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ABSTRACT
This paper presents a new statistical method and accompanying
software for the evaluation of order constrained hypotheses in struc-
tural equationmodels (SEM). Themethod is based on a large sample
approximation of the Bayes factor using a prior with a data-based
correlational structure. An efficient algorithm is written into an R
package to ensure fast computation. The package, referred to as
Bain, is easy to use for applied researchers. Two classical examples
from the SEM literature are used to illustrate the methodology and
software.
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1. Introduction

Applied researchers have become increasingly interested in the evaluation of order con-
strained hypotheses because the traditional null hypothesis is often not a realistic repre-
sentation of the population of interest [[1],[2, pp. 79–81]]. In structural equation models,
researchers may have explicit theories or expectations, for example, about the ordering of
the relative effects of independent variables on a dependent variable or researchers may
expect which indicator for a latent variable is dominant over the other indicators. These
expectations can be represented by order constrained hypotheses among themodel param-
eters. Order constrained hypotheses can be evaluated using either the frequentist approach
by means of p values (see, e.g. [3,4]) or the Bayesian approach by means of Bayes fac-
tors (see, e.g. [5–7]). In this paper, the Bayes factor [8] is used as a criterion for assessing
the hypotheses because p values can only reject a null hypothesis. Bayes factors on the
other hand are able to measure the relative evidence in the data between multiple non-
nested hypotheses containing order constraints [9]. For this reason, Bayes factors can be
viewed as a more generally applicable tool for statistical hypothesis testing than classical p
values.

During the past decade, Bayesian evaluation of hypotheses with order (or inequal-
ity) constraints on the parameters of interest has been studied for various statistical
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models. Besides statistical theory development, these studies rendered software packages
that can be used by applied researchers, see [5] for an overview. As a pioneer, Klugk-
ist et al. [6] presented a Bayesian approach to evaluate analysis of (co)variance models
(ANOVA or ANCOVA) with order constraints on the means. The study for ANOVA
models was further developed by Kuiper and Hoijtink [10] for the comparison of means
using both Bayesian and non-Bayesianmethods. This research resulted in a software pack-
age ConfirmatoryANOVA [11]. Thereafter, Mulder et al. [12] extended the previous
study to multivariate linear models (MANOVA, repeated measures, multivariate regres-
sion), which is implemented in the software package BIEMS [13]. Finally, Gu et al. [14]
explored a general Bayesian procedure using a diffuse normal prior distribution with a
diagonal covariance structure. Although this methodology provided reasonable default
outcomes of the Bayes factor, the diagonal prior covariance structure can be criticized
because the resulting Bayes factor is not invariant for linear one-to-one transformations
of the data. The invariance property is important because it ensures that the relative evi-
dence between two hypotheses, as quantified by the Bayes factor, does not depend on the
arbitrary parameterizations of the model [15].

To illustrate the issue, consider three repeated measurements coming from a mul-
tivariate normal distribution, i.e. xi = (xi1, xi2, xi3)T ∼ N(θ ,�), where θ = (θ1, θ2, θ3)T
is a vector containing the measurement means and � is the measurement covariance
matrix. Now assume we are interested in testing amonotonic increase of themeans against
an unrestricted alternative: H1 : θ1 < θ2 < θ3 versus Hu : θ ∈ R

3 where R
3 denotes the

3-dimensional real vector space. A standard choice for the prior underH1 is to use a trun-
cation of the unconstrained prior under Hu in the order constrained space under H1 (e.g.
[6]). This results in the following expression of the Bayes factor:

B1u = Pr(θ1 < θ2 < θ3 |X,Hu)

Pr(θ1 < θ2 < θ3 |Hu)
, (1)

which corresponds to the ratio of the posterior probability that the constraints of H1
are satisfied under Hu and the prior probability that the constraints of H1 are satisfied
underHu. Now consider a very vague prior with a multivariate normal distribution for the
measurement means under Hu with a diagonal covariance structure, πu(θ) = N(0,ωI3),
where I3 is a 3-dimensional identity matrix and ω is chosen large enough so that the
posterior probability in the numerator in (1) is virtually independent of the prior, say,
ω = 106. This prior results in a prior probability that the constraints hold that is equal
to 1

6 (for any choice of ω, see [6]), and thus, the Bayes factor is equal to the poste-
rior probability that the measurement means increase multiplied by 6, i.e. B1u = 6 × Pr
(θ1 < θ2 < θ3 |X,Hu).

Now we consider a one-to-one transformation of the data where the first element cor-
responds to the difference between the first and second repeated measurement, the second
element corresponds to the difference between the second and third repeated measure-
ment, and the third element corresponds to the third repeated measurement, i.e. yi =
(yi1, yi2, yi3) = (xi1 − xi2, xi2 − xi3, xi3). Again the transformed observations follow amul-
tivariate normal distribution, say, yi ∼ N(η,�), where the first, second, and third element
of η are equal to the first mean difference, the second mean difference, and the mean of
the third observation. The equivalent hypothesis test in this parameterization comes down
to H1 : η1 < 0, η2 < 0, η3 ∈ R

1 versus Hu : η ∈ R
3. Similarly as in (1), the Bayes factor is
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now given by

B1u = Pr(η1 < 0, η2 < 0 |Y,Hu)

Pr(η1 < 0, η2 < 0 |Hu)
.

Again we consider independent normal priors for the mean parameters, i.e. πu(η) =
N(0,ωI3), with ω very large. In this case the prior probability that the constraints of H1
hold underHu equals 1

4 , and consequently, the Bayes factor is equal to the posterior proba-
bility of negative mean differences (which is equivalent to an increase of the measurement
means) multiplied by 4, i.e. B1u = 4 × Pr(η1 < 0, η2 < 0 |Y,Hu). Thus, the Bayes factor
differs with a factor of 4

6 for these two parameterizations, which is quite large. For larger
dimensions with, say, 10 measurements, the violation will be even larger [15,16]. This
is highly undesirable. To resolve this we present a new default prior resulting in a new
Bayesian testing procedure for testing order constrained hypotheses in SEM which avoids
this issue. The general idea is to let the prior covariance structure of the parameters of
interest to depend on the covariance structure in the sample.

The second main contribution is the development of an efficient algorithm for comput-
ing the prior and posterior probability that a set of order (inequality) constraints hold,
which are key quantities when computing Bayes factors. This contribution is needed
because computing these probabilities as the proportion of draws satisfying the constraints
can be very inefficient when the hypotheses contain many order constraints on the param-
eters of interest. In this case the posterior and prior probability that the constraints hold
can be very small and therefore billions of draws may be needed in order to get accurate
estimates of the probabilities and the resulting Bayes factors [5]. For this reason an efficient
algorithm is presented that consists of roughly two steps. First, the probability of a set of
order constraints is written as product of conditional probabilities. Second, the conditional
probabilities are computed as the arithmetic mean of conditional probabilities which have
analytic expressions in the Gibbs sampler. As will be seen this new algorithm is muchmore
efficient than the use of the proportion of draws satisfying the constraints.

The algorithm is implemented into an R package referred to as Bain to ensure fast com-
putation. For the computation of the Bayes factor using Bain the user only needs to provide
the estimates of the parameters of interest and the inverse of the Fisher informationmatrix
of the parameters which serves as the posterior covariance matrix. These statistics can for
instance be obtained using the lavaan package [17] in R for the analysis of structural
equation models (SEM). Other software, such as Mplus, can also be used to obtain these
statistics, but here we will use lavaan as the basis for our analyzes because it is free.

In what follows, Section 2 shortly introduces SEMmodels and defines order constrained
hypotheses. For the evaluation of order constrained hypotheses, the Bayes factor as a crite-
rion is briefly introduced in Section 3. Subsequently, Section 4 specifies prior and posterior
distributions which are the determinants of the Bayes factor. Thereafter, the procedure for
the computation of Bayes factors is presented in Section 5 in which seven sub-sections
describe the principles and algorithms used. To illustrate how to evaluate order constrained
hypotheses using our programme, Section 6 analyzes two classic SEM models: confirma-
tory factor analysis and multiple regression models with latent variables. Finally, a user
manual is provided in Appendix 2 such that researchers can use the implementation in
Bain successfully for the analysis of their own data.
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2. Order constrained structural equationmodels

2.1. Structural equationmodels

The structural equationmodel (SEM)mainly consists of two components, i.e. themeasure-
mentmodel which expresses the relations between latent variables and their indicators, and
the structural model which expresses the relations between endogenous and exogenous
(latent) variables, see for example [18]. The measurement model can be written by

y = �yη + εy

x = �xξ + εx (2)

where y and x denote the vectors of endogenous and exogenous observed variables, respec-
tively, η and ξ denote the vectors of endogenous and exogenous latent variables, respec-
tively, �y and �x are the corresponding matrices of factor loadings, and the measurement
errors εy and εx have zero means and covariance matrices �εy and �εx , respectively.

The structural model represents the relations among latent variables:

η = Bη + 	ξ + δ, (3)

where B and	 are matrices of regression coefficients, and δ withmean of 0 and covariance
matrix of �δ is the error term. In addition,

�η = (I − B)−1(	�ξ	
T + �δ)(IT − BT)−1, (4)

where �η and �ξ are the covariance matrices of the latent variables η and ξ , respectively.
Note that both η and ξ may contain observed variables if one wants to model the rela-
tionship between observed variables. This can be done by creating single-indicator latent
variables (with a fixed factor loading of 1, and zero measurement error) corresponding to
each observed variable.

The general framework of SEM is described by Equations (2) and (3) which can be
specified using lavaan syntax [17] in R. As can be seen from (2), (3) and (4), the non-
fixed elements in {�y,�x,B,	,�εy ,�εx ,�δ ,�ξ } of a specific SEMmodel can be collected
in a parameter vector λ. The density of the data is given by f (X | λ), where X denotes the
data [19]. The distribution of data X is most often multivariate normal, though it could
also involve multinomial distribution, et al. Furthermore, the non-fixed parameters can
be divided into λ = {θ , ζ }, where θ denotes the target parameters that will appear in the
order constrained hypotheses elaborated in the next section, and ζ denotes the nuisance
parameters that will not.

2.2. Order constrained hypotheses

Order constrained hypotheses express the expectations of researchers among the (stan-
dardized) target parameters in SEM. For example, hypothesis H1 : θ1 > θ2 where θ1 and
θ2 are the coefficients of the predictors ξ1 and ξ2, respectively, implies that the predictor ξ1
is stronger than ξ2. The general form of an order constrained hypothesis Hi is given by

Hi : Riθ > ri, (5)

where Ri is the restriction matrix containing order constraints, and θ and ri denote the
target parameter vector and constant vector inHi, respectively.We assume that the number
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of constraints isK and the number of target parameters is J. Therefore,Ri is aK × Jmatrix,
and the lengths of θ and ri are J and K, respectively. For instance, H2 : θ1 > θ2 > θ3 is an
example with J=3 and K=2, which leads to θ = (θ1, θ2, θ3)T and an augmented matrix:

[R2 | r2] =
[

1 −1 0
0 1 −1

0
0

]
.

The augmented matrix [Ri | ri] should be implemented as input of Bain.
The hypothesis Hi is often compared to an unconstrained hypothesis

Hu : θ ∈ R
J , (6)

where R
J denotes the J-dimensional real vector space, or to its complement

Hic : not Hi. (7)

Furthermore, we can evaluate Hi against a competing hypothesis

Hi′ : Ri′θ > ri′ . (8)

The evaluation of these hypotheses can be conducted using Bayes factors, which will be
elaborated in the next section.

When specifying order constrained hypotheses in SEM models, the target parameters
may need to be standardized. For example, if hypothesisH1 : θ1 > θ2 compares two regres-
sion coefficients to determine which predictor is stronger, then the coefficients θ1 and θ2
should be standardized to be comparable. The standardization of target parameters can be
achieved by standardizing the observed and latent variables in SEMmodels. However, this
manner might be criticized because the data is used twice, once for standardization and
once for evaluation of the hypothesis [14]. The lavaan package [17] provides an alter-
native approach that can directly obtain estimates and covariance matrix of standardized
target parameters. This paper uses the alternative standardization approach in lavaan. To
keep the notation simple, in this paper θ will be used to denote both unstandardized and
standardized target parameters.

3. Bayes factor

TheBayes factor ofHi againstHu is defined as the ratio of twomarginal likelihoods [5,8,20]:

BFiu = mi(X)

mu(X)
=

∫∫
f (X | θ , ζ )πi(θ , ζ ) dθ dζ∫∫
f (X | θ , ζ )πu(θ , ζ ) dθ dζ

, (9)

where πi(θ , ζ ) and πu(θ , ζ ) denote the prior distribution under Hi and Hu (will be spec-
ified in the next section), respectively, and f (X | θ , ζ ) denotes the density of X given θ

and ζ (see [19]). Furthermore, from Equation (9) it follows that the Bayes factor of Hi
against Hic can be obtained as BFiic = BFiu/BFicu, and the Bayes factor of Hi against Hi′ is
BFii′ = BFiu/BFi′u.

The Bayes factor BFiu quantifies the relative evidence in the data in favour of hypoth-
esis Hi against Hu. For example BFiu = 2 indicates that the support in the data for Hi is
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twice as large as the support forHu. A general guideline for the interpretation of the Bayes
factor is that BFiu ∈ (1, 3] indicates evidence for Hi that is not worth mentioning, and
BFiu ∈ (3, 20], BFiu ∈ (20, 150] and BFiu > 150 indicate positive, strong and very strong
evidence for Hi, respectively [8]. Note that if BFiu < 1 which implies evidence against Hi,
the strength of this evidence is quantified using the rule above for the reciprocal of BFiu.
Furthermore, Bayes factors BFiic and BFii′ can also be interpreted using the same rule.
Although this rule renders a proposal to interpret the Bayes factor, it is not suggested using
it strictly because this interpretation is a rough descriptive statement with respect to the
standards of evidence, which could very well be modified based on the research context.
For this reason users can judge by themselves when the evidence in the data is positive,
strong or decisive in favour or against a hypothesis based on the observed Bayes factor.

Formula (9) can be simplified to [21]:

BFiu = fi
ci
, (10)

where

ci =
∫∫

θ∈	i

πu(θ , ζ ) dθ dζ =
∫

θ∈	i

πu(θ) dθ , (11)

called relative complexity [16], is the proportion of the prior distribution (specified in the
next section) in agreement with Hi relative to Hu, and

fi =
∫∫

θ∈	i

πu(θ , ζ |X) dθ dζ =
∫

θ∈	i

πu(θ |X) dθ , (12)

called relative fit, is the proportion of the posterior distribution (specified in the next
section) in agreement withHi relative toHu. Here	i = {θ |Riθ > ri} denotes the parame-
ter space constrained byHi, and ζ is not constrained. The complexity implies how specific
a hypothesis is, and the fit implies how much the data supports a hypothesis relative to
Hu. The more specific the hypothesis, the less the complexity, while the more the support
from the data, the larger the fit. The derivation of Equation (10) can be found in [16].
Equation (10) shows that the Bayes factor of an order constrained hypothesis Hi against
an unconstrained hypothesis Hu can be represented as the ratio of the fit and complexity
ofHi. This representation facilitates our development of the software for the evaluation of
order constrained hypotheses.

Based on BFiu, the Bayes factor BFiic for Hi against Hic , and BFii′ for two competing
hypotheses Hi and Hi′ can also be derived. Noting that the proportions of prior and pos-
terior distributions in agreement with Hic are 1 − ci and 1 − fi, respectively, it follows
that

BFiic = fi
ci

/
1 − fi
1 − ci

. (13)

Analogously, BFii′ can be obtained by

BFii′ = BFiu/BFi′u = fi
ci

/
fi′
ci′
. (14)

Furthermore, an accessible manner for comparing a set of hypotheses is to transform
Bayes factors into posterior model probabilities (PMPs). The PMPs are a representation
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of the support in the data for each hypothesis on a scale between 0 and 1. Assuming equal
prior probabilities for the hypotheses, we obtain PMPs for all the competing hypotheses
excluding Hu using [5, p. 52]

PMPi = BFiu∑
i BFiu

for i = 1, . . . , IN , (15)

where IN denotes the number of competing hypotheses. The execution of our programme
renders both Bayes factors (10) and PMPs (15). As was shown in (10), the Bayes factor
for Hi against Hu depends on the complexity and fit for which the prior and posterior
distributions of θ under Hu need to be specified, respectively. The specification of prior
and posterior distributions will be introduced in the next section.

4. Prior and posterior distributions

4.1. Prior specification

The specification of prior distributions is an important step in Bayesian hypothesis testing.
As can be seen from Equation (11), only a proper prior of θ for the unconstrained hypoth-
esis needs to be specified; the priors under the order constrained hypotheses automatically
follow from this prior by truncating the unconstrained prior in the respective order con-
strained subspaces. The unconstrained prior that is proposed in this paper is partly based
on the fractional Bayes factor of O’Hagan [22] which is known to be invariant for linear
transformations. In the fractional Bayes factor a prior is implicitly constructed using a small
fraction of the information in the data. A key property of the resulting automatic prior is
that it has the same covariance structure as the covariance structure in the data [16].

In SEM the covariance structure in the data of the parameters of interest is contained
in the estimated covariance matrix of the (standardized) target parameters, denoted by
�̂θ . This covariance matrix can be obtained by standard SEM software packages such as
lavaan [17]. Following the idea of a data-based covariance structure, as in the frac-
tional Bayes factor, the following unconstrained normal prior will be used for the target
parameters

π∗
u (θ) = N(0,ω�̂θ ), (16)

where ω controls the amount of prior information (a small/large value for ω implies an
informative/vague prior). To avoid the dependence of the (arbitrarily chosen) mean vector
0, we let ω go to ∞. Although extremely vague priors are not recommended when test-
ing hypotheses with equality constraints due to Lindley-Bartlett’s paradox ([23]; Bartlett,
1957), such priors can be used for testing order constrained hypotheses [6].

To illustrate that the prior probability that the constraints hold is invariant for linear
transformations, let us consider the following order constrained hypothesisH2 : θ1 > θ2 >

θ3 with restriction matrix

R2 =
[
1 −1 0
0 1 −1

]

for the repeated measures data yi = (yi1, yi2, yi3)T ∼ N(θ ,�y), where θ = (θ1, θ2, θ3)T is a
mean vector and �y is a covariance matrix. Now let us consider a data set where the three
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measurements are independent, e.g. �̂θ = I3, resulting in an unconstrained prior of the
form N(0,ωI3). In this case the prior probability, which reflects the relative complexity of
H2 relative to Hu, is equal to Pr(θ1 > θ2 > θ3|Hu) = 1

6 , for any choice of ω > 0.
Now we consider a one-to-one transformation of the data according to zi = (yi1 −

yi2, yi2 − yi3, yi3)T = Lyi, with

L =
⎡
⎣1 −1 0
0 1 −1
0 0 1

⎤
⎦ .

We shall write zi ∼ N(γ ,�z), where γ = Lθ = (θ1 − θ2, θ2 − θ3, θ3)T and �z = L�yLT.
Thus, the equivalent constrained hypothesis in the new parameterization corresponds to
H2 : γ1 > 0, γ2 > 0. Consequently, the estimated covariance matrix is now

�̂γ = L�̂θLT = LLT =
⎡
⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎦ .

This results in an unconstrained prior for the target parameters of (γ1, γ2)T ∼
N

(
0,ω

[ 2 −1
−1 2

])
. The prior probability now remains unchanged because Pr(γ1 > 0, γ2 >

0 |Hu) = 1
6 , for any choice of ω > 0.

Theorem 4.1 provides a general proof of this invariance of the prior probability that the
constraints of Hi hold with respect to the mean parameters in multivariate data.

Theorem 4.1: The complexity of Hi : Riθ > ri when using π∗
u (θ) is invariant for linear one-

to-one transformation of the multivariate data y ∼ N(θ ,�y).

Proof: For the multivariate data, the covariance matrix of θ is approximated by �̂θ =
SY/n, where SY = (Y − 1ȳT)T(Y − 1ȳT) with ȳ being the sample means of Y =
(y1, . . . , yn). Following (16) the prior distribution for θ is π∗

u (θ) = N(0, (ω/n)SY).
Consider a linear one-to-one transformation Ly = z ∼ N(γ ,�z), where L is a J × J

full rank matrix, and γ = Lθ and �z = L�yLT. After linear transformation, similarly, the
covariance matrix of γ is approximated by �̂γ = SZ/n, where SZ = (Z − 1z̄T)T(Z − 1z̄T)

with z̄ being the sample means of Z = (z1, . . . , zn). Note that SZ = L(Y − 1ȳT)T(Y −
1ȳT)LT = LSYLT which implies �̂γ = L�̂θLT, then the prior distribution for γ becomes
π∗
u (γ ) = N(0, (ω/n)LSYLT)

Let β1 = Riθ − ri and β∗ = RiL−1γ − ri with

π∗
u (β1) = N

(
0,

ω

n
RiSYRT

i

)
, (17)

and

π∗
u (β∗) = N

(
0,

ω

n
RiL−1SZ(RiL−1)T

)
= N

(
0,

ω

n
RiSYRT

i

)
(18)

then we have

P(Riθ > ri |π∗
u (θ)) = P(β1 > 0 |π∗

u (β1)) = P(β∗ > 0 |π∗
u (β∗))

= P(RiL−1γ > ri |π∗
u (γ )) (19)

which manifests that the complexity is invariant. �
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Therefore the prior distribution in (16) is used for Bayes factor computation between
order constrained hypotheses in SEM.Next, the posterior distribution is specified to obtain
the relative fit (12).

4.2. Normal approximations to posterior distributions

In order to compute Bayes factors for order constrained hypotheses in SEM models, the
asymptotic normality of the posterior distribution is used based on Laplace’s method [[24],
[25, pp. 101–107]]. As elaborated in the beginning of this section, the posterior distribution
only depends on the density of the data f (X | θ , ζ )when using the vague prior in (16) while
letting ω → ∞. Subsequently the posterior distribution can be approximated by:

πu(θ |X) ≈ N(θ̂ , �̂θ ), (20)

where θ̂ denotes the estimates of the target parameters, and �̂θ is their covariance matrix.
Both of them can be obtained in lavaan using estimation methods, such as least square
estimation and maximum likelihood estimation [17]. Furthermore, to obtain standard-
ized θ̂ and �̂θ lavaan provides approaches to standardize the observed variables and to
directly standardize the target parameters. The performance of these two approaches of
standardization was discussed in [14], which showed that the variances of standardized
parameters obtained using two approaches are different, whereas the resulting Bayes fac-
tors are similar. Now that the prior and posterior distributions have been specified, the
Bayes factor can be obtained using (10). In the following section an efficient algorithm
is described for the computation of the prior and posterior probability that the order
constraints hold under Hu, which are key ingredients of the computation of the Bayes
factor.

The normal approximation is widely used in hypothesis testing and model selection.
Examples include Akaike’s information criterion (AIC; [26]), Bayesian information crite-
rion (BIC; [27]), andWald’s test [28]. In a way, the Bayes factor based on the approximated
normal posterior (20) is similar as the BIC. The BIC is a large sample approximation of
the marginal likelihood, whereas the proposed Bayes factor is a large sample approxima-
tion of a specific expression of the Bayes factor for an order constrained hypothesis against
an unconstrained hypothesis. Both methods rely on a minimally informative prior and a
large sample approximation of the posterior. An important difference is however that the
proposed Bayes factor is suitable for evaluating hypotheses with order constraints while
the BIC is not. To achieve this the proposed Bayes factor also needs the estimated Fisher
information covariance matrix to approximate the posterior probability that the order
constraints hold.

5. An efficient algorithm for Bayes factor computation

As was elaborated in Section 3, the Bayes factor is a ratio of the posterior probability that
the order constraints ofHi hold underHu, denoted by the relative fit fi, and the prior prob-
ability that the order constraints of Hi hold under Hu, denoted by the relative complexity
ci. Because both the prior distribution π∗

u (θ) = N(0,ω�̂θ ) and the posterior distribution
πu(θ |X) ≈ N(θ̂ , �̂θ ) are normal distributions, for notational convenience each of them
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can be denoted by

p(θ) = N(μθ ,�θ ). (21)

Thus, the complexity and fit can be represented by the following probability

P(Hi) = P(Riθ > ri) =
∫
Riθ>ri

p(θ) dθ . (22)

This probability can be estimated by sampling from the prior or posterior distribution
using the Gibbs sampler [25].

Before presenting the core algorithm of the Gibbs sampler, we shall present two pre-
steps of the sampling procedure which can efficiently reduce the computing time. First,
the Bayes factor is decomposed in Section 5.1 such that less iterations of the Gibbs sam-
pler are needed to accurately estimate the complexity and fit. Second, the target parameters
are transformed in Section 5.2 such that in each iteration of the Gibbs sampler less time
is needed. Thereafter, Section 5.3 introduces the constrained Gibbs sampling procedure
based on the transformed parameters. After obtaining the samples of transformed param-
eters, decomposed complexities and fits can be estimated using two methods proposed in
Section 5.4. Furthermore, the sample size of the Gibbs sampler for accurate estimation of
the complexity and fit is discussed in Section 5.5. Section 5.6 summarizes the constrained
Gibbs sampling procedure by which we estimate the complexity and fit, and thus the Bayes
factor.

5.1. Decomposition of the Bayes factor

When hypothesis Hi is formulated using a relatively large number of order constraints,
accurately estimating the complexity and fit can be computationally intensive. For example,
Gu et al. [14] showed that the complexity of H1 : θ1 > · · · > θ10 under prior

π∗
u (θ) = N(0,ωI)

is c1 = 1/J! = 1/10!, that is, a very small value with the need ofmore than 20millionGibbs
sampler draws [5, p. 207] to ensure the deviation of the estimate is almost never over 10%.
Directly estimating this complexitymay not be feasible or extremely time-consuming. This
conclusion also applies to the estimation of the complexity underπ∗

u (θ) and the fit, because
the accuracy of the estimation only depends on the size of complexity or fit and the number
of Gibbs sampler draws. Consequently, when computing the Bayes factor for hypotheses
with relatively large K, a decomposition of the Bayes factor is needed [29]:

BFiu = BFi1,u × BFi2,i1 × · · · × BFiK ,iK−1 , (23)

where ik, k = 1, . . . ,K denotes a hypothesis using the constraints in the first k rows of Ri.
More specifically, BFik,ik−1 is defined by:

BFik,ik−1 = fik,ik−1

cik,ik−1

. (24)

Let Hik denote the hypothesis using constraints in the first k rows of Ri, then cik,ik−1 and
fik,ik−1 denote the probabilities of prior and posterior distributions in agreement with Hik
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conditional on Hik−1 , respectively. Then, the complexity and fit can be expressed by

ci =
K∏

k=1

cik,ik−1 and fi =
K∏

k=1

fik,ik−1 . (25)

Let

P(Hik |Hik−1) = P(Rikθ > rik |Ri1θ > ri1 , . . . ,Rik−1θ > rik−1) (26)

denote either cik,ik−1 or fik,ik−1 , then the probability (22) for ci and fi becomes

P(Hi) = P(Hi1) × P(Hi2 |Hi1) × · · · × P(HiK |HiK−1). (27)

Because each of the probabilities in (27) is larger than P(Hi) especially when K is large,
accurately estimating cik,ik−1 or fik,ik−1 requires much less draws from the Gibbs sampler
compared to directly estimating ci or fi. Although every probability in (27) needs to be
estimated, the total sample size for decomposed ci or fi is still less than that without
decomposition because the sample size for accurate estimation increases dramatically as
K increases. This will be illustrated in Section 5.5. Before introducing the method for the
computation of the probability (26), we transform the target parameters such that the order
constrained hypothesis has a simple form, which will be elaborated in the next section.

5.2. Transformation of target parameters

This section simplifies the form of the hypothesisHi using parameter transformation β =
Riθ − ri such that Hi : Riθ > ri becomes Hi : β > 0 and the decomposed complexity or
fit shown in (26) becomes

P(Hik |Hik−1) = P(βk | β1 > 0, . . . ,βk−1 > 0). (28)

This transformation was also used in [30]. It has three benefits in terms of the efficiency
of estimating the decomposed complexity and fit. First, the subset of vector β that needs
to be sampled has a length that is less than or equal to J (the length of θ). Take hypothesis
H1 : θ1 > θ2 > θ3 for example. The transformation (β1,β2)

T = (θ1 − θ2, θ2 − θ3)
T leads

to H1 : β1 > 0,β2 > 0. Therefore, we only need to sample β with a length of 2. Although
for another example H2 : θ1 > 0, θ2 > 0, θ1 > θ2 the length of β , where (β1,β2,β3)

T =
(θ1, θ2, θ1 − θ2)

T, is larger than the length of θ , only a subset (β1,β2)
T needs to be sampled

because β3 = β1 − β2. This issue will be further explained in the following paragraph.
Second, it is more straightforward to define the conditional probability in (28) than in (26),
because eachβ has a lower boundof 0 if it is constrained,whereas if θ is constrained, a lower
and upper bound has to be determined which will take much effort especially when K is
relatively large. It will be shown in Section 5.3 how the constrainedβ can be sampled. Third,
the conditional probability P(βk |β1 > 0, . . . ,βk−1 > 0) can analytically be determined,
which will be further discussed in Section 5.4.

Since θ has a multivariate normal distribution (21), after the linear transformation, β
also has amultivariate normal distribution p(β) = N(μβ ,�β), whereμβ = Riμθ − ri and
�β = Ri�θRT

i . It should be noted that if Ri is of full row rank, then the elements of β is
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linearly independent, otherwise the elements of β are not independent. Take, for example,
hypothesis

H3 :

θ1 > θ3
θ1 > θ4
θ2 > θ3
θ2 > θ4

with [R3 | r3] =

⎛
⎜⎜⎝

1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

0
0
0
0

⎞
⎟⎟⎠ . (29)

The matrix R3 has a rank of 3 and the transformation

β =

⎛
⎜⎜⎝

β1
β2
β3
β4

⎞
⎟⎟⎠ = R3θ − r3 =

⎛
⎜⎜⎝

θ1 − θ3
θ1 − θ4
θ2 − θ3
θ2 − θ4

⎞
⎟⎟⎠ (30)

implies that β4 = −β1 + β2 + β3. Without loss of generality, we suppose the rank of Ri is
M and let

β = (β̄ , β̃) = (β̄1, . . . , β̄M , β̃M+1, . . . , β̃K), (31)

where β̄ contains M independent elements of β , and β̃ is a linear combination of the
elements of β̄ . This implies that we only need to sample β̄ from its distribution. The dis-
tribution of β̄ is p(β̄) = N(μβ̄ ,�β̄ ) with μβ̄ = R̄iμθ − r̄i and �β̄ = R̄i�θ R̄

T
i , where R̄i is

a full row rank matrix that consists of M rows of Ri and r̄i is the corresponding constant
vector. Although R̄i may not be unique, any set of linearly independent M rows of Ri can
be chosen because the order of constraints does not affect the evaluation of the hypothesis.

The specification of R̄i, r̄i, and the linear combination of β̄ that renders β̃ can be
achieved using elementary row operations (Gaussian elimination) for the matrix Ri. The
procedure is implemented in R package Bain. Details are given as follows:

(1) Set an identity matrix C with a rank of max {K, J}. Initialize A = Ri,M=K and d =
(1, 2, . . . ,K) to record the swap of constraints in Ri.

(2) Repeat step (i), (ii) and (iii) for k = 1, . . . ,K.
(i) If Ak,k = 0 and Ak′,k 	= 0 where k′ > k, then swap the kth row with the k′th row

in A and C, and swap dk and dk′ in d.
(ii) If Ak,k 	= 0 after step (i), then let Ak,j = Ak,j/Ak,k and Ck,j = Ck,j/Ck,k for j =

1, . . . , J.
(iii) Let Ak′,j = Ak′,j − Ak,jAk′,k and Ck′,j = Ck′,j − Ck,jCk′,k for all k′ 	= k and j =

1, . . . , J.
(3) For k = 1, . . . ,K, if

∑J
j=1 |Ak,j| = 0 thenM=M−1.

(4) For k = 1, . . . ,K, if
∑J

j=1 |Ak,j| = 0 and
∑J

j=1 |Ak′,j| 	= 0 where k′ > k, then swap the
kth row with the k′th row in A and C, and swap dk and dk′ in d.

(5) Let Ri = (Ri,d1 , . . . ,Ri,dK )T and ri = (rd1 , . . . , rdK ), where Ri,dk denotes the dkth row
of Ri. Then let β = Riθ > ri in which β̄ corresponds to the firstM elements in β and
β̃ corresponds to the remaining part.
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After conducting this procedure, we obtain the rank of Ri, i.e. M, and [R̄i|r̄i] which
contains the firstM rows of [Ri|ri]. Furthermore, the dependence in β can be expressed by

CM+1,d1 · β1+ · · · + CM+1,dK · βK = rdM+1 ,

...

CK,d1 · β1+ · · · + CK,dK · βK = rdK . (32)

For example, for the hypothesis H3 shown in (29), executing the procedure above renders

[A |C] =

⎛
⎜⎜⎝

1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

→

⎛
⎜⎜⎝

1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

0 1 0 0
−1 1 1 0
−1 1 0 0
1 −1 −1 1

⎞
⎟⎟⎠ (33)

and d = (1, 3, 2, 4) which means the second and third rows have been swapped. Since
there are three non-zero rows in A after Gaussian elimination, the rank of Ri is M=3
and the first three rows of Ri are independent because they correspond to the non-zero
rows. Furthermore, according to (32) the last row ofC after Gaussian elimination indicates
β1 − β2 − β3 + β4 = 0, i.e. β4 = −β1 + β2 + β3.

After the transformation of target parameters, the probabilityP(βk | β1 > 0, . . . ,βk−1 >

0) from Equation (28) can be estimated using the constrained Gibbs sampler. This will be
discussed in the next section.

5.3. Constrained Gibbs sampler

The constrained Gibbs sampler is applied to estimate each decomposed complexity and fit.
The basic principle of theGibbs sampler is to sequentially generate a sample for eachβ con-
ditionally on the current values of all the others. As was elaborated before, only β̄ needs
to be sampled, and the sample of β̃ can be computed using the sample of β̄ . Since β̄ is
normally distributed, the conditional distribution of any parameter of β̄ given the remain-
ing parameters is also normal. In each iteration, β̄ t

k, where t denotes the iteration index
of the Gibbs sampler and k = 1, . . . ,M, can be sampled from the following conditional
distribution

p(β̄ t
k | β̄ t

l 	=k) = N

⎛
⎝μβ̄k

+
k−1∑
l=1

bkl(β̄ t
l − μβ̄l

) +
M∑

l=k+1

bkl(β̄ t−1
l − μβ̄l

), [(�−1
β̄

)kk]−1

⎞
⎠ ,

(34)
where μβ̄k

is the mean of β̄k in this full conditional distribution, bkl is the element at the
kth row and lth column in the matrix BM×M = I − [diag(�−1

β̄
)]−1�−1

β̄
with�β̄ being the

covariance matrix of β̄ and I being aM × M identity matrix, and (�−1
β̄

)kk is the element at
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the kth row and kth column in �−1
β̄

. The derivation of equation (34) can be found in [25,
p. 579].

The estimation of probability P(βk | β1 > 0, . . . ,βk−1 > 0) requires a sample of β̄ =
(β̄1, . . . , β̄M) from the prior or posterior distribution that is in agreement with the first k−1
constraints β1 > 0, . . . ,βk−1 > 0. Using the current value of β and the linear restriction if
Ri is not of full row rank, a lower bound L and a upper boundU of β̄ can be specified.More
specifically, if k ≤ M + 1 then (β̄1, . . . , β̄k) are sampled with a lower bound of L=0 and
no upper bound, and other βs are not constrained. If k>M+1, all β̄ have a lower bound
of L=0, and (β̃M+1 > 0, . . . , β̃k−1 > 0) will be used to define a further lower bound and
a upper bound of β̄ based on their dependence. Using inverse probability sampling [31], it
is straightforward to obtain a sample from truncated normal distribution (34) constrained
in (L,U) according to the following two steps.

(i) Randomly generate a number ν via a uniform distribution on the interval [0,1].
(ii) Compute β̄k = −1

β̄k
[β̄k

(L) + ν(β̄k
(U) − β̄k

(L))], where β̄k
is the cumulative

distribution function of (34) and−1
β̄k

is the inverse cumulative distribution function.

Running the Gibbs sampler for t = 1, . . . ,T iterations renders a sample of each com-
ponent of β̄ = (β̄1, . . . , β̄M). As elaborated in Section 5.2, β̃ is linearly dependent on β̄ .
Thus, we can also obtain a sample of β̃ using the sample of β̄ and Equation (32).

The choice of burn-in period and the check of convergence are important steps in the
Gibbs sampler. In our method, however, we specify the prior distribution and approximate
the posterior distribution with a multivariate normal distribution. Therefore, convergence
is not an issue because the sample from multivariate normal distribution converges very
fast even if the initial value is far away from the prior or posterior mode. This is explicitly
illustrated in [14], which applies the constrained Gibbs sampler to multivariate normal
distributions as well. In addition, Gu et al. [14] also shows that within a burn-in period of
100 iterations the effect of the initial values is eliminated and the sample converges to the
desired distribution. Thus, we discard the first 100 iterations as a burn-in phase of theGibbs
sampler. In the next section, two methods for estimating the decomposed complexity and
fit are presented based on the samples of β obtained in this section.

5.4. Twomethods for estimating complexity and fit

In this section, we propose two approaches to estimate the probability (28) after obtaining
the samples of β of size T from either prior or posterior distribution. A straightforward
manner is counting the number of samples in agreement with βk > 0:

P(βk > 0 | β1 > 0, . . . ,βk−1 > 0) = T−1
T∑
t=1

I(β t
k > 0 |β t

1 > 0, . . . ,β t
k−1 > 0), (35)

where I(·) denotes the indicator functionwhich is 1 if the argument is true and 0 otherwise.
Particularly for estimating this probability with respect to the firstM decomposed con-

straints β̄ > 0, we adopt a more efficient approach inspired by Gelfand and Smith [31] and
used in [30,32]. The principle of this method is that the density of the univariate βk can
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be approximated by the average of its full conditional density constructed using the cur-
rent sample of all the other βs. This implies the probability P(βk > 0) given the density of
βk can be approximated by the average of P(βk > 0) given the conditional density based
on different samples. Consequently, using the constrained samples for β1, . . . ,βk−1 in the
conditional density, we obtain

P(βk > 0 |β1 > 0, . . . ,βk−1 > 0)

= T−1
T∑
t=1

P(βk > 0 |β t
1 > 0, . . . ,β t

k−1 > 0,β t
k+1, . . . ,β

t
K). (36)

This probability can easily be computed because the conditional distribution (34) of βk is
a univariate normal distribution that is easily integrated for βk > 0.

It should be emphasised that this method is not applicable for estimating decom-
posed complexities or fits for which k>M, because β̃k for k>M is a linear combina-
tion of β̄1, . . . , β̄M , which means β̃k is a point given β̄1, . . . , β̄M . Therefore in this case
Equation (35) will be used. Despite of this limitation, the new method (36) is still attrac-
tive because it increases the accuracy of the estimation for a give sample size of the Gibbs
sampler. This will be elaborated in the next paragraph. This implies that fewer iterations
of the Gibbs sampler are needed to obtain an acceptable accuracy. Consequently, for esti-
mating the decomposed complexities and fits in our programme, the new method (36) is
used when k ≤ M, whereas the approach shown in (35) is used when k>M.

To investigate the performance of the two methods, we shall consider a series
of hypotheses H1 : θ1 > . . . > θJ for J = 3, . . . , 5 and estimate the complexities under
π∗
u (θ) = N(0,ω�̂θ ), where 0 is a zero vector with a length of J, �̂θ = I is a J × J iden-

tity matrix, and ω → ∞. The true value of c1 with respect to prior π∗
u (θ) in these

hypotheses is known as cTrue1 = 1/J!. We estimate the complexities of H1 1000 times
using each method when the sample size of the Gibbs sampler is T=50, 500, and 5000.
This results in c(s)11 and c(s)12 based on methods (35) and (36), respectively, where s =
1, . . . , 1000. Thereafter, we compute the mean squared relative error (MSRE), MSRE1 =
1

1000
∑1000

s=1 ((cTrue1 − c(s)11 )/c
True
1 )2 andMSRE2 = 1

1000
∑1000

s=1 ((cTrue1 − c(s)12 )/c
True
1 )2, to mea-

sure the accuracy of the estimation using methods (35) and (36), respectively.
Table 1 displays the MSREs of the estimate for c1. As can be seen in Table 1, the MSREs

from method (36) MSRE2 are much smaller than that from method (35) MSRE1. This
implies thatmethod (36) needs a smaller sample size of theGibbs sampler to attain the same
accuracy. Furthermore, it can be seen that the MSREs decreases as sample size increases,
and small complexity ci = 8.33E − 3 needs more sample size than large complexity ci =
0.166 to obtain the same magnitude of MSREs. This implies we can determine sample size

Table 1. MSRE of estimate using two methods.

True ci = 0.166 (J= 3) ci = 4.17E − 2 (J= 4) ci = 8.33E − 3 (J= 5)

MSRE1 MSRE2 MSRE1 MSRE2 MSRE1 MSRE2

T = 50 7.76E−2 8.37E−3 0.140 3.36E−2 0.272 9.64E−2
T = 500 9.25E−3 7.62E−4 1.61E−2 3.34E−3 2.44E−2 8.96E−3
T = 5000 5.28E−4 7.78E−5 1.49E−3 3.38E−4 2.46E−3 9.15E−4
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T for both methods (35) and (36) based on the acceptable estimation accuracy and the size
of the probability under estimation. This will be discussed in the next section.

5.5. Sample size determination for the Gibbs sampler

This section discusses the sample sizeT of the Gibbs sampler needed to accurately estimate
P(βk > 0 |β1 > 0, . . . ,βk−1 > 0), which has a true value PTrue. As stated earlier, this prob-
ability is estimated usingmethod (35) if k>M, andmethod (36) if k ≤ M. Formethod (35),
Hoijtink [5] proposes a rule to determine the sample size T1 needed to accurately estimate
the complexity or fit, which is shown in the top panel of Table 2. The criterion is that the
95% central credibility interval for the estimate has lower and upper bounds that are less
than 10% different from the true value. The first row in Table 2 displays the true probabili-
ties PTrue that needs to be estimated. In addition, L-95% and U-95% demonstrate the lower
and upper bounds of the 95% central credibility interval when using the corresponding T1
above.

For method (36), we present a new rule to determine the sample size T2 based on a
more strict accuracy criterion, that is, the differences between both L-95% and U-95%,
and PTrue are less than 5%. We let N(μβk , σ

2
βk

) denote the distribution of βk in P(βk|β1 >

0, . . . ,βk−1 > 0), where μβk is the mean and σ 2
βk

is the variance. Then Equation (36)
becomes

P(βk |β1 > 0, . . . ,βk−1 > 0) = P(βk > 0 |βk ∼ N(μβk , σ
2
βk

))

= P(βk > 0 |βk ∼ N(λ̂k, 1)), (37)

where λ̂k = μβk/σβk is the standardized population mean of βk. The principle of the sam-
ple size determination formethod (36) is based on two facts. First, in the Gibbs sampler, we
obtain T2 samples of βk from N(μβk , σ

2
βk

) or standardized βk from N(λ̂k, 1). This implies
that the distribution of the standardized sample mean of βk, denoted by λk, isN(λ̂k, 1/T2).
Second, the probabilityP(βk |β1 > 0, . . . ,βk−1 > 0) is a one-to-one correspondence func-
tion of λ̂k. For example, if λ̂k = 0, we obtain a probability of 1/2, and conversely if the true
value of the probability is 1/6, we would expect a λ̂k of−0.97. These enable us to determine
the sample size T2 needed to accurately estimate P(βk > 0 |β1 > 0, . . . ,βk−1 > 0) given a
true value PTrue using the following steps.

(1) Compute λ̂k such that P(βk > 0 |βk ∼ N(λ̂k, 1)) = PTrue, and initialize T2 = 1000.
(2) Sample λk 10,000 times fromN(λ̂k, 1/T2), and then obtain 10,000 estimates of P(βk >

0 | βk ∼ N(λ̂k, 1)).

Table 2. Gibbs sample size determination.

PTrue 0.166 4.17E−2 8.33E−3 1.39E−3 1.98E−4 2.48E−5

T1 3,000 9,600 120,000 360,000 2,520,000 20,160,000
L-95% 0.154 3.8E−2 7.8E−3 1.27E−3 1.82E−4 2.3E−5
U-95% 0.180 4.6E−2 8.9E−3 1.52E−3 2.17E−4 2.7E−5

T2 4,000 8,000 12,000 18,000 25,000 32,000
L-95% 0.159 3.97E−2 7.93E−3 1.32E−3 1.89E−4 2.37E−5
U-95% 0.175 4.36E−2 8.74E−3 1.46E−3 2.08E−4 2.60E−5
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(3) Using 10,000 estimates of P(βk > 0 |βk ∼ N(λ̂k, 1)), compute their 95% central cred-
ibility interval (L,U).

(4) If either |L − PTrue|/PTrue > 5% or |U − PTrue|/PTrue > 5%, then T2 = T2 + 1000
and go to Step 2.

The bottom panel of Table 2 displays the sample size T2 and the resulting L-95% and
U-95% from the procedure above given corresponding PTrue.

In Bain, Table 2 is adopted to determine the sample size T1 and T2 of the Gibbs sam-
pler for estimating each decomposed complexity and fit based on methods (35) and (36).
Because T1 or T2 is large enough to accurately estimate the corresponding PTrue in the first
row of Table 2, it will also be sufficient to estimate a probability that is larger than this PTrue.
We estimate P(βk |β1 > 0, . . . ,βk−1 > 0) with a starting sample size T1 = 3000 if k > M
or T2 = 4000 if k ≤ M, and gradually reset T1 or T2 based on Table 2 until the estimate of
the complexity or fit is larger than the corresponding PTrue. Note that if the estimate is still
less than 2.48E-5 when using the corresponding T1 or T2, we specify T1 = 100, 000, 000 or
T2 = 100, 000.

5.6. Summary of the computation of the Bayes factor

This section summarizes the computation of the Bayes factor forHi againstHu, which is a
ratio of the fit and complexity. The following steps describe how our programme computes
the complexity and fit, and therefore the Bayes factor.

1. Transform θ into β using the procedure shown in Section 5.2. Then, we obtain (β̄ , β̃)

andM the rank of Ri.
2. Repeat Step (1), . . . , (6) for k = 1, . . . ,K to estimate each P(βk > 0 |β1 > 0, . . . ,βk−1

> 0) for the decomposed complexity cik,ik−1 and fit fik,ik−1 .
1 Initialize the sample size of the Gibbs sampler as T2 = 4000 if k ≤ M and T1 =

3000 if k>M, and initialize β = 0.
2 Repeat Step (a) or (b) for t = 1, . . . ,T2 + 100 iterations if k ≤ M or for t =

1, . . . ,T1 + 100 iterations if k>M, where 100 denotes the first 100 iterations, that
is, a burn-in phase of the Gibbs sampler.
a If k ≤ M + 1, then define a boundary (L,U) = (0,∞) for β̄1, . . . , β̄k−1 and

no boundary for β̄k, . . . , β̄K . Thereafter, sequentially generate a sample of β̄
t

from the truncated distribution of (34) as previously described in Step (i)
and (ii) in Section 5.3.

b If k > M + 1, then define a boundary (L,U) for β̄1, . . . , β̄M using the linear
relation between the β̄ > 0 and β̃ > 0. Thereafter, sequentially generate a
sample of β̄

t
from the truncated distribution of (34) as previously described

in Step (i) and (ii) in Section 5.3. Then a sample of β̃
t
is obtained by means

of its linear dependence on β̄
t
.

3 Discard all the iterations for which t ≤ 100 to account the burn-in period as
discussed in Section 5.3.

4 If k ≤ M, compute the probability P(βk > 0 |β1 > 0, . . . ,βk−1 > 0) = T−1
2∑T2+100

t=101 P(βk > 0 |βk ∼ N(μt
βk
, (σ 2

βk
)t)) using method (36) in Section 5.4.
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5 If k>M, compute the probability P(βk > 0 |β1 > 0, . . . ,βk−1 > 0) = T−1
1∑T1+100

t=101 I(β t
k > 0 |β t

1 > 0, . . . ,β t
k−1 > 0) using method (35) in Section 5.4.

6 If P(βk |β1 > 0, . . . ,βk−1 > 0) obtained in Step (4) or (5) is less than the refer-
ence value that corresponds to the current T2 or T1 in Table 2, respectively, then
reset T2 or T1 using the value of the next column in the table and restart the
procedure from Step (2). If not, the estimation of P(βk |β1 > 0, . . . ,βk−1 > 0) is
completed, which renders the decomposed complexity cik,ik−1 or fit fik,ik−1 . This
was elaborated in Section 5.5.

3. The complexity and fit can be computed by ci = ∏K
k=1 cik,ik−1 and fi = ∏K

k=1 fik,ik−1
shown in Section 5.1. Then, the Bayes factor for Hi against Hu is BFiu = fi/ci.

6. Empirical applications in SEM

In this section, our procedure of evaluating order constrained hypotheses will be illustrated
using two classic SEM applications. One example concerns confirmatory factor analysis
(CFA), and the other example concerns multiple regression model.

6.1. Confirmatory factor analysis

In the first example, we reanalyze a dataset built into lavaan called HolzingerSwine-
ford1939 [17]. This dataset is taken from the Holzinger and Swineford 1939 (H&S) study,
which is a commonly used example in factor analysis. The raw dataset consists of scores of
301 seventh and eighth grade students from the Pasteur School (n=145) andGrant-White
School (n=156) who participated in 26 psychological aptitude tests. In our example, only
a subset with 9 variables of the complete data is extracted to measure 3 correlated latent
variables, each with three indicators, i.e.

• a visual factor (ξ1) is measured by visual perception (x1), cubes (x2) and lozenges (x3).
• a textual factor (ξ2) ismeasured by paragraph comprehension (x4), sentence completion

(x5) and word meaning (x6).
• a speed factor (ξ3) ismeasured by addition (x7), counting of dots (x8) anddiscrimination

of straight and curved capitals (x9).

The descriptives for the observed variables are given in Table 3, whereas the relations
between latent variables and their indicators are formulated in the next paragraph and
expressed using path notation (without showing measurement errors) in Figure 1.

The confirmatory factor analysis model for the H&S data can be represented as:

x = �xξ + εx, (38)

where x = (x1, . . . , x9)T denotes observed variables, ξ = (ξ1, ξ2, ξ3)T denotes latent vari-
ables,

�T
x =

⎛
⎝θ1 θ2 θ3 0 0 0 0 0 0
0 0 0 θ4 θ5 θ6 0 0 0
0 0 0 0 0 0 θ7 θ8 θ9

⎞
⎠ (39)
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Table 3. Descriptives for the variables in the con-
firmatory factor analysis.

Variable Mean S.D.

visual perception x1 4.94 1.17
cubes x2 6.09 1.18
lozenges x3 2.25 1.13
paragraph x4 3.06 1.16
sentence x5 4.34 1.29
word mean x6 2.19 1.10
addition x7 4.19 1.09
dots x8 5.53 1.01
straight curved x9 5.37 1.01

Figure 1. Confirmatory factor analysis.

is a matrix of factor loadings, and εx is a 3 × 1 vector of measurement errors with εx ∼
N(0,�εx) and�εx being its covariancematrix. The covariancematrix of observed variables
is given by:

�x = �x�ξ�
T
x + �εx , (40)

where the factor covariance matrix �ξ is a symmetric matrix:

�ξ =
⎛
⎝φ11 φ12 φ13

φ12 φ22 φ23
φ13 φ23 φ33

⎞
⎠ . (41)

Because the confirmatory factor analysis model is a measurement model without a struc-
tural model, we can simply specify this model usinglavaan syntax inR (see Appendix 1).
To ensure that the target parameters are comparable, we standardize them all. As is elab-
orated in Appendix 1, lavaan provides both the standardized estimates and covariance
matrix of target parameters. Recall that this is all the information that Bain needs to com-
pute Bayes factors. Furthermore, in factor analysis models, indicators are required to both
identify themodel and set ametric for latent variables. This can be typically achieved either
by standardizing the variances of latent variables or by constraining one factor loading per
latent variable to 1. In this example, the former way is chose.

Factor loadings indicate the degree of correspondence between the factor and the
indicator, with higher loadings making the indicator more representative of the factor.
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Researchers might be interested in the issue which indicator plays the most important role
in defining a factor. For instance, the first indicator of every factor may be expected to be
strongest, which can be represented by the following hypothesis

H1 :
θ1 > {θ2, θ3}
θ4 > {θ5, θ6}
θ7 > {θ8, θ9}

. (42)

We can also test a hypothesis with respect to the structure of the correlations between the
latent variables. For example, we can evaluate whether the correlation between visual and
textual is larger than the correlation either between visual and speed or between textual
and speed:

H2 : φ12 > {φ13,φ23}. (43)

Using R package Bain (the user manual of Bain can be found in Appendix 2) to compute
Bayes factors for H1 against Hu or H1c renders BF1u = 0.076 or BF11c = 0.073. For H2
against Hu or H2c , Bain renders BF2u = 1.33 or BF22c = 1.59. These results imply that
hypothesis H1 is not supported by the data, and the evidence from the data for H2 is not
convincing because BF2u or BF22c is quite close to 1.

6.2. Multiple regressionwith latent variables

In a study reported by Warren et al. [33] (data available at https://informative-
hypotheses.sites.uu.nl/software/bain), a sample of 98managers of farmer cooperatives was
selected with the objective of studying managerial behaviour. They postulated that a latent
variable manager performance (η) was predicted by three correlated latent variables, i.e.
knowledge (ξ1), orientation (ξ2) and satisfaction (ξ3), and an observed variable training
(x4). The latent variables η, ξ1, ξ2, and ξ3 were measured based on qualitative and quan-
titative answers to identical questionnaires collected from a random sample of managers
in farmer cooperatives. These variables are assumed to be measured with error, and the
errors ofmeasurementwere computed using the split halves procedure [33] for all variables
subject to measurement error:

• η is measured by y1 and y2,
• ξ1 is measured by x11 and x12,
• ξ2 is measured by x21 and x22,
• ξ3 is measured by x31 and x32.

The observed variables are described in Table 4 and the graphical specification of this
structural equation model is found in Figure 2.

As can be seen from Figure 2, the relations of the variables can be represented by a
multiple regression model with η, ξ1, ξ2, and ξ3 that are latent. The measurement model is
given by

y = �yη + εy

x = �xξ + εx, (44)



1546 X. GU ET AL.

Table 4. Descriptives for the vari-
ables in the multiple regression
model.

Variable Mean S.D.

y1 1.06 0.16
y2 1.05 0.15
x11 1.43 0.30
x12 1.33 0.24
x21 2.84 0.43
x22 2.91 0.38
x31 2.54 0.34
x32 2.47 0.32
x4 2.12 0.31

Figure 2. Multiple regression with latent variables.

where x = (x11, x12, x21, x22, x31, x32)T denotes observed variables, and η and ξ =
(ξ1, ξ2, ξ3)T are latent variables. For the structural model, we have

η = θ0 + θ1ξ1 + θ2ξ2 + θ3ξ3 + θ4x4 + δ, (45)

where θ0 is the intercept, θ1, θ2, θ3, and θ4 are regression coefficients, and δ ∼ N(0, σ 2)

is the residual. This regression model is analyzed in lavaan (see Appendix 1). We stan-
dardize the coefficients to make them comparable. Using the standardized estimates and
covariance matrix of these coefficients from lavaan, Bain can compute Bayes factors.

The hypothesis we evaluated is based on the results obtained by Warren et al. [33]
It states that knowledge is the strongest predictor followed by orientation, training and
satisfaction. The resulting hypothesis is

H3 : θ1 > θ2 > θ4 > θ3. (46)

This hypothesis can be compared to, for example, knowledge is stronger than orientation
followed by satisfaction and training:

H4 : θ1 > θ2 > θ3 > θ4, (47)
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Table 5. Bayes factors and
PMPs of H3, H4 and H5.

BFic PMPs

H3 11.90 0.785
H4 2.676 0.214
H5 0.010 0.001

and training is stronger than satisfaction followed by orientation and knowledge:

H5 : θ4 > θ3 > θ2 > θ1. (48)

The results of the evaluation of these three hypotheses using Bain are displayed in Table 5
(the user manual of Bain can be found in Appendix 2). As can be seen, there is evidence
in favour of H3, no convincing evidence for H4, and evidence against H5. Furthermore, it
can be seen from the PMPs introduced in (15) that H3 receives the largest support from
the data.

7. Discussion

Order constrained hypotheses provide a representation of a researcher’s theorywith respect
to the relations between the parameters of interest in SEM models. We developed a Bayes
factor that can evaluate these hypotheses in a direct manner. A very vague prior was pro-
posed that incorporates the covariance structure of the target parameters in the data. A
proof was given that the prior probability that the order constraints hold, a key ingredi-
ent of the Bayes factor when testing order constrained hypotheses, was invariant for linear
transformations of the data.

The multivariate normal prior that is used to compute the prior probability can be
applied to order constrained testing problems where parameters have symmetric prior dis-
tributions such as regression coefficients, group means, and factor loadings. Even in the
case of non-symmetric prior distributions, the procedure will be accurate in most cases.
For example, when testing a specific ordering of J variances using identical inverse gamma
priors, the prior probability of this specific ordering will be equal to 1/J! which is identical
to when computing the probability using independent normal priors. The method could
break down in asymmetric cases where the boundary value does not lie in the middle of a
parameter space. For instance when testing 0 ≤ θ < .2 versus .2 ≤ θ ≤ 1, where θ is the
probability of a success in a binomial experiment, and a uniform prior is specified on θ , the
prior probabilities of θ falling in these two intervals could be different than when comput-
ing the probability using a normal distribution on θ . Extending the methodology for such
asymmetric testing problems would be an interesting topic to explore for future research.

Furthermore, a new algorithm was developed to ensure fast computation to ensure
general utilization of the methodology by applied researchers. The methodology was
implemented in the R packageBainwhich only needs the estimates and covariancematrix
of target parameters (which can be obtained from the free R-package lavaan), and one
or more restriction matrices representing a researcher’s expectations. The output from
Bain consists of Bayes factors and posterior probabilities for the hypotheses. These can
be used which provide a direct answer about the relative evidence in the data between the
hypotheses under investigation.
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Appendices

Appendix 1. Estimates and covariancematrix obtained using lavaan

Bain uses the estimates and covariancematrix of target parameters to compute Bayes factors. These
can be obtained from the R package lavaan [17]. This appendix illustrates how to obtain the
estimates and covariance matrix of target parameters using the two examples discussed in Section 6.

First of all, researchers need to install the version 0.5-18 or higher version of lavaan by start-
ing R and typing install.packages(‘‘lavaan’’). Note that R should be upgraded to
R.3.5.0 or a higher version. The user manual of the latest version of lavaan can be found at
https://CRAN.R-project.org/package=lavaan.

The following R syntax renders the estimates and covariancematrix for the CFAmodel presented
in Section 6.1.

# Load lavaan package.
library(lavaan)

# Specify the CFA model.
CFA.model <- ’visual =˜ x1 + x2 + x3

textual =˜ x4 + x5 + x6
speed =˜ x7 + x8 + x9’

fit<-cfa(CFA.model,data=HolzingerSwineford1939,std.lv = TRUE)

# Obtain standardized estimates of parameters
standardizedSolution(fit)

# Obtain standardized covariance matrix of parameters.
Sigma <- lavInspect(fit, "vcov.std.all")
Sigma[1:9,1:9] # For target parameters in (42)
Sigma[19:21,19:21] # For target parameters in (43)
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The output of standardizedSolution(fit, ci = FALSE) for the CFA model is
lhs op rhs est.std se z pvalue

1 visual =˜ x1 0.772 0.055 14.041 0
2 visual =˜ x2 0.424 0.060 7.105 0
3 visual =˜ x3 0.581 0.055 10.539 0
4 textual =˜ x4 0.852 0.023 37.776 0
5 textual =˜ x5 0.855 0.022 38.273 0
6 textual =˜ x6 0.838 0.023 35.881 0
7 speed =˜ x7 0.570 0.053 10.714 0
8 speed =˜ x8 0.723 0.051 14.309 0
9 speed =˜ x9 0.665 0.051 13.015 0
...
22 visual ˜˜ textual 0.459 0.064 7.189 0
23 visual ˜˜ speed 0.471 0.073 6.461 0
24 textual ˜˜ speed 0.283 0.069 4.117 0

Note that the label visual = ˜ x1 denotes the factor loading θ1 relating x1 to ξ1 and the
label visual ˜˜ textual denotes the covariance φ12 between ξ1 and ξ2. We only show the
results for nine factor loadings used in (42) and three covariances used in (43). The standardized
estimates of the target parameters are given in the column under est.std. For example, the esti-
mate of θ4 is 0.852 in the row of textual =˜ x4 , and the estimate of φ23 is 0.283 in the row of
textual ˜˜ speed .

The output of Sigma contains the standardized covariance matrix of the target parameters. We
only show the covariance matrix Sigma[19:21,19:21] of φ12, φ13, and φ23:

visual˜˜textual visual˜˜speed textual˜˜speed
visual˜˜textual 0.0040678110 0.0007276616 0.001156340
visual˜˜ speed 0.0007276616 0.0053037342 0.001480068
textual˜˜ speed 0.0011563398 0.0014800678 0.004723718

The following R syntax renders the estimates and covariance matrix for the regression model in
Section 6.2.

# Load lavaan package.
library(lavaan)

# Set R working director where the data is saved.
setwd("C:/Example2")

# Read data "performance.csv".
performance<-read.csv("performance.csv")

# Specify the regression model.
perform.model<-’

# measurement model
kno =˜ x11 + x12
ori =˜ x21 + x22
sat =˜ x31 + x32
per =˜ y1 + y2

# regressions
per ˜ kno + ori + sat + tra’

fit<-sem(perform.model,data=performance,std.lv = TRUE)

# Obtain standardized estimates and covariance matrix
standardizedSolution(fit)
Sigma <- lavInspect(fit, "vcov.std.all")
Sigma[9:12,9:12] # For target parameters in (46), (47), (48)
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The output of standardizedSolution(fit, ci = FALSE) for the regression
model is

lhs op rhs est.std se z pvalue
...
9 per ˜ kno 0.478 0.161 2.960 0.003
10 per ˜ ori 0.336 0.165 2.030 0.042
11 per ˜ sat 0.151 0.105 1.440 0.150
12 per ˜ tra 0.286 0.084 3.403 0.001
...

Note that the label per ˜ kno denotes the coefficient θ1 which relates η to ξ1 in the regression
model (45). We only show the results for the four regression coefficients used in (46), (47), and (48).
The standardized estimates of the target parameters are given in the column under est.std. For
example, the estimate of θ1 is 0.478 in the row of per ˜ kno, and the estimate of θ4 is 0.286 in the
row of per ˜ tra.

The output of Sigma[9:12,9:12] renders the standardized covariance matrix of θ1, . . . , θ4:
per˜kno per˜ori per˜sat per˜tra

per˜kno 0.026034895 -0.0223249106 -0.0050273595 -0.0011610045
per˜ori -0.022324911 0.0273346337 0.0043904540 -0.0007619234
per˜sat -0.005027359 0.0043904540 0.0110250662 -0.0002713825
per˜tra -0.001161004 -0.0007619234 -0.0002713825 0.0070519650

The standardized estimates and covariance matrix of target parameters obtained in lavaan can
be used as input for Bain. This will be shown in the user manual in Appendix 2.

Appendix 2. User manual of Bain

Bain is an R package developed for the evaluation of order constrained hypotheses using the
algorithmpresented in the paper. It can be downloaded at https://informative-hypotheses.sites.uu.nl/
software/bain/. Windows, Mac, and Linux versions are offered, respectively, by downloaded files
Bain_xxx.zip, Bain_xxx.tgz, and Bain_xxx.tar.gz, where xxx denotes package
version. After downloading the package, for example, windows users can install Bain in R by
install.packages("···/Bain_xxx.zip”, repos = NULL)
This appendix provides a brief user manual of Bain. The detailed manual can be found on the
website. The core function of Bain package is
Bain(estimate, Sigma, grouppara = 0, jointpara = 0, n,
ERr = NULL, IRr = NULL,..., seed = 100, print = TRUE).
The input arguments contain the estimates and covariance matrix of target parameter, number of
target parameters, sample size, and the restriction matrix for each hypothesis under consideration.
The output ofBain are the Bayes factor and PMP for each hypothesis.Wewill use the example from
Section 6.2 to illustrate the use of Bain.

The estimates and covariance matrix of target parameters can be obtained using R package
lavaan as shown in Appendix 1. For example, from the output of lavaan for the regression
model, we observe in R syntax:

# estimates
estimate<-c(0.478, 0.336, 0.151, 0.286)

# Covariance matrix
Sigma<-matrix(c(0.026, -0.022, -0.005, -0.001,

-0.022, 0.027, 0.004, -0.001,
-0.005, 0.004, 0.011, -0.000,
-0.001, -0.001, -0.000, 0.007), nrow = 4)
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In addition, the sample size is n = 98, and the number of target parameters is
jointpara = 4. Argument grouppara indicates the number of group specific parameters,
which is zero because in the regression model there is no group specific parameter. Further-
more, argument IRr specifies order constrained hypotheses, while argument ERr for equal-
ity constraints will not be used since this paper only deals with order constrained hypotheses.
The paragraph below demonstrates how IRr can be constructed to represent order constrained
hypotheses.

As was shown in Section 2.2, an order constrained hypothesis Hi can be formulated by Riθ >

ri. Each constraint Rikθ > rik for k = 1, . . . ,K in the hypothesis can be written as Rik1θ1 + . . . +
RikJθJ > rik, where K and J are numbers of constraints and parameters inHi, respectively. Note that
every parameter should be moved to the left hand side of the inequality sign ‘> ’, and the constant
should be moved to the right hand. In the restriction matrix IRr, the constraint Rikθ > rik can be
expressed by the line

Rik1 Rik2 . . . RikJ rik.

For example,

• θ1 + θ2 + θ3 > 0 corresponds to
1 1 1 0

• θ1 − 2θ2 + 3θ3 > 0.5 corresponds to
1 -2 3 0.5

• θ1 − 2 > θ2 − θ3 corresponds to
1 -1 1 2

• θ1 > θ2 > θ3 corresponds to
1 -1 0 0
0 1 -1 0

• θ1 − θ2 > θ3 − θ4 > θ5 − θ6 corresponds to
1 -1 -1 1 0 0 0
0 0 1 -1 -1 1 0

Thus, in the regression model in Section 6.2, three competing order constrained hypotheses H3 :
θ1 > θ2 > θ4 > θ1, H4 : θ1 > θ2 > θ3 > θ4, and H5 : θ4 > θ3 > θ2 > θ1 can be represented in R
script, respectively, by

# order constrained hypotheses
IRr1<-matrix(c(1, -1, 0, 0, 0,

0, 1, 0, -1, 0,
0, 0, -1, 1, 0), nrow = 3, byrow = TRUE)

IRr2<-matrix(c(1, -1, 0, 0, 0,
0, 1, -1, 0, 0,
0, 0, 1, -1, 0), nrow = 3, byrow = TRUE)

IRr3<-matrix(c(-1, 1, 0, 0, 0,
0, -1, 1, 0, 0,
0, 0, -1, 1, 0), nrow = 3, byrow = TRUE)

# no equality constrained hypotheses
ERr1<-ERr2<-ERr3<-NULL

Once the estimates and covariancematrix of parameters, number of parameters, sample size, and
order constrained hypotheses are specified, running the following line in R renders test results for
the example of regression model:
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res<-Bain(estimate, Sigma, grouppara = 0, jointpara = 4, n = 98,
ERr1, IRr1, ERr2, IRr2, ERr3, IRr3)

The output of Bain function is stored in a list which consists of $testResult and
$BFmatrix. The $testResult reports fits, complexities, Bayes factors and PMPs of each
hypothesis under consideration. The $BFmatrix reports Bayes factor matrix for competing
hypotheses from which users can easily obtain Bayes factor BFii′ for one hypothesis against another.
Take again the regression model for example, the output are

round(res$testResult,3)
fit complexity BF PMPa PMPb

H1 0.217 0.023 11.902 0.786 0.726
H2 0.049 0.019 2.676 0.214 0.197
H3 0.000 0.019 0.010 0.001 0.001

round(res$BFmatrix,3)
H1 H2 H3

H1 1.000 3.677 914.137
H2 0.272 1.000 248.614
H3 0.001 0.004 1.000

Note that in the first table BF displays Bayes factors of order constrained hypotheses against their
complements. In addition,PMPa lists PMPs excluding the unconstrained hypothesis, whereasPMPb
includes. In the second table, we can observe for example the Bayes factor forH1 againstH2 isBF12 =
3.677, and the Bayes factor for H2 against H1 is BF21 = 0.272.


	1. Introduction
	2. Order constrained structural equation models
	2.1. Structural equation models
	2.2. Order constrained hypotheses

	3. Bayes factor
	4. Prior and posterior distributions
	4.1. Prior specification
	4.2. Normal approximations to posterior distributions

	5. An efficient algorithm for Bayes factor computation
	5.1. Decomposition of the Bayes factor
	5.2. Transformation of target parameters
	5.3. Constrained Gibbs sampler
	5.4. Two methods for estimating complexity and fit
	5.5. Sample size determination for the Gibbs sampler
	5.6. Summary of the computation of the Bayes factor

	6. Empirical applications in SEM
	6.1. Confirmatory factor analysis
	6.2. Multiple regression with latent variables

	7. Discussion
	Disclosure statement
	Funding
	References

