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Summary

Bymeans ofmeta-analyseswe determined how70 traits related to plant anatomy,morphology,

chemistry, physiology, growth and reproduction are affected by daily light integral (DLI;

mol photons m�2 d�1). A large database including 500 experiments with 760 plant species

enabled us to determine generalized dose–response curves. Many traits increase with DLI in a

saturating fashion. Some showed a more than 10-fold increase over the DLI range of 1–
50mol m�2 d�1, such as the number of seeds produced per plant and the actual rate of

photosynthesis. Strong decreases with DLI (up to three-fold) were observed for leaf area ratio

and leaf payback time. Plasticity differences among species groups were generally small

compared with the overall responses to DLI. However, for a number of traits, including

photosynthetic capacity and realized growth, we found woody and shade-tolerant species to

have lower plasticity.We further conclude that the direction and degree of trait changes adheres

with responses to plant density and to vertical light gradients within plant canopies. This

synthesis provides a strong quantitative basis for understanding plant acclimation to light, from

molecular to whole plant responses, but also identifies the variables that currently form weak

spots in our knowledge, such as respiration and reproductive characteristics.
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I. Introduction

Almost all plant species are able to capture light and convert it to
chemical energy by reducingCO2. This photosynthetic process not
only supports plant growth and productivity, but also supplies the
energy for whole food webs at the ecosystem level, and directly or
indirectly affects carbon (C), nutrient and water cycles at the global
scale. We now have detailed insight into the mechanisms of both
the light reactions – down to the femtosecond scale – and the dark
reactions of photosynthesis (Niyogi et al., 2015). By means of
fluorescence or gas-exchange measurements, we can readily assess
how leaf-level photosynthesis changes when photosynthetic pho-
ton flux density (PPFD) is altered (Long & Bernacchi, 2003).
However, downstream from these short-term responses, there are a
myriad of long-term responses of plants to light availability, which
occur at the subcellular and cellular level (e.g. the composition of
light-harvesting complexes) and at the organ or whole-plant level
(e.g. leaf thickness and biomass allocation). Such phenotypic
changes are commonly referred to as ‘plasticity’ (Valladares et al.,
2007; Nicotra et al., 2010).

Hundreds of experiments have been carried out by (eco-)
physiologists, horticulturists, agronomists, foresters and ecologists
to study the long-term effects of light on plants, by growing them
for weeks until years at two, three or more light levels (Gottschalk,
1994; Soustani et al., 2014). Various reviews have placed these
studies in perspective (Bj€orkman, 1981; Anderson et al., 1995;
Poorter & Van der Werf, 1998; Veneklaas & Poorter, 1998;
Valladares & Niinemets, 2008). Most of those reviews have been
narrative, but others have used a meta-analytical approach,
comparing ‘high-light-grown’ plants with ‘low-light-grown’ ones
(Poorter & Nagel, 2000; Liu et al., 2016). A relatively recent
approach is the meta-phenomics concept, where a range of
experiments is summarized by dose–response curves (DRCs)
(Poorter et al., 2010; Esteban et al., 2015). The concept of DRCs is
more than a century old (Mitscherlich, 1909), and well engrained
in photosynthesis research, where short-term light, CO2 and
temperature responses have improved insights into cellular mech-
anisms (Von Caemmerer, 2000). However, DRCs would also be
very helpful in understanding the long-term responses of plants to
growth light intensity. The meta-phenomics approach combines
information frommany different experiments, taking into account
the fact that ‘low light’ and ‘high light’ may be unalike in different
experiments. The resulting DRCs summarize a wide variety of
research efforts, enabling development of a concise picture of how
plants respond to their environment. Moreover, they offer a basis
for identifying species with exceptional characteristics and provide
quantitative information that allows further analyses and
modeling.

In this synthetic review, we focus on how higher plants respond
to different light intensities in the photosynthetically active range
of wavelengths. For effects of other aspects of light, such as
spectral quality (e.g. ultraviolet (UV), red-to-far-red ratio
(R : FR)), photoperiod and dynamics on plants, the reader is
referred to reviews like Pearcy (1990), Ballar�e et al. (2011), Casal
(2013) and Ballar�e & Pierik (2017). Reviews on leaf responses to

vertical light gradients in plant canopies are provided by
Niinemets et al. (2015) and Pons (2016). Here, we first discuss
the various metrics to quantify light availability and our
methodology for processing published data. Second, we establish
DRCs for a total of 70 eco-physiological traits, ranging from the
subcellular to the whole-plant level. Do the trait values increase or
decrease with light, is the form of the DRC linear or saturating,
and what is the overall degree of plasticity? Third, we briefly
discuss some of the molecular mechanisms underlying these long-
term responses to light. Finally, we take an ecological perspective
and consider to what extent these DRCs differ for shade-tolerant
and light-demanding species.

II. Concepts and methodology

1. Characterizing light intensity

The amount of light available for plants can be characterized in
various ways. For energy budgets of plants, the total incoming
energy over all wavelengths of (sun)light is the relevant variable.
It is commonly referred as ‘irradiance’ and measured in watts per
square meter. The wavelengths that energetically drive photo-
synthesis are in the 400–700 nm range. Although photons in this
range contain different energy levels, each can excite Chl to the
same extent. Therefore, for photosynthesis-related processes, the
flux of photons in the 400–700 nm range is the most relevant
variable (Pearcy, 2000). This PPFD (lmol m�2 s�1) comprises
about half the energy of solar radiation and (when expressed per
second) scales well with the time frame at which photosynthesis
responds to changes in light intensity. However, for longer term
processes and structural traits, instantaneous values are less
informative, as light intensity varies strongly both diurnally and
among days. On cloudless days, PPFD at the top of a canopy
progresses in a sinusoidal way, with maxima reaching
2200 lmol m�2 s�1 (Ritchie, 2010), the actual value depending
on latitude and time of year and day.With partially clouded skies,
strong temporal changes in light will occur above the canopy,
whereas PPFD changes within canopies are even more frequent
and dynamic due to mutual shading by wind-moved plants.
Many plant traits are found to be better related to daily light
integral (DLI), which is the PPFD integrated over a day
(mol m�2 d�1), than to instantaneous PPFD values at any
specific moment in time (Monteith, 1977; Chabot et al., 1979;
Poorter & Van der Werf, 1998; Niinemets et al., 2015). For this
review, wewill therefore use averageDLI during the experimental
treatment as the quantifier for the light intensity experienced by
the plants. Note that DLI may also change because of differences
in day length.

To characterize monthly averaged DLI values world-wide, we
used an extended climate database of daily irradiance (New
et al., 1999). As expected, DLI values in December in the
Northern Hemisphere are strongly and almost linearly depen-
dent on latitude, with levels saturating at latitudes between 0
and 20° (Fig. 1a). In June, however, when plants in many
ecosystems are actively growing, latitude per se only explains
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1% of the total variation in DLI, with maximum values
occurring between 30° and 40° latitude. At this time of year,
the lower solar angle at higher latitudes is almost fully
compensated by longer day lengths. Local variation is substan-
tial, with the Negev Desert, for example, receiving twice the
DLI as the Tokyo region, although both are situated at the
same latitude. Variation in cloudiness is the strongest driver for
this difference, with additional effects of pollution and
atmospheric dust (Stanhill et al., 2014). Cloudiness is also the
reason that highest DLI values over the year are found at c. 20°
north and south rather than at the equator, and the cause of
substantial day-to-day variation in DLI (Fig. 1b,c). Although
most of this day-to-day variation is averaged out over longer

time scales, variation in DLI between years can still be
substantial (Fig. 1d). Finally, the DLI as perceived by plants
may be reduced due to external or internal shading, such that
leaves and plants positioned low in the canopy may receive only
1–5% of the DLI present above the canopy (Chazdon &
Fetcher, 1984; Pons, 2016).

Unfortunately, most reports of field and glasshouse experiments
on light availability effects do not provide data on DLI (Niinemets
& Keenan, 2012). We strongly recommend that DLI is measured
for the duration of an experiment or, alternatively, that values are
taken from the nearest weather station and, in the case of
glasshouses, corrected for the fraction of daily irradiance reaching
the plants (Poorter et al., 2012).
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Fig. 1 Variation in timeandspaceof thedaily light integral (DLI). (a)AverageDLI in themonthsofDecember (bluecircles) and June (red circles) asdependenton
latitude for a wide range of locations (230) in the Northern Hemisphere. The dotted line indicates the latitude of the Tropic of Cancer. Data are average values
over the 1960–1990 period derived fromNew et al. (1999). Lines are fittedwith a loess function. ‘N’ and ‘T’mark observations for the Negev (31.0°N, 34.8°E)
and Tokyo (35.4°N, 139.5°E), respectively. (b) Trends of DLI with latitude at different times of the year and the yearly average. Data based on the
aforementioned database at 340 locationsworld-wide, trends smoothedwith a loess curve. (c) Range of DLI asmeasured for every day of the year over a 60 yr
period in De Bilt, the Netherlands (52.5°N, 5.2°E). The bold green line connects themedian values at a specific daymeasured over the 60 yr period, the red and
blue lines connect the 10th and 90th percentiles. All trends are smoothedwith a loess function. The red and blue points give theminimumandmaximumvalues,
respectively, observed per day in this 60 yr period. The dotted line indicates the longest day of the year. Source: https://www.knmi.nl/nederland-nu/klima
tologie/daggegevens, accessed 30October 2017). (d) Distribution of the average DLI values in themain growing season (periodMay–July) as measured over
an82 yr period inPotsdam,Germany (52.4°N,13.1°E). Thedashed lines indicate the10th and90th percentiles. Source: https://www.pik-potsdam.de/services/
klima-wetter-potsdam/klimazeitreihen/globalstrahlung, accessed 2 January 2019).
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2. Methodology followed in sampling and processing the
data

The following presents a synopsis of our methodological proce-
dures. A more extensive description is provided in Supporting
Information Methods S1.

We screened the literature for experiments on higher plants
subjected to different light intensities, but similar spectrum,
during their full life or a substantial part thereof. These reports
included studies in growth rooms, glasshouses, gardens or
experimental field plots. Mean values per experiment, plant
species (or genotype) and light level were collected for > 70
different physiological, anatomical, morphological, chemical or
growth-related traits. DLI levels were taken as specified by the
authors, or estimated from the given light levels relative to
daylight and the average DLI for the time of year of the
experiment and location as derived from New et al. (1999).
Based on the data for all light levels for a given species in a given
experiment (further referred to as ‘case’), we interpolated what
the value of the phenotypic trait would have been at a DLI of
8 mol m�2 d�1, and subsequently scaled all data for that trait and
species to this reference value (Poorter et al., 2010). Avoiding a
priori assumptions about data distribution and form of the
relationship, we first summarized overall relationships by divid-
ing all observations into 10 equally numbered classes, for data
ranked with respect to DLI. Subsequently, we calculated the
median DLI over all points in each light class, as well as the
scaled median trait values per class (see Fig. S1 for an example).
We also derived smoothed DRCs from the full point cloud by
means of quantile regression, differentiating between linear,
saturating (monomolecular) and exponential relationships. For
three traits, underlying data often showed local maxima. In those
instances, we fitted the scaled point cloud with a second-order
polynomial.

From the smoothed DRCs we computed a plasticity index (PI)
following Poorter et al. (2010) as the ratio between the highest and
lowest phenotypic trait value in the 1–50 mol m�2 d�1 range,
multiplied by �1 in the case of negative relationships. Note that
this PI deviates somewhat from the classical plasticity concept, as it
does not focus on one genotype but approximates the response of a
whole group of species. The DLI range was deliberately chosen to
encompass a wide span of conditions: 1 mol m�2 d�1 represents a
heavily shaded habitat, whereas 50 mol m�2 d�1 embodies a very
high light environment, which only occur across a whole growing
season at a limited number of locations on Earth (Fig. 1a). The
consistency of the direction of response (positive or negative) was
computed by calculating the percentage of cases where the trait
value was higher at the highest DLI than at the lowest DLI. To
evaluate plasticity differences among groups of species we fitted the
same type of equation to subgroups of interest. The ecological niche
of species was characterized as being in the low-light range (shade-
tolerant species), in the high-light range (light-demanding species)
or intermediate (see Notes S1). Within the herbaceous and woody
groups, we analyzed plasticity differences for this low light/high
light preference rating as well as for some other categorizations,
such as deciduousness and photosynthetic pathway.

3. Description of the database

In total, we analyzed DLI levels and phenotypic trait data for
500 experiments and 70 phenotypic traits. The traits are
defined in Table 1. The database has 4010 records and 1380
cases (species9 experiment combinations for a set of different
light levels), with each record containing the mean value for all
of the phenotypic traits measured for a given species at a given
DLI as reported in an experiment. The total number of
observations in the database for a given trait ranges from c. 20
for the concentration of some constituents in stems to > 2100
for specific leaf area (SLA). Note that not all phenotypic traits
are independent of one another, for example, photosynthetic
capacity is analyzed both on a leaf area, leaf mass and Chl basis.
For one trait we used two alternative expressions: leaf mass per
area (LMA) when analyzing leaf traits, and SLA when analyzing
variation in growth-related traits (SLA = 1/LMA). Since we are
primarily interested in relative responses, we combined closely
related traits that bear more or less similar information (e.g. leaf
density and leaf dry matter content). We also combined
variables for which only a limited number of observations were
present (e.g. total and organic root nitrogen (N); see Table 1).
The database contains information for 760 species, 39% of
which are herbaceous. References to all papers used are listed in
Appendix A1.

III. Dose–response curves

We grouped the 70 traits into four thematic clusters, related to
structure, chemical composition, physiology and growth. Specific
graphs with more detailed information per trait are given in Figs
S2–S72. The summary diagrampresented in Fig. 6 (see Section IV)
may also be helpful to place responses of individual traits in
perspective.

1. Anatomy and morphology

A range of anatomical leaf traits are positively affected byDLI, with
a plasticity index (PI) up to 2.0 (Table 2a). Changes are generally
strongest in low light, and approach saturation at high light (Fig. 2).
It is instructive to relate these traits to leaf mass per area (LMA),
which shows leaf dry mass invested per leaf area and has a PI of 2.6
(Fig. 2a). Leaf thickness (LeaThi) almost doubles over the light
range considered (PI = 1.9) and is one of the most consistent leaf
responses to DLI, found in 99% of the cases we analyzed.
Herbaceous species are more plastic than woody species in this
respect (Table S1), but these differences cause only subtle variations
in the overall dose–response curve (DRC). Increased leaf thickness
is accompanied by a doubling in the cross-sectional area of
mesophyll per unit leaf area (Ames/A). The fraction of leaf volume
occupied by mesophyll (including airspaces) also increases signif-
icantly, but with a marginal PI (1.1). The PI for the volumetric
fraction of mesophyll occupied by palisade parenchyma is larger
(1.3), but these are relatively small modulations on top of a large
overall increase in thickness. Interestingly, the number of palisade
cell layers (#PaCeLa; Table 2a) increases with DLI in only half of
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Table 1 Plant traits and other variables used in this review.

Abbreviation Variable name Units Explanation

1. Anatomy/morphology
Ames/A Area of mesophyll/leaf area m2m�2 Includes both observations for total mesophyll area and for mesophyll

area adjacent to intercellular spaces
DrMaCoS Stem dry matter content % Stem dry mass/fresh mass9 100
DrMaCoR Root dry matter content % Root dry mass/fresh mass9 100
InLeAr Individual leaf area cm2 Can be either for a specific leaf or average over all leaves
IntLen Internode length cm Length between two nodes
LeaDen Leaf density gml�1 Leaf dry mass/leaf volume (combined with data for leaf dry matter

content)
LMA Leaf mass per area gm�2 Inverse of SLA, scales positively with leaf thickness and area-based

photosynthetic rates
LeaThi Leaf thickness lm Total leaf thickness
StoDen Stomatal density number mm�2 Based on both sides, or on abaxial if adaxial is not provided
PlaHei Plant height cm Height from ground level to the shoot apex or highest leaf tip
SpStLe Specific stem length m g�1 Stem length/stem mass
SRL Specific root length m g�1 Root length/root mass
VoFrMe Fraction of leaf volume inmesophyll ml ml�1 Derived from mesophyll thickness/total leaf thickness in cross-sections
VoFrPa Fraction of palisade cell volume in

total mesophyll volume
mlml�1 Derived from palisade mesophyll thickness/palisade plus spongy

mesophyll thickness in cross-sections
#PaCeLa Number of palisade cell layers — Generally taken from single cross-sections per treatment in published

papers
#BraTil Number of branches or tillers — Number of tillers (grasses) or first-order side branches (dicots), plus the

main tiller/axis

2. Chemical composition
[C]L [C] leaf mg g�1

[C]R [C] root mg g�1

[C]S [C] stem mg g�1

Chl/A Chl content/leaf area lmol m�2 No SPAD measurements
Chl a : b Chl a : Chl b mol mol�1

Chl/N Chl to N ratio mmol mol�1

[Mine]L [Minerals] leaf mg g�1 Minerals or ash
[NO3]L [Nitrate] leaf mg g�1

[Norg]L [Organic N] leaf mg g�1 Total N, excluding NO3
�

Ntot/A Leaf total N content/leaf area gm�2 Total N, including NO3
�

[Ntot]L [Total N] leaf mg g�1 Total N, including NO3
�

[N]R [N] root mg g�1 Total N or organic N
[N]S [N] stem mg g�1 Total N or organic N
[P]L [P total] leaf mg g�1

[P]R [P total] root mg g�1

[P]S [P total] stem mg g�1

[SolPhe]L [Soluble phenolics] leaf mg g�1

SolSug/TNCL Soluble sugar fraction in TNC g g�1 Only for leaves
[TNC]L [Nonstructural carbohydrates] leaf mg g�1

[TNC]R [Nonstructural carbohydrates] root mg g�1

[TNC]S [Nonstructural carbohydrates] stem mg g�1

Xant/Chl Xanthophylls/Chls mmolmol�1 Violaxanthin + antheraxanthin + zeaxanthin

3. Physiology
Abso Absorptance leaf % Absorptance of incident light
ci : ca Intercellular/atmospheric CO2

concentration
mol mol�1 Measured at growth light conditions and ambient CO2

FV/FM-d Fluorescence variable Fv/Fm Measured during the diurnal period
FV/FM-n Fluorescence variable Fv/Fm Measured during the nocturnal period (predawn)
JMAX/VCMAX Electron transport capacity/

carboxylation capacity
mol mol�1 Measured at saturating light and CO2 levels

Phot/AGL Photosynthesis at growth light/leaf
area

lmol m�2 s�1 Measured at growth light conditions and ambient CO2

Phot/ASL Photosynthesis at saturating light/
leaf area

lmol m�2 s�1 Measured at saturating light conditions and ambient CO2
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the cases, implying that this is not as standard a response as taught in
text books.

Leaf thickness is not the only factor driving the 2.6-fold increase
in LMA with DLI, as leaf density (LeaDen) plays a quantitatively
similar role (PI = 1.7; Fig. 2g; Table 2a).Higher densitymay reflect
more tightly packed small cells with a relatively low volume of
airspaces, thicker cell walls, a larger proportion of vascular and
sclerenchyma tissue and/or thicker cuticle (Niinemets, 2001;
Poorter et al., 2009; Villar et al., 2013). Palisade cells of high-light-
grown plants are actually larger rather than smaller (Wild &Wolf,
1980), but most of the other anatomical changes are found to
change in the expected direction (Ivanova et al., 2006; Tosens et al.,
2012). Tissue density of stems, as represented by stem dry matter
content (DrMaCoS), follows a similar response as leaf density and
increases in 96% of the cases (Table 2a). Root dry matter content,

on the other hand, does not respond to light at all, suggesting little
anatomical or chemical changes.

Whereas most of the traits we analyzed follow a saturating
response to DLI or a linear relationship, there are three morpho-
logical traits that show a localmaximum (Fig. 2i,j,l). Individual leaf
area (InLeAr) and internode length (IntLen) decrease with
increasing DLI between 2 and 50 mol m�2 d�1, but they also
decrease when DLI drops below 2 mol m�2 d�1. For plants that
experience low light due to shading by more or less similarly sized
neighbors, production of longer internodes and larger leaves would
enable better light capture. The fact that these variables, which are
related to plant size, decrease also at low DLI is likely due to
problems with a deteriorating C-budget. In that sense they behave
differently from traits that embody ratios, such as LMA and specific
stem length (SpStLe; stem length per unit stem biomass), which

Table 1 (Continued)

Abbreviation Variable name Units Explanation

Phot/ChlSL Photosynthesis at saturating light/
Chl

lmol m�2 s�1 Measured at saturating light conditions and ambient CO2

Phot/MGL Photosynthesis at growth
light/leaf mass

nmol g�1 s�1 Measured at growth light conditions and ambient CO2

Phot/MSL Photosynthesis at saturating
light/leaf mass

nmol g�1 s�1 Measured at saturating light conditions and ambient CO2

Refl Reflectance leaf %
Resp/ML+S Shoot respiration/shoot mass nmol g�1 s�1 Can be both on oxygen (O2) or CO2 basis; whole shoots
Resp/MR Root respiration/root mass nmol g�1 s�1 Can be both on O2 or CO2 basis
Resp/ML Leaf respiration/leaf mass nmol g�1 s�1 Can be both on O2 or CO2 basis; generally single leaf
Rubi/A Rubisco enzyme/leaf area lmol m�2 or lmol m�2 s�1 Only for leaves, estimates of both content and activity
StoCon Stomatal conductance mmolm�2 s�1 Measured at growth light conditions for a single leaf in a leaf chamber
Trsm Transmittance leaf %
VCMAX/A Carboxylation capacity/

leaf area
lmol m�2 s�1

|WatPot-d| Water potential MPa Measured during the diurnal period, absolute values
|WatPot-n| Water potential MPa Measured during the nocturnal period (predawn), absolute values

4. Growth and reproduction
ConCosL Construction costs leaf g glucose g�1 Glucose mass required to build 1 g of leaf
InSeMa Individual seed mass g
LAR Leaf area ratio m2 kg�1 Leaf area/unit total vegetative plant mass
LMF Leaf mass fraction g g�1 Leaf mass/unit total vegetative plant mass
PaBaTiL Payback time d Time required for a leaf to fixasmuchC (net) aswas required to construct

that leaf
RepEff Reproductive effort g g�1 Reproductive mass/total plant mass (also: seed mass/total or above-

ground mass)
RGR Relative growth rate mg g�1 d�1 Rate of increase in biomass/unit total plant biomass
RMF Root mass fraction g g�1 Root mass/total vegetative plant mass
SLA Specific leaf area m2 kg�1 Leaf area/leaf mass
SMF Stem mass fraction g g�1 Stem mass/total vegetative plant mass
TDM Total vegetative dry mass

of the plant
g Reproductive structures excluded

ULR Unit leaf rate gm�2 d�1 Rate of increase in biomass/unit leaf area
#SeeFru Number of seeds or fruits

per plant
— Excluded are complicated cases where species have fruits with many

seeds (like tomato). Included are some observations on number of
flowers

5. Other abbreviations
DLI Daily light integral mol m�2 d�1 Daily photosynthetic photon flux density averaged over the period of

active growth

Abbreviations are alphabetically ranked within each overall category. Units are given as well as a further explanation of the variable and its specifications. All
concentrations and ratios are on a dry mass basis, unless stated otherwise.
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generally change monotonously with DLI. Together with a small
rise in stem mass fraction (SMF; Table 2b), the large changes in
SpStLe enable plants to achieve roughly similar total plant height
(PlaHei) over a wide range inDLI, be it with decreases at both ends
of the DRC. Light responses for herbs were not different from
woody species (Table S1).

Specific root length (SRL, root length per root mass) also
decreases with DLI in a linear fashion (Fig. 2m), with relatively
large plasticity (PI =�2.3). SRL is determined by root
thickness and density. Since root dry matter content does not
change (Table 2a), it is likely that roots of high-light-grown
plants become thicker. This aspect is not often studied, but
thicker roots may partly be a consequence of the fact that high-
DLI plants have larger root systems anyway (Wahl et al., 2001).

This is not only due to the higher root mass fraction, but also to
the much greater plant size at high DLI (Table 2b). Alterna-
tively, through increased xylem volume, thicker roots may
more easily accommodate the higher transpirational demand
that goes with increased stomatal conductance (StoCon;
Table 2b). Maintaining adequate root length may be more
important than thickness in low light, considering the reduced
investment in roots (Table 2b). However, as far as we know, the
various trade-offs involved here have never been thoroughly
analyzed. In low light, plants make few branches (eudicots) or
tillers (grasses), as a result of increased apical dominance.
Branch or tiller number (#BraTil) is the only trait considered
here that increases more than linearly with light availability,
with an overall PI of 5.0.

Table 2 Summary of the dose–response curve (DRC) analysis for 70 plant traits as dependent on the daily light integral (DLI).

Trait DLI range No. observations No. species Fit r2 PI Increases (%) Reliability a b c

(a)
1. Anatomy and morphology
LMA 0.1–75 2190 520 S*** 0.74 2.6 98 8 1.955 0.6748 0.04143
LeaThi 0.2–75 540 160 S*** 0.73 1.9 99 8 1.717 0.5423 0.03388
Ames/A 0.7–69 60 25 S*** 0.81 2.0 93 4 1.688 0.5469 0.04334
#PaCeLa 0.4–75 110 45 L* 0.35 1.5 52 4 0.9528 0.00882
VoFrMe 0.4–75 190 75 L*** 0.30 1.1 78 7 0.985 0.00165
VoFrPa 0.4–75 180 65 L*** 0.12 1.3 70 6 0.9501 0.00539
LeaDen 0.4–75 540 150 S*** 0.66 1.7 94 7 1.420 0.4565 0.05614
DrMaCoS 0.4–43 130 35 S** 0.70 1.7 96 5 1.321 0.4502 0.07686
DrMaCoR 0.4–43 140 40 Lns 0.04 1.1 59 5 0.991 0.00150
InLeAr 0.2–72 480 130 Mns 0.00 �1.7 38 6 1.043 �0.00671 0.00004
IntLen 0.7–62 110 35 L*** 0.16 �1.7 37 4 1.051 �0.00669 0.00004
SpStLe 0.3–48 160 50 S* 0.41 �2.6 2 4 0.877 �2.638 0.5089
PlaHei 0.3–59 830 225 M** 0.00 �1.3 54 7 0.918 0.0090 �0.00026
SRL 0.3–42 90 45 L** 0.29 �2.3 30 4 1.087 �0.01229
StoDen 0.4–72 200 65 S*** 0.51 1.8 94 6 1.503 0.5013 0.05446
#BraTil 0.4–50 140 35 E* 0.57 5.0 96 3 0.7494 0.02218 0.00080

2. Chemical composition
Ntot/A 0.2–50 250 90 S*** 0.68 2.0 92 6 1.597 0.5554 0.05121
[Ntot]L 0.5–52 480 160 S*** 0.34 �1.3 20 7 0.8394 �0.3287 0.07421
[Norg]L 1.0–41 130 45 Lns 0.02 �1.1 42 5 1.007 �0.00093
[NO3]L 2.2–50 80 20 S*** 0.64 �2.3 8 3 0.5645 �1.502 0.08579
[Mine]L 0.7–40 70 20 S*** 0.69 �1.6 0 4 0.7679 �0.6362 0.09375
[N]S 0.6–36 40 15 L** 0.50 �2.1 20 2 1.093 �0.01157
[N]R 0.5–71 120 55 L*** 0.24 �1.4 26 5 1.049 �0.00634
[P]L 0.8–38 140 45 L*** 0.18 �1.8 23 4 1.019 �0.00996
[P]S 1.3–36 30 10 L*** 0.52 �2.1 13 2 1.107 �0.01168
[P]R 1.1–39 30 15 L+ 0.13 �1.5 32 2 1.061 �0.00735
[C]L 0.7–40 190 65 S** 0.20 1.1 85 7 1.033 0.0571 0.07398
[C]S 0.7–32 20 10 L* 0.30 1.0 75 3 0.9952 �0.00060
[C]R 0.7–71 50 25 L* 0.00 1.0 48 4 0.9951 �0.00074
[TNC]L 0.8–38 70 25 L*** 0.54 2.5 91 3 0.7938 0.02502
[TNC]S 0.6–46 20 5 L* 0.77 4.0 89 1 0.6869 0.04514
[TNC]R 0.6–38 40 15 L** 0.45 1.7 89 2 0.8823 0.01263
SolSug/TNCL 0.8–46 60 20 Lns 0.00 �1.0 45 2 1.005 �0.00073
[SolPhe]L 0.7–43 40 20 L*** 0.66 3.4 86 1 0.6521 0.03387
Chl/A 0.2–82 740 195 Lns 0.00 �1.1 45 7 1.005 �0.00112
Chl a : b 0.2–82 540 145 S*** 0.43 1.2 82 7 1.175 0.2040 0.04165
Chl/N 0.9–50 180 55 S*** 0.79 �2.5 4 6 0.4667 �1.828 0.0623
Xant/Chl 0.6–82 110 35 L*** 0.57 3.0 100 4 0.7567 0.03042
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2. Chemical composition

Total leaf N content per unit leaf area (Ntot/A) increases two-fold
over the DLI range considered (Fig. 3a; Table 2a) and scales well
with leaf thickness and Ames/A (Fig. 2b,c). However, LMA
increases more, and consequently the concentration of leaf total
Ndeclines ([Ntot]L; PI =�1.3). Interestingly, this is different from
the concentration of organically bound N in leaves, which is not
significantly affected byDLI.This difference is explained by the leaf

nitrate concentration, which is high in low light and decreases with
increasing DLI in nitrate-accumulating species (PI =�2.3).
Nitrate serves as an N-source for constructing proteins, Chl and
DNA/RNA. However, especially for herbaceous species, nitrate
may also be a readily available and cheap vacuolar osmoticum,
particularly at low DLI. At high DLI, when photosynthesis and
growth rate are faster, the demand for organic N is higher, and so is
the supply of sugars. Under the latter conditions, vacuolar nitrate is
exchanged for soluble sugars and organic acids (Blom-Zandstra &

Table 2 (Continued)

Trait DLI range No. observations No. species Fit r2 PI Increases (%) Reliability a b c

(b)
3. Physiology
Abso 0.2–40 80 30 Lns 0.00 �1.0 41 5 1.002 �0.00031
Refl 0.8–40 50 20 L* 0.39 1.4 79 3 0.9393 0.00759
Tran 0.8–82 50 25 L*** 0.20 �1.9 19 3 1.085 �0.0106
Rubi/A 0.4–50 100 30 S*** 0.73 4.6 98 3 2.287 0.8388 0.05013
VCMAX/A 0.8–42 110 35 L*** 0.70 2.9 98 3 0.7449 0.02921
JMAX/VCMAX 0.8–40 100 35 L* 0.00 1.1 60 5 0.9866 0.00166
Phot/ASL 0.4–75 990 280 S*** 0.53 2.2 89 7 1.529 0.5891 0.0707
Phot/MSL 0.4–53 440 150 L*** 0.00 �1.3 38 6 1.033 �0.00417
Phot/ChlSL 0.4–75 430 125 S*** 0.57 2.3 93 6 1.567 0.6048 0.06954
Phot/AGL 0.4–69 330 95 S*** 0.73 17.4 97 6 3.838 0.9872 0.03652
Phot/MGL 0.4–53 150 55 S*** 0.59 3.4 91 4 1.688 0.7711 0.08054
Fv/Fm-n 0.2–82 140 50 L* 0.04 �1.0 30 6 1.003 �0.00042
Fv/Fm-d 0.9–82 130 50 L*** 0.53 �1.2 5 6 1.022 �0.00269
StoCon 0.6–69 150 55 L*** 0.39 2.2 85 4 0.7963 0.02193
|WatPot-n| 0.9–69 30 10 Lns 0.00 1.0 50 2 1.000 0.00000
|WatPot-d| 0.4–69 40 20 Lns 0.02 1.4 73 2 0.9441 0.00672
ci : ca 0.9–50 50 25 L*** 0.59 �1.2 8 4 1.029 �0.00363
Resp/ML 0.3–45 300 105 L* 0.02 1.2 60 5 0.9663 0.00432
Resp/ML+S 0.4–33 50 15 L*** 0.41 2.2 67 2 0.7818 0.01911
Resp/MR 0.5–32 30 10 Lns 0.00 �1.0 47 2 1.011 �0.00049

4. Growth and reproduction
RGR 0.1–69 1060 250 S*** 0.66 2.7 94 7 1.248 0.7674 0.1899
ULR 0.2–64 690 165 S*** 0.75 8.9 99 6 3.235 0.9384 0.03878
LAR 0.1–65 1380 335 S*** 0.51 �2.8 5 7 0.5522 �2.013 0.1236
SLA 0.1–75 2190 520 S*** 0.69 �2.4 2 8 0.5723 �1.517 0.09576
LMF 0.1–65 1410 360 S*** 0.17 �1.2 27 8 0.8848 �0.2232 0.06975
SMF 0.1–65 1240 325 L*** 0.07 �1.3 33 8 1.036 �0.0044
RMF 0.1–71 1530 390 S*** 0.40 1.6 85 8 1.275 0.4042 0.08225
ConCosL 0.5–40 100 30 L*** 0.21 1.1 74 6 0.9860 0.001628
PaBaTiL 1.0–40 70 25 S*** 0.51 �2.9 4 2 0.615 �2.264 0.16206
TDM 0.1–75 1520 385 S*** 0.37 9.8 96 7 2.345 0.9633 0.06686
InSeMa 1.9–62 90 20 S*** 0.02 1.6 76 3 1.164 0.4409 0.1557
#SeeFru 0.4–62 120 30 S*** 0.14 > 50 96 3 3.736 1.053 0.04738
RepEff 1.9–52 40 10 L** 0.24 2.1 59 1 0.8406 0.0199

Columns 2 and 3 indicate the range of DLI for which records are present and the total number of observations (equal to number of averaged values per species
and light intensity over all experiments; rounded to the nearest 10). Column 4 shows the number of species for which we have observations for the various
traits. The fit refers to the form of the dose–response curve. Fitted equationswere either linear (L;Y = a + bX, whereY is the scaled value of the phenotypic trait
of interest andX is the DLI), saturating (S;Y = a[1� b exp(�cX)]), exponential (E) or with a local maximum (M), both of whichwere fittedwith a second-order
polynomial (Y = a + bX + cX2). The plasticity index (PI) as used here is the highest fitted value in the DLI range of 1–50mol m�2 d�1 divided by the lowest fitted
value, with positive values indicating positive trends with DLI and negative values decreasing trends; bold numbers indicate a |PI| ≥ 2.0. The r2 refers to the
approximate fit in theprevious column. Thepercentage increases refers to thepercentageof all cases (species/experiment combinations)where thephenotypic
value at thehighestDLIwas larger thanat the lowest.Values close to0or 100 indicate highly consistent responses. Thenext column indicates the reliability level
of thedata, given the numberof records in the database, thenumber of species, the rangeofDLI levels atwhich ismeasuredand the averagedeviation from the
median response, with a scale from 0 (low) to 9 (high reliability level). The last three columns give the values for parameters a, b and (if relevant) c for the
equations mentioned.
Significance of the linear term (for linear relationships) and the quadratic term (for all other relationships) are indicated as follows: ns, nonsignificant; +,
0.05 < P < 0.10; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Lampe, 1985). Information on nitrate concentrations in stems and
roots is almost absent, so it remains unclear whether they respond
similarly toDLI as leaves do. As we also found little information on
N in stems and roots, we merged estimates of organic and total N
concentrations. In both organs, N concentration decreased with
DLI, but more so for stems.

Leaf C concentration increases slightly ([C]L, PI = 1.1) but
consistently with DLI (Fig. 3f), in 85% of the cases considered. This
relates at least partly to decreases in nitrate and other minerals, but it
may also be due to increases in compounds with high concentrations
of C, such as lipids, lignin, or soluble phenolics. The limited data on
C concentration in stems and roots revealed minor increases with
DLI (Table 2a). Leaf phosphorus concentration ([P]L), on the other
hand, decreased surprisingly strongly (PI =�1.8), more than total
leaf N. This would imply that P uptake cannot keep up with
increased growth at higher light. We have tried to find supportive
evidence from reportedN : P ratios in leaf biomass grownat different

light levels (G€usewell, 2004), but so far little information is available,
and this is true for stems and roots as well.

The concentration of nonstructural carbohydrates in the leaves
measured for the second half of the diurnal period ([TNC]L) more
than doubles in a linear manner with increasing DLI (Fig. 3h).
There is wide variability among species in the form of nonstruc-
tural carbohydrates accumulated, but generally plants accumulate
a mix of soluble sugars (sucrose, short-chain fructans) and large
polymers (starch, long-chain fructans). DLI does not affect the
fraction of total nonstructural carbohydrates present as soluble
sugars (SolSug/TNCL, PI =�1.0). The very limited amount of
data on the nonstructural carbohydrate concentration of stems
and roots suggests that the effect of DLI is of similar magnitude as
for leaves (Table 2a). This is interesting, as most other chemical
constituents in roots, as well as root drymatter content, are hardly
affected by light availability. Of all groups of compounds
considered here, the one with the strongest response observed
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Fig. 2 Overall responseof 15 anatomical andmorphological plant traits to the daily light integral (DLI) duringgrowth, aswell as their plasticity index (PI) values.
All data in the database for a given trait were normalized to the value plants in a specific experiment had at a DLI of 8mol m�2 d�1 and grouped into 10 groups
on the basis of deciles for the actualDLI during growth, or less so if theminimumnumber of observationswould become< 10. For eachgroup, themedian value
for DLI and the scaled plant trait of interest was calculated. The closer the points are in the x-direction, the denser the information in that part of the curve. The
total number of observations for each trait and extended definitions are listed in Table 2. Graphs with more details per trait can be found in Supporting
Information Figs S2–S72. Note that the PI values are calculated for the 1–50mol m�2 d�1 range based on the fitted lines, and therefore will be larger than the
ratio of lowest and highest points in these graphs. Traits listed are (a) LMA, leaf dry mass per area; (b) LeaThi, leaf thickness; (c) Ames/A, area of mesophyll
relative to leaf area; (d) VoFrMe, fraction of leaf volume occupied by mesophyll, including air spaces; (e) VoFrPa, fraction of mesophyll volume occupied by
palisade parenchyma, airspaces included; (f) #PaCeLa, number of palisade parenchyma cell layers; (g) LeaDen, leaf density; (h) DrMaCoR, root dry matter
content; (i) InLeAr, individual leaf area; (j) IntLen, internode length; (k) SpStLe, specific stem length; (l) PlaHei, plant height; (m) SRL, specific root length;
(n) StoDen, stomatal density; (o) #BraTil, number of branches or tillers.
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has been measured only occasionally. This is the group of soluble
phenolics ([SolPhe]L), which more than triples as DLI increases
from 1 to 50 mol m�2 d�1. Their phenolic ring absorbs UV
radiation, which makes them useful protectors against DNA
damage, especially in the upper epidermis of the leaves (Ballar�e
et al., 2011).

Chl content per unit leaf area (Chl/A) shows almost as many
increasing as decreasing trends, and therefore the overall response to
DLI is nonsignificant (PI =�1.1; Fig. 3k). Interestingly, there is a
significant interaction: woody species often show decreasing Chl
per area with DLI, whereas herbaceous species generally show
increases (P < 0.001; Table S1). We expect the Chl concentration
per unit mass to decrease as LMA more than doubles. This is also
true for the Chl-to-N ratio, which has a similar PI to that for LMA
(�2.5). The decrease is highly consistent across cases, without
strongplasticity differences betweenherbaceous andwoody species.
Simultaneously, the amount and/or activity of Rubisco per unit leaf
area increases stronglywithDLI (Fig. 4d). Altogether, this indicates
a coordinated shift in N-investment patterns in the photosynthetic
machinery from light harvesting (Chl) at low light towards C

fixation (Rubisco) at high light (Anderson et al., 1995; Niinemets
&Tenhunen, 1997; Evans&Poorter, 2001). Furthermore, there is
a small increase in the Chl a : Chl b ratio with DLI, although this is
less consistent as we expected, being found in 82% of the cases.

Three carotenoids, violaxanthin, antheraxanthin and zeaxan-
thin, together constitute the xanthophyll cycle anddo play a specific
role in dissipating excitation energy at moments when light levels
exceed the plant’s capacity for photosynthetic electron transport
and C fixation. As expected, they increase strongly with light level
(Xant/Chl, PI = 3.0, Fig. 3n). Although other carotenoids, like
lutein and b-carotene, may also be involved in mitigating excess
excitation energy and electrons, they are less responsive to DLI
(Esteban et al., 2015).

3. Physiology

Light absorptance by leaves is partly dependent on compounds
such as anthocyanins, internal light scattering, and leaf
pubescence, but Chl content is the dominant factor, with
absorptance increasing asymptotically with Chl per area (Evans,
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Fig. 3 Overall response of 14 chemical plant traits to the daily light integral (DLI) during growth, as well as their plasticity index (PI) values. Traits listed are
(a) Ntot/A, content of total nitrogen (N) in the leaves expressed per unit leaf area; (b) [Ntot]L, concentration of total N in leaves; (c) [Norg]L, concentration of
organic N in leaves; (d) [NO3]L, concentration of nitrate in leaves; (e) [Mine]L, concentration of minerals in leaves; (f) [C]L, leaf carbon concentration; (g) [P]L,
concentration of total phosphorus in leaves; (h) [TNC]L, concentration of nonstructural carbohydrates in the leaves; (i) SolSug/TNC, fraction of leaf
nonstructural carbohydrates present as soluble sugars; (j) [SolPhe]L, concentration of soluble phenolics in leaves; (k) Chl/A, Chl per unit leaf area; (l) Chl/N, Chl
per unit leafN; (m)Chl a : b, Chl a : Chl b ratio; (n) Xant/Chl, xanthophylls (violaxanthin + antheraxanthin + zeaxanthin) per unit Chl. Formore information, see
the legend of Fig. 2.
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1996). The fact that absorptance does not change across DLI
(Abso; Fig. 4a) is therefore in line with Chl content being
unaffected (Fig. 3k). Reflectance, on the other hand, increases
with DLI in a linear manner (PI = 1.4), likely by increased
reflection at the leaf surface or internally. Transmittance,
therefore, decreases with increasing light.

The maximum RuBP-carboxylase activity of Rubisco derived
from gas exchange (VCMAX/A), an in vivo estimate of Rubisco
activity, increases with DLI (Fig. 4d), in agreement with the even
stronger increase in in vitromeasuredRubisco content. JMAX/A, the
capacity to regenerate RuBP, generally increases in parallel with
VCMAX/A, resulting in a JMAX/VCMAX ratio that increases
marginally across the full DLI range. The increase in VCMAX/A
scales reasonably in form and extent with the observed photosyn-
thetic rate at saturating light (Phot/ASL), whichmore than doubles.
The increase also scales quantitatively with the increases in Ames/A
and LMA; consequently, the light-saturated rate of CO2 fixation
expressed per unit leaf drymass (Phot/MSL) is not affected by light.
The importance of changes in leaf and mesophyll thickness, and
consequently LMA, for high-light-induced increases in

photosynthetic capacity is also reflected in plasticity differences
between woody and herbaceous species. The smaller plasticity of
woody species for leaf thickness and LMA is also observed in lower
plasticity for light-dependent alterations in area-based photosyn-
thetic capacity, Rubisco, and (although nonsignificant) in VCMAX/
A (Table S1).

How do all these changes work out on the most relevant
photosynthetic variable for growth: the area-based rate of photo-
synthesis under growth light conditions (Phot/AGL)? This variable
is highly responsive to DLI, with only a modest curvature at high
light levels (Fig. 4i). The PI (17.4) is the second highest observed in
this analysis, with a similar plasticity difference between woody and
herbaceous species as was found for other area-based photosyn-
thetic characteristics (Table S1). The photosynthetic rate per unit
leaf mass increases far less, indicating that intracellular physiology
probably responds more similarly across different plant functional
types than leaf anatomy. Regarding photochemistry, FV/FM
measured predawn is not affected by DLI (Table 2b), but there is
a small decrease inFV/FMmeasured during the diurnal period. This
indicates absence of photoinhibition in themajority of experiments
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Fig. 4 Overall response of 15 physiological plant traits to the daily light integral (DLI) during growth, as well as their plasticity index (PI) values. Traits listed are
(a) Abso, leaf absorptance; (b) Refl, leaf reflectance; (c) Tran, leaf transmittance; (d) Rubi/A, Rubisco content or activity per unit leaf area; (e) VCMAX/A,
maximum rate of carboxylation per unit leaf area; (f) JMAX/VCMAX, ratio betweenmaximum rate of electron transport andmaximum rate of carboxylation; (g)
Phot/ASL, rate of photosynthesis per unit leaf area at saturating light levels; (h) Phot/MSL, rate of photosynthesis per unit leaf mass at saturating light levels; (i)
Phot/AGL, rate of photosynthesis per unit leaf area at growth light conditions; (j) Phot/MGL, rate of photosynthesis per unit leafmass at growth light conditions;
(k) FV/FM-d, ratio of dark-adapted variable fluorescence to maximum fluorescence measured for plants during the diurnal period; (l) StoCon, stomatal
conductance in growth conditions; (m) ci : ca, CO2 concentration in the intercellular air spaces relative to the concentration in ambient air; (n) |WatPot-d|, water
potential during the diurnal period; (o) Resp/ML+S, rate of shoot respiration per unit shoot dry mass. For more information, see the legend of Fig. 2.
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and somedownregulation of photosynthetic efficiency at highDLI.
However, because photosynthesis is more constrained by the
Calvin cycle than by electron transport under high light conditions,
C fixation generally is not hampered.

Stomatal conductance (StoCon; Fig. 4l) under growth condi-
tions increases to a similar extent with DLI as stomatal density
does (Fig. 2n). However, the increase is not sufficient to keep up
with the increasing demand for CO2 by photosynthesis. Conse-
quently, the intercellular to ambient CO2 concentration ratio
(ci : ca) declines with increasing DLI. Although the fold-change is
small, the decrease is highly consistent and seen in 92% of the
cases (Table 2b). A lower StoCon decreases the transpirational
costs per C fixed (Flexas et al., 2016), but might – due to increased
photorespiration at low ci – negatively affect photosynthesis.
However, this is more than compensated by the direct positive
effect of high light on C fixation. Increased StoCon, in
combination with higher leaf temperatures, enhances the tran-
spiration rate per unit leaf area. As plants are also larger at high
DLI, this results in a substantial increase in the demand for water.
Particularly when grown in pots, but probably also in the field,
thismay increase the probability of drought stress. Indeed, the few
measurements on leaf water potential during the day show more
negative values at highDLI (Table 2b), although the effect of DLI
was nonsignificant.

Much information is available on photosynthetic variables,
especially under light-saturated conditions, but we understand
little of what happens at the respiratory side, although this
comprises 30–70% of gross C gain at the whole-plant level (Raich
et al., 2014). Most of the respiratory information comes from
photosynthetic light-response curves, measured on (part of) a
single fully mature leaf. Mass-based leaf respiration shows a
modest increase with DLI in these cases (PI = 1.2; Table 2b),
which is consistent with larger maintenance costs and higher
transport rates of assimilates at highDL.However, estimating low
CO2 fluxes in small leaf cuvettes can be problematic for various
reasons (Pons & Welschen, 2002; Rodeghiero et al., 2007), so
reported respiration rates are potentially inaccurate. Moreover,
measurements in fully mature leaves do not provide good
estimates for whole-plant C budgets because the high respiration
rates of actively growing tissues are not included. Measurements
of whole shoots (Resp/ML+S) show that mass-based respiration
doubles across the DLI range (Fig. 4o). This fits better with the
notion that faster growing plants (Fig. 5b) have higher respiration
rates as a result of increased growth-related metabolism. There-
fore, we also expected higher root respiration, but this is not
supported by the limited data.

4. Growth and reproduction

Whereas photosynthesis measurements provide detailed insights
into theC gain of (part of) a specific leaf, the growth parameter unit
leaf rate (ULR, the rate of increase in biomass per unit leaf area)
yields a time-integrated growth estimate over all leaves of a plant.
ULR is generally well correlated with whole-plant average daily net
photosynthesis (Poorter & Van der Werf, 1998; Pons & Poorter,
2014). It has an 8.9-fold increase over the DLI range considered

(Fig. 5a), with increases in 99% of cases, and is only slightly more
curved than the area-based photosynthetic rate (Phot/AGL, Fig. 4i).
Short-term measurements in field experiments are not necessarily
representative of daily C gain, so a perfect correlation may not be
expected. Nonetheless, the relative changes of ULR and in situ
photosynthesis do show similar responses. Like area-based photo-
synthesis, there is a larger plasticity difference between species
groups, with the ULR of woody species increasing less with DLI
than for herbs (Table 2b). Differences in the ability to adjust leaf
structure may play a role here.

Whereas the rates of photosynthesis and growth per unit leaf
area increase strongly with DLI, we found the response in
relative growth rate (RGR) to be much weaker (PI = 2.7,
Fig. 5b). There are modest decreases in mass fractions of leaves
and stems, whereas the mass fraction of roots increases. This
change in allocation of biomass is considered to be functional
with respect to the higher requirements for water and nutrients
by faster-growing and -transpiring plants at high DLI (Bloom
et al., 1985). A more dominant 2.4-fold decrease occurs for
specific leaf area (SLA), the inverse of LMA (Fig. 2a).
Relationships between these growth-related variables are
discussed in the next section.

Growth can also be analyzed as a function of construction costs,
the amount of glucose required to build 1 g of plant biomass, taking
into account the biosynthetic pathways and chemical composition
(Penning deVries et al., 1974; Cavatte et al., 2012) and the time for
a plant to recoup these costs by photosynthesis (payback time;
Williams et al., 1989). Leaf construction costs per unit mass
(ConConL) increase only marginally with DLI (Fig. 5h), partly
because the concentrations of two relatively cheap groups of
compounds, minerals and nonstructural carbohydrates, change in
opposite direction with increasing DLI. Biosynthetically more
expensive compounds, like proteins, hardly change, or increase but
are present in low concentrations anyway (soluble phenolics;
Fig. 3j). Leaf payback time (PaBaTiL), on the other hand, strongly
increases at low light, due to the low mass-based rate of
photosynthesis. There is little knowledge on construction costs of
stems and roots, but they are likely not much affected either. Since
the payback time of a whole plant equals doubling time, and
therefore is another expression of RGR (Poorter, 1994), we expect
that the plasticity of payback time at the whole-plant level is in the
same range as that of leaves and the inverse of RGR.

Whole-plant dry mass is one of the few traits presented here that
is not normalized by area, mass or in another way. Biomass
accumulation over time often starts exponentially; and as different
experiments had different duration, this may well interfere with the
strength of the proportional light response. We nevertheless
included total biomass in the analysis because it is such an
important variable, under the assumption that variation in
duration of experiments is unrelated to the DLI applied. Total
Dry Mass saturates as a function of DLI, with a PI of 9.8 (TDM;
Fig. 5j). The increase in biomass with DLI in herbaceous plants is
much greater than in woody species (Table S1). Many shade-
tolerant species do not thrive well at DLI levels > 15–
20 mol m�2 d�1. Semchenko et al. (2012) concluded from an
experiment with a range of herbaceous monocots and eudicots that
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this would be true for herbaceous species in general, as plants from
100% light in their garden experiment produced on average 35%
less dry mass than at 50% light. However, considered over all
experiments in our analysis, we do not see this to be a general trend.
Inability to respond to high light might be indicative of other stress
factors at high light, such as limited nutrient availability or drought
(Osmond, 1983).

Reproductive effort, which is the fraction of total biomass
invested in generative organs, doubles over the DLI range (RepEff;
Fig. 5k; Table 2b). This variable is known to depend positively on
plant size (Weiner et al., 2009). Total reproductive output of an
individual plant is determined by the number of seeds produced
and themass per seed. Individual seedmass (InSeMa) increases in a
saturating fashion, with a PI of 1.6. Seeds from high-light-grown
plants therefore have a larger embryo size and/ormore seed reserves,
which gives them ahead start after germination.However, themain
variable affected by light availability is the number of seeds or fruits
produced (#SeeFru), which shows a strong response to DLI.
Unfortunately, our PI approach falls short here, as most experi-
mental plants grown at a DLI < 3–4 mol m�2 d�1 do not
reproduce. Such plants may indeed not reproduce at low DLI at
all or take longer to initiate reproduction than the duration ofmost

experiments (Kachi, 2012; Poorter et al., 2016). We cannot,
therefore, precisely calculate its PI, but the response is the strongest
of all 70 traits discussed here.

IV. The overall response of plants to DLI

1. A whole-plant perspective

Fig. 6 summarizes the responses to light ofmany of the 70 variables
analyzed, and also shows our conceptual model of the most
important relationships between these traits, if variation in all other
traits were to be controlled for. Themain chain of events, indicated
by a central vertical axis with bold arrows in Fig. 6, starts with the
effect of light intensity on leaf anatomy, which then affects
photosynthetic capacity, actual C gain, growth and eventually seed
production. Different traits in this chain are differently stimulated
by DLI, which in part can be understood by the modulating effects
by traits shown to the left or right of this central axis. Based on the
plasticity indices (PIs; Table 2), the overall response to a 50-fold
increase inDLI is a 50% increase in palisade parenchyma cell layers
(#PaCeLa, PI = 1.5). The increase in leaf thickness and Ames/A is c.
100% (PI = 2.0), as (palisade) cells also become larger (Ivanova
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Fig. 5 Overall response of 13 growth- and reproduction-related plant traits to the daily light integral (DLI) during growth, as well as their plasticity index (PI)
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Fig. 2.
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et al., 2006). The increase in the amount of Rubisco andVCMAX per
unit leaf area are even stronger (PIs of 4.6 and 2.9), at least partly
due to a preferential investment ofN into compounds related to the
dark reactions of photosynthesis. The increase in area-based light-
saturated photosynthesis, therefore, is somewhat higher than the
increase in Ames/A. All of these light-induced changes are modest
compared with the PI for the area-based rate of photosynthesis at
growth light intensity, which is 17.4. This value is so much higher
partly because photosynthetic capacity increases withDLI, but also
because the actual photon fluxdriving theCfixation differs 50-fold.
The main reason why the actual rate of photosynthesis is not
stimulatedmore than 17-fold is that the photosynthetic capacity of
the leaves largely plateaus above a DLI of 20 mol m�2 d�1.
Additionally, as can be derived from the lower ci : ca under high
light conditions, the intercellular CO2 concentration drops, with
negative impacts on photosynthesis through decreased substrate
supply and increased photorespiration.

ULR, the daily growth rate per unit leaf area, shows only half the
response to DLI of the actually measured photosynthetic rates
(PI = 8.9). ULR differs from actual short-term photosynthetic
measurements in three ways: (1) it integrates C fixation over the full
light period and all leaves; (2) it includes the C losses through
respiration, exudation and volatilization of the whole plant; and (3)
it incorporates howmuch biomass is built with one unit of C (Pons
& Poorter, 2014). There is a small increase in leaf [C] with DLI
(PI = 1.1; Fig. 3f), but stem and root [C] are hardly affected, and
consequently whole-plant [C]will only have aminor negative effect
onULR. Shoot respiration increases withDLI, and root respiration
– though unaffected in our analysis by DLI on a root mass basis –
may still increase whole-plant respiration rate because respiratory
rates of roots are generally higher than for shoots (Lambers et al.,
2008) and high-DLI plants invest relatively more of their biomass
in roots. The few reports availablewhereCbudgets forwhole plants
were made indicate respiration to be a constant fraction of whole-
plant photosynthesis across a wide DLI range (McCree &
Troughton, 1966; Pons & Poorter, 2014). Therefore, losses
through respiration could not explain the difference in PI either,
unless respiration were to become a much larger fraction of
photosynthesis at DLIs close to 1, which is to be expected. As yet,
there are too few measurements on C budgets to make firm
conclusions on the PI differences. However, since our database
contains a large number of short-term photosynthetic and
respiratory measurements on one individual leaf, the quantitative
discrepancy we observe here between photosynthetic rates and
ULRsmaywell be caused by challenges in scaling up individual leaf
measurements to whole plants.

The PI of relative growth rate (RGR) is againmuch lower (2.7)
than the one for ULR. RGR is a mass-based rate. Since the higher
area-based photosynthetic and biomass gains are realized with
leaves that are much heavier (and hence have a much lower SLA),
and with preferential investment in roots (and hence a lower leaf
mass fraction; LMF), the biomass gain is actually much more
modest on a whole-plant mass than a leaf-area basis. Neverthe-
less, TDM again shows a high PI (9.8), due to the fact that,
through a higher RGR, plants accrue exponentially more
biomass. A negative feedback will be that plants of larger size

invest more biomass in stems and thereby less in leaves (lower
LMF). Another negative feedback is that increasing plant size
causes increased internal shading, thus reducing whole-plant
area-based C fixation.

The effect on TDM is crucial, as it has strong positive effects on
reproduction. Plant reproduction depends on a wide range of
factors, including vegetative biomass, the number of tillers or
flowering stalks, number of inflorescences and actual sugar
availability. All of these increase with DLI, and so do individual
seed mass (PI = 1.6) and reproductive effort (PI = 2.1). However,
the most important factor determining seed production is the DLI
effect on TDM.

2. The shape of the DRCs

Approx. 40% of traits considered show a saturating response to
light. However, full saturation at the highest DLI most plants are
ever likely to encounter (50 mol m�2 d�1) was achieved for only a
few traits. Of the phenotypic changes over the light range from 1 to
50 mol m�2 d�1, 25% already was realized at a DLI of 5, and 76%
at a DLI of 20 mol m�2 d�1. The reason why a number of traits
saturate may be related to restrictions in leaf anatomy. For area-
based processes to increase requires thicker leaves with more cell
layers. There may be an organizational limit to the number of
palisade layers that can function properly on top of each other, and
therefore also to the photosynthetic machinery. Linear relation-
ships were found for c. 55% of the traits. Most of these traits have a
low PI, except soluble phenolics and xanthophylls, which fulfill
important photoprotective roles at high light levels. Especially for
several root and physiological traits, data for high-light-grown
plants (DLI > 30) are scarce; if more information becomes
available, these relationships might be found to be saturating as
well.

Only three traits have a DRC with a maximum at intermediate
light levels (Fig. 2i,j,l). As already discussed, individual leaf area and
internode length generally decreasewithDLI, but also decrease at low
Cavailability. In the short time frameofmost experiments, total plant
height follows internode length. However, integrated over many
growing seasons, high-light-grown trees may achieve greater length
than low-light ones. The only variable that responds exponentially to
DLI is the number of branches and tillers. They increase especially at
DLI levels larger than 25mol m�2 d�1 (Fig. 2o).

3. Reliability of the DRCs

The current meta-analyses summarize existing data into an average
DRC per trait. However, the number and quality of underlying
data vary largely among traits. We therefore rated each trait with a
‘Reliability’ score with a value from 0 to 9 (Table 2), based on (1)
the total number of observations, (2) the number of species for
which information is present, (3) theDLI range over whichwe have
data and (4) the overall degree of variability around the fitted line.
More than half of the traits have a value < 6, with especially low
values for physiological characteristics like shoot and root respira-
tion, reproductive characteristics, and for stem and root chemical
composition. These variables are essential to understand whole-
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Fig. 6 Relation diagram of plant traits and how they are affected by daily light integral (DLI). The lines with arrows between boxes indicate positive (black) or
negative (red) relationships between two traitswhen all other traitswould remain constant. Arrowsbehind each trait indicatewhether the effect of light on that
trait is positive (upward arrows), neutral (horizontal arrows) or negative (downward arrows). Bold arrows indicate that the plasticity index (PI) is > 2 or <�2,
respectively; doubleupwardbold arrows indicate aPI > 5. The color of theboxes indicates towhichof the four categoriesused in thepaper the trait belongs. The
traits arrangedvertically in themiddleof thediagram,connectedwith thicker arrows, are considered themostbasic chainof events in light acclimation:more cell
layers in the leaf leads to thicker leaves,withhigherphotosynthetic capacity, resulting in fastergrowth,higherbiomassandgreater seedproduction. Explanation
of all variables can be found in Table 1. The gray areas indicate traits that form logical groups, and are only for clarity. 1, leaf morphology; 2, water relations; 3,
photosynthetic traits; 4, chemical compositionother thannitrogencompounds; 5, growthanalysis traits.Also, for clarity reasons, only those traitswere included
that have clear relationships with other traits in the present analysis. See Table 1 for explanation of all trait abbreviations.
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plant responses to shade. It is our hope that plant biologists will pay
more attention to quantifying the light response of these traits.
Other traits have a high reliability score, which gives more
confidence in the DRC, and will also allow easier identification of
species groups with a particularly low or high PI.

V. Molecular response and regulation

Given the myriad of phenotypic responses already discussed, an
interesting question is how the acclimation of plants to DLI is
regulated. Molecular regulation is a field in its own right, and for
recent reviews the reader is referred to Dietz (2015) and Ballar�e &
Pierik (2017). Most of what we know about light effects actually
pertains to short-term responses of photosynthesis. Here, we
discuss some of the long-term responses that are relevant given the
observed DRCs.

A simple straightforward light regulation for plants would be to
measure available photosynthates and accommodate the DLI
responses accordingly. Starch accumulation over the day and
breakdown during the night is well regulated (Graf et al., 2010),
although the actual sensing mechanism is unknown. More is
understood about the sensing of soluble sugars, where trehalose 6-
phosphate, target of rapamycin kinase and Snf1-related kinase are
playing a role (Lastdrager et al., 2014). Is it starch and sugar sensing
that informs the plant about the prevailingDLI and sets the growth
machinery in motion? An interesting experiment of Ludwig et al.
(1975) showed that the nocturnal respiration of a given tomato leaf
was directly related to its rate of photosynthesis during the
preceding diurnal period. As far as increased respiratory activity
implies enhanced metabolic activity, this could indeed accord with
sugar-sensing mechanisms triggering downstream growth
responses. However, they also showed that respiration responded
more strongly when photosynthesis was altered by varying light
intensity than by changing atmospheric CO2. Similarly, DRCs for
allocation, leafmorphology and growth are rather different for light
and CO2, and so is the growth response if light and CO2 stimulate
photosynthesis to the same extent (Poorter et al., 2013). Given the
strong interactions of light with other environmental factors, we
assume that regulation by various mechanisms will allow for more
adequate responses anyway.

Photoreceptors are logical candidates to co-regulate the response
of plants to light. Three different groups of light receptors are well-
known: the R : FR photoreceptor phytochrome, the blue light and
UV-A receptor cryptochrome (Casal, 2013; Ballar�e & Pierik,
2017) and the blue light and UV-A receptor phototropin (Christie
et al., 2018). Stem elongation is the classical response that involves
light receptors.When theR : FR of the light that reaches the plant is
low, the active (Pfr) form of phytochrome B (phyB) is transformed
to the inactive one (Pr). This releases the negative feedback of phyB
onbasic helix–loop–helix transcription factors (PIFs, phytochrome
interacting factors) which lead to the downstream production of
auxin and gibberellins, and ultimately to cell elongation (Casal,
2013; Ballar�e & Pierik, 2017), with longer internodes and higher
specific stem length as a consequence. At the same time, auxin will
suppress shoot branching. By doing so, plants may overtop their
neighbors, which ensures better access to light at the expense of

reduced stem thickness. Interestingly, this classical shade-
avoidance response does also occur when DLI per se is reduced
(Fig. 2k), so without affecting light quality. It is becoming
increasingly clear that phytochromes are not the only sensors that
play a role in this network. Cryptochromes also negatively control
various PIFs. They are sensitive in the blue light region and can
sense differences in light intensity. Limited availability of blue light
may thus attenuate cryptochrome–PIF interaction (Ma et al.,
2016; Pedmale et al., 2016) with induced elongation growth as a
consequence.However, it has been shown that phyB is also sensitive
to overall light intensity (Trupkin et al., 2014). It would be
interesting to see what the changes in R : FR and DLI have to be to
achieve a quantitatively similar increase in (specific) stem length.

Most studies so far have investigated phytochrome and cryp-
tochrome function at low DLI rather than in the intermediate or
high range. Photoreceptors and light signal transductionwere shown
to affect photosynthetic capacity and pigment composition (Chl
content andChl a : Chl b ratio) inArabidopsismutants grownunder
DLIs of 3–12mol m�2 d�1 (Walters et al., 1999). In fact, a number
of nuclear-encoded photosynthetic genes are directly regulated by
light via photoreceptors (Terzaghi & Cashmore, 1995; Toledo-
Ortiz et al., 2014), and so is transcription of plastid-encoded genes
like D1 and D2 proteins of photosystem II (Thum et al., 2001;
Tsunoyama et al., 2004). Coordinated regulation of nuclear- and
plastid-encoded genes would be essential to maintain FV/FM and
JMAX/VCMAX across a wide DLI range (Fig. 4f,k). This points to the
necessity of signaling between the nucleus and chloroplasts in both
directions (anterograde and retrograde) to ensure efficient photo-
synthesis at all DLI levels (Nott et al., 2006). At highDLI, responses
may be confounded by other factors that accompany or result from
strong irradiance, such as growingdemands forwater andnutrients,
high temperature or photo-oxidative stress. High-light acclimation
thus encompasses various signals generated in chloroplasts and
cytosol, including changes in redox state, metabolites, hormones
and hydrogen peroxide to benefit from high light availability while
protecting from excessive light (Dietz, 2015).

A key trait in light acclimation is LMA, with thicker (LeaThi)
and denser (LeaDen) leaves ensuring higher area-based photosyn-
thetic capacity at highDLI (Fig. 6). There is a role for phototropins
here, as phototropin-2 promotes cell-autonomous development of
cylindrical palisade cells which are so typical for high-light-grown
dicotyledonous leaves (Kozuka et al., 2011). Formation of addi-
tional palisade cell layers (Fig. 2f), on the other hand, is triggered
systemically by increased supply of sucrose from source leaves
(Terashima et al., 2006; Mohammed et al., 2018). Again, signals
from light, cytoplasmic and mitochondrial energy status and
probably also hormones (auxin, cytokinin) converge (Mohammed
et al., 2018). The photoreceptor regulation network can even affect
root functioning: in Arabidopsis, the basic leucine zipper transcrip-
tion factor elongated hypocotyl5, which mediates transcriptional
outputs in both phytochrome and cryptochrome signaling path-
ways, travels from shoot to rootwhere it activates gene expression of
a high-affinity nitrate transporter, resulting in enhanced root
nitrate uptake with increasing DLI (Chen et al., 2016).

In summary, rather than operating as individual actors, there is a
whole network of different players (sugars, photoreceptors,
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hormones, etc.) that together regulate the long-term response of
plants to light. Some responses are related to C limitation at low
light, whereas others are associated with oxidative or other stresses
at high light. So far, our insights into the regulation of long-term
responses of phenotypic traits are poor, and this is especially true for
responses to high light.

VI. Shade-tolerant and light-demanding species

To this point we have discussed how plants in general acclimate to
light. However, some species are predominantly growing in shaded
habitats, whereas others are largely located in light-exposed places.
What are the key traits for adaptation to these different habitats? To
answer this question, we categorized the species in the database into
three groups: shade tolerators, light-demanding species and an
intermediate category. Since herbaceous and woody species differ
in somany traits, we also analyzed this question for herbaceous and
woody species separately (Table S1).

Studies have reported a lower plasticity of shade-tolerant
compared with light-demanding species (Valladares et al., 2000;
Portsmuth & Niinemets, 2007; Chmura et al., 2017). In our
database, this is found for a limited number of variables, with
significant or near-significant lower plasticity for LMA, area-based
N content (Ntot/A), photosynthetic capacity (Phot/ASL), ULR,
leaf area ratio and TDM (Table S1). Lower plasticity for these
variables would be consistent with the idea of Jackson (1967) that
shade-tolerant species have less ability to increase the number of
palisade layers at high light. However, we could not confirm all of
these differences when herbaceous and woody species were
considered separately. It should be borne in mind that differences
in plasticity are statistically challenging to prove: first, because they
are often small changes on top of a larger overall effect; second,
because shade tolerators often are not grown at high light and light-
demanding species not at low light; and third, because there are not
many shade-tolerating species in the database. Information on their
DRCs at the ranges where we expect them most contrasting is
therefore scarce.

Although plasticity per se can be useful for a given species to cope
with various environmental conditions (Nicotra et al., 2010), we
expect selection to work on absolute values of traits rather than on
the scaled ones. We therefore tested the differences in the original
trait values between shade tolerators and light-demanding species,
for a low DLI range (1–6 mol m�2 d�1) and a high range (20–
50 mol m�2 d�1). As we used bootstrapping, we could not directly
test the interaction, but rather examined the differences in PI, for
herbaceous and woody species separately. At high DLI, compar-
ative studies indicate that light-demanding species have a more
favorable C balance and growth rates in high light (Valladares &
Niinemets, 2008; Pons & Poorter, 2014). What is the evidence in
our database? Again, formost traits there are too little data available
to test differences. At high light, herbaceous shade tolerators
generally have thinner leaves than light-demanding species, with
lower LMA and lower LMF (Table S1). For woody species, we
found no difference in LMA, but area-based photosynthetic
capacity is lower for shade-tolerating species, and so areChl content
and LMF.At low light, leaf density stands out as beingmuch higher

for shade-tolerating herbaceous species. For woody species, LMA
and leaf thickness are higher for shade tolerators, whereas
photosynthetic capacity, leaf respiration, ULR and RGR are lower.

Two mechanisms have been proposed for shade tolerance, one
which maximizes C gain at low DLI (Givnish, 1988) and another
that achieves a high stress tolerance in shade (Kitajima, 1994).
Maximization of C gain could be expected if shade tolerators are
inherently better than light-demanding species in ways that accord
with the suite of acclimatory responses discussed in Section III:
lower LMA, higher Chla : Chlb ratio, and so on (Evans & Poorter,
2001). However, this is not the case, as low-light-grown herbaceous
shade tolerators do not have lower LMAs, and in fact do not differ
in many other relevant traits (Table S1; Liu et al., 2016). Also, no
evident difference in C budget at low DLI was found between the
two groups (Pons&Poorter, 2014). Although this is not invariably
the case (Walters & Reich, 1996), we found that, overall, woody
shade tolerators were even found to have lowerULR andRGR than
light-demanding species at low light.

The othermechanism suggested is that shade tolerators are better
guarded against mechanical damage, herbivores and pathogens,
thereby increasing the longevity of their organs at low DLI. A leaf
lifetime beyond payback time is essential for survival and
contributes to the formation of a large leaf area and a positive C
balance in shade (Lusk et al., 2008; Niinemets, 2010). Leaf
longevity is not regularly measured in controlled experiments, but
some traits may provide indirect evidence. The high LMA and
tissue density of shade-tolerant species was associated with greater
tissue strength in evergreen trees (Lusk et al., 2010;Houter&Pons,
2014). Shade-tolerant herbs do have high leaf tissue density
(Table S1), which also may reflect tougher leaves possibly with
different chemical composition. Specific stem length of woody
shade tolerators is lower than for light demanders, which likely
confers greater strength of stems in shade. Unfortunately, insuf-
ficient data are available for shade-tolerant herbs, but reduced stem
extension is known from spectral canopy shade (Gommers et al.,
2013). Note that the observed characteristics, such as high LMA
and leaf density, actually may come at the expense of short-term C
gain (growth–survival trade-off; Valladares & Niinemets, 2008)
which was indeed found for woody species.

In conclusion, the combined data provide little evidence for
maximization ofC gain per unit time as the principalmechanismof
shade tolerance. Rather, high LMA and/or tissue density in shade-
tolerant species support the stress tolerance hypothesis. A positiveC
balance in shade at the longer timescale remains, of course,
essential. Thismay also be determined by factors not analyzed here,
such as leaf angle (Hikosaka & Hirose, 1997), plant architecture
(Sterck et al., 2013) and – in the understory of deciduous forests –
leaf phenology (Kwit et al., 2010).

VII. Relation to field conditions

Our analyses are based on experiments that are predominantly
carried outwith spaced plants grown individually in pots. Although
some sensing of other plants will have occurred in those
experiments (Gommers et al., 2013), the overall light quality was
not altered and there was little or no competition with neighbors.
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By growing plants under (semi-)controlled conditions with
exclusion of most herbivores, pathogens and often without UV-
B, the question is relevant to what extent these experimental results
can be generalized to field conditions (Poorter et al., 2016; Fraser
et al., 2017).

One important issue is that most experiments have been carried
out with young, small seedlings, whereas shade tolerance is also
highly relevant for saplings and larger subdominant individuals in
the vegetation. It is known that various traits changewith ontogeny,
whichmay have consequences for their growth and shade tolerance
(Niinemets, 2006; Gibert et al., 2016). This comes on top of an
overall decrease in LMF and increased risk on self-shading
(Givnish, 1988). A second caveat is that trait plasticity differences
among species with different shade tolerance can become increas-
ingly smaller at lower nutrient availability (Portsmuth &
Niinemets, 2007). This is relevant for putting the results into a
natural context, as soil nutrient availability and plant nutrient
requirement often change throughout succession in parallel with
changes in light availability.

However, there are also indications that the presented DRCs
have wider validity. Within a vegetation there is not only a strong
gradient in light intensity, but also a strong decrease in the R : FR
ratio (Pons, 2016). Given the known importance of phytochromes
in shade-avoidance syndromes (Section V), how well do the DRCs
from Section III represent responses of plants or leaves growing low
in the canopy? First, for at least some traits, such as RGR, ULR and
SLA, we observe similar responses for plants that were grown in
differently sized gaps, which reduce both light intensity andR : FR,
as we reported here forDLI per se (data not shown), indicating that,
for those traits, light intensity is far more important than light
quality (cf. DRCs for SLA in Poorter et al., 2009). Second,
Niinemets et al. (2015) analyzed light gradients within tree
canopies and herbaceous stands from top to bottom in a similar
manner as we did here for individually grown plants. For the traits
studied in common we observed a very similar ranking and size of
PI values as in the present report (Fig. 7a). Finally, we have
previously analyzed how competition affects traits of individual
plants by quantifying how much they changed when plant density
was doubled (Poorter et al., 2016). Since a doubling of plant
density implies a 50% reduction in the light available per plant, we
compared the density response with the changes expected when
halving light intensity for individually grown plants from 20 to
10 mol m�2 d�1. For most traits we found strong concordance
between the two gradients, supporting the idea that light
availability is a dominant factor in plant competition. However,
there is a clear exception for specific stem length, which responds
hardly to halving the DLI, but strongly to increasing density
(Fig. 7b). It is very likely that this trait, although sensitive to light
intensity at lowDLI (Fig. 2k), ismore responsive to the decreases in
R : FR occurring during competition (Morgan & Smith, 1981).
For the other traits considered, we expect the observed responses to
DLI to have validity beyond the current experiments.

Finally, what does this imply for the light compensation point of
growth, as integrator of the many underlying trait responses
(Craine et al., 2012)? Laboratorymeasurements ofCbudgets at low
light levels are scarce but indicate that young plants can achieve a

positive C balance at DLI levels of c. 1 mol m�2 d�1 or lower,
depending on species (McCree & Troughton, 1966; Baltzer &
Thomas, 2007; Pons&Poorter, 2014). Similar results are found in
growth analyses where the DLI for which RGR is zero is assessed
(Poorter, 1999). Light compensation points for whole-plant
growth are generally higher in the field (Baltzer & Thomas,
2007). Partly, this will be an effect of size, especially for trees where
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et al. (2015) for traits dependingon light gradientswithin plant canopies and
the PI derived in this paper from species grownat different daily light integral
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leaf area ratio strongly decreases during development (Givnish,
1988; Sterck et al., 2013). However, the compensation point in the
field is also higher due to additional stress from fungi, insects,
competition and/or limited soil resources (Emborg, 1998). This
lends further support to the concept of shade tolerance beingmore a
matter of stress tolerance than short-term maximization of C gain
(Section VI).

VIII. Concluding remarks

1. Outlook

The effect of light intensity on plants has been studied experimen-
tally for > 100 yr now (e.g. Lubimenko, 1908). The accumulated
information provides us with an accurate picture on how various
plant traits change with DLI. However, there are still substantial
gaps in our knowledge. In the following, we outline five topics that
would progress the field.
1 The ‘dark side’ of light acclimation. As much as we know about
photosynthesis and shoot growth parameters, we know little about
the effects of DLI on reproduction, respiration, chemical compo-
sition and belowground organs (Table 2).
2 Scaling up in time and size. Physiological processes are well
studied on the standard ‘youngest full-grown’ leaves of plants.
What the effects are on whole plant physiology and how this
changeswhen plants age and/ormature is highly relevant but far less
known. This issue is also relevant for comparisons of characteristics
of low-light- and high-light-grown plants, as the latter will
inevitably become much larger during the growth period, which
then may have indirect effects on a range of other plant traits.
3 Molecular regulation of plasticity. We begin to understand the
cellular regulation of responses to light for various photosynthetic
compounds that respond in the short term. However, many of the
traits discussed here develop over longer time periods, for which the
plants probably make decisions based on light availability over the
longer term. What are the molecular mechanisms behind these
changes and what are the cellular integrators that determine the
strength of the response? Towhat extent is the response to shade for
different traits determined by DLI or by the R : FR ratio, and to
what degree can these two stimuli bemutually exchanged to achieve
the same phenotypic effect?
4 Interaction between traits. So far, we have analyzed each trait
separately. However, in planta, where plant parts and processes
function in dependency (Fig. 6), environmental or genetic changes
in one trait will have consequences for other traits. Trait correlation
networks are at their infancy (Poorter et al., 2013; Messier et al.,
2017; Kleyer et al., 2018), but they can become an important tool
to gain quantitative insight in howplants canoptimally acclimate to
a given light environment.
5 Fundamental and realized niches. What makes the ecological
niche of plants with respect to light smaller than what they can
achieve in controlled environments? Although the available
evidence indicates that (a)biotic interactions play an important
role, we have few insights into the actualmechanisms.What exactly
makes light-demanding species succumb at low light, and what are
the reasons that shade species do so much better?

2. Conclusions

1 We quantified the effects of light intensity on 70 plant traits by
deriving generalized DRCs. They provide a concise picture of how
plants respond to light and can be used for further analyses and
modeling.
2 Differences in plasticity among traits were large, but there was
clear co-variation for LMA, area-based photosynthetic capacity and
ULR.
3 Although shade-tolerant and light-demanding species showed
differences in the plasticity to light intensity, differences in DRCs
were generally small relative to the overall DRC.
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