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Why Would I Use This in My Home? A Model of
Domestic Social Robot Acceptance

Maartje M. A. de Graaf,1 Somaya Ben Allouch,2 and Jan A. G. M. van Dijk1
1University of Twente, the Netherlands

2 Saxion University of Applied Science, the Netherlands

Many independent studies in social robotics and human–robot interaction
have gained knowledge on various factors that affect people’s perceptions
of and behaviors toward robots. However, only a few of those studies
aimed to develop models of social robot acceptance integrating a wider
range of such factors. With the rise of robotic technologies for everyday
environments, such comprehensive research on relevant acceptance fac-
tors is increasingly necessary. This article presents a conceptual model of
social robot acceptance with a strong theoretical base, which has been
tested among the general Dutch population (n = 1,168) using structural
equation modeling. The results show a strong role of normative believes
that both directly and indirectly affect the anticipated acceptance of social
robots for domestic purposes. Moreover, the data show that, at least at
this stage of diffusion within society, people seem somewhat reluctant to
accept social behaviors from robots. The current findings of our study
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and their implications serve to push the field of acceptable social robotics
forward. For the societal acceptance of social robots, it is vital to include
the opinions of future users at an early stage of development. This way
future designs can be better adapted to the preferences of potential users.
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1. INTRODUCTION

The economic prospects of the robotics market are rapidly expanding. In
2013, approximately 4 million service robots for personal and domestic use were
sold worldwide, and this number is expected to increase to 31 million by the end
of 2017 (International Federation of Robotics, 2014). However, the increasing
presence of robots in our everyday lives will not simply be accepted unreservedly
by human users. Research in robotics suggests that the mere presence of robots
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in everyday life automatically increases neither their chances of being accepted nor
the willingness of users to interact with them (Bartneck et al., 2005), which is a
major challenge for the success of social robots. Although there have been many
studies in the field of social robotics regarding the various factors affecting
people’s perceptions of and behavior toward robots, only a few aimed to develop
models of social robot acceptance. As researchers focus more on developing
robotic technologies for everyday environments, more comprehensive studies on
the factors relating to their acceptance are increasingly necessary. Furthermore,
the inclusion of future users during the early stages of design is important for
developing socially robust, rather than merely acceptable, robotic technologies
(Sabanovic, 2010). Therefore, the goal of this article is to present a conceptual
model of social robot acceptance for domestic purposes and to test it using
structural equation modelling (SEM). We begin by evaluating the current accep-
tance model and then present the theoretical framework of our conceptual model
within the theory of planned behavior (TPB). Thereafter we describe several
influential factors for social robot acceptance in domestic environments, resulting
in our proposed conceptual model. We then outline our research methods,
including the establishment of the measurement model. Following this, we pre-
sent the test results of our conceptual model, along with its hypotheses. This
article concludes with the implications for social robot acceptance in domestic
environments and how our model could serve to advance the field of social
robotics.

2. EVALUATING RELEVANT ACCEPTANCE MODELS

Applying existing acceptance models from human–computer interaction to the
field of social robotics without modification is problematic, because robot technology
is far more complex than other technological devices (Flandorfer, 2012). With robots
recognizing our faces, making eye contact, and responding socially, they are pushing
our Darwinian buttons by displaying behavior associated with sentience, intentions,
and emotions (Turkle, 2011). Therefore, some researchers have argued that robots
should be regarded as a new technological genre (de Graaf, 2016; Kahn, Gary, &
Shen, 2013; Young, Hawkins, Sharlin, & Igarashi, 2007). In this section, we review
the most prominent models applied to technology acceptance in general, then
critically reflect on the few existing models developed specifically for social robot
acceptance. We later conclude that we need to deviate from these models in the
development of our conceptual model of social robot acceptance. As we argue in
what follows, we suggest building on the framework of TPB. Because we acknowl-
edge that TPB has its shortcomings, which we elaborate next, the final part of this
section provides suggestions for improvement on our conceptual model of social
robot acceptance.
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2.1. Reviewing Traditional Models of Technology Acceptance

The technology acceptance model (TAM) developed by Davis (1989) is con-
sidered the most influential and commonly applied theory for describing an indivi-
dual’s acceptance of information systems (Y. Lee, Kozar, & Larsen, 2003). The
widespread popularity of TAM is broadly attributable to three factors. First, it is a
parsimonious and IT-specific model, designed to adequately explain and predict the
acceptance of a wide range of systems and technologies among a diverse population
of users across varying organizational and cultural contexts and expertise levels.
Second, the TAM model has a strong theoretical base and a well-researched, validated
inventory of psychometric measurement scales, which makes its use operationally
appealing. Third, the model has accumulated strong empirical support for its overall
explanatory power and has emerged as a preeminent model of users’ acceptance of
technology (Yousafzai, Foxall, & Pallister, 2007a). TAM views user acceptance as
being dependent upon the perceived usefulness of the technology and its perceived
ease of use. The model was first developed by Davis (1989) to provide validated
measurement scales for predicting the user acceptance of computers, as these
subjective measures were not yet validated and their relationships to systems use
unknown. The model adopts a causal chain of beliefs, attitudes, intention, and
behavior, introduced previously by social psychologists (Ajzen, 1991; Fishbein &
Ajzen, 1975). Based on certain beliefs, people form attitudes about a specific object,
the basis upon which they form an intention to behave regarding that object. Here,
the effects of the outcome variables end at intention to use, or even at attitude
toward use. In TAM, the only predictor of actual system use is behavioral intention.
Although TAM has been found to be a useful predictor of acceptance behavior in
numerous contexts, it does not provide a mechanism for the inclusion of other salient
beliefs (Benbasat & Barki, 2007). The literature suggests that other factors may play a
role in explaining use behavior, including expected outcomes and habits (LaRose &
Eastin, 1994), motives to use a technology (Katz, Blumler, & Gurevitch, 1973), or
environmental factors (Bandura, 1977). As a result, many recent studies focused on
the elaboration of the model, including those undertaken by Davis and his colleagues
(e.g., Davis, 1989; Venkatesh & Davis, 2000). A review of TAM-related research
shows that many determinants of perceived usefulness and perceived ease of use
have been discovered (Y. Lee et al., 2003). Therefore, the creators of TAM expanded
their original model, resulting in the introduction of a second edition of TAM
(Venkatesh & Davis, 2000) and later a third edition (Venkatesh & Bala, 2008).
However, even this third edition of their model is still somewhat limited.

TAM is a very economical model that does not specifically include other
external factors, besides usefulness and ease of use. Moreover, the model presumes
that all external factors are moderated by the evaluation of usefulness and ease of use.
However, many studies adopting the principles of TAM have demonstrated that
several other factors directly influence behavioral intentions and actual behavior (see
Y. Lee et al., 2003, for a summary). Indeed, the relation between perceived useful-
ness, perceived ease of use, and use behavior may be more complex and less linear
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than reflected by TAM. As depicted in TPB (Ajzen, 1991), social influence, facilitat-
ing conditions (Venkatesh, Morris, Davis, & Davis, 2003), and habitual use (Ouellette
& Wood, 1998; Triandis, 1979) have also been found to explain actual use directly,
and not, as the original TAM assumes, to only mediate it through usefulness and ease
of use. In addition, TAM assumes that technology use is directly accepted or not
accepted independently of other factors preventing individuals from using a technol-
ogy. However, many situational factors, such as lack of time, money, or experience,
can prevent individuals from using a technology (Mathieson, Peacock, & Chin, 2001).
Other researchers argue that the overly simple conceptualization and operationaliza-
tion of the constructs of usefulness and ease of use have prevented researchers from
understanding the internal workings of these central constructs within TAM (Benba-
sat & Barki, 2007). These examples indicate that the acceptance of domestic social
robots is more complex and less linear than the limited TAM model suggests, raising
objections against its applicability for the investigation of social robot acceptance in
domestic environments.

One of the most prominently applied models of technology acceptance is the
unified theory of acceptance and use of technology (UTAUT), developed by the
same researchers who worked on the TAM modifications (Venkatesh et al., 2003). In
developing UTAUT, the researchers reviewed and consolidated the constructs of
eight theoretical models, employed in previous research, to explain information
systems use behavior (i.e., theory of reasoned action [TRA], TAM, motivational
model, TPB, a combined TPB/TAM, model of personal computer use, diffusion
of innovations theory, and social cognitive theory). In building this eclectic model, the
researchers chose an empirical, rather than theoretical, approach. Of all these theore-
tical constructs, only those shown to have the highest significant effect in an
empirical study investigating the user acceptance of an information system were
picked for their model. UTAUT holds that performance expectancy, effort expec-
tancy, social influence, and facilitating conditions are direct determinants of use
intention and actual use. Gender, age, experience, and voluntariness of use are
posited to moderate the impact of these four key constructs on use intention and
actual use. The inclusion of moderators in the model is reminiscent of a social
psychological approach.

The effects of the independent variables thus do not spread beyond the user’s
intention to use, and the single predictor of actual system use is behavioral intention.
Obviously, there are both advantages and limitations to UTAUT’s utilization in
acceptance research. An advantage is its holistic approach to explaining many psy-
chological and social factors that impact technology acceptance, together with the
consistent validity and reliability of data collection through the instrument (Yoo, Han,
& Huang, 2012). However, despite being an eclectic model that combines highly
correlated variables to create an extremely high explained variance (Yoo et al., 2012),
UTAUT is criticized for not being parsimonious enough, because it requires several
variables to achieve a substantial level of explained variance (Straub & Burton-Jones,
2007). Parsimony, the goal of which is to identify factors accounting for the most
variation, is to be greatly valued (Burgoon & Buller, 1996), but not at the expense of

Model of Domestic Social Robot Acceptance 119



explanatory power. UTAUT does not explain the different underlying mechanisms,
although such an explanation would make the unified model more suitable for
explaining the user’s general opinions about expected use, rather than explaining
the user’s motivations relating to the continued and increased adoption of a particular
technology (Peters, 2011). Another disadvantage is that, even though the founders of
the model are working toward extending the original model to a second edition
(Venkatesh, Thong, & Xu, 2012), both measurements of social influence and facil-
itating conditions are not robustly constructed. These concepts are quite complex but
are measured with only two items. In addition, by adding social influence and
facilitating conditions to the original technology acceptance model, we are essentially
faced with a model that is not very different from the model of planned behavior
theory. The two constructs of social influence and facilitating conditions from
UTAUT overlap considerably with the constructs of subjective norm and perceived
behavioral control from TPB. Moreover, the original TAM and UTAUT constructs
were merely developed for utilitarian systems and were validated in a working
environment. The applicability of these models on hedonic systems or more plea-
sure-oriented systems is limited (van der Heijden, 2004). Yet the use of social robots
in domestic environments could result in an experience that goes beyond its utility.
These robotic systems have been observed to evoke a social reaction from its users
(Kahn, Friedman, Perez-Granados, & Freier, 2006; K. Lee, Park, & Song, 2005;
Reeves & Nass, 1996). In addition, the context in which these models have been
validated (i.e., in the working environment) is not congruent with our study’s
objective, which is social robot acceptance in domestic environments. This suggests
that other models may be more appropriate for the development of a model of
acceptance for domestic social robots.

2.2. Reviewing Existing Models for Social Robot Acceptance

To our knowledge, only two user acceptance models for social robots have been
proposed to date using SEM. The current most cited model of social robot accep-
tance is the Almere model of Heerink, Kröse, Evers, and Wielinga (2010). Shin and
Choo (2011) presented an alternative acceptance model for social robots. Although
these models offer useful insights into the factors influencing social robot acceptance,
they show some weakness regarding its general application in the domestic context.
First, both the Almere model (Heerink et al., 2010) and the acceptance model for
socially interactive robots (Shin & Choo, 2011) have their roots in UTAUT. As
previously indicated, UTAUT is not considered to be parsimonious (Straub &
Burton-Jones, 2007), and it is an eclectic model that combines highly correlated
variables to create an unnaturally high explained variance (Yoo et al., 2012). In what
follows, we argue that TPB offers a more suitable theoretical base for a model of
social robot acceptance that focuses on individual adoption behavior in a domestic
environment. Second, both models have been tested only on specific user groups.
The Almere model (Heerink et al., 2010) has been developed for the acceptance of
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socially interactive agents in the eldercare facilities context, and the acceptance model
for socially interactive robots (Shin & Choo, 2011) has been tested on a sample of
students. This limits the generalizability of these models to other user groups and
contexts. Our study focuses on the general population and social robot use within the
domestic context, for which the two existing models have not yet been validated.
Third, both models are based on grouped findings from previous research in human–
robot interaction (HRI) and human–computer interaction. They lack both a theore-
tical foundation and strong arguments for the inclusion of the chosen factors in the
model and the exclusion of other factors. Fourth, the SEM, used to test the Almere
model, was performed on a data set that consisted of a combined dataset from four
separate studies. Similarly, the acceptance model for socially assistive robots (Shin &
Choo, 2011) is based on different groups of participants, who used different types of
robots with varying functionalities. Neither of the two studies statistically confirmed
any similarities between the data sets to justify merging their samples into one data set
to test their models. A final shortcoming of the Almere model can be found in the
application of the model modification indices, which were accepted without any
theoretical support. Based on the deficiencies of both models, we decided to deviate
from these existing models by proposing a new model for social robot acceptance,
conceptualized within a strong theoretical foundation.

2.3. Reviewing the Theory of Planned Behavior

Because our focus is mainly on psychological aspects of individual users, we
have chosen to build on an existing theory from a psychological perspective. We use
the TPB (Ajzen, 1991) as a starting point in the development of our proposed model.
We chose TPB as a guiding framework because (a) it is particularly suitable for
explaining and predicting volitional behaviors, including technology acceptance
(Mathiesson, 1991; S. Taylor & Todd, 1995; Venkatesh & Brown, 2001); (b) it has
been successfully applied to explain a wide range of behaviors (Ajzen, 1991); and (c)
its origin invites researchers to extend the model to adapt to a specific behavior
(Ajzen, 1991). Moreover, when considering use intention as the main outcome
variable to explain future use of a new technology—in this case, social robots—the
explanatory power of TPB is greater than that of TAM and its successors, especially
when it is decomposed to a specific technology (S. Taylor & Todd, 1995). Therefore,
TPB provides a solid basis for the development of a conceptual model to investigate
social robot acceptance from an individual perspective.

TPB, which is an extension of TRA (Ajzen & Fishbein, 1980), has been one of
the most influential, well-researched theories in explaining and predicting behavior
across a variety of settings (Manstead & Parker, 1995). As a general model, it is
intended to provide a parsimonious explanation of informational and motivational
influences on most human behavior and can therefore be used to predict and
understand human behavior (Ajzen, 1991). The TPB approach is embedded in
expectancy-value models of attitudes and decision making, with an underlying logic
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that the expected personal and social outcomes of a particular action influence the
intention to behave in a certain way (Manstead & Parker, 1995). According to TPB,
the main determinant of a behavior is a behavioral intention, which in turn is
determined by attitude, subjective norms, and perceived behavioral control. Attitude
captures an individual’s overall evaluation of performing the behavior, whereas
subjective norms refer to an individual’s perception of the expectations of important
others about the specific behavior. Because the achievement of behavioral goals is
not always completely under volitional control, Ajzen (1991) added a third concept to
the prediction of behavior, namely, perceived behavior control. Perceived behavioral
control is an individual’s perceived ease or difficulty in performing the behavior and is
conceptually related to Bandura’s (1977) self-efficacy. The concept of perceived
behavioral control may include both internal (e.g., skills, knowledge, adequate plan-
ning) and external (e.g., facilitating conditions, availability of resources) factors.

Despite its success in behavior research (Manstead & Parker, 1995), a flaw of
TPB’s original model and the hypothesized relations between its constructs is that
only moderate correlations exist between the global and belief measures of its
constructs (Benbasat & Barki, 2007). This means that these concepts are not strongly
related and other factors may influence the formation of people’s beliefs about a
certain behavior. Moreover, the model suggests correlations between attitudes, sub-
jective norms, and perceived behavioral control (Ajzen, 1991), which result in a lack
of knowledge regarding the precise nature of the relations between these concepts.
Meta-analytic reviews on TPB (e.g., Armitage & Conner, 2001; Sheppard, Hartwick,
& Warshaw, 1988) indicate that a substantial proportion of the variance of behavior
intention remains unexplained by the core variables of attitudinal beliefs, subjective
norms, and perceived behavior control. This has led some researchers to postulate
that other factors play a role in explaining and predicting human behavior (Bentler &
Speckart, 1981). TPB has also been challenged for its claim that attitude, subjective
norms, and perceived behavioral control are the sole antecedents of intentions.

The critics can be divided into four groups: (a) those who challenge the lack of
emotional components in the model, (b) those who criticize the sole focus on social
pressure in the social components in the model, (c) those who criticize the assump-
tion that all behaviors are consciously performed, and (d) those who argue that a lot
of behavior is a result of habitual routines. Next we focus on these criticisms and
explain how we address these shortcomings in our conceptual model of domestic
social robot acceptance.

First, TPB is challenged for the lack of emotional components in the model, as
it mainly focuses on cognitive or instrumental components and neglects affective
evaluations or emotional aspects of human behavior (Bagozzi et al., 2001). However,
although both concepts are highly correlated, they can be empirically discriminated
and have different functions in explaining or predicting human behavior (Breckler &
Wiggins, 1989; Greenwald, 1989). Human behavior is not purely rational. In fact,
emotions are intertwined in the determination of human behavioral reactions to
environmental and internal events that are very important to the needs and goals
of an individual (Izard, 1977). Many researchers believe that it is impossible for
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humans to act or think without the involvement of, at least subconsciously, our
emotions (Mehrabian & Russell, 1974). Indeed, rational evaluations and forming
expectations, as well as nonrational attitudes, feelings, and other affective or emo-
tional-related concepts have been acknowledged by researchers to influence human
behavior (Limayem & Hirt, 2003; Manstead & Parker, 1995; Richard, Plicht, & Vries,
1995; Sun & Zhang, 2006). If emotions affect human behavior in general, they might
be relevant for HRI research as well. Several studies have indicated that people react
emotionally when confronted with robots. People are more aroused after watching a
robot being tortured than when watching a robot being petted (Rosenthal–von der
Pütten et al., 2013). Moreover, people’s negative attitudes toward robots decreased
significantly after interacting with robots, which in turn explained the significant
variance in the overall rating of the robot (Stafford et al., 2010). As negative emotions
are naturally unpleasant, people tend to perform corrective behaviors or avoid bad
behaviors to mitigate them (Izard, 1977). This reasoning reflects the importance of
including emotions as a factor influencing human behavior. Therefore, in addition to
utilitarian attitudes that entail the more rational evaluation of the behavior, we include
hedonic attitudes that compose the emotional components of the behavior as
determinants of social robot acceptance in our model.

Second, TPB has a narrow conceptualization and focuses solely on social pressure
experienced when making decisions about human behavior (Rivis & Sheeran, 2003;
Sheeran & Orbell, 1999). Previous studies have largely used subjective norms to capture
the essence of social influence, but their inconsistent findings have led some researchers
to question whether these reflect the full extent of social influence (Y. Lee, Lee, & Lee,
2006). Therefore, the link between social influence and technology acceptance requires
further investigation (Karahanna & Limayem, 2000). Only a few empirical studies have
investigated the underlying components of normative beliefs (Fisher & Price, 1992), and
some researchers have suggested the introduction of further dimensions to TPB to tap
the complete function of normative beliefs in explaining human behavior (Fisher & Price,
1992; Sheeran & Orbell, 1999). Therefore, further exploration regarding additional
factors that better explain the normative component is needed. Our model of social
robot acceptance, which splits the normative component into a personal and a social
element, attempts to achieve this.

Third, although these additions and alterations to the theory provide greater
insights into the rational-based and deliberate nature of behavior, its assumption that
people consciously act in a certain way could be problematic. In general, psycholo-
gical research originates from goal-directed human behavior and relies on expectancy-
value models of attitudes and decision making, which are rooted in theories of
rational choice. TPB may be considered one of the most influential models in this
perspective (Aarts, Verplanken, & van Knippenberg, 1998). However, humans are the
only animal species with the ability for metacognition or to reflect on their actions
and their thoughts (Cartwright-Hatton & Wells, 1997). For example, when a ball is
thrown at someone, their reflex will most likely be to catch the ball without thinking
about the action. Similarly, our environment is capable of activating goal-directed
behavior automatically, without an individual’s awareness (Bargh & Gollwitzer, 1994).
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Thus, not all human behavior is part of a conscious decision-making process, which is
an assumption of TPB. Therefore, we include emotional aspects, as well as auto-
mated behavior, in our model of social robot acceptance to overcome this single
rational focus in explaining or predicting human behavior.

Fourth, other researchers similarly speculate that TPB overlooks the fact that
human behavior is executed on a repetitive, daily basis and therefore may become
routinized or habitual (Aarts, Verplanken, & van Knippenberg, 1998). People are
likely to draw on experiences from similar previous behavior in deciding to perform
their current behavior. Although Ajzen (1991) incorporated previous behavior into
his theory, he presumed that the impact of past behavior produces feedback through
subsequent attitudes and perceptions of social norms and behavioral control. How-
ever, as most of our behavioral repertoire is frequently performed in the same
physical and social environment, behavior usually becomes habitual in nature (Ouell-
ette & Wood, 1998; Triandis, 1979). Habits allow us to behave in a rather “mindless”
state and therefore may be perceived as automatic behavior. Automatic processes lack
conscious attention (i.e., are cognitively efficient), intentionality, awareness, and/or
controllability (Bargh & Chartrand, 1999). Most habitual behavior arises and proceeds
efficiently, effortlessly and unconsciously (Aarts, Verplanken, & van Knippenberg,
1998), and technology use is often associated with habitual use (Ortiz de Guinea, &
Markus, 2009; Peters & Ben Allouch, 2005). Thus, by omitting nonrational, routi-
nized, and automatic behavior, TPB may not be suitable to predict human behavior in
its original state. Moreover, robots for domestic use should also be socially accepted
within our society. This is a process that involves emotional evaluations of the
technology in addition to rational decisions to adopt a robot system (Scopelliti,
Giuliani, & Fornara, 2005; Weiss, Igelsböck, Wurhofer, & Tscheligi, 2011). In
addition, robots for domestic use must be accepted by households. Thus, although
social robot acceptance might be an individual decision, this decision is influenced by
the social structure of the household, which argues for the inclusion of a more social
perspective if multiple persons are living in one household.

2.4. Toward a Model of Social Robot Acceptance

As just argued, we use the framework of TPB as a starting point in an
attempt to explain the (long-term) acceptance of social robots in domestic
environments. Some studies revise existing theoretical models by adding an
independent variable as a parallel predictor of the dependent variables, together
with established predictors. The aim of this approach is to account for more
variation by specifying processes formally contained in error terms in the testing
of the theory. Such an approach could be characterized as theory broadening. A
second approach to the revision of any theory is introducing a variable explaining
how existing predictors influence intentions, as many studies have done to expand
TPB (Liao, Chen, & Yen, 2007; Pavlou & Fygenson, 2006; Perugini & Bagozzi,
2001; Wand, 2011). Here, the idea is to better understand theoretical mechanisms
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and their effects by introducing a new variable that mediates or moderates the
effects of existing variables. Such an approach could be characterized as theory
deepening. The goal of this article is to present a conceptual model of social
robot acceptance that both expands and deepens TPB. This will be achieved by
decomposing the TPB model to a specific technology—in this case, social robots
for domestic purposes—as suggested by S. Taylor and Todd (1995). This decom-
position allows for the inclusion of factors from other theories (Benbasat & Barki,
2007), based on a comprehensive overview of predictors for technology accep-
tance and behavioral intention from psychology, information systems, commu-
nication science, human–computer interaction, and HRI, which have been shown
to influence the acceptance and use of technology in general, and robots or virtual
agents specifically. As previously indicated, TPB only includes a rational perspec-
tive on human behavior. Therefore, factors for affective evaluations and the social
context of behavior are included in the proposed model of social robot accep-
tance, which is presented in the next section.

3. INFLUENTIAL FACTORS FOR SOCIAL ROBOT

ACCEPTANCE

Following others (S. Taylor & Todd, 1995; Venkatesh & Brown, 2001), the
three constructs of attitudinal beliefs, social normative beliefs, and control beliefs
from TPB will be decomposed to reflect the specific underlying factors, based on a
detailed literature review on social robot acceptance. Here, a variety of salient beliefs
may be generated, depending on the context of use of a specific technology—in this
case, social robots. This course of action exposes the left side of the model (i.e., the
influencing factors), which provides an adequate theoretical grounding to incorporate
various factors from other theories (Benbasat & Barki, 2007). For our study, we
included those factors relevant for social robot acceptance. Specifically, the model
includes the missing factors influencing the affective and interactive use of social
robots (e.g., hedonic attitudes), as well as the social and societal influences (e.g.,
normative beliefs such as privacy and trust) on robot technology use.

Because intentions are found to be good predictors of specific behavior, they
have become a critical part of many contemporary theories of human behavior
(Ajzen & Fishbein, 2005). Although these theories differ in detail, they all show
convergence on a small number of factors that account for much of the variation
in behavioral intentions. These factors can be regarded as the three major types of
considerations influencing the decision to engage in a given behavior. First,
attitudinal beliefs are the anticipated positive or negative consequences of the
behavior, which, in the case of social robot acceptance, can be accepted as the
user’s evaluation of the beliefs when using a robot in the future. Second,
normative beliefs are the anticipated approval or disapproval of the behavior by
prevailing norms in the individual’s social environment, which in the scope of this
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study can be perceived as the user’s evaluation of the prevailing norms regarding
the use of a robot. Third, control beliefs are the factors that may facilitate or
impede the performance of the behavior, which can be observed here as the
contextual factors influencing the use of a robot. Next we present the different
factors included in our conceptual model of social robot acceptance. Refer to our
previous work for a more detailed discussion on the inclusion of these factors (de
Graaf & Ben Allouch, 2013a).

3.1. Attitudinal Beliefs Structure

The attitudinal belief structure involves the user’s favorable or unfavorable
evaluation of a specific (future) behavior (Ajzen & Fishbein, 2005), or in this case
the evaluation of behavioral beliefs resulting from the (anticipated) use of a social
robot. According to some researchers in human–computer interaction (Hassenzahl,
2004; Van der Heijden, 2003), there are both utilitarian and hedonic product aspects
to the attitudinal belief structure. Utilitarian aspects are attributes involved in the
practicality and usability of a product. In contrast, hedonic aspects are attributes
relating to the user’s experience when using a product. The dichotomy of both
utilitarian and hedonic attitudes as determinants of technology acceptance also arises
from motivation theory, suggesting a main classification between extrinsic and
intrinsic motivators of human behavior, which are based on the different reasons
or goals that encourage a person’s actions (Ryan & Deci, 2000; Vallerand, 1997).
Extrinsic motivation refers to doing something because it leads to a separate valued
outcome (e.g., utilitarian attitudes). Intrinsic motivation relates to the performance of
an activity for no apparent reinforcement other than for the process of performing
that behavior itself (e.g., hedonic attitudes). Intrinsic motivations are expected to be a
powerful incentive of human behavior, as a person can autonomously decide on a
course of action (Deci & Ryan, 1985). Because this article examines social robot
acceptance in the context of voluntary use, intrinsic motivations or hedonic attitudes
should therefore be among the influential factors under study.

Several utilitarian attitudes can be deduced from general acceptance literature as
being important factors in the context of HRI, namely, usefulness (Chin & Shoo,
2011; Fink, Bauwens, Kaplan, & Dillenbourg, 2013; Heerink et al., 2010), ease of use
(Chin & Shoo, 2011; Heerink et al., 2010), and adaptability (Broadbent, Stafford, &
MacDonald, 2009; Fong, Nourbakhsh, & Dautenhahn, 2003; Goetz, Kiesler, &
Powers, 2003; Heerink et al., 2010; Shin & Choo, 2011). For social robot acceptance,
several studies (Bartneck, Kulić, Croft, & Zoghbi, 2009; Cuijpers, Bruna, Ham, &
Torta, 2011) point to the utilitarian attitude of perceived intelligence as an influential
factor in user evaluations. Regarding the hedonic attitudes, well-known factors in
technology acceptance research are enjoyment and attractiveness, which have also
been shown to be crucial factors in HRI (Heerink et al., 2010; Shin & Choo, 2011).
For social robots specifically, the factors of anthropomorphism (Heerink et al., 2010;
Kahn Ishiguru, Friedman, & Kanda, 2006; K. Lee et al., 2005; K. M. Lee, Jung, Kim,
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& Kim, 2006; Salem, Eyssel, Rohlfing, Kopp, & Joublin, 2013), realism (Bartneck,
Kanda, Mubin, & Al Mahmud, 2009; Goetz et al., 2003; Groom et al., 2009),
sociability (Breazeal, 2003; de Ruyter, Saini, Markopoulos, & van Breemen, 2005;
Fong et al., 2003; Heerink et al., 2010; Joosse, Sardar, Lohse, & Evers, 2013; Mutlu,
2011; Shin & Choo, 2012), and companionship (Dautenhahn et al., 2005; de Graaf,
Ben Allouch, & Klamer, 2015; K. M. Lee et al., 2006) also influence the user
experience and acceptance of these types of robots.

The attitudinal beliefs of social robot acceptance compose both utilitarian and
hedonic attitudes of HRI. Including both types of attitudinal beliefs allows for the
broadening of the view that robots are social actors in an interaction scenario and
enables the evaluation of interactive and pleasure-oriented, as well as usability,
aspects. There is thus an acknowledgment of the unique factors that distinguish
social robots as a new technological genre (de Graaf, Ben Allouch, & van Dijk, 2015;
Young et al., 2011), which demonstrates the need to include these unique factors, as
well as the traditional antecedents, in human–computer interaction. Several sources in
the information systems literature (e.g., Agarwal & Karahanna, 2000; Y. Lee et al.,
2003) and the HRI literature (e.g., Heerink et al., 2010; K. M. Lee et al., 2006; Shin &
Choo, 2011) indicate that hedonic attitudes directly influence the utilitarian attitudes
of system use or social robot use. In addition, renowned human technology use
behavior theories (Ajzen, 1991; Rogers, 2003) indicate that attitudinal beliefs influ-
ence people’s intentions to perform a particular behavior. These interrelationships
result in the following hypotheses:

H1: The users’ utilitarian attitudes of a robot directly influence their intention to use
that robot.

H2: The users’ hedonic attitudes of a robot directly influence their intention to use
that robot.

H3: The users’ hedonic attitudes of a robot directly influence their utilitarian
attitudes of that robot.

3.2. Normative Beliefs Structure

Social context plays an important role in technology acceptance, especially in
early adoption behavior (Rogers, 2003). Yet only a few empirical studies have
investigated the underlying components of normative beliefs (Fisher & Price,
1992). Miniard (1981) argued that the normative beliefs structure comprises both
social normative and personal normative components. The social component encom-
passes an individual’s belief regarding the likelihood and importance of the social
consequences of performing a particular behavior. The personal component refers to
an individual’s belief that engaging in a behavior leads to salient personal beliefs,
which are related to what is perceived as the norm within one’s social environment.
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The technology acceptance literature focuses largely on the normative concepts
of social influence and status (Y. Lee et al., 2003). To our knowledge, only the effects
of social influence have been studied to date in the context of social robot acceptance
(Heerink et al., 2010; Shin & Choo, 2011). However, if other important role-players
support the use of an innovation, it is believed that using that innovation will elevate
one’s status within that group (Fisher & Price, 1992; Rogers, 2003; Venkatesh &
Davis, 2000). Social robots, being a relatively new technology in the consumer
market, might also be subject to this status process. In terms of personal norms,
privacy, trust (Cramer et al., 2008; DeSteno et al., 2012; Hancock et al., 2011; Li, Rau,
& Li, 2010), and societal impact (Nomura, Kanda, Suzuki, & Kato, 2006; Nomura,
Kanda, Suzuki, Yamada, & Kato, 2009; Nomura et al., 2008) factors have been
shown to influence the user evaluation and acceptance of these autonomous robot
systems.

This study conceptualizes a distinction between social and personal norms,
which to our knowledge are not yet included in theories of technology acceptance
or human behavior. Therefore, for now, the theoretically grounded relations between
normative beliefs and other factors in the model are assumed for both social and
personal norms, because personal norms arise from beliefs considered to be the norm
in one’s social environment. Social system factors influence the knowledge a person
possesses and upon which opinions about using a technology are based (Rogers,
2003). Thus, a person’s normative beliefs directly affect that individual’s attitudinal
beliefs. This theoretical interrelation between normative beliefs and attitudinal beliefs
has been acknowledged in both the information systems literature (e.g., Ben Allouch,
van Dijk, & Peters, 2009; Y. Lee et al., 2003; Yu, Ha, Choi, & Rho, 2005) and the
HRI literature (e.g., Heerink et al., 2010; Shin & Choo, 2011). In addition, renowned
theories of human technology use behavior (Ajzen, 1991; Venkatesh et al., 2003)
indicate that normative beliefs influence people’s intentions to perform a particular
behavior. These interrelationships result in the following hypotheses:

H4: The users’ personal norms, involving the use of a robot, directly influence their
intention to use that robot.

H5: The users’ social norms, involving the use of a robot, directly influence their
intention to use that robot.

H6: The users’ personal norms, involving the use of a robot, directly influence their
utilitarian attitudes of that robot.

H7: The users’ personal norms, involving the use of a robot, directly influence their
hedonic attitudes of that robot.

H8: The users’ social norms, involving the use of a robot, directly influence their
utilitarian attitudes of that robot.

H9: The users’ social norms, involving the use of a robot, directly influence their
hedonic attitudes of that robot.

H10: The users’ social norms, involving the use of a robot, directly influence their
personal norms involving the use of that robot.
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3.3. Control Beliefs Structure

Psychology research, and research on TPB in particular, has established inhibit-
ing effects or constraints for the intention to perform a behavior, as well as for the
behavior itself (Ajzen, 1991). Control beliefs consist of the user’s beliefs about salient
control factors, meaning their beliefs about the presence or absence of resources,
opportunities and obstacles that may facilitate or impede the performance of the
behavior.

For social robot acceptance, the control belief of previous experiences (Broadbent
et al., 2009; Fong et al., 2003), either with robots or technology in general, has shown to
affect acceptance. This is particularly true of people who have not yet had a chance to
fully interact with robots (de Graaf, Ben Allouch, & van Dijk, 2016). Previous interac-
tions with robots enhance the user’s self-efficacy in using that robot (Ahlgren & Verner,
2009; Liu, Lin, & Chang, 2010), which in turn increases robot acceptance (Bartneck,
Suzuki, Kanda, & Nomura, 2007). Other relevant control beliefs for social robot
acceptance are safety (Bartneck et al., 2009; Young et al., 2007) and anxiety toward
robots (Nomura et al., 2008), which have been shown to influence the user’s evaluation
and acceptance of such systems. In addition to theseHRI contextual factors, we argue for
the inclusion of the factors personal innovativeness and cost in a conceptual model of
social robot acceptance. The core aspect of the control beliefs is self-efficacy and is
related theoretically to the concept of perceived behavioral control in Ajzen’s TPB
(1991). Self-efficacy is mainly relevant for novice users, who have not yet acquired the
requisite skills to successfully perform the behavior (LaRose & Eastin, 1994). As social
robots are not widespread in society, most people are unfamiliar with these systems.
Some people are more willing to experiment with or try out innovative technologies,
conceptualized by Serenko (2008) as personal innovativeness. In the consumer context,
people are responsible for the expenses associated with technology use. The perceived
cost is found to be an additional barrier to the adoption of home technologies (S. A.
Brown & Venkatesh, 2005). Thus, perceiving a robot as an expensive item might be
another determining factor when evaluating social robot acceptance.

A renowned theory of technology use behavior, social cognitive theory (LaRose &
Eastin, 2004), indicates that people’s self-efficacy, perceived as the core of a person’s
control beliefs as defined in TPB (Ajzen, 1991), influences their attitudinal beliefs. This
theoretical interrelation between control beliefs and attitudinal beliefs has been found in
several studies in both information systems (Hackbarth, Grover, & Yi, 2003; Karahanna
& Limayem, 2000) and HRI literature (Bartneck et al., 2007b). Consequently, our model
of social robot acceptance defines a direct influence of control beliefs on both attitudinal
beliefs structures. Moreover, prominent theories on human behavior (Ajzen, 1991;
Bandura, 1977) indicate that control beliefs are affected by social network opinions.
Thus, our model of social robot acceptance will incorporate the effect of social norms on
control beliefs. In addition, several theories including TPB (Ajzen, 1991) and UTAUT
(Venkatesh et al., 2003) indicate that control beliefs influence a user’s intention to use a
technology. These interrelationships result in the following hypotheses:
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H11: The users’ control beliefs, involving the use of a robot, directly influence their
intention to use that robot.

H12: The users’ control beliefs, involving the use of a robot, directly influence their
utilitarian attitudes of that robot.

H13: The users’ control beliefs, involving the use of a robot directly, influence their
hedonic attitudes of that robot.

H14: The users’ social norms, involving the use of a robot, directly influence their
control beliefs, involving the use of that robot.

3.4. The Conceptual Model

Relevant theories of technology acceptance, together with findings from HRI
research, have identified the importance of considering different factors regarding
the robot and the user, as well as the context of use. The proposed conceptual
model of social robot acceptance, as visualized in Figure 1, advances existing
technology acceptance and robotics research by introducing new factors into TPB
and adapts it for the new social robot acceptance context. This literature review
has revealed three key acceptance categories that are important when evaluating
social robot acceptance in domestic environments. The first category comprises
the attitudinal beliefs, including both utilitarian and hedonic attitudes, which
reflect the user’s evaluation of the beliefs when using a robot. The second
category consists of the normative beliefs, including both personal and social
norms that entail the user’s evaluation of the prevailing norms involving using a
robot. The third category encompasses the control beliefs composing the

FIGURE 1. Conceptual model of social robot acceptance including the hypotheses.
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contextual factors that play a role when using a robot. By adding components for
affective evaluations (i.e., hedonic attitudes) and the normative beliefs regarding
behavior (i.e., social and personal norms), our conceptual model of social robot
acceptance endeavors to overcome the shortcomings of Ajzen’s (1991) TPB
model, which approaches human behavior from a rational and purely psychologi-
cal perspective. This article thus contributes to the literature on the HRI by
modeling the behavioral processes that attempt to explain the intention to use
social robots.

4. METHOD

4.1. Sampling of Participants

In December 2013, 4,750 people, representative of the Dutch population, were
invited via e-mail to voluntarily participate in our study. In total, 1,649 people started
the questionnaire, of whom 1,248 completed it. This yielded a response rate of
26.3%. A reasonable explanation for the dropout during the 80-item questionnaire
is related to its relatively long length. It took the participants on average 15 min to
complete the questionnaire. Among the completed questionnaires, 86 were removed
from the data because of respondents straight-lining the answers. This resulted in the
final number of completed questionnaires included in further data analysis of 1,162.
The demographic characteristics of the participants included in the final sample are
displayed in Figure 2, together with the demographics of the general Dutch popula-
tion (Central Bureau of Statistics, 2013). It shows that the sample used in our study
serves as a satisfactory representation of the Dutch population.

FIGURE 2. Characteristics of the Participants (n = 1,162) versus the Dutch Population.

Sample (in %) Population (in %)

Gender
Male

Female
51.1
48.9

49.5
50.5

Age
18-29
30-44
45-60
60+

20.9
26.9
27.5
24.7

22.1
29.6
26.5
21.8

Education
Low

Middle
High

22.8
47.8
29.4

23.1
48.2
28.7
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4.2. Design of the Questionnaire

An online survey was designed to investigate the anticipated acceptance of a
social robot in people’s own homes. The questionnaire contained two parts. The
first part of the questionnaire collected the demographic data (i.e., gender, age,
educational level, income, and household type) from the participants, together
with the more static traitlike and general constructs. These were personal innova-
tiveness measured with the scale presented in Agarwal and Karahanna (2000), and
anxiety toward discourse with robots measured with the similarly named subscale
from Nomura et al. (2008). Both constructs belong to the control beliefs and
were assumed to be stable, traitlike concepts. Therefore, it was our goal to
measure the items of these concepts without any interference from the other
items or descriptions used in the questionnaire. The items were presented on a 7-
point Likert scale.

The goal of the second part of the questionnaire was to empirically test the
conceptual model of social robot acceptance and started with an open question
asking what first comes to mind when thinking of the word robot. The qualitative
analyses of the associations have been presented elsewhere (de Graaf & Ben Allouch,
2016) and show that people conceptualize robots as autonomous machines, endowed
with artificial intelligence but lacking consciousness and emotions, that are able to
switch between several tasks when helping human users. Afterward, a definition of
social robots was given:

Social robots are created in such a way that they can operate independently in our
everyday environments, such as our home. Social robots can understand everyday
social situations and react according human social norms. Regarding social
situations includes conversations between people as well as how we ought to
behave in the presence of other people. Social robots work with us and are able
to communicate with us in a humanlike way through speech interactions with
supportive gestures and facial expressions.

In addition, because our focus is on domestic use of robots, we provided a short
description of potential use purposes:

There are different applications for social robots at home. For example, a robot
could do several chores in and around the home according to one’s personal
preferences, is connected to an online database enabling it to answers all your
questions, or build upon online shared stories by other humans to provide social
support to its user.

Afterward, the participants were confronted with different statements about
the participants’ expectations of social robots and their related behavioral expecta-
tions regarding the use of such robots. The statements represent all the accep-
tance factors as presented in the conceptual model. The outcome variable was use
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intention (e.g., “Assuming I have a robot, I will frequently use it in the future”)
measured with the similarly named scale from Moon and Kim (2000). For the
utilitarian attitudinal beliefs, these were usefulness (e.g., “I think a social robot
would be useful to me”), ease of use (e.g., “I think I would know quickly how to
use a social robot”), and adaptability (e.g., “I think a social robot would be
adaptive to what I need”) measured with the similarly named scales as in Heerink
et al. (2010). For the hedonic attitudinal beliefs these were enjoyment (e.g., “I
would enjoy a social robot talking to me”) measured with the scale from Heerink
et al. (2010), attractiveness (e.g., “I think a social robot would look quite pretty”)
measured with the Physical Attraction scale from McCroskey & McCain (1974),
animacy (e.g., “A social robot would be: dead … alive”) with the scale from
Bartneck et al. (2009), social presence (e.g., “Interacting with a social robot would
feel like interacting with an intelligent being”) with the scale from Biocca et al.
(2003), sociability (e.g., “A social robot would feel comfortable in social situa-
tions”) with the Social Competence scale from R. B. Rubin and Martin (1994),
and companionship (e.g., “I would be able to establish a personal relationship
with a social robot”) measured with the Social Attraction scale from McCroskey
et al. (1974). For the social normative beliefs, these were social influence (e.g.,
“People would find it interesting to use a social robot”) measured with the scale
from Karahanna and Limayem (2000), and status (e.g., “People who would own a
social robot would have more prestige than those who do not”) measured with
the scale from Moore & Benbasat (1991). For the personal normative beliefs
privacy concern measured with the subscale of Privacy Concern of Data Collec-
tion (e.g., “It would bother me if I had to give personal information to a social
robot”) from Malhotra, Kim, and Agarwal (2004), trust (e.g., “A social robot
should be: dishonest … honest”) measured with the subscale Trustworthiness
from McCroskey and Teven (1999), and societal impact of robots (e.g., “I feel
that society will be dominated by robots in the future”) measured with the
subscale Social Influence of Robots from Nomura et al. (2008). Finally, for the
control beliefs these were self-efficacy (e.g., “I would be able to use a social robot
if someone showed me how to do it first”) measured with the scale from Bandura
(1977), safety (e.g., “Being near a social robot would make me feel: anxious …

relaxed”) measured with the scale from Bartneck et al. (2009), and cost (e.g., “I
think social robots would be quite pricy”) measured with the scale from S. A.
Brown and Venkatesh (2005). The statements in the questionnaire were rando-
mized. Both Likert scales and semantic differentials were included in the ques-
tionnaire to prevent monotony. All answers contained 7-point scales. To obtain a
more compact measurement model, some scales were reduced to three items
based on the factor loadings in a pretest sample from the same participant’s
database (n = 100). Incorporating fewer items from validated constructs in a
questionnaire leads to a more parsimonious model and lowers the burden on the
participants (Kline, 2011).
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4.3. The Measurement Model

When doing SEM, the latent variable measurement specification uses the
Jöreskog (1969) confirmatory factor analysis (CFA) model. Although this encourages
researchers to formalize their measurement hypotheses and makes the definition of
the latent variables better grounded in subject matter theory leading to parsimonious
models, CFA also assumes a strong basis in theory with thorough prior analysis under
diverse conditions (Asparouhov & Muthén, 2009). It would be too ambitious and
practically not feasible in the current study to test a complete and assumed fixed
theory in the relatively unexplored field of real-world HRI research with new
challenges where exploration precedes causal theory building. Another disadvantage
is that a CFA approach requires strong measure conditions that are often not
available in practice. Measurement instruments often have many small cross-loadings
that are well motivated by either substantive theory or the formulation of the
measurements (i.e., the items in the questionnaire). Fixing the cross-loadings to be
zero may therefore force researchers to specify a more parsimonious model than is
actually suitable for the data (Asparouhov & Muthén, 2009; Morin, Marsh, &
Nagengast, 2013). Together, this contributes to poor applications of SEM where
the believability and replicability of the final model is in doubt. Moreover, fixing
factor loadings at zero tends to give distorted factors, as the correlation between
items representing different variables is forced to go through their main factors only
(Asparouhov & Muthén, 2009). This process usually leads to overestimated factor
correlations and subsequent distorted structural relations. It is thus important to
extend SEM to allow less restrictive measurement models to be used together with
the traditional CFA models.

Establishing the First-Order Factor Model

Before developing a structural model of social robot acceptance, it is essential to
have a measurement model fitting to the data. The first step is to explore how the
items fit into clusters with factor analysis. An exploratory factor analysis (EFA) was
executed to check for construct validity to obtain evidence that the items from the
questionnaire load onto separate factors in the expected manner (Brown, Chorpita, &
Barlow, 1998). EFA is an exploratory and descriptive technique to determine the
appropriate number of common factors and to uncover which measured items are
reasonable indicators of the constructs (T. A. Brown, 2006). EFA was performed in
Mplus version 7.11 developed by Muthén and Muthén (1998–2012) to analyze the
intended measurement model, which included all items. Consecutively, several mea-
surement models were run with a varying number of factors but included all the
items.

All analyses used an oblique (Geomin) rotation as factors were expected to be
interrelated (Sass & Schmitt, 2010). In addition, oblique rotation is preferred when
aiming at CFA that fits the data well (T. A. Brown, 2006). For the extraction, the
maximum likelihood method was used to estimate the common factors. This was
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done because this is most frequently used with continuous indicators when the data
are normally distributed (T. A. Brown, 2006) and because it has the desirable
asymptotic properties of being unbiased, consistent, and efficient (Kmenta, 1971).

As the total questionnaire contains 20 scales, it was expected to find 20 separate
factors in the EFA. Therefore, several models were run with factor variations from
17 to 23 factors. In the end, a 19-factor set was considered to be most suitable based
on the Akaike information criterion (AIC) and Bayesian information criterion (BIC)
indices. Moreover, when a model was run with more than 19 factors, the additional
factors contained no factor loadings above the value of .3 and thus did not represent
a new concept or construct within the data. Each factor comprises a unique set of
items belonging to separate constructs. The model fit indices of the first EFA
solution are presented in Figure 3. The chi-square values were not reported, as
they are always nonsignificant with large sample sizes, and even small differences
between the observed model and the perfect-fit model may lead to nonsignificant
results (Jöreskog, 1969). Moreover, there seems to be an overreliance toward overall
goodness of fit indices as in actuality models with good fit indices could still be
considered poor based on other measures (Chin, 1998).

The first EFA, where all items were included, provided a root mean square error
of approximation (RSMEA) and standardized root mean square residual (SRMR) that
both indicate a good model fit (Morin et al., 2013). Moreover, also the comparative fit
index (CFI) and Tucker–Lewis index (TLI) both indicate a good model fit (Hox &
Bechger, 1998; Hu & Bentler, 1999). Altogether, these fit indices indicate an accep-
tance measurement model after the first run. However, despite the acceptable model
fit, it is chosen to exclude those items from the analysis that poorly loaded onto its
unique factor. In total, three items (RAS01, RAS02, and SP02) were removed before
a second EFA was run. Results of this second solution are also presented in Figure 3.
The fit indices of the CFI and TLI are increased—.981 and .960, respectively—and
the AIC and BIC are decreased to 212,976 and 218,902, respectively. This points to
an improved model fit. However, in this second solution, two items with cross-
loadings on other factors occurred. In the third EFA analysis, these two items (PU03
and PR03) were removed from the analysis, and the model fit indices are also

FIGURE 3. Model Fit Indices of the Exploratory Factor Analysis.

Fit Indices
First Solution Second Solution Third Solution Final Solution

RMSEA
RMSEA CI

CFI
TLI

SRMR
AIC
BIC

.031
.029 - .033

.978

.955

.012
224730
230974

.030
.029 - .032

.981

.960

.011
212976
218902

.026
.024 - .029

.986

.970

.010
206466
212180

.026
.024 - .029

.986

.971

.010
203311
208919
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reported in Figure 3. The fit indices of the CFI and TLI increased—.986 and .970,
respectively—and the AIC and BIC decreased again to 206,466 and 212,180, respec-
tively. However, once more, an item that poorly loaded onto its unique factors
occurred. Thus, a fourth EFA analysis ran without this item (PAD01). The fit indices
of the CFI and TLI did not change much—.986 and .971, respectively—but the AIC
and BIC decreased again, to 203,311 and 209,819, respectively. Although a few cross-
loadings still existed, it was chosen to continue with this fourth and final solution as
eliminating any more items from the model did not improve the model fit indices
(see Figure 3). The final factor solution is shown in Figure 4.

The items of the final factor solution of the explorative factor analysis were
examined for internal consistency using coefficients of Cronbach’s alpha. All con-
structs had a coefficient above .70 and were considered to be reliable measures
(Nunnally & Bernstein, 1994). Once the final exploratory factor model had been
established, the robustness of the data was tested to ensure the continuance with
CFA. The large number of parameters and latent variables within the data set causes
the measurement model to be very complex. Continuing with CFA is preferred,
because it allows data analysis with a simpler model (Browne, 2001). Some research-
ers (Morin et al., 2013) argue that it is a commonly used approach “to use exploratory
EFA to ‘discover’ an appropriate factor structure and then incorporate this post hoc
model into a CFA framework” (p. 400). Although some purist may be offended by
this approach as it blurs the distinction between EFA and CFA, Morin et al. (2013)
do not instantly discard this approach as long as researchers are careful with their
interpretations and apply them with appropriate caution.

Testing for robustness means that a small part of the measurement model—in
this case, the weakest part according to the final exploratory factor solution—is run in
both an EFA and CFA setting. In the EFA all items are related to the defined
number of factors, and in the CFA the relation between the items and its latent
variable are predefined. In addition, an intermediate model is tested, which includes
only the observed significant relations in the EFA. All this is done for a small part of
the model—in this case, the items of adaptability, enjoyment, companionship, socia-
bility, cost, and privacy concern. Reasons for the inclusion of these items in the
robustness test is the cross-loading of the items of adaptability (PAD02 and PAD03)
on the factor of enjoyment, the cross-loading of an item of sociability (SB03) on both
the factors of companionship and adaptability, and the cross-loading of an item of
privacy concern (PR04) on the factor of cost. The three models (e.g., EFA model,
intermediate model, and CFA model) are depicted in Figure 5.

When the measurement model is considered to be robust based on the model fit
indices, it is acceptable to continue with a confirmatory SEM approach. As continu-
ing with the CFA approach is preferred for reasons of simplicity, the CFA model is
chosen when the change in AIC and BIC values, compared to the EFA and
intermediary model, is relatively small and the model fit indices show an acceptable
to a good fit. Figure 6 presents the results of the robustness tests. The robustness
analysis shows that the model fit indices overall decrease from the EFA to the CFA
setting. Nevertheless, they still indicate a good to acceptable model fit, and the
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changes in AIC and BIC are relatively small. The baseline of this research is the
theoretical background as hypothesized in the conceptual model. Statistical analysis is
used as a means to confirm (or reject) the theoretical-based hypotheses. Thus, it is
decided to continue with a CFA approach.

The final measurement model from the EFA setting was rerun in a CFA setting.
With CFA, the indicated relations of the observed items are specified to the latent
variables in advance allowing for correlations between the various latent variables
(Anderson & Gerbing, 1988). The prespecified factors solution is evaluated in terms
of how well it reproduces the sample correlation or covariance matrix of the
measured items, and thus requires a strong empirical or conceptual foundation to
guide the specification and evaluation of the factor model (T. A. Brown, 2006). As
the constructs are both defined by theory (conceptual foundation) and emerged from

FIGURE 5. From left to right: The exploratory factor analysis model, the intermediate model,
and the comparative factor analysis model.

Note. PAD = Adaptability; PENJ = Enjoyment; SB = Sociability; COM = Companionship;
PR = Privacy; CST = Cost.
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the EFA (empirical foundation), carrying on with CFA was deemed appropriate.
Figure 7 shows that the model fit indices of the CFA model are acceptable.

Establishing the Second-Order Factor Model

Once the first-order CFA had been completed, the next step was to examine the
magnitude and pattern of correlations among the factors in the first-order solution
before trying to fit the second-order factor analysis (Kline, 2011). In the first-order
factor analysis, correlations among the factors were assumed based on the theory as
hypothesized in the conceptual model, hence the use of an oblique rotation in the
first-order factor analysis. One goal of second-order factor analysis is to provide a
more parsimonious theory-based account for the correlations among the first-order

FIGURE 6. Model Fit Indices of Robustness Testing.

Fit Indices
Exploratory Model Intermediate Model Confirmatory 

Model

RMSEA
RMSEA CI

CFI
TLI

SRMR
AIC
BIC

.033
.026 - .041

.992

.979

.008
60706
61355

.032
.026 - .037

.987

.981

.023
60720
61148

.066
.061 - .070

.935

.917

.051
61301
61648

Note. RMSEA = root mean square error of approximation; CI = confidence interval; CFI =
comparative fit index; TLI = Tucker–Lewis index; SRMR = standardized root mean square
residual; AIC = Akaike information criterion; BIC = Bayesian information criterion.

FIGURE 7. Model Fit Indices of the First-Order Confirmatory Factor Analysis.

Fit Indices
Values

RMSEA
RMSEA CI

CFI
TLI

SRMR
AIC
BIC

.039
.037 - .040

.927

.917

.054
205667
207455

Note. RMSEA = root mean square error of approximation; CI = confidence interval; CFI =
comparative fit index; TLI = Tucker–Lewis index; SRMR = standardized root mean square
residual; AIC = Akaike information criterion; BIC = Bayesian information criterion.
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factors (T. A. Brown, 2006). These specifications assert that the second-order factors
have direct effects on the first-order factors. These direct effects and correlations
within the second-order factors are responsible for the covariation among the first-
order factors. According to Chen, Sousa, and West (2005), a second-order factor
model has several potential advantages over a first-order factor model. First, the
second-order model can test whether the hypothesized higher order factor actually
accounts for the pattern of relations between the first-order factors. Second, a
second-order factor model puts a structure on the pattern of covariance between
the first-order factors, explaining the covariance in a more parsimonious way with
fewer parameters, which has also been denoted by Gustafsson and Balke (1993) and
Rindskopf and Rose (1988). Third, a second-order factor model separates variance
due to specific factors from measurement error, leading to a theoretically error-free
estimate of the specific factors. Finally, second-order factor models can provide
useful simplification of the interpretation of complex measurement structures.

Tests of validity for a second-order factor model follow the same rules of
identification as for a first-order factor model. Thus, similar thresholds for model
fit will be applied here. The first step of validating the second-order factor structure is
to determine if the implicit constrains are realistic (Chin, 1998). This can be done by
examining the correlations among the different first-order factors included in the
model. Figure 8 presents these correlations along with its expected second-order
factor structure. According to R. Taylor (1990), correlation coefficients below or
equal to .35 are considered as weak correlations, between .36 and .67 as moderate
correlations, and greater than .67 as strong correlations. The second-order factor
structure can be validated by the observation of (a) high correlations between the
first-order factors that are expected to form a second-order factor together and (b)
weak correlation between those first-order factors that are not expected to be part of
the same second-order factor. As shown in Figure 8, no clear pattern for a second
factor structure can be derived from the correlations. Although some moderate to
strong correlations exist for the hedonic attitude beliefs structure, other correlations
in these groups are weak. Moreover, the correlations among the personal normative
and control beliefs structure are mostly weak to nonsignificant. Based on these results
it is probably impossible to obtain acceptable fit indices for the second-order factor
model as hypothesized in the conceptual model.

The next step to validate the second-order factor structure is to demonstrate the
convergent validity of the first-order factors by examining the strength of the paths
connecting the second-order factors to the first-order factors (Chin, 1998). Because
the measurement model should theoretically contain more than two second-order
factors (e.g., utilitarian attitudes, hedonic attitudes, personal norms, social norms, and
control beliefs) and correlations among the second-order factors are assumed, at least
two first-order factors per second-order factor are necessary to be able to identify the
model (Rindskopf & Rose, 1988). As a first step, the three second-order factor
structures were run independently. The final results are presented in Figure 9. As
shown in Figure 9, most model fit indices indicate a good fit; however, the TLI for
both the attitudinal and control beliefs structure is slightly lower than aimed for
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(Kenny & McCoach, 2003). Nevertheless, because there were no other suggested
modification indices with sufficient impact on the model fit, it was decided to
continue with testing the model fit of the complete second-order factor model.

As the final step to validate the second-order factor structure, the paths and
model fit should still hold when applied in a nomological network of other factors
(Chin, 1998). Figure 10 shows the model fit indices of the second-order factor model.
Although the RMSEA shows a good fit, all other model fit indices are not at an
acceptable level. The poor model fit could be a result of low data quality or simply
the lack of fit between the data and the conceptual model based on theory. Especially
based on the high value of the SRMR, one reason could be that, because the three
beliefs structures indicated (nearly) acceptable model fits individually, the interrela-
tions between the separate beliefs structures result in misspecification of the model
when put together. This argument is supported by the presence of correlations

FIGURE 9. Model Fit Indices of the Second-Order Factors Structures Separately.

Fit Indices
Attitudinal Beliefs Normative Beliefs Control Beliefs

RMSEA
RMSEA CI

CFI
TLI

SRMR
AIC
BIC

.067
.064 - .070

.910

.898

.071
80675
81087

.054
.049 - .059

.938

.926

.076
61856
62138

.067
.061 - .072

.904

.881

.061
54024
54276

Note. RMSEA = root mean square error of approximation; CI = confidence interval; CFI =
comparative fit index; TLI = Tucker–Lewis index; SRMR = standardized root mean square
residual; AIC = Akaike information criterion; BIC = Bayesian information criterion.

FIGURE 10. Model Fit Indices of the Second-Order Factor Model.

Fit Indices
Values

RMSEA
RMSEA CI

CFI
TLI

SRMR
AIC
BIC

.051
.049 - .052

.866

.858

.101
208441
209537

Note. RMSEA = root mean square error of approximation; CI = confidence interval; CFI =
comparative fit index; TLI = Tucker–Lewis index; SRMR = standardized root mean square
residual; AIC = Akaike information criterion; BIC = Bayesian information criterion.
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among the second-order factors greater than one (see Figure 11). Empirical under-
identification can occur in a case of near zero or near unity correlations among the
second-order factors (Rindskopf & Rose, 1988). One option could be to constrain
the correlations between utilitarian attitudes and control beliefs and between social
norms and control beliefs to 1. However, this is allowed only when the confidence
interval of the correlation contains 1 (Muthén & Muthén, 1998–2012), and this is not
the case for the correlation between utilitarian attitudes and control beliefs which is
1.086 [1.031, 1.141].

Based on the preceding results, it can be concluded that the second-order factor
structure as hypothesized in the conceptual model does not fit the collected data. The
theoretical implications of this result are addressed in the Discussion section. To
pursue with data analysis without completely abandoning the conceptual model of
social robot acceptance, it was decided to continue with testing the same interrela-
tions as hypothesized between the second-order factors but then directly between the
underlying first-order factors. This enables the identification of the specific compo-
nents that account for the users’ acceptance of social robots in domestic
environments

5. RESULTS

Based on the measurement model, this section tests the structural model of social
robot acceptance and reports on the proposed hypotheses in the conceptual model using
Mplus version 7.11 developed by Muthén and Muthén (1998–2012). The original model
showed that the model fit was acceptable for the RMSEA and SRMR but not quite
acceptable for the CFI and the TLI (see Figure 12). Post hoc modification indices
suggested that specifying six correlations between first-order factors would increase the
model fit. These were three correlations of factors from the hedonic attitudes (e.g.,
enjoyment with sociability, enjoyment with companionship, and attractiveness with
animacy) and three correlations of factors from the control beliefs (e.g., personal

FIGURE 11. Correlations Between the Second-Order Factors.

Fit Indices
Utilitarian

Attitudes

Hedonic

Attitudes

Personal

Norms

Social 

Norms

Control 

Beliefs

Utilitarian 
attitudes

Hedonic attitudes
Personal norms
Social norms

Control beliefs

-
.893
-.602
.966

1.086

-
-.571
.971
.934

-
-.477
-.782

-
1.011 -
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innovativeness with anxiety toward robots, personal innovativeness with safety, and
anxiety toward robots with safety). Our theoretical framework suggested that each
correlation would be part of a second-order factor structure as hypothesized in the
conceptual model. This would justify the existence of these correlations, and it was
decided to add these six suggested correlations in a second run of the model and the
model fit increased to an almost acceptable level (see Figure 12). To further increase the
model fit, a last correlation pair as suggested in the post hoc modification indices was
added (i.e., societal impact with anxiety toward robot). Although these two concepts were
not hypothesized as belonging to the same second-order factor, its inclusion in the model
can be supported by the high correlation between the two concepts that has been
reported in multiple studies (e.g., Dautenhahn & Saunders, 2011; de Graaf & Ben
Allouch, 2013b; Nomura et al., 2008). With the inclusion of this correlation, the model
fit increased to an acceptable level in the final model (see Figure 12).

5.1. Interpreting the Effects of the Attitudinal Beliefs

Once a good model fit was established, the hypothesized regression paths were
interpreted. Examining the attitudinal beliefs structure, it was hypothesized that
utilitarian attitudes influence use intention (H1). The results indicate that use inten-
tion cannot be explained by either one of the utilitarian attitudes (see Figure 13).
These results lead to the rejection of Hypothesis 1.

On the other hand, examining the results in Figure 14, two of the six hedonic
attitudes, could significantly explain use intention (H2). When the participants
expected to enjoy having a social robot in their home (β = .531, p < .001), and
expected that robot to be less sociable (β = –.099, p = .029), they had higher
intentions to use it. These results partially support Hypothesis 2.

Furthermore, it was hypothesized that hedonic attitudes affected utilitarian
attitudes (H3). Examining the results in Figure 15, it is shown that almost half of

FIGURE 12. Model Fit Indices of the Structural Model.

Fit Indices
Original Model Second Model Final Model

RMSEA
RMSEA CI

CFI
TLI

SRMR
AIC
BIC

.045
.044 - .046

.899

.887

.071
206929
208495

.043
.042 - .045

.906

.895

.071
206591
208188

.042
.040 - .043

.915

.904

.068
206208
207809

Note. RMSEA = root mean square error of approximation; CI = confidence interval; CFI =
comparative fit index; TLI = Tucker–Lewis index; SRMR = standardized root mean square
residual; AIC = Akaike information criterion; BIC = Bayesian information criterion.
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the regression paths were significant. When participants expected they would enjoy
having a social robot in their home, they believed that the robot would be easier to
use (β = .307, p = .018) and more adaptive to their personal needs (β = .532,
p < .001). In addition, when the participants expected a social robot to be more
sociable (β = .211, p = .002) but offers less companionship (β = –.239, p < .001),

FIGURE 13. Utilitarian Attitudes Affect Use Intention.

Hypotheses
β P

Ease of use
Adaptability

Affects Use Intention .089
.034

.112

.519

FIGURE 14. Hedonic Attitudes Affect Use Intention.

Hypotheses
β P

Enjoyment
Attractiveness

Animacy
Social presence

Sociability
Companionship

Affects Use Intention .531
-.094
-.024
-.024
-.099
-.072

.000

.125

.490

.657

.029

.194

FIGURE 15. Utilitarian Attitudes Affect Utilitarian Attitudes.

Hypotheses
β P

Enjoyment Affects Ease of use
Adaptability

.238

.532
.023
.000

Attractiveness Affects Ease of use
Adaptability

-.067
-.049

.458

.521
Animacy Affects Ease of use

Adaptability
-.014
-.057

.776

.265
Social presence Affects Ease of use

Adaptability
-.137
-.068

.060

.325
Sociability Affects Ease of use

Adaptability
.096
.211

.220

.002
Companionship Affects Ease of use

Adaptability
-.107
-.239

.132

.000
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they thought such a robot would be more capable to adapt to their personal needs.
These results partially support Hypothesis 3.

5.2. Interpreting the Effects of the Normative Beliefs

Examining the normative beliefs structure, it was hypothesized that personal norms
influence use intention (H4). The results show that use intention could be significantly
explained only by one personal norm (see Figure 16). Participants who expected less
privacy concerns when having a social robot in their home had higher intentions to use
such a robot (β = –.059, p = .022). These results weakly support Hypothesis 4.

A similar pattern was found for the influence of social norms on use intention
(H5), where also only one regression path was significant (see Figure 17). Participants
who expected that having a social robot increased their status had higher intentions to
use such a robot (β = .100, p = .001). This leads to partially support for Hypothesis 5.

Furthermore, it was hypothesized that personal norms influenced utilitarian
attitudes (H6). Examining the results in Figure 18, it is shown that none of the
regression paths are significant, which leads to a rejection of Hypothesis 6.

In addition, it was hypothesized that personal norms would have an effect on
hedonic attitudes (H7). The results show that almost half of the regression paths are
significant (see Figure 19). When the participants expected fewer privacy concerns
when having a robot in their home, they believed they would enjoy that robot more
(β = –.151, p < .001); would find the robot more attractive (β = –.057, p = .025),
more animate (β = –.151, p < .001), and more socially present (β = –.104, p = .003);

FIGURE 16. Personal Norms Affect Use Intention.

Hypotheses
β P

Privacy concern
Trust

Societal impact

Affects Use Intention -.059
.076

-.079

.022

.119

.064

FIGURE 17. Social Norms Affect Use Intention.

Hypotheses
β P

Social influence
Status

Affects Use Intention .098
.100

.206

.001

Model of Domestic Social Robot Acceptance 147



and the robot would provide more companionship (β = –.193, p < .001). In addition,
when participants expected they could trust a social robot in their home, they would
find that robot more attractive (β = .885, p < .001), more animate (β = .552,
p < .001), and more sociable (β = .178, p < .001). These results partially support
Hypothesis 7.

It was also hypothesized that social norms affect utilitarian attitudes (H8).
Examining the results in Figure 20, it is shown that none of the social norms could
significantly explain any of the utilitarian attitudes, which leads to the rejection of
Hypothesis 8.

FIGURE 18. Personal Norms Affect Utilitarian Attitudes.

Hypotheses
β P

Privacy concern Affects Ease of use
Adaptability

-.024
-.035

.537

.309
Trust Affects Ease of use

Adaptability
.141
.100

.062

.120
Societal impact Affect Ease of use

Adaptability
-.016
.032

.773

.517

FIGURE 19. Personal Norms Affect Hedonic Attitudes.

Hypotheses
β P

Personal norms Affects Enjoyment
Attractiveness

Animacy
Social presence

Sociability
Companion

-.151
-.057
-.154
-.104
-.052
-.193

.000

.025

.003

.003

.185

.000
Trust Affects Enjoyment

Attractiveness
Animacy

Social presence
Sociability
Companion

.002

.850

.552
-.021
.178

-.038

.921

.000

.000

.502

.000

.147
Societal impact Affect Enjoyment

Attractiveness
Animacy

Social presence
Sociability
Companion

-.085
.000

-.096
-.067
-.016
-.115

.123

.997

.228

.362

.830

.101
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In addition, it was hypothesized that social norms would have an effect on
hedonic attitudes (H9). The results show that three of the regression paths are
significant (see Figure 21). When the participants expected that having a social
robot in their home would increase their status, they thought the robot would be
more enjoyable (β = .135, p < .001) and more socially present (β = .230, p < .001)
and would offer more companionship (β = .273, p < .001). These results somewhat
weakly support Hypothesis 9.

In addition, it was hypothesized that social norms would affect personal norms
(H10). Examining the results in Figure 22, it is shown that all regression paths are
significant. When the participants expected to experience more social influence,
they thought that having a social robot in their home would involve fewer privacy
concerns (β = –.168, p = .002) and that they could trust that such a robot more (β
= .511, p < .001), and they expect smaller societal impact from such robots (β
= –.318, p < .001). Moreover, when the participants expected that having a social
robot in their home would increase their status, they thought that such a robot
would involve less privacy concerns (β = –.098, p = .028) but could be trusted less

FIGURE 20. Social Norms Affect Utilitarian Attitudes.

Hypotheses
β P

Social influence Affects Ease of use
Adaptability

-.324
.121

.746

.282
Status Affects Ease of use

Adaptability
.046

-.016
.301
.702

FIGURE 21. Social Norms Affect Hedonic Attitudes.

Hypotheses
β P

Social influence Affects Enjoyment
Attractiveness

Animacy
Social presence

Sociability
Companion

.163
-.020
-.247
-.207
-.176
-.148

.145

.745

.094

.238

.224

.341
Status Affects Enjoyment

Attractiveness
Animacy

Social presence
Sociability
Companion

.135

.040

.094

.230

.044

.273

.000

.220

.064

.000

.369

.000
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(β = –.264, p < .001) and would elicit a greater societal impact (β = .108, p = .031).
These results fully support Hypothesis 10

5.3. Interpreting the Effects of the Control Beliefs

Examining the control beliefs, the conceptual model hypothesized that control
beliefs directly influence use intention (H11). The results show that only one control
belief could significantly explain use intention (see Figure 23). When participants
expected to have the necessary skills to use a social robot in their home, they had
higher intentions to use such a robot (β = .267, p = .034). These results weakly
support Hypothesis 11.

In addition, it was hypothesized that control beliefs influence utilitarian attitudes
(H12). Examining the results in Figure 24, it is shown that almost half of the
regression paths are significant. Participants who evaluated themselves as more
innovative (β = .214, p < .001) expected that using such a robot would be more
safe (β = .318, p < .001), that such a robot would be more expensive (β = .067,
p = .033), and that a social robot would be easier to use. Moreover, participants who
thought that such a robot would be more expensive (β = .079, p = .002) expected
that a social robot would be able to better adapt to their personal needs. These results
demonstrate that Hypothesis 12 is partially supported.

FIGURE 22. Social Norms Affect Personal Norms.

Hypotheses
Β P

Social influence Affects Privacy concern
Trust

Societal impact

-.168
.511

-.318

.002

.000

.000
Status Affects Privacy concern

Trust
Societal impact

-.098
-.264
.108

.028

.000

.031

FIGURE 23. Control Beliefs Affect Use Intention.

Hypotheses
β P

Self-efficacy
Personal innovativeness
Anxiety towards robots

Safety
Cost

Affects Use Intention .267
.019
.065
.043
.027

.034

.484

.114

.334

.292
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It was also hypothesized that control beliefs would affect hedonic attitudes
(H13). Examining the results in Figure 25, it is shown that almost half of the
regression path is significant. When the participants felt more capable of using a
social robot, they expected to enjoy using such a robot more (β = .465, p < .001);
to find it more animate (β = .383, p = .007), more socially present (β = .370,
p < .001), and more sociable (β = .645, p < .001), and that such a robot could
provide more companionship (β = .601, p < .001). Moreover, when participants
evaluated themselves as more innovative, they expected that using a social robot
in their home would be more enjoyable (β = .123, p < .001). Also, when
participants indicated that they would feel less anxiety toward talking to a social
robot, they expected to experience more companionship from such a robot
(β = .165, p = .014). In addition, when participants stated they would feel safe
being around a social robot, they thought such a robot would be more enjoyable
(β = .173, p < .001) and could provide more companionship (β = .165, p = .014).
Finally, when the participants evaluated a social robot as more expensive, they
thought such a robot would be more sociable (β = .127, p < .001) but should
provide less companionship (β = –.102, p = .002). These results partially support
Hypothesis 13.

Finally, the conceptual model hypothesized that social norms influence the
control beliefs (H14). Except for one, the results show that all regression paths are
significant (see Figure 26). When the participants expected to experience more social
influence, they thought they would be more capable to use a social robot (β = .733,
p < .001), they evaluated themselves as more innovative (β = .376, p < .001), they
were less anxious to talk to a robot (β = –.418, p < .001), they would feel more safe
around a robot (β = .617, p < .001), and they would perceive such a robot as more
expensive (β = .234, p < .001). Moreover, when the participants expected that having
a social robot in their home would increase their status, they thought they would be
more capable of using such a robot (β = .163, p < .001), they would feel more

FIGURE 24. Control Beliefs Affect Utilitarian Attitudes.

Hypotheses
β P

Self-Efficacy Affects Ease of use
Adaptability

.343

.298
.059
.075

Personal innovativeness Affects Ease of use
Adaptability

.214
-.019

.000

.578
Anxiety towards robots Affects Ease of use

Adaptability
-.028
-.043

.642

.388
Safety Affects Ease of use

Adaptability
.318

-.068
.000
.225

Cost Affects Ease of use
Adaptability

.067

.079
.033
.002
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anxious to talk to such a robot (β = .309, p < .001), and they would feel less safe
when being around such a robot (β = –.108, p = .008); they expected that such a
robot would be less expensive (β = –.284, p < .001). These results almost fully
support Hypothesis 14.

6. GENERAL DISCUSSION

This article presents a conceptual model that both expands and deepens TPB by
providing a comprehensive overview of predictors for social robot acceptance and
behavioral intention from a wide variety of disciplines relevant to social robot acceptance
behavior. The proposed conceptual model of social robot acceptance overcomes the

FIGURE 25. Control Beliefs Affect Hedonic Attitudes.
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Self-Efficacy Affects Enjoyment
Attractiveness

Animacy
Social presence

Sociability
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.465

.080
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.000

.185

.007

.000

.000

.000
Personal innovativeness Affects Enjoyment

Attractiveness
Animacy

Social presence
Sociability
Companion

.123
-.031
.046
.037
.073
.060

.000
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.318
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.146

.102
Anxiety towards robots Affects Enjoyment

Attractiveness
Animacy

Social presence
Sociability
Companion

.078

.008

.150

.066

.018

.165

.151

.864

.059

.350

.812

.014
Safety Affects Enjoyment

Attractiveness
Animacy

Social presence
Sociability
Companion

.173

.038

.060

.170

.252

.190

.000

.320

.279

.001

.000

.000
Cost Affects Enjoyment

Attractiveness
Animacy

Social presence
Sociability
Companion

.002

.030
-.027
-.012
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.937

.269

.489

.707
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disadvantages posed by Heerink et al. (2010) and Shin and Choo’s (2011) existing models
by (a) using a strong theoretical base for the model, (b) hypothesizing the interrelation-
ships between concepts in the model based on theory, (c) testing the model on a general
population, (d) including a single drawn sample of participants for the data set, and (e)
only incorporating those modifications to the model that can be supported by theory. We
therefore believe that the proposed conceptual model of social robot acceptance in this
article provides a strong basis for the further development of a model that may expand
our understanding of the factors affecting the acceptance of social robots in domestic
environments. Using SEM, we tested this model using a sample of the general Dutch
population and investigated the influence of several factors on the anticipated acceptance
of social robots for domestic use. To build a general model for social robot acceptance, a
second-order structure was proposed to create a more parsimonious theory-based
account of the correlations among the included acceptance variables (T. A. Brown,
2006). These specifications assert that the second-order factors directly affect the first-
order factors. These direct effects and correlations among the second-order factors are
responsible for the covariation among the first-order factors. However, our data did not
support the proposed second-order factor model. This finding indicates that several
concepts relating to the second-order structure should be reassessed in future research.
The findings in this article may guide this reassessment by providing insight into the
important acceptance variables that influence anticipated social robot acceptance.

One way to build on our current findings is to include only those factors that had
the greatest direct and indirect impact on social robot acceptance. The results of the
direct regression paths indicate that the acceptance of a social robot for domestic use
increases when future users believe that they possess the necessary skills to use a social
robot, when they perceive that having such a robot enhances their status, and when they
anticipate that such a robot will provide more enjoyable interactions, behave less sociably,
and cause fewer privacy concerns. A study of all direct and indirect effects of our social
robot acceptance model suggests that the acceptance variables of enjoyment, privacy,

FIGURE 26. Social Norms Affect Control Beliefs.
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Social influence Affects Self-efficacy
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Cost
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status, and self-efficacy play a key role. Enjoyment has, by far, the largest direct effect on
use intention. Although privacy does not have a large direct negative effect on use
intention, it influences use intention indirectly via enjoyment. Similarly, self-efficacy both
directly and indirectly affects use intention via enjoyment and sociability. Finally, status
has a direct effect on use intention. However, status has an indirect effect on use
intention, not only via privacy and self-efficacy but also via privacy through enjoyment.
This, in turn, has an indirect effect on use intention of social robots. Future research on a
model of social robot acceptance could focus further on the interrelationships between
these factors and their influence on the complex process of social robot acceptance.
However, given that this is essentially one of the first attempts to build a theoretical
model of social robot acceptance, further research on what acceptance variables should
be included in such a model is necessary.

An extensive literature review on acceptance variables from a wide variety of
research fields resulted in the inclusion of many variables in our model (de Graaf & Ben
Allouch, 2013a), which were then tested in this study on people who anticipated
accepting a social robot in their own homes. Because the data did not fit the second-
order factor structure, we decided to continue with the analyses of direct regression
paths between the first-order factors, similar to the hypothesis between the second-
order factors in the original conceptual model. The conceptual model of social robot
acceptance with the direct regression paths was confirmed by our data. Two hypoth-
eses were fully supported, nine hypotheses were partially supported, and three hypoth-
eses were rejected in terms of the data. Figure 27 provides an overview of the
hypotheses in the conceptual model and whether they are partially supported, accord-
ing to the findings.

FIGURE 27. Overview of the tested hypotheses of the social robot acceptance model.
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6.1. Implications

Influential Factors for Social Robot Acceptance

Utilitarian attitudes are tied to usability, emphasize the extrinsic motivations to
accept or use a technology, and include the factors of ease of use and adaptability.
The utilitarian attitudes of potential social robot users seem to be influenced by both
hedonic attitudes and control beliefs but are not directly affected by personal or social
norms. The direct effect of hedonic attitudes on utilitarian attitudes supports earlier
findings in both the information systems literature (e.g., Agarwal & Karahanna, 2000;
Y. Lee et al., 2003) and the HRI literature (e.g., Heerink et al., 2010; K. M. Lee et al.,
2006; Shin & Choo, 2011). The direct effect of control beliefs has been previously
reported in studies on information systems (e.g., Hackbarth et al., 2003; Karahanna &
Limayem, 2000) and HRI (e.g., Bartneck et al., 2007). Hedonic attitudes are related to
users’ experiences during the interaction; emphasize the intrinsic motivations in
technology acceptance; and include the factors of enjoyment, attractiveness, animacy,
social presence, sociability, and companionship. Potential future social robot users’
hedonic attitudes seem to be influenced by control beliefs, as well as by both personal
and social norms. The direct effects of normative beliefs on attitudinal beliefs have
been reported in both the information systems literature (e.g., Ben Allouch et al.,
2009; Y. Lee et al., 2003; Yu et al., 2005) and the HRI literature (e.g., Heerink et al.,
2010; Shin & Choo, 2011). One specific finding in the current study regarding the
utilitarian attitudes is the prominent role of usefulness for social robot acceptance.
Similar findings regarding the importance of utility or purpose for social robots have
been presented by others (Ezer, Fisk, & Rogers, 2009a,b; Fink et al., 2013). The
results show that usefulness is strongly related to use intention and that both
usefulness and use intention influence the same factor in the EFA. Furthermore,
with usefulness measured by items focusing on utility moving from utilitarian
attitudes to the concept of use intention, all other regression paths from utilitarian
attitudes were insignificant. Thus, the other utilitarian attitudes (i.e., ease of use and
adaptability) seem to have lost their relevance in users’ anticipated acceptance of a
social robot in their homes. One explanation of the empirical overlap between the
two theoretical concepts may be that the psychological consideration of use intention
and usefulness is made simultaneously and therefore cannot be empirically distin-
guished. In other words, for the participants, the decision to use a social robot is the
same as evaluating whether a social robot is useful. In this manner, usefulness
functions as a requirement for social robots before users even consider using them
in the first place. The results of this research are based on prediction of future use.
Because people remain unfamiliar with social robotic technologies, some variables,
such as status and societal impact, remain unknown for potential future users. This is
reflected by their minor role in the model of social robot acceptance at this stage of
the diffusion of these technologies in our society. Real experiences with a technology
are better predictors of future use of that technology. Therefore, the concept of
usefulness needs further attention in HRI research as the technology develops and
the diffusion of social robots within society increases.
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Another explanation for the empirical overlap between the two theoretical
concepts lies in the conceptualization of the measurement of usefulness. To measure
usefulness, we adopted the construct of usefulness from Heerink et al. (2010), a
measurement based on frequently used items from the UTAUT model (Venkatesh
et al., 2003). However, it may be argued that this construct only measures the
objective and utility of usefulness and does not include the subjective and user-
friendliness elements. Therefore, we have only objectively envisioned the possibilities
of social robots. The definition of a technology, at its most basic level, is for it to help
people do things (Orlikowski, 1992), which links the meaning of a technology with
the evaluation of its meaning, significance, and utility, which is crucial for the
potential user (Silverstone, 1996). As a result, the overlap between the measures of
usefulness and use intention in our current study, and the strong correlations (Szajna,
1996; Yousafzai, Foxall, & Pallister, 2007b) between usefulness and use intention, as
well as high cross-loadings between the two factors (Agarwal & Karahanna, 2000) in
the technology acceptance literature, are not surprising. Future technology acceptance
research may need to further investigate the underlying concepts that motivate users
to evaluate a technology as useful. Some researchers indicate that usefulness is not a
one-dimensional concept (Jaschinski & Ben Allouch, 2015). A suggestion for future
research is to conceptualize usefulness by defining a multidimensional concept and to
distinguish several benefits that, together, account for usefulness. For this process, a
method similar to that proposed by the model of media attendance (LaRose &
Eastin, 2004), which defines several expected outcomes of technology use, could
be used.

In our study, personal norms encompass an individual’s belief that engaging in a
particular behavior leads to salient personal beliefs, and we have included the factors
of privacy, trust, and societal impact in our proposed model. To the best of our
knowledge, this is the first time that the distinction between personal and social
norms has been made in social robotics research. Given that personal norms arise
from beliefs considered to be the norm in one’s social environment, we assumed that
social norms would affect one’s personal norms. The results suggest that personal
norms indeed appear to be influenced by social norms (e.g., social influence and
image), which encompass an individual’s beliefs about the likelihood and importance
of the social consequences of performing a particular behavior. Our conceptual
model of social robot acceptance did not hypothesize any predictors for social
norms. Social norms function as the core of the conceptual model because they
not only influence use intention theoretically and all other factors in the model
directly but also indirectly influence use intention theoretically through all these
other factors. The results show that the direct effects of social norms on personal
norms and control beliefs were fully supported, and only the direct effect of social
norms on utilitarian attitudes was not supported by the data. However, social norms
affect utilitarian norms indirectly, via both hedonic attitudes and control beliefs. The
direct effects of social norms on all other factors in the model were partially
supported. This means that social norms still have a core function in our empirical
model of social robot acceptance. Indeed, as we explain in the next section on the
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unwanted sociability of social robots, normative beliefs play a significant role in the
acceptance of social interactions with robots, especially when people anticipate their
acceptance without any real-world experiences or interactions with robots.

Control beliefs involve the user’s beliefs regarding the presence or absence of
resources, opportunities, and obstacles that may facilitate or impede performance of
the behavior, and they include self-efficacy, personal innovativeness, anxiety toward
robots, safety, and cost. The control beliefs of potential future users of social robots
seem to be influenced by social norms. Both TPB (Ajzen, 1991) and social cognitive
theory (Bandura, 1977) indicate that control beliefs are affected by opinions from
one’s social network.

However, when people actually start using a robot in their own homes, other
acceptance variables emerge that may also influence the long-term acceptance process
(de Graaf et al., 2016). It is possible that some variables have a strong effect when
people anticipate accepting a social robot, but the same variables may have less
impact when the same people use that same robot for a longer time. When examining
the long-term use of social robots in home environments, it appears that the
importance of the acceptance variables in explaining social robot acceptance changes
over time, shifting from control beliefs to attitudinal beliefs (de Graaf et al., 2016).
The importance of the acceptance variables is believed to depend on the develop-
ment stage in which the technology is located (Peters, 2011). As people gain
experience using a social robot, different acceptance variables from those originally
explaining their initial adoption, explain their intention to continue using it. Larger
scale longitudinal social robot research is necessary to identify the variables that
possess the most explanatory power during different phases of acceptance and how
their effects on acceptance change over time.

The Unwanted Sociability of Robots

A remarkable finding of our study was that, overall, the robots’ social behaviors
are seemingly not appreciated by the general Dutch population. The participants
negatively evaluated the sociability and the companionship possibilities of future
domestic robots. Thus, the data suggest that people do not want robots to behave
socially, at least at this stage of social robot diffusion within society. Similar findings
have been found before in the HRI literature indicating that the people disapprove of
robots performing social tasks (Arras & Cerqui, 2005; de Graaf & Ben Allouch, 2016;
European Commission, 2012) and that robots should not substitute humans but
rather serve as collaborators or servants for people (Ray, Mondada, & Siegwart, 2008;
Takayama, Ju, & Nass, 2008). One explanation for these results is that robots could
be labelled as a “disruptive technology,” because they are more than just updated
replacements of existing technologies (Ezer et al., 2009a), and people are not easily
prompted to embrace disruptive technologies (Dewar & Dutton, 1986; Green, Gavin,
& Aiman-Smith, 1995). In the case of social robots, it could be that people do not
want to use robots that behave socially, and the development of such robots should
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not be pursued. The current findings reveal that potential future users appear to
prefer robots that are less sociable. In addition, participants indicated that they
believed that a social robot could better adapt to their needs when it provided less
companionship. This is similar to conclusions drawn from another study focusing on
anticipated acceptance of robots, which show that people largely expect utilitarian
functionalities from robots and are less likely to perceive robots as socially interactive
devices (Eze et al., 2009a,b). From this perspective, these results suggest that people
do not want robots to behave socially or to provide companionship and that the
development of these types of robots appears undesirable.

However, there are alternative explanations for our current findings. The
participants in our study provided inconsistent assessments of social robots by
indicating that a more sociable robot could better adapt to their needs. Thus, a
second explanation for the more negative evaluation of the robot’s social behavior
could be that people fear, or are not yet familiar with, social interactions and
companionship with social robots. The average scores of the acceptance factors in
our study show that the participants had serious concerns about their privacy when
using a social robot in their own homes. In addition, the results show that when the
participants believed that they were more competent to interact with a social robot
and could better trust a social robot, they perceived the robot’s behavior as more
sociable. Furthermore, the results indicate that when participants believed that they
were more competent in their own skills to properly interact with social robots, they
anticipated that they would feel less fear in doing so. When they expected to feel safer
in the presence of a social robot, they believed that a social robot could provide more
companionship. Privacy concerns may thus play a significant role in instigating fear,
as people fear the sociability of future social robots that are capable of providing
companionship. This fear is caused by people’s privacy concerns, their lack of
competence in properly interacting with social robots, their anticipated fear of talking
to robots, or the expected lack of safety when in the presence of a social robot.
Above all, the participants indicated that the more expensive a social robot is and the
more it increases the user’s social status, the greater the companionship they expect it
to provide.

A third explanation for the relatively negative evaluations of sociability and
companionship is that admitting to treating social robots as companions is perceived
as socially undesirable by the participants. Just as depending on television for
companionship has been characterized as an inappropriate motivation for use (A.
M. Rubin, 1983), it is possible that using a robot for companionship is not acceptable
in terms of prevailing social norms. Social desirability is the tendency to answer
questions in a manner that will be viewed positively by others (Paulhus, 1991), which
causes overreporting of “good” behavior and underreporting of “bad” or “undesir-
able” behavior. Social sciences report that a social desirability bias may occur in self-
reported data, including questionnaire-collected data (Huang, Liao, & Chang, 1998),
especially regarding sensitive topics (King & Bruner, 2000). In an online study
measuring both people’s implicit and explicit associations with domestic robots (de
Graaf, Ben Allouch, & Lutfi, 2016), it was found that the two measures had
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conflicting outcomes, which may be attributable to social desirability. Although
people explicitly reported that they have positive associations with robots, the implicit
measures revealed that they actually had negative associations with robots. Further-
more, people’s implicit associations negatively correlated with their attitudes toward
robots and positively correlated with their anxiety toward robots. Yet participants’
explicit associations did not significantly correlate with their attitudes toward robots,
and instead negatively correlated with anxiety toward robots. Based on these com-
bined results, de Graaf et al. (2016) concluded that people implicitly have opinions
about robots that are different from what they wish to explicitly reveal.

These explanations are, however, based on findings from online-based research,
without any real-world interactions between humans and robots. To further explore
why the participants in our current study indicated that they did not want robots to
behave socially or provide companionship, we must turn to other methods, such as
observations and interviews, to determine how people interact with social robots. In
contrast to the current results presented in this article, the results from our earlier
long-term user studies, employing a social robot in domestic environments (de Graaf,
Ben Allouch, & Klamer, 2015; de Graaf et al., 2016), indicate that people actually
behave socially with robots in their own homes, despite their scepticism concerning
perceiving robots as social actors and companions. The participants engaged in social
interaction with the robot, talked to it, gave it a name, and interpreted the robot’s
behavior in a social way. Furthermore, some participants indicated that they would
appreciate a time when future robots can interact more socially with their users. Some
participants attempted to increase social interactions with the robot used in our
previous long-term home studies. However, not all participants appreciated the
robot’s social behavior. Some participants experienced feelings of unease when the
robot initiated unsolicited conversations, and those participants reduced the social
features of the robot to a minimum. Combining findings from both the current study
and our long-term home studies indicates that the social behavior of robots still has a
long way to go in terms of their proper development, as well as their full societal
acceptance by potential future users.

Practical Implications for the Development of Social Robots

Based on the findings of our study, practical implications can be drawn to guide
the future development of social robots and their acceptance within society. The
most important variables for social robot acceptance is its utility, its usefulness
(Davis, 1989) or its relative advantage (Rogers, 2003). The purpose of the robot
must be clear for successful acceptance, leading to continued use. The importance of
usefulness has also been stressed in earlier long-term home studies, focusing on the
acceptance of domestic robots (de Graaf et al., 2016; Fink et al., 2013). The majority
of participants in these studies failed to perceive the robot as useful and discontinued
its use or replaced it with another device. These other technological devices not only
fulfilled similar purposes but also were reported to do so in a more satisfying manner.
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Together, these results indicate that social robot developers should aim for clear
applicability in use of their robots or create an easier or more enjoyable way in which
robots perform certain functions.

A second practical implication is linked to the sociability of robots. The
sociability of robots is still relatively underdeveloped, both in terms of the techno-
logical development of the essential social abilities of robots (de Graaf et al., 2015)
and the societal acceptance of social interactions with interactive technologies. Never-
theless, we believe that robot designers should aim for increased social abilities for
robots. The results of our study indicate that a more sociable robot would enhance
users’ perceptions of the robot’s adaptability to their needs, a finding supported by
our earlier long-term home study (de Graaf et al., 2016). Given the simple dialog of
the robot used in our longitudinal study, it is not surprising that participants found
the interactions with the robot to be somewhat simple and repetitive. The need to
first press a button before they could speak to the robot felt particularly unnatural.
Most participants would have preferred simply calling the robot by name to get its
attention, followed by a command or short conversation. Some participants even
preferred engaging in additional conversations beyond the robot’s practical usability.
In addition, a socially behaving robot should be able to express and interpret
emotions. Another desired adjustment, according to our participants, was an aware-
ness of their presence so that the robot knew when someone was in the room and
could attract attention when necessary. Together, these results indicate that actual
users would prefer more sociable behaviors and natural conversations for social
robots and that the societal acceptance of social interactions with robots might be
a matter of familiarization or time.

A final practical recommendation for an increased societal acceptance of social
robots is to acknowledge that acceptance is a long-term process and that in each
phase users focus on certain acceptance variables that influence social robot accep-
tance. For the initial adoption of social robots, users seem to focus on (a) control
beliefs, such as previous experiences with similar technologies and self-efficacy, as
found in this study as well as our previous work (de Graaf et al., 2016), and (b)
normative beliefs, such as status and privacy concerns in our current study. After the
initial adoption, the focus of the decision to continue the use of social robots shifts to
the evaluation of the utilitarian and hedonic attitudes associated with the use of the
robot. By far the most important utilitarian attitude was the robot’s usefulness as
argued earlier in this article. For the hedonic attitudes, the enjoyable interactions a
robot offers and the social presence experienced by the users were important
variables during initial acceptance. However, the main hedonic reasons for continued
use were the robot’s sociability. Thus, for a successful diffusion and acceptance of
social robots within society, developers should provide potential consumers with the
necessary information to make them feel more familiar with the robot’s technologies
and enhance their self-assessment of their ability to use social robots. After people
purchase the robot, developers should ensure that the users continue to perceive the
robots as useful, enjoyable and sociable.
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6.2. Limitations

Despite the observed acceptable values for internal consistency and construct
validity, the data showed a few limitations to the proposed social robot acceptance
model. The first is related to the inclusion of numerous variables in the structural
model. This is a consequence of the main goal of our study, which is to determine the
most important determinants for social robot acceptance in domestic environments.
The research field for social robot acceptance is relatively new, and it remains unclear
which factors have the greatest impact on social robot acceptance. Furthermore, a
suitable theory or model for social robot acceptance has not yet been developed.
Therefore, we began building the measurement model using EFA. However, the
inclusion of numerous variables and their interrelationships impeded proper and
straightforward model building, which led us to begin the development of a CFA
and conventional SEM. The main reason for this decision was our aim to build a
theory-based model of social robot acceptance. Although continuing data analysis
with a CFA is not an uncommon approach (Morin et al., 2013), and the fit of the
first-order factor structure in the model remained acceptable, the second-order factor
structure did not. As a result, it became impossible to investigate the interrelation-
ships between the higher order factors of our proposed conceptual model. In
addition, because the second-order factor structure did not fit our data, two options
remained in order to continue. One option was to conclude that there was no
empirical evidence for the hypothesized conceptual model and stop further analysis.
The second option was to continue data analysis with another method that would
allow some insights into the influential factors of social robot acceptance. Although
one should be aware that the data were used twice, we continued testing the same
interrelationships in a full model between the second-order factors directly and
between the underlying first-order factors. It must be acknowledged that the current
version of the model of social robot acceptance remains flexible and open for
refinement. Therefore, additional replication studies are necessary to further develop
a more valid and reliable model of social robot acceptance, preferably implementing
the second-order factor model.

A second limitation of our methodology was that we relied on constructs with
three items only. Although three items are enough for building a reliable scale
(DeVellis, 2003), beginning with initially three items only for each construct is
sometimes inadequate. Despite the large sample (n = 1,148) used in our study, it
was necessary to remove a few items from further data analysis, which left only two
items for the constructs of adaptability and anxiety toward robots. Therefore, our
advice for researchers performing quantitative data analysis is to begin with at least
five items per construct to allow for the possible and legitimate exclusion of items
with poor loadings or cross-loadings.

A third limitation is that some cross-loadings were observed between the
constructs of adaptability and enjoyment, sociability and adaptability, sociability and
companionship, and privacy and cost. Most of these cross-loadings can be explained
by findings from previous studies. For example, Shin and Choo (2011) confirmed the
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effect of adaptability on enjoyment for social robots. Furthermore, the concepts of
adaptability and sociability are closely related, given that sociability entails the cap-
ability to successfully adapt to social situations (R. B. Rubin & Martin, 1994). The
cross-loadings between sociability and companionship can be explained by the finding
that an increased evaluation of a robot’s sociability results in higher social presence
(Heerink et al., 2010), which in turn causes the perception of robots as social
companions (K. M. Lee et al., 2006; Melson, Kahn, Jr., Beck, & Friedman, 2009).
However, despite the explanation of cross-loadings by earlier findings, future research
is required to better empirically and theoretically distinguish these concepts.

Fourth, as is true for any given SEM, there are alternative models that are
equivalent in terms of overall model fit with the same data set and that may produce
substantially different explanations of the same data (Chin, 1998). However, the
model currently presented has a sound, validated theoretical basis. Although it is
acknowledged that other possible, and perhaps better, empirical solutions are achiev-
able, it may be difficult to support the parallel findings from these alternative models
with the existing theoretical findings.

A fifth limitation is that this study tested social robot acceptance by using a text-
based scenario for domestic social robots. The robot representations of our partici-
pants (de Graaf & Ben Allouch, 2016) were similar to those presented by other
researchers (European Commission, 2012; Ray et al., 2008; Weiss et al., 2011), which
means that members from developed societies generally have similar ideas about what
robots represent. Therefore, we believe that using text-based scenarios was an
appropriate way to administer our study without prompting the participants with
specific images of robots. Nevertheless, a low knowledge base among the general
population regarding robot applications might have affected the results of our study.
For example, the lack of results on the impact of utilitarian attitudes on social robot
acceptance could have been a result of our text-only approach. Because real interac-
tions with robots are still scarce, some scientists (Arras & Cerqui, 2005; Enz, Diruf,
Spielhagen, Zoll, & Vargas, 2011; Ray et al., 2008) suggest that current conceptualiza-
tions of robots may largely be shaped by mass mediated messages, including films.
These media representations do not necessarily reflect the research field of social
robotics, which raises the question of whether participants had any concept about the
potential utility of these technologies. In addition, due to the reliance on a text-based
scenario, the current results do not allow for an empirical evaluation of the actual use
of robots and thus bypassed potential long-term effects. Once social robots are
adopted by a larger number of people within society, future research should conduct
a longitudinal study among actual users of social robots in home environments and
repeatedly test the proposed model of social robot acceptance on actual users of
social robots.

The final limitation is that we administered our questionnaire to a Dutch sample.
Although we have developed our model using a large sample size, specific cultural
assumptions, relating to technology in general or social robots specifically, might be
relevant for its acceptance by individuals or society as a whole. Because nationality
(European Commission, 2012) and cultural differences (H. R. Lee & Sabanovic,
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2014) have been found to affect the evaluation of robot systems, a replication of our
study among other nationalities and cultures is recommended to explore alternative
opinions of the general public on future robot applications.

6.3. Conclusion

To develop acceptable social robots, it is necessary to consider future users and
their input at an early stage of development. This article presents a conceptual model of
social robot acceptance for domestic purposes and tests this model using SEM. To our
knowledge, we are the first to present a model of social robot acceptance with a strong
theoretical base that has been tested among a general population. The findings of our
study indicate that usefulness is a requisite for social robot acceptance and that certain
additional important acceptance variables may further explain why people anticipate the
acceptance of a social robot in their own homes. These additional acceptance variables
show that the anticipated acceptance of a social robot for domestic use increases when
users believe that they possess the necessary skills to use a social robot; when they
perceive that having such a robot enhances their social status; and when they anticipate
that such a robot will provide more enjoyable interactions, behave less sociably, and
cause fewer privacy concerns. However, when examining the long-term use of social
robots in home environments (de Graaf et al., 2016), it appears that the importance of
the acceptance variables in explaining social robot acceptance changes over time,
shifting from control beliefs before adoption to attitudinal beliefs after initial adoption.
It is believed that the importance of the acceptance variables depends on the devel-
opment stage in which the technology is located (Peters, 2011). As users gain experi-
ence with a social robot, other acceptance variables explain their intention to continue
using it, compared with the acceptance variables that explained their initial adoption.
Moreover, given the complex effects of the robot’s sociability in the anticipated
acceptance of these types of interactive technologies, the current implications of our
results emphasize that robots may indeed represent a new technological genre (de
Graaf et al., 2015; Young et al., 2011). Together, the current findings and implications
of our study serve to advance the field of social robotics.

HCI EDITORIAL RECORD

First received 9 July 2016. Revisions received 24 March 2017, and Accepted by xxx. Final
manuscript received 25 March 2017. — Editor

REFERENCES

Aarts, H., Verplanken, B., & van Knippenberg, A. (1998). Predicting behavior from actions in
the past: Repeated decision making or a matter of habit? Journal of Applied Social Psychology,
28(15), 1355–1374.

Model of Domestic Social Robot Acceptance 163



Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorp-
tion and beliefs about IT usage. MIS Quarterly, 24(4), 665–694. doi:10.2307/3250951

Ahlgren, D., & Verner, I. (2009, August). Fostering development of students’ collective and
self-efficacy in robotics projects. In Kim, J.H., Sam Ge, S., Vadakkepat, P., Jesse, N., Al
Mamun, A., Puthusserypady, S., Rückert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl,
T., Baltes, J., Anderson, J., Wong, C.C., & Ahlgren, D. (Eds), Proceedings of the FIRA
RoboWorld Congress 2009 (Vol. 44, pp. 240–247). Berlin, Heidelberg: Springer.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision

Processes, 50(2), 179–221. doi:10.1016/0749-5978(91)90020-T
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behaviour. London,

UK: Pearson.
Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B.

T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173–221). Mahwah, NJ:
Erlbaum.

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review
and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. doi:10.1037/
0033-2909.103.3.411

Armitage, C. J., Conner, M. (2001). Efficacy of the theory of planned behavior: A meta-
analytic review. British Journal of Social Psychology, 40, 471–499.

Arras, K. O., & Cerqui, D. (2005). Do we want to share our lives and bodies with robots. Lausanne,
Switzerland: Swiss Federal Institute of Technology Lausanne, EPFL.

Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural
Equation Modeling: A Multidisciplinary Journal, 16(3), 397–438. doi:10.1080/
10705510903008204

Bagozzi, R. P., Lee, H. M., & Van Loo, M. F. (2001). Decisions to donate bone marrow: The
role of attitudes and subjective norms across cultures. Psychology and Health, 16, 29–56.

Bandura, A. (1977). Self-efficacy: Toward a unified theory of behavioral change. Psychological
Review, 84(2), 191–215. doi:10.1037/0033-295X.84.2.191

Bargh, J. A., & Chartrand, T. L. (1999). The unbearable automaticity of being. American
Psychologist, 54(7), 462–479.

Bargh, J.A., & Gollwitzer, P.M. (1994). Environmental control of goal directed action: Automatic and
strategic contingencies between situation and behavior. Paper presented at the Nebraska Sympo-
sium on Motivation, Lincoln, NE, USA.

Bartneck, C., Kanda, T., Mubin, O. and Mahmud, A.A. (2009). Does the design of a robot
influence its animacy and perceived intelligence. International Journal of Social Robotics, 1(1),
195–204.

Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the
anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of
robots. International Journal of Social Robotics, 1(1), 71–81. doi:10.1007/s12369-008-0001-3

Bartneck, C., Kanda, T., Mubin, O. and Mahmud, A.A. (2009). Does the design of a robot
influence its animacy and perceived intelligence. International Journal of Social Robotics, 1(1),
195–204.

Bartneck, C., Nomura, T., Suzuki, T., Kanda, T., & Kennsuke, K. (2005). A cross-cultural study

on attitudes towards robots. Paper presented at the International Conference on Human-
Computer Interaction, Las Vegas.

164 de Graaf et al.

https://doi.org/10.2307/3250951
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1037/0033-2909.103.3.411
https://doi.org/10.1037/0033-2909.103.3.411
https://doi.org/10.1080/10705510903008204
https://doi.org/10.1080/10705510903008204
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1007/s12369-008-0001-3


Bartneck, C., Suzuki, T., Kanda, T., & Nomura, T. (2007). The influence of people’s culture
and prior experiences with AIBO on their attitude towards robots. AI & Society, 21(1–2),
217–230. doi:10.1007/s00146-006-0052-7

Ben Allouch, S., van Dijk, J. A. G. M., & Peters, O. (2009). The acceptance of domestic
ambient intelligence appliances by prospective users. Proceedings of the Pervasive 2009

International Conference on Pervasive Computing. New York, NY: Springer.
Benbasat, I., & Barki, H. (2007). Quo vadis, TAM? Journal of the Association for Information

Systems, 8, 211–218.
Bentler, P. M., & Speckart, G. (1981). Attitudes “cause” behaviors: A structural equation

analysis. Journal of Personality and Social Psychology, 40(2), 226–238.
Biocca, F., Harms, C., & Burgoon, J. K. (2003). Toward a more robust theory and measure of

social presence: Review and suggested criteria. Presence: Teleoperators and virtual environments,
12(5), 456–480.

Breazeal, C. L. (2003). Towards sociable robots. Robotics & Automation Systems, 42(3–4), 167–
175. doi:10.1016/S0921-8890(02)00373-1

Breckler, S.J., & Wiggins, E.C. (1989). On defining attitude and attitude theory: Once more
with feeling. In A. R. Pratkanis, S. J. Breckler, & A. G. Greenwald. (Eds.), Attitude structure
and function (pp. 407–427). Hillsdale, NJ: Erlbaum.

Broadbent, E., Stafford, R., & MacDonald, B. (2009). Acceptance of healthcare robots for the
older population: Review and future directions. International Journal of Social Robotics, 1(4),
319–330. doi:10.1007/s12369-009-0030-6

Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households: A
baseline model test and extension incorporating household life cycle. MIS Quarterly, 29(3),
399–426.

Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: Guilford
Press.

Brown, T. A., Chopita, B. F., & Barlow, D. H. (1998). Structural relationships among
dimensions of the DSM-IV anxiety and mood disorders and dimensions of negative
affect, positive affect, and autonomic arousal. Journal of Abnormal Psychology, 107, 179–192.

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis.
Multivariate Behavioral Research, 36(1), 111–150. doi:10.1207/S15327906MBR3601_05

Burgoon, J. K., & Buller, D. B. (1996). Reflections on the nature of theory building and the
theoretical status of interpersonal deception theory. Communication Theory, 6, 311–328.
doi:10.1111/j.1468-2885.1996.tb00132.x

Cartwright-Hatton, S., & Wells, A. (1997). Beliefs about worry and intrusions: The meta-
cognitions questionnaire and its correlates. Journal of anxiety disorders, 11(3), 279–296.

Central Bureau of Statistics (CBS), StatLine: Bevolking; kerncijfers. Den Haag/Heerlen, The
Netherlands: CBS.

Chen, F., Sousa, K. H., & West, S. G. (2005). Teacher’s corner: Testing measurement
invariance of second-order factor models. Structural Equation Modeling: A Multidisciplinary

Journal, 12(3), 471–492. doi:10.1207/s15328007sem1203_7
Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS

Quarterly, 22(1), vii–xvi.
Cramer, H., Evers, V., Ramlal, S., van Someren, M., Rutledge, L., Stash, N., … Wielinga, B.

(2008). The effects of transparency on trust in and acceptance of a content-based art
recommender. User Model User-Adapt Interaction, 18(5), 455–496. doi:10.1007/s11257-008-
9051-3

Model of Domestic Social Robot Acceptance 165

https://doi.org/10.1007/s00146-006-0052-7
https://doi.org/10.1016/S0921-8890(02)00373-1
https://doi.org/10.1007/s12369-009-0030-6
https://doi.org/10.1207/S15327906MBR3601%5F05
https://doi.org/10.1111/j.1468-2885.1996.tb00132.x
https://doi.org/10.1207/s15328007sem1203%5F7
https://doi.org/10.1007/s11257-008-9051-3
https://doi.org/10.1007/s11257-008-9051-3


Cuijpers, R. H., Bruna, M. T., Ham, J. R. C., & Torta, E. (2011). Attitude towards robots
depends on interaction but not on anticipatory behavior. In B. Mutlu, C. Bartneck, J.
Ham, V. Evers, T. Kanda (Eds.), Proceedings of the ICSR 2011 International Conference on Social

Robotics. Berlin, Germany: Springer-Verlag.
Dautenhahn, K., & Saunders, J. (2011). New frontiers in human–robot interaction (Vol. 2).

Amsterdam, the Netherlands: John Benjamins.
Dautenhahn, K., Woods, S., Kaouri, C., Walters, M. L., Koay, K. L., & Werry, I. (2005). What

is a robot companion: Friend, assistant or butler? Proceedings of the IROS 2005 International

Conference on Intelligent Robots and Systems. New York, NY: IEEE.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS Quarterly, 13(3), 319–340. doi:10.2307/249008
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New

York, NY: Plenum.
de Graaf, M. M. A. (2016). An ethical evaluation of human-robot relationships. International

Journal of Social Robotics, 8(4), 589–598. doi:10.1007/s12369-016-0368-5
de Graaf, M. M. A., & Ben Allouch, S. (2013a). Exploring influencing variables for the

acceptance of social robots. Robotics and Autonomous Systems, 61, 1476–1486. doi:10.1016/j.
robot.2013.07.007

de Graaf, M. M. A., & Ben Allouch, S. (2013b). The relation between people’s attitude and
anxiety towards robots in human-robot interaction. Proceedings of the RO-MAN 2013

International Symposium on Robot and Human Interactive Communication. New York, NY: IEEE.
de Graaf, M. M. A., & Ben Allouch, S. (2016). Anticipating our future robot society: The

evaluation of future robot applications from a user’s perspective. Proceedings of the RO-
MAN 2016 International Symposium on Robot and Human Interactive Communication. New York,
NY: IEEE.

de Graaf, M. M. A., Ben Allouch, S., & Klamer, T. (2015). Sharing a life with Harvey:
Exploring the acceptance of and relationship building with a social robot. Computers in
Human Behavior, 43(1), 1–14. doi:10.1016/j.chb.2014.10.030

de Graaf, M. M. A., Ben Allouch, S., & Lutfi, S. (2016). What are people’s associations of
robots? Comparing implicit and explicit measures. Proceedings of the RO-MAN 2016

International Symposium on Robot and Human Interactive Communication.
de Graaf, M. M. A., Ben Allouch, S., & van Dijk, J. A. G. M. (2015). What makes a robot

social? A user’s perspective on characteristics for social human–robot interaction. In
Agah, A., Cabibihan, J.-J., Howard, A., Salichs, M.A., He, H. (Eds.), Proceedings of the ICSR
2015 International Conference on Social Robotics. Berlin, Germany: Springer-Verlag.

de Graaf, M. M. A., Ben Allouch, S., & van Dijk, J. A. G. M. (2016). Long-term evaluation of
a social robot in real homes. Interaction Studies, 17(3), 1–25.

de Ruyter, B., Saini, P., Markopoulos, P., & van Breemen, A. (2005). Assessing the effects of
building social intelligence in a robotic interface for the home. Interacting with Computers, 17
(5), 522–541. doi:10.1016/j.intcom.2005.03.003

DeSteno, D., Breazeal, C., Frank, R. H., Pizarro, D., Baumann, J., Dickens, L., & Lee, J. J.
(2012). Detecting the trustworthiness of novel partners in economic exchange. Psycholo-
gical Science, 23, 1549–1556, 0956797612448793. doi:10.1177/0956797612448793

DeVellis, R. F. (2003). Scale development: Theories and applications. Newbury Park, CA: Sage.
Dewar, R. D., & Dutton, J. E. (1986). The adoption of radical and incremental innovations:

An empirical analysis. Management Science, 32, 1422–1433. doi:10.1287/mnsc.32.11.1422

166 de Graaf et al.

https://doi.org/10.2307/249008
https://doi.org/10.1007/s12369-016-0368-5
https://doi.org/10.1016/j.robot.2013.07.007
https://doi.org/10.1016/j.robot.2013.07.007
https://doi.org/10.1016/j.chb.2014.10.030
https://doi.org/10.1016/j.intcom.2005.03.003
https://doi.org/10.1177/0956797612448793
https://doi.org/10.1287/mnsc.32.11.1422


Enz, S., Diruf, M., Spielhagen, C., Zoll, C., & Vargas, P. A. (2011). The social role of robots in
the future: Explorative measurement of hopes and fears. International Journal of Social
Robotics, 3(3), 263–271. doi:10.1007/s12369-011-0094-y

European Commission. (2012). Public attitudes towards robots (Special Eurobarometer 382). Brussel,
Belgium: Kantar Public.

Ezer, N., Fisk, A. D., & Rogers, W. A. (2009a). Attitudinal and intentional acceptance of
domestic robots by younger and older adults. Proceedings of the 2009 International Conference

on Universal Access in Human–Computer Interaction.
Ezer, N., Fisk, A. D., & Rogers, W. A. (2009b). More than a servant: Self-reported willingness

of younger and older adults to having a robot perform interactive and critical tasks in the
home. Proceedings of the HFES 2009 Human Factors and Ergonomics Society.

Fink, J., Bauwens, V., Kaplan, F., & Dillenbourg, P. (2013). Living with a vacuum cleaning
robot: A 6-month ethnographic study. International Journal of Social Robotics, 5(3), 389–408.
doi:10.1007/s12369-013-0190-2

Fishbein, M., & Ajzen, I. (1975). Belief, attitude and behavior: An introduction to theory and research.
Reading, UK: Addison-Wesley.

Fisher, R. J., & Price, L. L. (1992). An investigation into the social context of early adoption
behavior. Journal of Consumer Research, 19(3), 477–486. doi:10.1086/jcr.1992.19.issue-3

Flandorfer, P. (2012). Population ageing and socially assistive robots for elderly persons: The
importance of sociodemographic factors for user acceptance. International Journal of

Population Research, 2012, 1–13. doi:10.1155/2012/829835
Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots.

Robotics and Autonomous Systems, 42, 143–166. doi:10.1016/S0921-8890(02)00372-X
Goetz, J., Kiesler, S., & Powers, A. (2003). Matching robot appearance and behavior to tasks

to improve human-robot cooperation. Proceedings of the RO-MAN 2003 International

Symposium on Robot and Human Interactive Communication. New York, NY: IEEE.
Green, S. G., Gavin, M. B., & Aiman-Smith, L. (1995). Assessing a multidimensional measure

of radical technological innovation. IEEE Transaction on Engineering Management, 42, 203–
214. doi:10.1109/17.403738

Greenwald, A.G. (1989). Why are attitudes important? In A. R. Pratkanis, S. J. Breckler, & A.
G. Greenwald (Ed.), Attitude structure and function. Hillsdale, NJ, USA: Erlbaum.

Groom, V., Nass, C., Chen, T., Nielsen, A., Scarborough, J. K., & Robles, E. (2009).
Evaluating the effects of behavioral realism in embodied agents. International Journal of
Human-Computer Studies, 67(10), 842–849. doi:10.1016/j.ijhcs.2009.07.001

Gustafsson, J., & Balke, G. (1993). General and specific abilities as predictors of school achieve-
ment. Multivariate Behavioral Research, 28(4), 407–434. doi:10.1207/s15327906mbr2804_2

Hackbarth, G., Grover, V., & Yi, M. Y. (2003). Computer playfulness and anxiety: Positive
and negative mediators of the system experience effect on perceived ease of use.
Information & Management, 40(3), 221–232. doi:10.1016/S0378-7206(02)00006-X

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y. C., de Visser, E. J., & Parasura-
man, R. (2011). A meta-analysis of factors affecting trust in human-robot interaction. The
Journal of the Human Factors and Ergonomics, 53(5), 517–527. doi:10.1177/
0018720811417254

Hassenzahl, M. (2004). The interplay of beauty, goodness, and usability in interactive pro-
ducts. Human–Computer Interaction, 19(4), 319–349. doi:10.1207/s15327051hci1904_2

Model of Domestic Social Robot Acceptance 167

https://doi.org/10.1007/s12369-011-0094-y
https://doi.org/10.1007/s12369-013-0190-2
https://doi.org/10.1086/jcr.1992.19.issue-3
https://doi.org/10.1155/2012/829835
https://doi.org/10.1016/S0921-8890(02)00372-X
https://doi.org/10.1109/17.403738
https://doi.org/10.1016/j.ijhcs.2009.07.001
https://doi.org/10.1207/s15327906mbr2804%5F2
https://doi.org/10.1016/S0378-7206(02)00006-X
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1207/s15327051hci1904%5F2


Heerink, M., Kröse, B., Evers, V., & Wielinga, B. (2010). Assessing acceptance of assistive
social agent technology by older adults: The Almere model. International Journal of Social
Robotics, 2(4), 361–375. doi:10.1007/s12369-010-0068-5

van der Heijden, H. (2003). Factors influencing the use of websites: The case of a generic
portal in The Netherlands. Information & Management, 40(6), 541–549.

Hox, J. J., & Bechger, T. M. (1998). An introduction to structural equation modeling. Family
Science Review, 11, 354–373.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure
analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A

Multidisciplinary Journal, 6, 1–55. doi:10.1080/10705519909540118
Huang, C., Liao, H., & Chang, S. (1998). Social desirability and the Clinical Self-Report

Inventory: Methodological reconsideration. Journal of Clinical Psychology, 54, 517–528.
doi:10.1002/(ISSN)1097-4679

International Federation of Robotics. (2014). World robotics report 2014. Retrieved from
http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2014_02.pdf
(accessed February 7, 2015).

Izard, C.E. (1977). Human emotions. New York, NY: Plenum.
Jaschinski, C., & Ben Allouch, S. (2015). Why should I use this?: Identifying incentives for

using AAL technologies. Proceedings of the Ami 2015 European Conference on Ambient

Intelligence.
Joosse, M., Sardar, A., Lohse, M., & Evers, V. (2013). BEHAVE-II: The revised set of

measures to assess users’ attitudinal and behavioral responses to a social robot. Interna-
tional Journal of Social Robotics, 5(3), 379–388. doi:10.1007/s12369-013-0191-1

Jöreskog, K. G. (1969). Efficient estimation in image factor analysis. Psychometrika, 34(1), 51–
75. doi:10.1007/BF02290173

Kahn, P. H., Friedman, B., Perez-Granados, D. R., & Freier, N. G. (2006). Robotic pets in
the lives of preschool children. Interaction Studies, 7(3), 405–436. doi:10.1075/is.7.3.13kah

Kahn, P. H., Gary, H. E., & Shen, S. (2013). Children’s social relationships with current and
near-future robots. Child Development Perspectives, 7(1), 32–37. doi:10.1111/cdep.12011

Kahn, P. H., Ishiguro, H., Friedman, B., & Kanda, T. (2006, September). What is a human?-
Toward psychological benchmarks in the field of human-robot interaction. In Proceedings

of the 15th IEEE International Symposium on Robot and Human Interactive Communication.
Hatfield, UK: IEEE.

Karahanna, E., & Limayem, M. (2000). E-mail and V-mail usage: Generalizing across
technologies. Journal of Organizational Computing and Electronic Commerce, 10(1), 49–66.
doi:10.1207/S15327744JOCE100103

Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and gratifications research. Social
Psychology, 37(4), 509–523. doi:10.1086/268109

Kenny, D. A., & McCoach, D. B. (2003). Effect of number of variables on measures of fit in
structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 10(3),
333–351. doi:10.1207/S15328007SEM1003_1

King, M., & Bruner, G. (2000). Social desirability bias: A neglected aspect of validity testing.
Psychology and Marketing, 17(2), 79–103. doi:10.1002/(ISSN)1520-6793

Kline, R. B. (2011). Principles and practices of structural equation modeling (3rd ed.). New York, NY:
Guilford Press.

Kmenta, J. (1971). Elements of econometrics. New York, NY: Macmillan.

168 de Graaf et al.

https://doi.org/10.1007/s12369-010-0068-5
https://doi.org/10.1080/10705519909540118
https://doi.org/10.1002/(ISSN)1097-4679
http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2014_02.pdf
https://doi.org/10.1007/s12369-013-0191-1
https://doi.org/10.1007/BF02290173
https://doi.org/10.1075/is.7.3.13kah
https://doi.org/10.1111/cdep.12011
https://doi.org/10.1207/S15327744JOCE100103
https://doi.org/10.1086/268109
https://doi.org/10.1207/S15328007SEM1003%5F1
https://doi.org/10.1002/(ISSN)1520-6793


LaRose, R., & Eastin, M. S. (1994). A social cognitive theory of internet uses and gratifica-
tions: Toward a new model of media attendance. Journal of Broadcasting & Electronic Media,
48(3), 358–377. doi:10.1207/s15506878jobem4803_2

Lee, H. R., & Sabanovic, S. (2014). Culturally variable preferences for robot design and use in
South Korea, Turkey and the United States. Proceedings of the HRI 2014 International

Conference on Human–Robot Interaction. New York, NY: ACM.
Lee, K., Park, N., & Song, H. (2005). Can a robot be perceived as a developing creature?:

Effects of a robot’s long-term cognitive developments on its social presence and people’s
social responses toward it. Human Communication Research, 31, 538–563. doi:10.1111/
j.1468-2958.2005.tb00882.x

Lee, K. M., Jung, Y., Kim, J., & Kim, S. R. (2006). Are physically embodied social agents
better than disembodied social agents?: The effects of physical embodiment, tactile
interaction, and people’s loneliness in human-robot interaction. International Journal of
Human-Computer Studies, 64, 962–973. doi:10.1016/j.ijhcs.2006.05.002

Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: Past,
present and future. Communications of the Association for Information Systems, 12(1), 752–780.

Lee, Y., Lee, J., & Lee, Z. (2006). Social influence on technology behaviour: Self-identity
theory perspective. ACM SIGMIS Database, 37(2–3), 60–75. doi:10.1145/
1161345.1161355

Li, D., Rau, P. L. P., & Li, Y. (2010). A cross-cultural study: Effect of robot appearance and
task. International Journal of Social Robotics, 2(2), 175–186. doi:10.1007/s12369-010-0056-9

Liao, C., Chen, J. L., & Yen, D. C. (2007). Theory of planned behavior (TPB) and customer
satisfaction in the continued use of e-service: An integrated model. Computers in Human

Behavior, 23, 2804–2822. doi:10.1016/j.chb.2006.05.006
Limayem, M., & Hirt, S. G. (2003). Force of habit and information system usage: Theory and

initial validation. Journal of the Association for Information Systems, 4, 65–97.
Liu, E. Z. F., Lin, C. H., & Chang, C. S. (2010). Student satisfaction and self-efficacy in a

cooperative robotics course. Social Behavior and Personality, 38, 1135–1146. doi:10.2224/
sbp.2010.38.8.1135

Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users’ information privacy
concerns (IUIPC): The construct, the scale, and a causal model. Information Systems

Research, 15, 336–355. doi:10.1287/isre.1040.0032
Manstead, A. S. R., & Parker, D. (1995). Evaluating and extending the theory of planned

behavior. European Review of Social Psychology, 6(1), 69–95.
Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance

model with the theory of planned behavior. Information Systems Research, 2(3), 173–191.
Mathieson, K., Peacock, E., & Chin, W. W. (2001). Extending the technology acceptance

model: The influence of perceived user resources. The DATA BASE for Advances in

Information Systems, 32, 86–112. doi:10.1145/506724.506730
McCroskey, J. C., & McCain, T. A. (1974). The measurement of interpersonal attraction.

Speech Monographs, 41(3), 261–266.
McCroskey, J. C., Richmond, V. P., & Daly, J. A. (1975). The development of a measure of

perceived homophily in interpersonal communication. Human Communication Research, 1,
323–332. doi:10.1111/j.1468-2958.1975.tb00281.x

McCroskey, J. C., & Teven, J. J. (1999). Goodwill: A reexamination of the construct and its
measurement. Communication Monographs, 66(1), 90–103. doi:10.1080/
03637759909376464

Model of Domestic Social Robot Acceptance 169

https://doi.org/10.1207/s15506878jobem4803%5F2
https://doi.org/10.1111/j.1468-2958.2005.tb00882.x
https://doi.org/10.1111/j.1468-2958.2005.tb00882.x
https://doi.org/10.1016/j.ijhcs.2006.05.002
https://doi.org/10.1145/1161345.1161355
https://doi.org/10.1145/1161345.1161355
https://doi.org/10.1007/s12369-010-0056-9
https://doi.org/10.1016/j.chb.2006.05.006
https://doi.org/10.2224/sbp.2010.38.8.1135
https://doi.org/10.2224/sbp.2010.38.8.1135
https://doi.org/10.1287/isre.1040.0032
https://doi.org/10.1145/506724.506730
https://doi.org/10.1111/j.1468-2958.1975.tb00281.x
https://doi.org/10.1080/03637759909376464
https://doi.org/10.1080/03637759909376464


Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. Cambridge, MA:
MIT Press.

Melson, G. F., Kahn, P. H., Beck, A., & Friedman, B. (2009). Robotic pets in human lives:
Implications for the human-animal bond and for human relationships with personified
technologies. Journal of Social Issues, 65, 545–567. doi:10.1111/j.1540-4560.2009.01613.x

Miniard, P. W. (1981). Examining the diagnostic utility of the Fishbein behavioral intention
model. Advances in Consumer Research, 8, 42–47.

Moon, J. W., & Kim, J. G. (2000). Extending the TAM for a world-wide-web context.
Information & Management, 38, 217–230.

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the
perceptions of adopting an information technology innovation. Information Systems Research,
2(3), 192–222. doi:10.1287/isre.2.3.192

Morin, A. J. S., Marsh, H. W., & Nagengast, B. (2013). Exploratory structural equation
modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second

course (pp. 395–436). New York, NY: Information Age.
Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th ed.). Los Angelos, CA:

Muthén & Muthén.
Mutlu, B. (2011). Designing embodied cues for dialog with robots. AI Magazine, 32(4), 17–30.
Nomura, T., Kanda, T., Suzuki, T., & Kato, K. (2006). Exploratory investigation onto

influence of negative attitudes towards robots in human-robot interaction. AI & Society,
20, 138–150. doi:10.1007/s00146-005-0012-7

Nomura, T., Kanda, T., Suzuki, T., Yamada, S., & Kato, K. (2009). Influences of concerns
toward emotional interaction into social acceptability of robots. Proceedings of the HRI 2009

International Conference on Human-Robot Interaction. New York, NY: ACM.
Nomura, T., Suzuki, T., Kanda, T., Han, J., Shin, N., Burke, J., & Kato, K. (2008). What

people assume about humanoid and animal-type robots: Cross-cultural analysis between
Japan, Korea, and the United States. International Journal of Humanoid Robotics, 5(1), 25–46.
doi:10.1142/S0219843608001297

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. Sydney, Australia: McGraw-Hill.
Orlikowski, W. J. (1992). The duality of technology: Rethinking the concept of technology in

organizations. Organization Science, 3(3), 398–427. doi:10.1287/orsc.3.3.398
Ortiz De Guinea, A., & Markus, M. L. (2009). Why break the habit of a lifetime? Rethinking

the roles of intention, habit, and emotion in continuing information technology use. MIS

Quarterly, 33(3), 433–444.
Ouellette, J. A., & Wood, W. (1998). Habit and intention in everyday life: The multiple

processes by which past behavior predicts future behavior. Psychological Bulletin, 124(1),
54–74. doi:10.1037/0033-2909.124.1.54

Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R.
Shaver, & L. S. Wrightsman (Eds.), Measures of personality and socialpsychological attitudes (pp.
17–59). New York, NY: Academic Press.

Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic commerce
adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115–143.

Perugini, M., & Bagozzi, R. P. (2001). The role of desires and anticipated emotions in goal-
directed behaviours: Broadening and deepening the theory of planned behaviour. British
Journal of Social Psychology, 40(1), 79–98. doi:10.1348/014466601164704

170 de Graaf et al.

https://doi.org/10.1111/j.1540-4560.2009.01613.x
https://doi.org/10.1287/isre.2.3.192
https://doi.org/10.1007/s00146-005-0012-7
https://doi.org/10.1142/S0219843608001297
https://doi.org/10.1287/orsc.3.3.398
https://doi.org/10.1037/0033-2909.124.1.54
https://doi.org/10.1348/014466601164704


Peters, O. (2011). Three theoretical perspectives on communication technology adoption. In
A. Vishwanath, & G.A. Barnett (Eds.), The diffusions of innovations: A communication science

perspective. New York, NY: Peter Lang.
Peters, O., & Ben Allouch, S. (2005). Always connected: A longitudinal field study of mobile

communication. Telematics and Informatics, 22, 239–256. doi:10.1016/j.tele.2004.11.002
Ray, C., Mondada, F., & Siegwart, R. (2008). What do people expect from robots? Proceedings

of the IROS 2008 International Conference on Intelligent Robots and Systems. New York, NY:
IEEE.

Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new

media like real people and places. New York, NY: CSLI Publications.
Richard, R., Pligt, J., & Vries, N. (1995). Anticipated affective reactions and prevention of

AIDS. British Journal of Social Psychology, 34(1), 9–21.
Rindskopf, D., & Rose, T. (1988). Some theory and applications of confirmatory second-

order factor analysis. Multivariate Behavioral Research, 23, 51–67. doi:10.1207/
s15327906mbr2301_3

Rivis, A., & Sheeran, P. (2003). Social influences and the theory of planned behavior:
Evidence of a direct relationship between prototypes and young people's exercises
behavior. Psychology and Health, 18, 567–586.

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York, NY: The Free Press.
Rosenthal-von der Pütten, A. M., Krämer, N. C., Hoffmann, L., Sobieraj, S., & Eimler, S. C.

(2013). An experimental study on emotional reactions towards a robot. International Journal
of Social Robotics, 5(1), 17–34.

Rubin, A. M. (1983). Television uses and gratifications: The interactions of viewing patterns
and motivations. Journal of Broadcasting, 27(1), 37–51. doi:10.1080/08838158309386471

Rubin, R. B., & Martin, M. M. (1994). Development of a measure of interpersonal commu-
nication competence. Communication Research Reports, 11(1), 33–44. doi:10.1080/
08824099409359938

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and
new directions. Contemporary Educational Psychology, 25(1), 54–67. doi:10.1006/
ceps.1999.1020

Šabanović, S. (2010). Robots in society, society in robots. International Journal of Social Robotics, 2,
439–450.

Salem, M., Eyssel, F., Rohlfing, K., Kopp, S., & Joublin, F. (2013). To err is human (-like):
Effects of robot gesture on perceived anthropomorphism and likability. International

Journal of Social Robotics, 5(3), 313–323. doi:10.1007/s12369-013-0196-9
Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within

exploratory factor analysis. Multivariate Behavioral Research, 45(1), 73–103. doi:10.1080/
00273170903504810

Scopelliti, M., Giuliani, M.V., & Fornara, F. (2005). Robots in a domestic setting: A
psychological approach. Universal Access in the Information Society, 4(2), 146–155.

Serenko, A. (2008). A model of user adoption of interface agents for email notification.
Interacting with Computers, 20(4–5), 461–472.

Sheeran, P., & Orbell, S. (1999). Augmenting the theory of planned behavior: Roles for
anticipated regret and descriptive norms. Journal of Applied Social Psychology, 29, 2107–2142.

Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned action: A
meta-analysis of past research with recommendation and future research. Journal of

Consumer Research, 15, 325–343.

Model of Domestic Social Robot Acceptance 171

https://doi.org/10.1016/j.tele.2004.11.002
https://doi.org/10.1207/s15327906mbr2301%5F3
https://doi.org/10.1207/s15327906mbr2301%5F3
https://doi.org/10.1080/08838158309386471
https://doi.org/10.1080/08824099409359938
https://doi.org/10.1080/08824099409359938
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1007/s12369-013-0196-9
https://doi.org/10.1080/00273170903504810
https://doi.org/10.1080/00273170903504810


Shin, D. H., & Choo, H. (2011). Modeling the acceptance of socially interactive robotics:
Social presence in human-robot interaction. Interaction Studies, 12(3), 430–460.
doi:10.1075/is.12.3.04shi

Silverstone, R., & Haddon, L. (1996). Design and the domestication of ICTs: Technical
change and everyday life. In R. Silverstone, & R. Mansell (Eds.), Communication by design.
The politics of information and communication technologies (pp. 44–74). Oxford: Oxford Press.

Stafford, R. Q., Broadbent, E., Jayawardena, C., Unger, U., Kuo, I. H., Igic, A., Wong, R.,
Kerse, N., Watson, C., & MacDonald, B. A. (2010). Improved robot attitudes and emotions at a
retirement home after meeting a robot. Paper presented at the International Symposium on
Robot and Human Interactive Communication (RO-MAN 2010), Viareggio, Italy.

Straub, D. W., & Burton-Jones, A. (2007). Veni, vidi, vici: Breaking the TAM logjam. Journal of
the Association for Information Systems, 8(4), 223.

Sun, H. S., & Zhang, P. (2006). The role of moderating factors in user technology acceptance.
International Journal of Human-Computer Studies, 64(2), 53–78.

Szajna, B. (1996). Emperical evaluation of the revised technology acceptance model. Manage-

ment Science, 42(1), 85–92. doi:10.1287/mnsc.42.1.85
Takayama, L., Ju, W., & Nass, C. (2008). Beyond dirty, dangerous, and dull: What everyday

people think robots should do. Proceedings of the HRI 2008 International Conference on

Human–Robot Interaction. New York, NY: ACM.
Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of

Diagnostic Medical Sonography, 6(1), 35–39. doi:10.1177/875647939000600106
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of

competing models. Information Systems Research, 6(2), 144–176. doi:10.1287/isre.6.2.144
Triandis, H. C. (1979). Values, attitudes, and interpersonal behavior. Paper presented at the

Nebraska Symposium on Motivation, Lincoln, Nebraska.
Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. New

York, NY: Basic Books.
Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation.

Advances in experimental social psychology, 29, 271–360.
Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation.

Advances in Experimental Social Psychology, 29, 271–360. doi:10.1016/S0065-2601(08)60019-2
van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly,

28(4), 695–704.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on

interventions. Decision Sciences, 39(2), 273–315. doi:10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Brown, S. A. (2001). A longitudinal investigation of personal computers in

homes: Adoption determinants and emerging challenges. MIS Quarterly, 25(1), 71–102.
doi:10.2307/3250959

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance
model: Four longitudinal field studies. Management Science, 46(2), 186–204. doi:10.1287/
mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of
information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of informa-
tion technology: Extending the unified theory of acceptance and use of technology. MIS

Quarterly, 36(1), 157–178.

172 de Graaf et al.

https://doi.org/10.1075/is.12.3.04shi
https://doi.org/10.1287/mnsc.42.1.85
https://doi.org/10.1177/875647939000600106
https://doi.org/10.1287/isre.6.2.144
https://doi.org/10.1016/S0065-2601(08)60019-2
https://doi.org/10.1111/j.1540-5915.2008.00192.x
https://doi.org/10.2307/3250959
https://doi.org/10.1287/mnsc.46.2.186.11926
https://doi.org/10.1287/mnsc.46.2.186.11926


Wand, X. (2011). The role of anticipated negative emotions and past behavior in individuals’
physical activity intentions and behaviors. Psychology of Sport and Exercise, 12(3), 300–305.
doi:10.1016/j.psychsport.2010.09.007

Weiss, A., Igelsböck, J., Wurhofer, D., & Tscheligi, M. (2011). Looking forward to a ‘robot
society’?: Notions of future human–robot relationships. International Journal of Social

Robotics, 3(2), 111–123. doi:10.1007/s12369-010-0076-5
Yoo, S. J., Han, S. H., & Huang, W. (2012). The roles of intrinsic motivators and extrinsic

motivators in promoting e-learning in the workplace: A case from South Korea. Compu-
ters in Human Behavior, 28, 942–950. doi:10.1016/j.chb.2011.12.015

Young, J. E., Hawkins, R., Sharlin, E., & Igarashi, T. (2007). Towards acceptable domestic
robots: Applying insights from social psychology. International Journal of Social Robotics, 1(1),
95–108. doi:10.1007/s12369-008-0006-y

Young, J. E., Sung, J. Y., Voida, A., Sharlin, E., Igarashi, T., Christensen, H. I., & Grinter, R.
E. (2011). Evaluating human–robot interaction. International Journal of Social Robotics, 3(1),
53–67. doi:10.1007/s12369-010-0081-8

Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007a). Technology acceptance: A meta-
analysis of the TAM: Part 1. Journal of Modeling in Management, 2(3), 251–280. doi:10.1108/
17465660710834453

Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007b). Technology acceptance: A meta-
analysis of the TAM: Part 2. Journal of Modeling in Management, 2(3), 281–304. doi:10.1108/
17465660710834462

Yu, J., Ha, I., Choi, M., & Rho, J. (2005). Extending the TAM for a t-commerce. Information &
Management, 42, 965–976. doi:10.1016/j.im.2004.11.001./

Model of Domestic Social Robot Acceptance 173

https://doi.org/10.1016/j.psychsport.2010.09.007
https://doi.org/10.1007/s12369-010-0076-5
https://doi.org/10.1016/j.chb.2011.12.015
https://doi.org/10.1007/s12369-008-0006-y
https://doi.org/10.1007/s12369-010-0081-8
https://doi.org/10.1108/17465660710834453
https://doi.org/10.1108/17465660710834453
https://doi.org/10.1108/17465660710834462
https://doi.org/10.1108/17465660710834462
https://doi.org/10.1016/j.im.2004.11.001./

	Abstract
	CONTENTS
	1.  INTRODUCTION
	2.  EVALUATING RELEVANT ACCEPTANCE MODELS
	2.1.  Reviewing Traditional Models of Technology Acceptance
	2.2.  Reviewing Existing Models for Social Robot Acceptance
	2.3.  Reviewing the Theory of Planned Behavior
	2.4.  Toward a Model of Social Robot Acceptance

	3.  INFLUENTIAL FACTORS FOR SOCIAL ROBOT ACCEPTANCE
	3.1.  Attitudinal Beliefs Structure
	3.2.  Normative Beliefs Structure
	3.3.  Control Beliefs Structure
	3.4.  The Conceptual Model

	4.  METHOD
	4.1.  Sampling of Participants
	4.2.  Design of the Questionnaire
	4.3.  The Measurement Model
	Establishing the First-Order Factor Model
	Establishing the Second-Order Factor Model


	5.  RESULTS
	5.1.  Interpreting the Effects of the Attitudinal Beliefs
	5.2.  Interpreting the Effects of the Normative Beliefs
	5.3.  Interpreting the Effects of the Control Beliefs

	6.  GENERAL DISCUSSION
	6.1.  Implications
	Influential Factors for Social Robot Acceptance
	The Unwanted Sociability of Robots
	Practical Implications for the Development of Social Robots

	6.2.  Limitations
	6.3.  Conclusion

	HCI Editorial Record
	REFERENCES

