelson, 2016) or social cognition in schizophrenia
(Green et al., 2015). ELA may therefore alter cognitive development,
thereby resulting in behavioral abnormalities that may render in-
dividuals more vulnerable to psychiatric disorders (Ammerman et al.,
1986).

To investigate exactly how ELA affects cognitive processing, rodent
models are a valuable resource: they complement human studies by in-
depth and thorough investigations of otherwise hard-to-study me-
chanisms. In animal experiments, genetic and environmental influences
can be more precisely controlled and experimentally varied than in
humans (Knop et al., 2017). Furthermore, prospective designs are more

feasible. For example, rodent studies have disentangled the different
components of mother-pup interaction, a critical factor of early devel-
opment across mammalian species (Bowlby, 1951; Harlow and Harlow,
1965; Meaney, 2001). This has helped uncover links between disturbed
maternal care and disturbed emotional and cognitive functioning later
in life, implicating the stress system (Levine, 2005) and “hidden reg-
ulators” (Hofer, 1978).

Rodent studies have also highlighted paradoxical ELA effects on
cognitive abilities. For instance, Benetti et al. (Benetti et al., 2009) re-
ported that rats with a history of ELA had impaired memory in the
object recognition task. Conversely, Champagne et al. (Champagne
et al., 2008) reported that ELA mice display increased memory in a fear
conditioning paradigm. Both tests have historically been used as
memory tasks, albeit in a non-stressful and stressful context respec-
tively. Possibly, the equivocal results are due to different underlying
biological mechanisms (e.g. learning in stressful versus non-stressful
situations) or pertain to the divergent methodology used (e.g. type of
test or ELA model, species, experimenters, labs). A few studies have
investigated the latter by testing the same animals in different memory
tasks (Bredy et al., 2003; Ivy et al., 2010; Kanatsou et al., 2017; Mello
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et al., 2009). Although these studies favor the former explanation, the
limited amount of animals used (Button et al., 2013) – alongside the
heterogeneous methodology – prohibits firm conclusions.

To address this conundrum, we here carried out a large-scale 3-level
meta-analysis of all peer-reviewed preclinical literature on the subject,
and tested the hypothesis that ELA (here defined as aberrant maternal
care, i.e. differing from care seen in undisturbed, standard housed la-
boratory mice and rats) differentially affects specific behavioral do-
mains in adulthood. We focused on memory formation after stressful or
non-stressful learning, anxiety-like and social behavior, given their re-
levance for psychopathologies. We addressed (potential) sex-differences
by investigating males and females separately. Furthermore, we tested
whether the presence of multiple hits (e.g. other negative life experi-
ences, independent of the developmental stage, see S1.4) (Daskalakis
et al., 2013) amplified ELA effects. Finally, we applied the novel, ma-
chine-learning based analysis MetaForest (van Lissa, 2018a) to identify
the most important moderators of ELA effects on behavior.

Based on this comprehensive analysis, we evaluate the translational
potential of ELA rodent models. With the aid of a specially developed
web-based tool MaBapp (Meta-Analysis of Behavior application) (https://
osf.io/ra947/), interested researchers can perform their own meta-
analysis and retrieve valuable ad hoc information for experimental
design and power calculations.

2. Methods

We adhered to SYRCLE’s guidelines (De Vries et al., 2015; Leenaars
et al., 2012), and to the PRISMA (Moher et al., 2009) reporting
checklist. To ease reading of the methodology, definitions of technical
terms are provided in Supplemental Methods (S1.1). A summary of the
general approach can be found in Fig. 1.

2.1. Search strategy

The electronic databases PubMed and Web of Science (Medline)
were used to conduct a comprehensive literature search on the effects of
ELA on behavior on December 6th 2017. The search string was con-
structed with the terms “behavioral tests”, “ELA” (as aberrant postnatal
maternal care) and “rodents” (S1.2).

Prior to the beginning of the study, four experts were consulted.
After elaborate discussions they agreed upon i) the selection of tests and
related outcomes (S1.3), ii) their classification into behavioral domains
(S1.3) and iii) the definition of multiple hits (S1.4). The results of each
individual test, independent of categorization, are available for con-
sultation on MaBapp (Section 5.1). Studies’ titles and abstracts were
screened independently by two researchers (VB & JK) and selected if
the inclusion criteria were met (S1.5). Studies’ inclusion was performed
blinded to the studies’ results. In case of doubt, the full text was in-
spected. Any disagreement was resolved by greater scrutiny and dis-
cussion.

To limit subjectivity in the data gathering and entry process, data
from eligible studies were extracted in a standardized dataset alongside
its explanatory codebook (https://osf.io/ra947/).

For each individual comparison, we calculated Hedge’s G
(Viechtbauer, 2010), a standardized mean difference with a correction
for small samples (Vesterinen et al., 2014). S1.6 details the extraction of
statistical information as well as handling of missing values. We esti-
mated the summary statistics of data presented only graphically with
Ruler for Windows (Latour, 2006), of which we previously validated the
accuracy (Bonapersona et al., 2018). If the data was not reported in any
format (or other crucial information was missing e.g. sex), we contacted
two authors per manuscript published after 2008 (response rate
52.6%). If no answer was received within two months and after a re-
minder, the authors were considered not reachable, and the comparison
was excluded.

2.2. Meta-analysis: research questions and statistical approach

To avoid possible biases, the experimenter (VB) was blinded to the
ELA effects while coding the analysis. This was achieved by randomly
multiplying half of the effect sizes by -1.

2.2.1. Hypothesis-testing
We built a 3-level mixed effect meta-analysis with restricted max-

imum likelihood estimation. In our experimental design, the 3 levels
correspond to variance of effect size between 1) animals, 2) outcomes
and 3) experiments. This approach accounts for the violation of the
assumption of independency when the data is collected from the same
animals (Aarts et al., 2014; Bonapersona et al., 2018; Cheung, 2014),
thereby improving the robustness of the conclusions drawn. We in-
cluded “domains” and “hits” as moderators in order to address the
following two research question: 1) what are the effects of ELA on each
behavioral domain?; 2) are the effects enhanced if the animals experienced
multiple hits?. Since both questions were answered with the same model,
effect sizes were estimated only once.

We ensured that all behavioral measurements were in the same
theoretical direction by multiplying – whenever necessary – the effect
sizes by -1 (S1.3) (Vesterinen et al., 2014). Although this was essential
for the model estimation, we here report effect sizes in a more inter-
pretable manner: an increase in Hedge’s G signifies an enhancement of
the behavioral domain under study (e.g. more anxiety-like behavior,
better memory).

We conducted several sensitivity analyses (S1.7) to assess the ro-
bustness and consistency of our conclusions. We examined whether the
quality of the studies affected the estimation of the results by dissecting
the influence of reporting bias, blinding, randomization and study
power. Furthermore, we thoroughly investigated influential and out-
lying cases (Viechtbauer and Cheung, 2010) according to multiple de-
finitions (S1.7).

To compensate for methodological limitations, we tested the pre-
sence of publication bias with various qualitative/quantitative methods
(S1.8), and quantified its influence with fail-safe N (Rosenthal, 1979)
and trim-and-fill analyses (Duval and Tweedie, 2000) (S1.8).

Risk of bias was evaluated with SYRCLE’s assessment tool
(Hooijmans et al., 2014), where we distinguished between study-level
and outcome-level biases (Moher et al., 2009). Lack of reporting of
experimental details was scored as an unclear risk of bias.

Heterogeneity was assessed with Cochrane Q-test (Cheung, 2014)
and I2, which was estimated at each of the 3-levels of the model to
determine how much variance could be attributed to differences within
(level 2) or between experiments (level 3) (Assink and Wibbelink,
2016). Estimates of explained variance can be positively biased when
based on the data used to estimate the model (Hastie et al., 2009). For
this reason, we used 10-fold cross-validation to obtain an estimate of
how much variance our model might explain in new data. This cross-
validated estimate of R2 (Rcv

2) is robust to overfitting and provides
evidence for the results’ generalizability.

P-values were corrected with Bonferroni for family-wise error rate
(each research question considered as a separate family of tests) to limit
capitalization on chance. Since we expected the amplitude of effect
sizes to differ between sexes (Loi et al., 2017; Walker et al., 2017), we
considered males and females as two separate datasets.

2.2.2. Exploratory analysis
We used MetaForest (van Lissa, 2018a), a novel exploratory ap-

proach to identify the most important moderators of the ELA effects on
behavioral domains. This innovative, data-driven technique adapts
random forests (a machine learning algorithm) for meta-analysis, by
means of bootstrap sampling. MetaForest ranks moderators based on
their influence on the effect size.

Preclinical experiments often adopt diverse protocols. Although this
can be an advantage (Karp, 2018), in a meta-analysis it induces
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substantial heterogeneity. Therefore, we classified the published ex-
perimental protocols in> 30 standardized variables with the intent to
identify potential methodological sources of heterogeneity. Based on
theoretical importance, we selected 26 of these moderators for inclu-
sion in the MetaForest analysis. We used 10-fold cross-validation (S1.9)
to determine the optimal tuning parameters that minimized RMSE:
uniform weighting, 4 candidate moderators at each split, and a
minimum node size of 2. The marginal bivariate relationship of each
moderator with effect size was averaged over the values of all other
moderators (S1.9). Residual heterogeneity was estimated with tau2

(S1.9).
Lastly, we created MaBapp (https://osf.io/ra947/) for anyone to

perform their own meta-analysis on the topic by selecting their favorite
characteristics (Section 5.1).

Analyses were conducted in R (version 3.5.1) (R Core Team, 2015),
using the following packages: 1) metafor (Viechtbauer, 2010) for con-
ducting the analysis, 2) metaforest (van Lissa, 2018b) for data ex-
ploration, 3) shiny (Chang et al., 2017) to create MaBapp, and 4) dplyr
(Wickham et al., 2018) for general data handling. For further specifi-
cations about the analysis, the R script and the data are available
(https://osf.io/ra947/).

3. Results

3.1. Studies selection and characteristics

In total ˜8600 animals (ageweeks median[IQR]=12[4]; proportion
rats= 68%) were included in the analysis, 77.7% of which were males.
Anxiety-like behavior was the domain most investigated (48.8%), ele-
vated plus maze the most popular test (14.3%), and maternal separation
the ELA paradigm most often used (48.9%). For additional descriptive
information on study characteristics, see S2.3.

Although no publication reported on all SYRCLE’s potential bias
items, 41 publications (19.3%) were blinded as well as randomized, and
overall we estimated a risk of bias of 3[1] (median[IQR]) on a 10 points
scale (S2.4). Lastly, at a systematic review level (S2.5), 68.5% of
comparisons were either not-significant (ncomp= 386) or the result
could not be directly interpreted from the information provided
(ncomp= 117).

3.2. ELA effects are pronounced in males and with “multiple hits”

The effect sizes included ranged between -6.4 and 6.1 (mean
[SD]=0.29[1.06]), with 95% of comparisons between -2 and 2.
Sample size ranged between 6 and 59 animals (mean[SD]=22[7.8]),
and differed<20% between control and ELA groups in 90% of the
cases (estimation).

When qualitatively comparing sexes, the effects of ELA were more

Fig. 1. Flow chart of study selection and analysis. Of note: in 47 publications, both males and females were tested. ^ = estimation of missing comparisons (S2.1); * =
comparisons excluded from the meta-analysis due to controversial behavioral domain categorization (S2.2).
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evident in males than in females. Male rodents with a history of ELA
displayed increased anxiety-like (Hedges’G[95%CI]= 0.278[0.165,
0.39], z= 4.819, p < 0.000), improved memory after stressful
learning (Hedge’sG[95%CI]= 0.283[0.141, 0.425], z= 3.9,
p < 0.000), impaired memory after non-stressful learning
(Hedge’sG[95%CI] = -0.594[-0.792, -0.395], z = -5.86, p < 0.000)
and decreased social behavior (Hedge’sG[95%CI] = -0.614[-0.88,
-0.348], z = -4.521, p < .000, Fig. 2A, S2.6). We were unable to
confirm any effect of ELA on behavior in females, although direction-
ality was generally comparable in both sexes (Fig. 2B, S2.7).

Overall, the presence of multiple hits (for our definition, see S1.4)
intensified the effects of ELA in males
(Hedge’sG[95%CI]= 0.222[0.018, 0.426], z= 2.131, p=0.033) yet
marginally in females (Hedges’G[95%CI]= 0.297[-0.003, 0.596],
z= 1.939, p= 0.052). Although these enhancing effects were not sig-
nificant at a single-domain level (posthoc analysis, Fig. 2C-D, S2.6/
S2.7), memory after non-stressful learning was the most impacted do-
main in males (difference in Hedge’s G=0.435, z= 2.156, p=0.124)
as well as in females (difference in Hedge’s G= 0.565, z= 2.234,
p=0.102).

3.2.1. Sensitivity analyses and publication bias
Qualitative evaluation of funnel plot asymmetry suggested the

presence of publication bias, which was confirmed by Egger’s regres-
sion and Begg’s test (S2.8). Nonetheless, fail-safe N as well as trim-and-
fill analyses confirmed that – albeit present – publication bias is un-
likely to distort the interpretation of the results (S2.8). Furthermore, the
robustness of the male and female models was confirmed by several
sensitivity analyses (S2.9).

3.3. Exploration of moderators

Although the models of the hypotheses-testing analysis described a
significant proportion of variance (Rcv

2
males = 0.026, Rcv

2
females = 0.03),

substantial heterogeneity was recorded in both models (males: Q
(524)= 1763.118, p < 0.000; females: Q(171)= 326.93, p < 0.000,
S2.10). This was not surprising due to the diversity of publications in-
cluded in the meta-analysis.

To investigate the source of the heterogeneity, we used MetaForest,
a new statistical technique that ranks moderators (Fig. 3A) based on
their predictive value. These can roughly be divided in 4 groups, de-
scribing: i) characteristics of the animals (e.g. origin of the breeding

Fig. 2. Effects of ELA on behavioral domains in males (A) and females (B), and the role of multiple hits (in addition to ELA, grey bars) compared to only ELA (white
bar) in mediating these effects (males: C, females: D). Each bar represents the size of the effect (G, standardized mean difference) of the ELA manipulation when
comparing a control and an experimental group. * = p<0.05, ** = p<0.01, *** = p<0.001.
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animals (Fig. 3B) and species investigated (Fig. 3C)), ii) ELA model used
(e.g. type of model and duration of ELA (Fig. 3D-E)), iii) outcome
measures (e.g. domain and test used), and iv) potential bias (e.g.
blinding and randomization). MetaForest confirmed that the selected
moderators account for a substantial portion of the variance
(Rcv

2[SD]= 0.12[0.09]).
Offspring of dams purchased pregnant had larger effect sizes than

offspring bred in the own facility (Fig. 3B). Rats had overall larger effect

sizes than mice (Fig. 3C). Concerning ELA models (Fig. 3D), selecting
the extremes of natural variation (licking-and-grooming model) yielded
the strongest phenotype. Lastly, effect sizes appeared to be maximal
with a 10 days’ ELA duration (Fig. 3E).

4. Discussion

In this study, we substantiate that adversities early in life

Fig. 3. Exploratory MetaForest analysis. (A)
Rank moderators’ importance. Variable/per-
mutation importance is a measure of how
strongly each moderator explains differences in
effect size, capturing (non-)linear relationships
as well as higher order interactions. For in-
formation about MetaForest’s partial depen-
dence plots, see S2.11. Effect sizes dis-
tinguished by origin of the breeding animals
(B), species (C), type of ELA model (D) and
duration of ELA (E). Results are expressed as
Hedge’s G[95%CI]. The usefulness of this ex-
ploration can be best appreciated with the aid
of MaBapp. For example, the overall estimate
of the effects of ELA on anxiety-like behavior is
Hedge’s G=0.24. However, if we select only
the LBN model, the effect size rises to 0.37. If
we combine LBN and rats, the effect size fur-
ther rises to 0.60. If we then select only ele-
vated plus maze as respectively behavioral test,
the effect size rises to 0.81. LG = licking-and-
grooming, LBN = limited bedding and nesting,
MD = maternal deprivation, MS = maternal
separation, I = isolation.
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profoundly and lastingly change rodent behavior. Due to low power
(Button et al., 2013) and heterogeneous methodologies, results at a
single-study level are often inconclusive and difficult to interpret. Here,
by adopting a meta-analytic approach, we provide extensive evidence
that ELA (due to maternal care that differs from that provided by un-
disturbed, standard-housed dams) has differential effects on memory: it
enhances memory if learning occurs in a stressful situation, but it
hampers learning under non-stressful circumstances. Furthermore, ELA
increases anxiety-like and decreases social behavior, particularly in
males. In line with the multiple-hits hypotheses (Daskalakis et al., 2013;
Walker et al., 2009), the effects are amplified if the animals experience
other stressful life events (e.g. prenatal stress due to transport of
pregnant females), independent of the developmental period during
which these occur (S1.4). These results are independent of the type of
ELA or behavioral test used, and are remarkably similar to what has
been reported at a correlational level in humans (Pechtel and Pizzagalli,
2011; Suor et al., 2015). Altogether, our results point to a clear and
robust phenotype of ELA in four behavioral domains and complement
the human literature by supporting a causative role of ELA in altering
behavior, which may predispose individuals to precipitate symptoms of
psychiatric disorders.

4.1. Methodological considerations

The lack of sufficient power to detect experimental effects is an
emerging issue in preclinical literature (Bonapersona et al., 2018) that
seriously hampers research interpretation (Button et al., 2013). As a
consequence, results from single-studies are useful for hypotheses
generation but do require replication. The ability to recreate experi-
ments (replication) and/or to reach similar conclusions via different
methods (reproducibility) are fundamental aspects of scientific inquiry.
Underpowered research undermines both aspects, as the conclusions
drawn are likely to be uncertain (Ioannidis, 2005).

Indeed, in our study the majority of comparisons (68.5%) was not-
significant at a systematic review level, but the effects were significant
when analyzed meta-analytically. In addition to study preregistration,
realistic power calculations, and testing by several independent teams
(Button et al., 2013; Ioannidis, 2005), statistical tools such as meta-
analyses can therefore be very useful to substantiate conclusions from
animal data and translate them more reliably to patients (Hooijmans
and Ritskes-Hoitinga, 2013). Furthermore, our study showcases how
“negative” research is also fruitful, and reminds how (lack of) formal
statistical significance (typically p-value<0.05) must not be a decisive
requirement to publish research.

In this project, we intertwine these concepts with state-of the-art
statistical methodology, adopting an approach never used in preclinical
studies. Firstly, our meta-analysis was built with a 3-level model
(Cheung, 2014), which allows for a more robust estimation of the ef-
fects by accounting for the dependency of same-animal’s data
(Bonapersona et al., 2018; Rosenthal, 1991). Secondly, a leading
strength of preclinical meta-analyses is the systematic exploration of
heterogeneity (Hooijmans and Ritskes-Hoitinga, 2013). Instead of the
standard subgroup/meta-regression approach, we opted for an ex-
ploratory analysis using MetaForest (van Lissa, 2018a), a newly de-
veloped technique that ranks moderators’ importance by adapting the
machine learning algorithm random forests to summary-statistics’ data.
A major strength of MetaForest is its robustness to overfitting, and its
ability to accommodate non-linear effects (van Lissa, 2018a), as shown
by the impact of ELA duration on effect sizes.

Thirdly, we extensively coded potential (biological and experi-
mental) moderators. Although possibly relevant moderators were not
included due to insufficient reporting (e.g. temperature during se-
paration (Pryce et al., 2003), cross-fostering (Penke et al., 2001), cul-
ling (Veenema et al., 2007)), this dataset treasures relevant information
for future experimental designs. To facilitate others to exploit this da-
taset, we created MaBapp (https://osf.io/ra947/), a web-based app

with a user-friendly interface through which anyone can perform his/
her own meta-analysis on the topic of ELA and behavioral domains.
Within the app, a wide variety of features can be selected, such as ELA
models and their components (e.g. type, timing, predictability), beha-
vioral tests used, age and sex of the animals, etc. Based on the char-
acteristics indicated, the app reports forest, funnel and cumulative
plots, as well as a list of relevant publications. The app is a useful re-
source, which can be used to i) comprehensively retrieve relevant
publications, ii) explore the literature at an individual researcher’s
needs’ level, iii) define new hypotheses, iv) evaluate publication bias
and replicability of findings, and v) estimate realistic effect sizes on
which to ground future research.

The validity of our conclusions is not limited to the robustness of the
models used but grounded on the vast primary evidence included
(> 200 publications). As a consequence, accidental findings have little
weight. Although the methods and approach we adopt are rigorous and
reasonably conservative, the quality of the conclusions critically de-
pends on the quality of the studies and data included. From our qua-
litative bias assessment, the risk for potential bias was lower than
previously reported in Neuroscience (Antonic et al., 2013; Bonapersona
et al., 2018; Egan et al., 2011); yet, only ∼20% of studies stated being
blinded as well as randomized. Furthermore, any meta-analytic dataset
is burdened with missing data, due to publication bias or to the pre-
ferred investigation of certain factors over others (Cooper et al., 2009).
Our models did display evidence of publication bias, yet they were
robust to several corrections and sensitivity analyses. Although we
cannot fully exclude that the above-mentioned limitations may affect
the outcome, it is unlikely that the conclusions drawn would be sub-
stantially impacted. Nevertheless, we have attempted to address these
methodological issues as comprehensively as possible in our analysis.

4.2. Considerations on ELA models

ELA encompasses a wide range of pre- and post-natal experiences,
but we here focused on altered maternal care (relative to care provided
by undisturbed, standard-housed dams). Although this definition limits
the generalizability of the conclusions, it is essential to enable the
comparability (thus meaningful quantitative synthesis) of the studies
incorporated in our meta-analysis.

The behavioral changes we report are presumably a convergent
phenotype of distinct, model-dependent, underlying biological me-
chanisms. An organism’s development is not linear nor simultaneous for
every component, but it occurs in critical periods (Hensch, 2005). For
example, postnatal day (P)2-P5 is a sensitive period for the maturation
of the adrenal glands (Levine and Lewis, 1959), P9 for prepulse in-
hibition (Ellenbroek and Cools, 2002), and ∼P10 for adrenal respon-
siveness (Witek-Janusek, 1988). Furthermore, higher cognitive func-
tions develop as multistage processes of sequential nature (Hensch,
2005). Accordingly, ELA may particularly disrupt the development of
competences whose critical period is active during the time of stress,
thereby heightening the variability of the ELA phenotype.

Evidence supporting these notions derives from studies using a
single 24 h maternal deprivation paradigm, which show a persistent yet
paradoxical hypo- and hyper- responsiveness of juvenile ACTH if de-
privation occurred at P3 or P11 respectively (Van Oers et al., 1998).
Thus, while meta-analyses may serve to discern patterns among vast
amounts of studies, exploratory studies experimentally dissecting
components of ELA in rodents remain indispensable for addressing the
underlying mechanisms of action of ELA to the brain (for example:
(Peña et al., 2017; Singh-Taylor et al., 2018)).

4.2.1. Suggestions for future ELA research
Given that the criteria for construct and face validity of ELA models

have been met (Suchecki, 2018), our results provide a practical fra-
mework where researchers can anticipate the ELA effect on cognitive
outcomes and/or build their own ELA model accordingly. Our
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exploratory analysis gives insights in the suitability of the models and
tests to choose, depending on the question.

Based on this analysis, we tentatively conclude that i) rats seem
overall more sensitive to ELA-induced changes than mice. Moreover, ii)
elements such as transporting pregnant dams appear to amplify the
effects of ELA. Such stressful life events may have substantial impact on
the system, in line with the multiple-hit theory (Daskalakis et al., 2013).
As evident from Fig. 3, iii) a duration of ∼10 days ELA produced the
most robust phenotype. Finally, iv) the limited bedding and nesting
(LBN) model produced the largest effect sizes when compared to se-
paration/deprivation models. Given this reliability, in combination
with the feasibility and translational validity, LBN seems an influential
paradigm to investigate the mechanisms of chronic stress early in life
(Rice et al., 2008; Walker et al., 2017).

According to the rank of moderators by MetaForest, publication
year, age of testing, strain and behavioral test used account for a sub-
stantial portion of the variance. The impact of publication year has
previously been reported in several areas of biology (Jennions and
Møller, 2002), and could be the result of the Winner’s curse (Button
et al., 2013). In brief, the first published studies on any topic are likely
to be biased towards extreme effect sizes. This bias tends to disappear as
evidence accumulates, thereby providing an explanation for the influ-
ence of publication year in our dataset.

Conversely, age of testing, strain and behavioral test used did not
show any theory-interpretable pattern. One explanation could be that
there is no preferable age/strain/test, but that the different elements of
the study design interact with one another. For example, the open field
(OF) and the elevated plus maze (EPM) are behavioral tests used to
assess anxiety-like behavior. Conceptually, they both aim to create a
conflict between the rodents’ exploratory drive and their fear of ex-
posed spaces (Wigger and Neumann, 1999). With MaBapp, we can
explore the confidence interval of these two tests following the LBN
model (OF: Hedge’sG[95%CI]= 0.12[-0.21, 0.44]; EPM: Hedge’-
sG[95%CI]= 0.49[0.22, 0.75]) or maternal separation (OF: Hedge’-
sG[95%CI]= 0.32[0.14, 0.5]; EPM: Hedge’sG[95%CI]= 0.4[0.15,
0.65]). Tentatively, the EPM appears more sensitive than the OF to
represent the effects of the LBN model, while rather similar when in-
vestigating the effects of maternal separation. Similarly, we can explore
the interaction between these tests and any specific strain. For example,
C57Bl/6 mice appear more sensitive to the EPM (Hedge’sG[95%CI]=
0.38[0.07,0.68]) than to the OF (Hedge’sG[95%CI]= 0.00[-0.27,
0.28]), independent of the ELA model used. These examples illustrate
the complexity of these interactions. Unfortunately, the information so
far available is insufficient to conduct meaningful quantitative analyses.
Nonetheless, researchers can now make more informed decision on
experimental designs by exploring with MaBapp (feasible) possibilities
that fit their needs. Alternatively, we refer researchers to primary
publications in which the effects of age (Oitzl et al., 2000) or strain
(Millstein and Holmes, 2007) were experimentally investigated.

To reduce variability and improve comparability across studies, ELA
should be preferably applied with consistent protocols (S1.5), unless
manipulation of particular aspect(s) of the model is under investigation.
Clearly, the importance of individual variation is a factor that should
not be overlooked. In our analysis, the paradigm of licking-and-
grooming – which is not experimentally induced but based on natural
variation in maternal care – consistently evoked the largest effect sizes,
although these were based on fewer publications than the other models.

4.3. Translational potential

ELA is one of the most consistent environmental risk factors for the
development of psychopathology (Teicher et al., 2016). Although the
effects of ELA on the brain can be adaptive, they may evolve into
dysfunctional elements in genetically predisposed individuals (Teicher
et al., 2016). Behavioral performance in specific cognitive domains
seems to be a relevant intermediate phenotype (Ammerman et al.,

1986), as it may mediate the effects of ELA on psychopathology. For
example, in post-traumatic stress disorder, enhanced memory of
stressful events becomes pathological after a later-life trauma (Liberzon
and Abelson, 2016).

In humans, the concept of ELA is extremely varied. Even when
considering solely maltreatment, this can be characterized by repeated
or sustained episodes of various forms of neglect and abuse (Teicher
and Samson, 2013). Furthermore, the environmental variation is in-
tertwined with socio-economic status, complex relations (e.g. family,
neighborhoods, peers, school), and intergenerational transmissions
(Teicher and Samson, 2013). Rodent paradigms do not capture the
complexity of human ELA, but they can model specific aspects of the
human variability in a well-controlled setting. For example, LBN is
based on the erratic and unpredictability of maternal care (Baram et al.,
2012; Rice et al., 2008; Walker et al., 2017) that has been established as
a hallmark in childhood abuse situations (Whipple and Webster-
Stratton, 1991). Similarly, cognitive performance (e.g. memory after
stressful learning) can be modelled in rodents, albeit with clear re-
straints: the tasks are obviously different, should be interpreted in re-
lation to the animal’s normal behavior, and cannot investigate a range
of outcomes such as verbal abilities, critical for social interaction and
psychopathology (Cohen, 2001), also in relation to ELA (Miller et al.,
2018).

Explaining how ELA increases psychopathology risk requires the
understanding of its complex interplay with other susceptibility/resi-
lience factors, such as genetic background and later life stressors (Bale
et al., 2010). This mechanistic investigation is difficult to achieve in
humans, where limited material, difficulty of prospective and long-
itudinal designs, complexity and lack of control over the environment
and genetic variation hamper causal inferences of ELA to later life
cognitive performance. To this end, animal studies can be of con-
siderable added value (Walker et al., 2017).

An interesting issue in evaluating the translational potential of ELA
rodent models is sex differences. In our analysis, males showed larger
effect sizes (albeit in the same direction) than females to the effects of
ELA on all outcomes, thereby confirming previous preclinical literature
(Loi et al., 2017). Conversely, in clinical populations, females appear
more sensitive to childhood trauma as well as to the development of
stress-related psychopathologies (Walker et al., 2017), although sex
differences depend on the type of disorder (Riecher-Rössler, 2017). A
plausible biological explanation for this discrepancy is the develop-
mental timing during which stress occurs. Although humans and ro-
dents are altricial species, the brain of newborn rats corresponds
roughly to 23/24-week old human fetuses (Plotsky et al., 2000). In-
terestingly, the sensitivity to adversities in the last trimester of gestation
in humans has been suggested to affect males more than females (Bale
and Epperson, 2015). Experimentally manipulating the timing of ELA
exposure may further elucidate ‘female’ stress-sensitive periods. It
therefore remains to be established whether the effects of ELA on
cognitive domains are truly different between sexes. Our analyses
suggest that the effects may not be sexually dysmorphic in nature but
may result from the experimental designs used. For example, ELA
models and behavioral tests were originally developed for males: ma-
ternal care shows clear sex-specific differences (Oomen et al., 2009; van
Hasselt et al., 2012), and females perform poorly in behavior tests such
as object recognition and object-in-location (Loi et al., 2017; Walker
et al., 2017). Consequently these paradigms may not be sensitive en-
ough for a female’s phenotype. Indeed, the recorded effects were in the
same direction across sexes, and MetaForest attributed to sex a rela-
tively modest variable importance. Our results showcase the necessity
to study sex as a biological variable (Bale and Epperson, 2015;
McCarthy, 2016), which requires the development of tests and models
that are female-specific. This step is required for a more meaningful
comparison between rodent and humans, and a delineation of the un-
derlying sex-dependent mechanisms of ELA.

Despite these drawbacks, our meta-analysis confirms and
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importantly extends standing hypotheses on ELA based on exploratory
studies. To aid future investigations in this field, we provide a online
tool to evaluate existing literature and direct the experimental design of
new studies.

Acknowledgements

We would like to thank Lara Oblak for contributing to the extraction
of statistical information and Ruth Damsteegt for discussions on beha-
vioral interpretation. We gratefully acknowledge Prof. Herbert Hoijtink
for feedback on the methods, and Prof. Rien van IJzendoorn and Prof.
Marianne Bakermans for helpful discussions.

A preprint of the study is available on biorXiv, doi: https://doi.org/
10.1101/521245

V.B., J.K., R.vdV., M.J. and R.A.S. were supported by the
Consortium on Individual Development (CID), which is funded through
the Gravitation program of the Dutch Ministry of Education, Culture,
and Science and Netherlands Organization for Scientific Research
(NWO grant number 024.001.003). R.A.S. was supported Netherlands
Organization for Scientific Research (NWO Veni grant 863.13.02).
C.J.V.L. reported no biomedical financial interests or potential conflicts
of interest. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript

Appendix A. Supplementary methods and results

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.neubiorev.2019.04.
021.

References

Aarts, E., Verhage, M., Veenvliet, J.V., Dolan, C.V., van der Sluis, S., 2014. A solution to
dependency: using multilevel analysis to accommodate nested data. Nat. Neurosci.
17, 491–496. https://doi.org/10.1038/nn.3648.

Ammerman, R.T., Cassisi, J.E., Hersen, M., Van Hasselt, V.B., 1986. Consequences of
physical abuse and neglect in children. Clin. Psychol. Rev. 6, 291–310. https://doi.
org/10.1016/0272-7358(86)90003-6.

Antonic, A., Sena, E.S., Lees, J.S., Wills, T.E., Skeers, P., Batchelor, P.E., Macleod, M.R.,
Howells, D.W., 2013. Stem cell transplantation in traumatic spinal cord injury: a
systematic review and meta-analysis of animal studies. PLoS Biol. 11. https://doi.
org/10.1371/journal.pbio.1001738.

Assink, M., Wibbelink, C.J.M., 2016. Fitting three-level meta-analytic models in R: a step-
by-step tutorial. Quant. Methods Psychol. 12, 154–174. https://doi.org/10.20982/
tqmp.12.3.p154.

Bale, T.L., Epperson, C.N., 2015. Sex differences and stress across the lifespan. Nat.
Neurosci. 18, 1413–1420. https://doi.org/10.1038/nn.4112.

Bale, T.L., Baram, T.Z., Brown, A.S., Goldstein, J.M., Insel, T.R., McCarthy, M.M.,
Nemeroff, C.B., Reyes, T.M., Simerly, R.B., Susser, E.S., Nestler, E.J., 2010. Early life
programming and neurodevelopmental disorders. Biol. Psychiatry 68, 314–319.
https://doi.org/10.1016/j.biopsych.2010.05.028.

Baram, T.Z., Davis, E.P., Obenaus, A., Sandman, C.A., Small, S.L., Solodkin, A., Stern, H.,
2012. Fragmentation and unpredictability of early-life experience in mental dis-
orders. Am. J. Psychiatry 169, 907–915. https://doi.org/10.1176/appi.ajp.2012.
11091347.

Benetti, F., Mello, P.B., Bonini, J.S., Monteiro, S., Cammarota, M., Izquierdo, I., 2009.
Early postnatal maternal deprivation in rats induces memory deficits in adult life that
can be reversed by donepezil and galantamine. Int. J. Dev. Neurosci. 27, 59–64.
https://doi.org/10.1016/j.ijdevneu.2008.09.200.

Bonapersona, V., Joels, M., Sarabdjitsingh, R.A., 2018. Effects of early life stress on
biochemical indicators of the dopaminergic system: a 3 level meta-analysis of rodent
studies. Neurosci. Biobehav. Rev. 95, 1–16. https://doi.org/10.1016/j.neubiorev.
2018.09.003.

Bowlby, J., 1951. Maternal Care and Mental Health. World Heal. Organ. Monogr. Ser.
Bredy, T.W., Humpartzoomian, R.A., Cain, D.P., Meaney, M.J., 2003. Partial reversal of

the effect of maternal care on cognitive function through environmental enrichment.
Neuroscience 118, 571–576. https://doi.org/10.1016/S0306-4522(02)00918-1.

Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J.,
Munafò, M.R., 2013. Power failure: why small sample size undermines the reliability
of neuroscience. Nat. Rev. Neurosci. 14, 365–376. https://doi.org/10.1038/nrn3475.

Champagne, D.L., Bagot, R.C., van Hasselt, F., Ramakers, G., Meaney, M.J., de Kloet, E.R.,
Joels, M., Krugers, H., 2008. Maternal care and hippocampal plasticity: evidence for
experience-dependent structural plasticity, altered synaptic functioning, and differ-
ential responsiveness to glucocorticoids and stress. J. Neurosci. 28, 6037–6045.
https://doi.org/10.1523/JNEUROSCI.0526-08.2008.

Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J., 2017. Shiny: Web Application

Framework for R.Shiny: Web Application Framework for R.
Cheung, M.W.L., 2014. Modeling dependent effect sizes with three-level meta-analyses: a

structural equation modeling approach. Psychol. Methods 19, 211–229. https://doi.
org/10.1037/a0032968.

Cohen, N., 2001. Language Impairment and Psychopathology in Infants, Children, and
Adolescnets. Sage Publications.

Cooper, H., Hedges, L.V., Valentine, J.C., 2009. The Handbook of Research Synthesis and
Meta-Analysis, 2nd edition. Russel Sage Foundation 2nd ed.

Daskalakis, N.P., Bagot, R.C., Parker, K.J., Vinkers, C.H., de Kloet, E.R.R., N.P., D., R.C.,
B., K.J., P., C.H., V., E.R., de K, 2013. The three-hit concept of vulnerability and
resilience: toward understanding adaptation to early-life adversity outcome.
Psychoneuroendocrinology 38, 1858–1873. LK- http://sfx.library.uu.nl/
utrecht?sid=EMBASE&issn=03064530&
id=doi:10.1016%2Fj.psyneuen.2013.06.008&atitle=The+three-hit+concept+of
+vulnerability+and+resilience%3A+Toward+understanding+adaptation+to
+early-life+adversity+outcome&stitle=Psychoneuroendocrinology&
title=Psychoneuroendocrinology&volume=38&issue=9&spage=1858&
epage=1873&aulast=Daskalakis&aufirst=Nikolaos+P.&auinit=N.P.&
aufull=Daskalakis+N.P.&coden=PSYCD&isbn=&pages=1858-1873&date=2013
&auinit1=N&auinitm. https://doi.org/10.1016/j.psyneuen.2013.06.008.

De Vries, R.B.M., Hooijmans, C.R., Langendam, M.W., Leenaars, M., Ritskes-Hoitinga, M.,
Wever, K.E., 2015. A protocol format for the preparation, registration and publication
of systematic reviews of animal intervention studies. Evid.-Based Preclin. Med. 1,
1–9. https://doi.org/10.1002/ebm2.7.

Duval, S., Tweedie, R., 2000. Trim and fill: a simple funnel-plot-based method of testing
and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463. https://
doi.org/10.1111/j.0006-341X.2000.00455.x.

Egan, K.J., Sena, E.S., Vesterinen, H.M., 2011. Making the most of animal data - im-
proving the prospect of success in pragmatic trials in the neurosciences. Trials
12https://doi.org/10.1186/1745-6215-12-S1-A102. no pagination.

Ellenbroek, B.A., Cools, A.R., 2002. Early maternal deprivation and prepulse inhibition:
the role of the postdeprivation environment. Pharmacol. Biochem. Behav. 73,
177–184. https://doi.org/10.1016/S0091-3057(02)00794-3.

Green, M.F., Horan, W.P., Lee, J., 2015. Social cognition in schizophrenia. Nat. Rev.
Neurosci. 16, 620–631. https://doi.org/10.1038/nrn4005.

Harlow, H., Harlow, M., 1965. The affectional systems. In: Schrier, A., Harlow, H.,
Stollnitz, F. (Eds.), Behavior of Nonhuman Primates. Academic Press, New York, pp.
287–334.

Hastie, T., Friedman, J., Tibshirani, R., 2009. The Elements of Statistical Learning: Data
Mining, Inference and Prediction, Second Edi. Ed. Springer Series in Statistics.

Hensch, T.K., 2005. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci.
6, 877–888. https://doi.org/10.1038/nrn1787.

Hofer, M.A., 1978. Hidden regulatory processes in early social relationships. In: Bateson,
P., Klopfer, P. (Eds.), Perspectives in Ethology: Social Behavior. Springer, Boston, pp.
135–201.

Hooijmans, C.R., Ritskes-Hoitinga, M., 2013. Progress in using systematic reviews of
animal studies to improve translational research. PLoS Med. 10, 1–4. https://doi.org/
10.1371/journal.pmed.1001482.

Hooijmans, C.R., Rovers, M.M., Vries, R.B.M.De, Leenaars, M., Ritskes-hoitinga, M.,
Langendam, M.W., 2014. SYRCLE’ s risk of bias tool for animal studies. BMC Med.
Res. Methodol. 14, 1–9. https://doi.org/10.1186/1471-2288-14-43.

Ioannidis, J.P.A., 2005. Why most published research findings are false. PLoS Med. 2,
e124. https://doi.org/10.1371/journal.pmed.0020124.

Ivy, A.S., Rex, C.S., Chen, Y., Dube, C., Maras, P.M., Grigoriadis, D.E., Gall, C.M., Lynch,
G., Baram, T.Z., 2010. Hippocampal dysfunction and cognitive impairments pro-
voked by chronic early-life stress involve excessive activation of CRH receptors. J.
Neurosci. 30, 13005–13015. https://doi.org/10.1523/JNEUROSCI.1784-10.2010.

Jennions, M.D., Møller, A.P., 2002. Relationships fade with time: a meta-analysis of
temporal trends in publication in ecology and evolution. Proc. R. Soc. B Biol. Sci. 269,
43–48. https://doi.org/10.1098/rspb.2001.1832.

Kanatsou, S., Karst, H., Kortesidou, D., van den Akker, R.A., den Blaauwen, J., Harris,
A.P., Seckl, J.R., Krugers, H.J., Joels, M., S., K, H., K, D., K., R.A, V.D.A., J, den B.,
A.P, H., J.R, S., H.J, K., M., J, 2017. Overexpression of mineralocorticoid receptors in
the mouse forebrain partly alleviates the effects of chronic early life stress on spatial
memory, neurogenesis and synaptic function in the dentate gyrus. Front. Cell.
Neurosci. 11, 1–13. https://doi.org/10.3389/fncel.2017.00132.

Karp, N.A., 2018. Reproducible preclinical research—Is embracing variability the an-
swer? PLoS Biol. 16, 1–5. https://doi.org/10.1371/journal.pbio.2005413.

Kessler, R.C., McLaughlin, K.A., Green, J.G., Gruber, M.J., Sampson, N.A., Zaslavsky,
A.M., Aguilar-Gaxiola, S., Alhamzawi, A.O., Alonso, J., Angermeyer, M., Benjet, C.,
Bromet, E., Chatterji, S., de Girolamo, G., Demyttenaere, K., Fayyad, J., Florescu, S.,
Gal, G., Gureje, O., Haro, J.M., Hu, C.-Y., Karam, E.G., Kawakami, N., Lee, S., Lépine,
J.-P., Ormel, J., Posada-Villa, J., Sagar, R., Tsang, A., Ustün, T.B., Vassilev, S., Viana,
M.C., Williams, D.R., 2010. Childhood adversities and adult psychopathology in the
WHO world mental health surveys. Br. J. Psychiatry 197, 378–385. https://doi.org/
10.1192/bjp.bp.110.080499.

Knop, J., Joëls, M., van der Veen, R., 2017. The added value of rodent models in studying
parental influence on offspring development: opportunities, limitations and future
perspectives. Curr. Opin. Psychol. 15, 174–181. https://doi.org/10.1016/j.copsyc.
2017.02.030.

Latour, R., 2006. A Ruler for Windows [WWW Document]. URL https://a-ruler-for-
windows.en.softonic.com/.

Leenaars, M., Hooijmans, C.R., van Veggel, N., ter Riet, G., Leeflang, M., Hooft, L., van der
Wilt, G.J., Tillema, a., Ritskes-Hoitinga, M., 2012. A step-by-step guide to system-
atically identify all relevant animal studies. Lab. Anim. 46, 24–31. https://doi.org/
10.1258/la.2011.011087.

V. Bonapersona, et al. Neuroscience and Biobehavioral Reviews 102 (2019) 299–307

306

https://doi.org/10.1101/521245
https://doi.org/10.1101/521245
https://doi.org/10.1016/j.neubiorev.2019.04.021
https://doi.org/10.1016/j.neubiorev.2019.04.021
https://doi.org/10.1038/nn.3648
https://doi.org/10.1016/0272-7358(86)90003-6
https://doi.org/10.1016/0272-7358(86)90003-6
https://doi.org/10.1371/journal.pbio.1001738
https://doi.org/10.1371/journal.pbio.1001738
https://doi.org/10.20982/tqmp.12.3.p154
https://doi.org/10.20982/tqmp.12.3.p154
https://doi.org/10.1038/nn.4112
https://doi.org/10.1016/j.biopsych.2010.05.028
https://doi.org/10.1176/appi.ajp.2012.11091347
https://doi.org/10.1176/appi.ajp.2012.11091347
https://doi.org/10.1016/j.ijdevneu.2008.09.200
https://doi.org/10.1016/j.neubiorev.2018.09.003
https://doi.org/10.1016/j.neubiorev.2018.09.003
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0050
https://doi.org/10.1016/S0306-4522(02)00918-1
https://doi.org/10.1038/nrn3475
https://doi.org/10.1523/JNEUROSCI.0526-08.2008
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0070
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0070
https://doi.org/10.1037/a0032968
https://doi.org/10.1037/a0032968
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0080
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0080
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0085
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0085
https://doi.org/10.1016/j.psyneuen.2013.06.008
https://doi.org/10.1002/ebm2.7
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1186/1745-6215-12-S1-A102
https://doi.org/10.1016/S0091-3057(02)00794-3
https://doi.org/10.1038/nrn4005
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0120
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0120
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0120
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0125
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0125
https://doi.org/10.1038/nrn1787
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0135
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0135
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0135
https://doi.org/10.1371/journal.pmed.1001482
https://doi.org/10.1371/journal.pmed.1001482
https://doi.org/10.1186/1471-2288-14-43
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1523/JNEUROSCI.1784-10.2010
https://doi.org/10.1098/rspb.2001.1832
https://doi.org/10.3389/fncel.2017.00132
https://doi.org/10.1371/journal.pbio.2005413
https://doi.org/10.1192/bjp.bp.110.080499
https://doi.org/10.1192/bjp.bp.110.080499
https://doi.org/10.1016/j.copsyc.2017.02.030
https://doi.org/10.1016/j.copsyc.2017.02.030
https://a-ruler-for-windows.en.softonic.com/
https://a-ruler-for-windows.en.softonic.com/
https://doi.org/10.1258/la.2011.011087
https://doi.org/10.1258/la.2011.011087


Levine, S., 2005. Developmental determinants of sensitivity and resistance to stress.
Psychoneuroendocrinology 30, 939–946. https://doi.org/10.1016/j.psyneuen.2005.
03.013.

Levine, S., Lewis, G.W., 1959. Critical period for effects of infantile experience on ma-
turation of stress response. Science 80 (129), 42–43. https://doi.org/10.1126/
science.129.3340.42.

Liberzon, I., Abelson, J.L., 2016. Context processing and the neurobiology of post-trau-
matic stress disorder. Neuron 92, 14–30. https://doi.org/10.1016/j.neuron.2016.09.
039.

Loi, M., Mossink, J.C.L., Meerhoff, G.F., Den Blaauwen, J.L., Lucassen, P.J., Joëls, M.,
2017. Effects of early-life stress on cognitive function and hippocampal structure in
female rodents. Neuroscience 342, 101–119. https://doi.org/10.1016/j.
neuroscience.2015.08.024.

Masson, M., East-Richard, C., Cellard, C., 2016. A meta-analysis on the impact of psy-
chiatric disorders and maltreatment on cognition. Neuropsychology 30, 143–156.
https://doi.org/10.1037/neu0000228.

McCarthy, M.M., 2016. Multifaceted origins of sex differences in the brain. Philos. Trans.
R. Soc. B Biol. Sci. 371. https://doi.org/10.1098/rstb.2015.0106.

Meaney, M.J., 2001. Maternal care, gene expression, and the transmission of individual
differences in stress reactivity across generations. Annu. Rev. Neurosci. 24,
1161–1192. https://doi.org/10.1146/annurev.neuro.24.1.1161.

Mello, P.B., Benetti, F., Cammarota, M., Izquierdo, I., 2009. Physical exercise can reverse
the deficit in fear memory induced by maternal deprivation. Neurobiol. Learn. Mem.
92, 364–369. https://doi.org/10.1016/j.nlm.2009.04.004.

Millan, M.J., Agid, Y., Brüne, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., Connor, R.,
Davis, S., Deakin, B., Derubeis, R.J., Dubois, B., Geyer, M.A., Goodwin, G.M.,
Gorwood, P., Jay, T.M., Joëls, M., Mansuy, I.M., Meyer-Lindenberg, A., Murphy, D.,
Rolls, E., Saletu, B., Spedding, M., Sweeney, J., Whittington, M., Young, L.J., 2012.
Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest
for improved therapy. Nat. Rev. Drug Discov. 11, 141–168. https://doi.org/10.1038/
nrd3628.

Miller, A.B., Sheridan, M.A., Hanson, J.L., McLaughlin, K.A., Bates, J.E., Lansford, J.E.,
Pettit, G.S., Dodge, K.A., 2018. Dimensions of deprivation and threat, psycho-
pathology, and potential mediators: a multi-year longitudinal analysis. J. Abnorm.
Psychol. 127, 160–170. https://doi.org/10.1037/abn0000331.

Millstein, R.A., Holmes, A., 2007. Effects of repeated maternal separation on anxiety- and
depression-related phenotypes in different mouse strains. Neurosci. Biobehav. Rev.
31, 3–17. https://doi.org/10.1016/j.neubiorev.2006.05.003.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Altman, D., Antes, G., Atkins, D.,
Barbour, V., Barrowman, N., Berlin, J.A., Clark, J., Clarke, M., Cook, D., D’Amico, R.,
Deeks, J.J., Devereaux, P.J., Dickersin, K., Egger, M., Ernst, E., Gøtzsche, P.C.,
Grimshaw, J., Guyatt, G., Higgins, J., Ioannidis, J.P.A., Kleijnen, J., Lang, T., Magrini,
N., McNamee, D., Moja, L., Mulrow, C., Napoli, M., Oxman, A., Pham, B., Rennie, D.,
Sampson, M., Schulz, K.F., Shekelle, P.G., Tovey, D., Tugwell, P., 2009. Preferred
reporting items for systematic reviews and meta-analyses: the PRISMA statement.
PLoS Med. 6. https://doi.org/10.1371/journal.pmed.1000097.

Monfils, M.H., Holmes, E.A., 2018. Memory boundaries: opening a window inspired by
reconsolidation to treat anxiety, trauma-related, and addiction disorders. The Lancet
Psychiatry 0366. https://doi.org/10.1016/S2215-0366(18)30270-0.

Nelson, C.A., Zeanah, C.H., Fox, N.A., Marshall, P.J., Smyke, A.T., Guthrie, D., 2007.
Cognitive recovery in socially deprived Young children: the Bucharest early inter-
vention project. Science 318 (80), 1937–1940. https://doi.org/10.1126/science.
1143921.

Oitzl, M., Workel, J., Fluttert, M., Frösch, F., Ronde Kloet, E., 2000. Maternal deprivation
affects behaviour from youth to senescence: amplication of individual differences in
spatial learning and memory in senescent Brown Norway rats. Eur. J. Neurosci. 12,
3771–3780. https://doi.org/10.1046/j.1460-9568.2000.00231.x.

Oomen, C.A., Girardi, C.E.N., Cahyadi, R., Verbeek, E.C., Krugers, H., Joëls, M., Lucassen,
P.J., 2009. Opposite effects of early maternal deprivation on neurogenesis in male
versus female rats. PLoS One 4. https://doi.org/10.1371/journal.pone.0003675.

Pechtel, P., Pizzagalli, D.A., 2011. Effects of early life stress on cognitive and affective
function: an integrated review of human literature. Psychopharmacology (Berl.) 214,
55–70. https://doi.org/10.1007/s00213-010-2009-2.

Peña, C.J., Kronman, H.G., Walker, D.M., Cates, H.M., Rosemary, C., Purushothaman, I.,
Issler, O., Loh, Y.E., Leong, T., Kiraly, D., Goodman, E., Neve, R.L., Shen, L., Nestler,
E.J., 2017. Early life stress confers lifelong stress scsceptibility in mice via ventral
tegmental area OTX2. Science 1 (80), 1185–1188. https://doi.org/10.1126/science.
aan4491.

Penke, Z., Felszeghy, K., Fernette, B., Sage, D., Nyakas, C., Burlet, A., 2001. Postnatal
maternal deprivation produces long-lasting modifications of the stress response,
feeding and stress-related behaviour in the rat. Eur. J. Neurosci. 14, 747–755.
https://doi.org/10.1046/j.0953-816x.2001.01691.x.

Plotsky, P., Bradley, C., Anand, K., 2000. Behavioral and neuroendocrine consequences of
neonatal stress. Pain Res. Clin. Manag. 10, 77–100.

Pryce, C.R., Bettschen, D., Nanz-Bahr, N.I., Feldon, J., 2003. Comparison of the effects of
early handling and early deprivation on conditioned stimulus, context, and spatial
learning and memory in adult rats. Behav. Neurosci. 117, 883–893. https://doi.org/
10.1037/0735-7044.117.5.883.

R Core Team, 2015. R: a Language And Environment For Statistical Computing. R Found.
Stat. Comput.

Rice, C.J., Sandman, C.A., Lenjavi, M.R., Baram, T.Z., 2008. A novel mouse model for
acute and long-lasting consequences of early life stress. Endocrinology 149,
4892–4900. https://doi.org/10.1210/en.2008-0633.

Riecher-Rössler, A., 2017. Sex and gender differences in mental disorders. Lancet
Psychiatry 4, 8–9. https://doi.org/10.1016/S2215-0366(16)30348-0.

Rosenthal, R., 1979. The file drawer problem and tolerance for null results. Psychol. Bull.
86, 638–641. https://doi.org/10.1037/0033-2909.86.3.638.

Rosenthal, R., 1991. Meta-Analytic Procedures for Social Research. Sage.
Singh-Taylor, A., Molet, J., Jiang, S., Korosi, A., Bolton, J.L., Noam, Y., Simeone, K., Cope,

J., Chen, Y., Mortazavi, A., Baram, T.Z., 2018. NRSF-dependent epigenetic mechan-
isms contribute to programming of stress-sensitive neurons by neonatal experience,
promoting resilience. Mol. Psychiatry 23, 648–657. https://doi.org/10.1038/mp.
2016.240.

Suchecki, D., 2018. Maternal regulation of the infant’s hypothalamic-pituitary-adrenal
axis stress response: seymour ‘Gig’ levine’s legacy to neuroendocrinology. J.
Neuroendocrinol. 30, 1–17. https://doi.org/10.1111/jne.12610.

Suor, J.H., Sturge-Apple, M.L., Davies, P.T., Cicchetti, D., Manning, L.G., 2015. Tracing
differential pathways of risk: associations among family adversity, cortisol, and
cognitive functioning in childhood. Child Dev. 86, 1142–1158. https://doi.org/10.
1111/cdev.12376.

Teicher, M.H., Samson, J.A., 2013. Childhood maltreatment and psychopathology: a case
for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am.
J. Psychiatry 170, 1114–1133. https://doi.org/10.1176/appi.ajp.2013.12070957.

Teicher, M.H., Samson, J.A., Anderson, C.M., Ohashi, K., 2016. The effects of childhood
maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 17,
652–666. https://doi.org/10.1038/nrn.2016.111.

van Hasselt, F.N., Boudewijns, Z.S.R.M., Van Der Knaap, N.J.F., Krugers, H.J., Joëls, M.,
2012. Maternal care received by individual pups correlates with adult CA1 dendritic
morphology and synaptic plasticity in a sex-dependent manner. J. Neuroendocrinol.
24, 331–340. https://doi.org/10.1111/j.1365-2826.2011.02233.x.

van Lissa, C.J., 2018a. Metaforest: exploring Heterogeneity In Meta-Analysis Using
Random Forests. PsyArXivhttps://doi.org/10.31234/osf.io/myg6s.

van Lissa, C.J., 2018b. Package ‘Metaforest.’ Cran.
Van Oers, H.Jj., De Kloet, E.R., Levine, S., 1998. Early vs. late maternal deprivation

differentially alters the endocrine and hypothalamic responses to stress. Dev. Brain
Res. 111, 245–252. https://doi.org/10.1016/S0165-3806(98)00143-6.

Vargas, T., Lam, P.H., Azis, M., Osborne, K.J., Lieberman, A., Mittal, V.A., 2018.
Childhood trauma and neurocognition in adults with psychotic disorders: a sys-
tematic review and meta-analysis. Schizophr. Bull. 1–14. https://doi.org/10.1093/
schbul/sby150.

Veenema, A.H., Bredewold, R., Neumann, I.D., 2007. Opposite effects of maternal se-
paration on intermale and maternal aggression in C57BL/6 mice: link to hypotha-
lamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology 32,
437–450. https://doi.org/10.1016/j.psyneuen.2007.02.008.

Vesterinen, H.M., Sena, E.S., Egan, K.J., Hirst, T.C., Churolov, L., Currie, G.L., Antonic, A.,
Howells, D.W., Macleod, M.R., 2014. Meta-analysis of data from animal studies: a
practical guide. J. Neurosci. Methods 221, 92–102. https://doi.org/10.1016/j.
jneumeth.2013.09.010.

Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor package. J. Stat.
Softw. 36, 1–48. https://doi.org/10.1103/PhysRevB.91.121108.

Viechtbauer, W., Cheung, M.W.-L., 2010. Outlier and influence diagnostics for meta-
analysis. Res. Synth. Methods 1, 112–125. https://doi.org/10.1002/jrsm.11.

Walker, A.K., Nakamura, T., Byrne, R.J., Naicker, S., Tynan, R.J., Hunter, M., Hodgson,
D.M., 2009. Neonatal lipopolysaccharide and adult stress exposure predisposes rats to
anxiety-like behaviour and blunted corticosterone responses: implications for the
double-hit hypothesis. Psychoneuroendocrinology 34, 1515–1525. https://doi.org/
10.1016/j.psyneuen.2009.05.010.

Walker, C.-D., Bath, K.G., Joels, M., Korosi, A., Larauche, M., Lucassen, P.J., Morris, M.J.,
Raineki, C., Roth, T.L., Sullivan, R.M., Taché, Y., Baram, T.Z., 2017. Chronic early life
stress induced by limited bedding and nesting (LBN) material in rodents: critical
considerations of methodology, outcomes and translational potential. Stress 0, 1–28.
https://doi.org/10.1080/10253890.2017.1343296.

Whipple, E.E., Webster-Stratton, C., 1991. The role of parental stress in physically abusive
families. Child Abuse Negl. 15, 279–291. https://doi.org/10.1016/0145-2134(91)
90072-L.

Wickham, H., François, R., Henry, L., Müller, K., RSudio, 2018. Package ‘dplyr’ Version
0.7.6.

Wigger, A., Neumann, I.D., 1999. Periodic maternal deprivation induces gender-depen-
dent alterations in behavioral and neuroendocrine responses to emotional stress in
adult rats. Physiol. Behav 66, 293–302. https://doi.org/10.1016/S0031-9384(98)
00300-X. LK - http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=00319384&
id=doi:10.1016%2FS0031-9384%2898%2900300-X&atitle=Periodic+maternal
+deprivation+induces+gender-dependent+alterations+in+behavioral+and
+neuroendocrine+responses+to+emotional+stress+in+adult+rats&
stitle=Physiol.+Behav.&title=Physiology+and+Behavior&volume=66&issue=2
&spage=293&epage=302&aulast=Wigger&aufirst=Alexandra&auinit=A.&
aufull=Wigger+A.&coden=PHBHA&isbn=&pages=293-302&date=1999&
auinit1=A&auinitm=.

Witek-Janusek, L., 1988. Pituitary-adrenal response to bacterial endotoxin in developing
rats. Am. J. Physiol. 255, E525–E530.

V. Bonapersona, et al. Neuroscience and Biobehavioral Reviews 102 (2019) 299–307

307

https://doi.org/10.1016/j.psyneuen.2005.03.013
https://doi.org/10.1016/j.psyneuen.2005.03.013
https://doi.org/10.1126/science.129.3340.42
https://doi.org/10.1126/science.129.3340.42
https://doi.org/10.1016/j.neuron.2016.09.039
https://doi.org/10.1016/j.neuron.2016.09.039
https://doi.org/10.1016/j.neuroscience.2015.08.024
https://doi.org/10.1016/j.neuroscience.2015.08.024
https://doi.org/10.1037/neu0000228
https://doi.org/10.1098/rstb.2015.0106
https://doi.org/10.1146/annurev.neuro.24.1.1161
https://doi.org/10.1016/j.nlm.2009.04.004
https://doi.org/10.1038/nrd3628
https://doi.org/10.1038/nrd3628
https://doi.org/10.1037/abn0000331
https://doi.org/10.1016/j.neubiorev.2006.05.003
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1016/S2215-0366(18)30270-0
https://doi.org/10.1126/science.1143921
https://doi.org/10.1126/science.1143921
https://doi.org/10.1046/j.1460-9568.2000.00231.x
https://doi.org/10.1371/journal.pone.0003675
https://doi.org/10.1007/s00213-010-2009-2
https://doi.org/10.1126/science.aan4491
https://doi.org/10.1126/science.aan4491
https://doi.org/10.1046/j.0953-816x.2001.01691.x
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0290
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0290
https://doi.org/10.1037/0735-7044.117.5.883
https://doi.org/10.1037/0735-7044.117.5.883
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0300
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0300
https://doi.org/10.1210/en.2008-0633
https://doi.org/10.1016/S2215-0366(16)30348-0
https://doi.org/10.1037/0033-2909.86.3.638
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0320
https://doi.org/10.1038/mp.2016.240
https://doi.org/10.1038/mp.2016.240
https://doi.org/10.1111/jne.12610
https://doi.org/10.1111/cdev.12376
https://doi.org/10.1111/cdev.12376
https://doi.org/10.1176/appi.ajp.2013.12070957
https://doi.org/10.1038/nrn.2016.111
https://doi.org/10.1111/j.1365-2826.2011.02233.x
https://doi.org/10.31234/osf.io/myg6s
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0360
https://doi.org/10.1016/S0165-3806(98)00143-6
https://doi.org/10.1093/schbul/sby150
https://doi.org/10.1093/schbul/sby150
https://doi.org/10.1016/j.psyneuen.2007.02.008
https://doi.org/10.1016/j.jneumeth.2013.09.010
https://doi.org/10.1016/j.jneumeth.2013.09.010
https://doi.org/10.1103/PhysRevB.91.121108
https://doi.org/10.1002/jrsm.11
https://doi.org/10.1016/j.psyneuen.2009.05.010
https://doi.org/10.1016/j.psyneuen.2009.05.010
https://doi.org/10.1080/10253890.2017.1343296
https://doi.org/10.1016/0145-2134(91)90072-L
https://doi.org/10.1016/0145-2134(91)90072-L
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0410
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0410
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
https://doi.org/10.1016/S0031-9384(98)00300-X
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0420
http://refhub.elsevier.com/S0149-7634(19)30168-X/sbref0420

	The behavioral phenotype of early life adversity: A 3-level meta-analysis of rodent studies
	Introduction
	Methods
	Search strategy
	Meta-analysis: research questions and statistical approach
	Hypothesis-testing
	Exploratory analysis


	Results
	Studies selection and characteristics
	ELA effects are pronounced in males and with “multiple hits”
	Sensitivity analyses and publication bias

	Exploration of moderators

	Discussion
	Methodological considerations
	Considerations on ELA models
	Suggestions for future ELA research

	Translational potential

	Acknowledgements
	Supplementary methods and results
	References




