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Abstract
Marginal tests based on individual SNPs are routinely used in genetic association

studies. Studies have shown that haplotype-based methods may provide more power

in disease mapping than methods based on single markers when, for example, multiple

disease-susceptibility variants occur within the same gene. A limitation of haplotype-

based methods is that the number of parameters increases exponentially with the num-

ber of SNPs, inducing a commensurate increase in the degrees of freedom and weak-

ening the power to detect associations. To address this limitation, we introduce a hier-

archical linkage disequilibrium model for disease mapping, based on a reparametriza-

tion of the multinomial haplotype distribution, where every parameter corresponds to

the cumulant of each possible subset of a set of loci. This hierarchy present in the

parameters enables us to employ flexible testing strategies over a range of parameter

sets: from standard single SNP analyses through the full haplotype distribution tests,

reducing degrees of freedom and increasing the power to detect associations. We show

via extensive simulations that our approach maintains the type I error at nominal level

and has increased power under many realistic scenarios, as compared to single SNP

and standard haplotype-based studies. To evaluate the performance of our proposed

methodology in real data, we analyze genome-wide data from the Wellcome Trust

Case-Control Consortium.

K E Y W O R D S
cis interactions, genome-wide association study, haplotype association study, linkage disequilibrium

1 INTRODUCTION

Marginal tests based on individual single nucleotide polymorphisms (SNPs) have dominated association analyses in the past

decade. Although single SNP analyses have led to the identification of hundreds of genetic variants associated with many

complex diseases (Hindorff et al., 2009), greater power might be achieved by using haplotype-based approaches, analyzing

multiple markers simultaneously. Haplotype-based association methods incorporate linkage disequilibrium (LD) information

from multiple markers and can be more powerful for gene mapping than methods based on single SNPs (Akey, Jin, & Xiong,

2001; Epstein & Satten, 2003; Zaykin et al., 2002). For example, haplotype-based methods will be more powerful when multiple

disease-susceptibility variants, each with an independent effect, occur within the same gene (Morris & Kaplan, 2002). Moreover,
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haplotype-based methods could be preferable to single SNP-based association methods when diseases arise from the interaction

of multiple cis-acting susceptibility variants found within a gene, forming a “super-allele” (Clark et al., 1998; Drysdale et al.,

2000; Hollox et al., 2001; Joosten, Toepoel, Mariman, & Van Zoelen, 2001; Tavtigian et al., 2001), since haplotype-based

methods allow for super-additivity of multiple genetic variants, whereas marginal tests do not (Epstein & Satten, 2003).

Standard haplotype association methods test for differences in haplotype distributions between cases and controls or perform

regression analyses in which haplotypes are treated as categorical variables (Boehringer & Pfeiffer, 2009; Epstein & Satten,

2003; Lin & Zeng, 2006; Schaid, Rowland, Tines, Jacobson, & Poland, 2002; Spinka, Carroll, & Chatterjee, 2005; Zaykin

et al., 2002). Two detailed reviews on existing methods for haplotype-based association analysis are provided by Schaid (2004)

and Liu, Zhang, and Zhao (2008). Moving from single-SNP to haplotype-based analyses results in a considerable increase in

polymorphism and in a commensurate increase in the number of association parameters and therefore the degrees of freedom (df)

of the association tests. As a result, the global score or likelihood ratio test statistics will be weakly powered. Moreover, when the

haplotype data is sparse, the 𝜒2 approximation of the distribution of the test statistics might be invalid. An additional difficulty

is the ambiguity in haplotype phase when only genotype data are observed. Ambiguity can be handled using an expectation-

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Excoffier & Slatkin, 1995), however, the additional assumption

of Hardy–Weinberg equilibrium (HWE) is needed. The df problem and the problem due to many rare haplotypes remain a

limitation and force to employ heuristic methods, such as grouping of rare haplotypes (Schaid, 2004). Due to these limitations

of the haplotype-based methods and the myriad possible genetic architectures of complex human diseases, the relative efficiency

of using haplotypes versus single markers remains largely unexplored and is often decided by practical considerations.

In this work, we introduce a hierarchical LD model for trait mapping that enables us to employ flexible testing strategies over

a range of parameter sets: from standard single SNP analyses through the comparison of full haplotype distributions, thereby

allowing to reduce df and increase the power to detect associations. Hierarchical LD has been previously defined (Geiringer,

1944; Gorelick & Laubichler, 2004; Lewontin & others, 1974; Lou et al., 2003; Weir, 1990). Geiringer (1944); Gorelick and

Laubichler (2004) give the same parametrization that we use but it is derived differently. Lewontin and others (1974); Lou et al.

(2003); Weir (1990) consider special cases of up to five loci. Lou et al. (2003) considers an association model for quantitative

traits. In contrast to the models considered here, this is a prospective model. Other measures of nonindependence for multiple

markers exist such as haplotype diversity (Nei & Tajima, 1981) that becomes maximal for independent markers or mutual

information (Clayton & Jones, 2012), but they do not offer a hierarchical interpretation.

We show that hierarchical LD can be seen as a reparametrization of the multinomial haplotype distribution, where every

parameter corresponds to the joint cumulant of each possible subset of a set of loci (Brillinger, 1991; Thiele, 1899). Given the

nature of this parametrization, this allows to directly estimate haplotype frequencies, that is without using an EM algorithm. For

𝑀 SNPs, the parametrization consists of allele frequencies of each SNP, standard pairwise LD parameters (i.e.𝐷′), and higher

order (3,… ,𝑀) LD parameters, corresponding to generalization of the pairwise LD to multiple SNPs. The proposed method

is applicable to phased and unphased data and is particularly useful for detecting SNP–SNP interaction effects, long range

differences in LD, the presence of “super-alleles,” and all situations where standard haplotype analysis would be considered.

We also derive bounds for the hierarchical LD parameters, which to the best of our knowledge, have not yet been provided.

In the following sections, we develop the reparametrization of the multinomial haplotype distribution, describe estimation

procedures and statistical tests with reduced df for inference, and provide guidelines on how our method can be used. A simulation

study, based on realistic haplotype distribution from the Wellcome Trust Case Control Consortium (WTCCC) (Burton et al.,

2007) for rheumatoid arthritis (RA) and different disease generating models show that the procedure maintains the type I error

rate at nominal level and has increased power over the standard single SNP or haplotype-based association methods for a variety

of realistic scenarios. We illustrate our method using unphased SNP genotype data from the data on RA and a genome wide

analysis of Primary Biliary Chirrosis (Mells et al., 2011).

2 MATERIAL AND METHODS

2.1 Basic notation and assumptions
Consider the case of genotype measurements of𝑀 biallelic loci. Let ℎ ∈ 𝐻 be a haplotype at these loci, with𝐻 = {0, 1}𝑀 the

set of possible haplotypes, |𝐻| = 2𝑀 . We assume that ℎ ∼𝑀𝑢𝑙𝑡(1,𝜽) with 𝜽 = (𝜃ℎ)ℎ∈𝐻 the parameter vector of the haplotype

frequencies, 𝜽 ∈ Θ and Θ = {𝜽 ∣ 𝜽 ∈ (0, 1)2𝑀 ,
∑
ℎ∈𝐻 𝜃ℎ = 1}.

For the situation when genotypes instead of haplotypes are observed, let𝐆 = (𝐺1,… , 𝐺𝑁 ) denote genotypes of𝑁 individuals;

𝐷 = (ℎ1, ℎ2) denotes a diplotype, that is an ordered haplotype pair, and𝑆(𝑔) denotes the set of diplotypes that are consistent with

genotype 𝑔. By assuming HWE, we can model the diplotype distribution using the product distribution. Then, the likelihood of
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the data can be expressed as (Schaid, 2004)

𝐿0(𝐆;𝜽) =
𝑁∏
𝑖=1

∑
(ℎ1,ℎ2)∈𝑆(𝐺𝑖)

𝜃ℎ1 × 𝜃ℎ2 .

In the following, we consider case-control studies, with𝑁1 controls,𝑁2 cases, and sample size𝑁 = 𝑁1 +𝑁2. For genotypes

𝑮 = (𝑮𝑐𝑎,𝑮𝑐𝑜) the likelihood becomes

𝐿(𝑮, 𝜃) = 𝐿0(𝑮𝑐𝑎,𝜽𝑐𝑎)𝐿0(𝑮𝑐𝑜,𝜽𝑐𝑜),

where 𝜽𝑐𝑎 and 𝜽𝑐𝑜 are haplotype frequencies for cases and controls, respectively. Standard haplotype testing compares haplotype

frequencies of cases and controls as follows:

𝐻0 ∶ Θ0 =
{
(𝜽𝑐𝑎,𝜽𝑐𝑜) ∈ Θ2 ∣ 𝜽𝑐𝑎 = 𝜽𝑐𝑜

}
,𝐻1 ∶ Θ1 =

{
(𝜽𝑐𝑎,𝜽𝑐𝑜) ∈ Θ2}. (1)

Under the null hypothesis, parameters for cases and controls are constrained to be equal, while under the alternative any

parameter component can differ between the groups. The EM algorithm can be used to maximize the log-likelihood and compute

the maximum likelihood estimates under both the null and alternative hypothesis. The LR-statistic is then

𝐿𝑅 = 2
{
log𝐿

(
𝐆; 𝜽̂𝟏

)
− log𝐿

(
𝐆; 𝜽̂𝟎

)}
,

where 𝜽̂𝟎 = argmax𝜃∈Θ0 𝐿(𝐆;𝜽) and 𝜽̂𝟏 = argmax𝜃∈Θ1 𝐿(𝐆;𝜽). It follows from standard likelihood theory that 𝐿𝑅 is asymp-

totically 𝜒2
2𝑀−1 distributed.

2.2 Reparametrization of the multinomial haplotype distribution
In order to achieve our goal of reducing the df, we present a hierarchical model of LD. To this end, Lemma 1 establishes a

reparametrization 𝜹 of the multinomial haplotype frequencies 𝜽, where every parameter corresponds to the joint cumulant of

each possible subset of a set of 𝑀 loci. We start by defining the joint cumulant.

Definition. Let 𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑀} be a set of random variables. Let 𝑃𝐴 refer to the set of partitions of set 𝐴 into nonempty

subsets (blocks). So, for 𝑝 ∈ 𝑃𝐴, each 𝑏 ∈ 𝑝 is a block. Then, the joint cumulant of the set of random variables 𝐴 is given as

𝜅(𝐴) = 𝜅(𝐴1, 𝐴2,… , 𝐴𝑀 ) =
∑
𝑝∈𝑃𝐴

(−1)|𝑝|−1(|𝑝| − 1)!
∏
𝑏∈𝑝

E

(∏
𝐴∈𝑏

𝐴

)
,

where |𝑝| denotes the cardinality of set 𝑝.

We also use 𝑀-th order cumulant to denote 𝜅(𝐴). The joint cumulant is a measure of how far random variables are from

independence (Ahlbach, Usatine, & Pippenger, 2012). Notice that if M = 1 or M = 2, the joint cumulant reduces to the expected

value and covariance, namely 𝜅(𝐴1) = E(𝐴1), 𝜅(𝐴1, 𝐴2) = E(𝐴1𝐴2) − E(𝐴1)E(𝐴2).

Lemma 1. Let 𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑀} a set of 𝑀 random variables with 𝐴𝑗 ∈ {0, 1}. For each 𝑠 ∈ 𝑆 = 2𝐴 ⧵ ∅, let 𝛿𝑠 = 𝜅(𝑠),
that is the joint cumulant of random variables 𝑠. Then 𝜹 = (𝛿𝑠)𝑠∈𝑆 is a reparametrization of 𝜽.

Here 2𝐴 denotes the power set of𝐴. We interpret𝐴𝑖 as a biallelic locus and get that the haplotype distribution can be described

by a set of cumulants for which each cumulant uniquely corresponds to a subset of the 𝑀 loci. Note that first-order cumulants

correspond to allele frequencies and second- order cumulants correspond to standard pairwise LD. Thus, in cases of two SNPs,

the reparametrization reduces to the standard decomposition into allele frequencies and pairwise LD parameters (Weir, 1990).

A proof of Lemma 1 is given in Appendix A.1. For a set {𝐴1, 𝐴2, 𝐴3} of random variables, we will write 𝛿123 as a shorthand of

𝛿{𝐴1,𝐴2,𝐴3} and 𝜂123 for E(𝐴1𝐴2𝐴3).
As an example to illustrate the lemma, consider the case of three loci. The eight haplotype frequencies 𝜽 =

(𝜃000, 𝜃100, 𝜃010, 𝜃001, 𝜃110, 𝜃101, 𝜃011, 𝜃111) can be reparametrized into three allele frequencies, denoted by 𝛿1, 𝛿2, and 𝛿3,

three pairwise LD parameters, denoted by 𝛿12, 𝛿13, and 𝛿23, and one-third order LD parameter, denoted by 𝛿123, that is

𝜹 = (𝛿1, 𝛿2, 𝛿3, 𝛿12, 𝛿13, 𝛿23, 𝛿123). The pairwise LD parameters for all pair (𝑗, 𝑘) of SNPs are given as

𝛿𝑗𝑘 = E(𝐴𝑗𝐴𝑘) − E(𝐴𝑗) × E(𝐴𝑘) = 𝜂𝑗𝑘 − 𝛿𝑗 × 𝛿𝑘. (2)
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As in the case of pairwise LD, higher order LD parameters express the difference between observed and expected haplotype

frequencies, when expected frequencies are computed under the assumption of independence, with a value of zero indicating

that at least two disjoint subsets of SNPs are independent of each other, and any cumulant involving two (or more) independent

SNPs will be zero (Ahlbach et al., 2012). This becomes apparent from the third- order LD parameter:

𝛿123 = 𝜂123 − 𝛿1𝜂23 − 𝛿2𝜂13 − 𝛿3𝜂12 + 2𝛿1𝛿2𝛿3. (3)

2.3 Parameter estimation
The reparametrization of the haplotype frequencies into allele frequencies and different order LD parameters introduces a hier-

archy in the parameters. Specifically, higher order parameters (corresponding to singletons, pairs, triples, etc.) only depend on

lower order parameters and are independent of same or higher order parameters, given the lower order ones. This hierarchical

structure enables us to construct direct optimization procedures avoiding the need for an EM algorithm.

As an example, consider again the case of three SNPs. In the first step, we estimate the allele frequencies 𝛿𝑗 , 𝑗 = 1, 2, 3. In

the second step, we estimate the pairwise LD parameters, denoted by 𝛿𝑗𝑘, 𝑗 ≠ 𝑘, for all pairs 𝑗, 𝑘 of SNPs. Notice that in (2)

each 𝛿𝑗𝑘 depends only on allele frequencies 𝛿𝑗 and 𝛿𝑘, which we have estimated in the first step, and a single parameter 𝜂𝑗𝑘
involving a one-dimensional optimization. Similarly, 𝛿123 is estimated by a one-dimensional optimization over 𝜂123 as all other

terms in (3) can be recovered by applying Lemma 1 from the parameters already estimated. The whole algorithm starts with

allele frequencies and performs 2𝑀 − 1 −𝑀 ensuing single-parameter optimizations.

Missing data is handled automatically by the algorithm, as missing genotypes will be excluded if and only if they are contained

in a tuple for which a parameter is to be estimated. Extensions to multiple alleles per locus are straightforward but are not

considered here.

2.4 Standardized LD parameters
LD parameters have the disadvantage of depending on allele frequencies (Hedrick, 1987). For the two locus case, Lewontin

(1964) suggested normalizing the pairwise LD parameter by dividing it by achievable extremes for fixed allele frequencies:

𝛿𝑚𝑎𝑥
𝑗𝑘

=

{
min(𝛿𝑗 , 𝛿𝑘) − 𝛿𝑗𝛿𝑘, if 𝛿𝑗𝑘 ≥ 0 and|||max(0, 𝛿𝑗 + 𝛿𝑘 − 1) − 𝛿𝑗𝛿𝑘

|||, if 𝛿𝑗𝑘 < 0.

We suggest to generalize this concept to establish a standardized LD measure for an arbitrary number of loci. Recall that 𝛿𝐴
can be written as

𝛿𝐴 = 𝜂𝐴 −
∑

𝑝∈𝑃𝐴⧵𝐴
(−1)|𝑝|(|𝑝| − 1)!

∏
𝑏∈𝑝

𝜂𝑏 = 𝜂𝐴 −
∑

𝑝∈𝑃𝐴⧵𝐴
𝑅𝛿(𝑝),

where 𝑅𝛿(𝑝) are terms depending on loci 𝑏 ∈ 𝑝 with |𝑏| < 𝑀 . These rest terms 𝑅𝛿(𝑝) are considered fixed and bounds for 𝜂𝐴
are to be determined completely analogous to the two locus case. Then

𝛿max
𝐴

=

{
𝜂max
𝐴

− 𝑅𝛿, if 𝛿𝐴 ≥ 0 and|||𝜂min
𝐴

−𝑅𝛿
|||, if 𝛿𝐴 < 0,

where 𝑅𝛿 =
∑
𝑝∈𝑃𝐴⧵𝐴 𝑅𝛿(𝑝), and 𝜂max and 𝜂min are the upper and lower bound for 𝜂𝐴 and are defined in Appendix A.2. The

standardized version of 𝛿𝐴 is then given as follows

𝛿
′

𝐴
=

𝛿𝐴

𝛿max
𝐴

A value of 1 or −1 indicates that the examined loci have not been exposed to all possible recombinations and at least one of

all possible haplotype is not present in the population. 𝜂min
𝐴

and 𝜂max
𝐴

can be used to define the parameter space in the LD-

parametrization which we denote with Δ in the following.
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2.5 Testing
The hierarchy present in our parametrization enables us to focus on certain orders in the hierarchy, thus sparing df as compared

to testing the full distribution. We start by reformulating the global haplotype test in terms of LD parameters. Let 𝜹𝑐𝑎 = (𝛿𝑐𝑎
𝑠
)𝑠∈𝑆

and 𝜹𝑐𝑜 = (𝛿𝑐𝑜
𝑠
)𝑠∈𝑆 be parameter vectors for cases and controls, respectively. Then (1) can be restated as follows

𝐻0 ∶ Δ0 =
{
(𝜹𝑐𝑎, 𝜹𝑐𝑜) ∈ Δ2 ∣ 𝜹𝑐𝑎 = 𝜹𝑐𝑜

}
,𝐻1 ∶ Δ1 =

{
(𝜹𝑐𝑎, 𝜹𝑐𝑜) ∈ Δ2} (4)

Again, 𝐿𝑅 = 2{log𝐿(𝐆; 𝜹̂𝟏) − log𝐿(𝐆; 𝜹̂𝟎)}

→ 𝜒2

2𝑀−1 where 𝜹̂𝟎, 𝜹̂𝟏 are ML estimates under the null and alternative. We

will refer to (4) as a Full test because we are testing all orders of LD parameters.

We now consider two families of tests with reduced df. The first family consists of tests that involve only lower order LD

parameters. We will refer to them as Bottom-Up tests (BU). Let 𝑃 be the set containing the orders for which we would like to

test for differences, for example 𝑃 = {1, 2} if we consider both allele frequencies and pairwise LD. The corresponding null and

alternative hypotheses for any such set 𝑃 is:

𝐻0 ∶Δ0
𝐵𝑈,𝑃

=
{
(𝜹𝑐𝑎, 𝜹𝑐𝑜) ∈ Δ2 ∣ ∀𝑠 ∈ 𝑆 ∶ |𝑠| ∈ 𝑃 ⇒ 𝛿𝑐𝑎

𝑠
= 𝛿𝑐𝑜

𝑠

}
𝐻1 ∶Δ1

𝐵𝑈,𝑃
= Δ1

Under 𝐻0 we only constrain parameters of orders contained in 𝑃 to be equal.

The second family consists of tests that involve only higher order LD parameters, for example for𝑀 = 3, 𝑃 = {2, 3} focuses

only on second- and third-order LD parameters. We will refer to them as Top-Down tests (TD). The corresponding null and

alternative hypotheses for any such set 𝑃 is:

𝐻0 ∶Δ0
𝑇𝐷,𝑃

= Δ0

𝐻1 ∶Δ1
𝑇𝐷,𝑃

=
{
(𝜹𝑐𝑎, 𝜹𝑐𝑜) ∈ Δ2 ∣ ∀𝑠 ∈ 𝑆 ∶ |𝑠| ∉ 𝑃 ⇒ 𝛿𝑐𝑎

𝑠
= 𝛿𝑐𝑜

𝑠

}
Here, parameters are constrained to be equal between cases and control both under 𝐻0 and 𝐻1 except for higher order param-

eters under the alternative. Both families of tests allow to employ direct optimization both under the null and the alternative.

Since lower order parameters are estimated first, higher order parameters, which depend on the lower order parameters, will

automatically be estimated to honor these constraints. On the other hand, had we constrained higher order parameters, lower

order parameters would have to change once higher order constraints are considered. In these cases ML estimates would have

to be found by joint optimization of parameters.

Top-Down tests can be interpreted as performing interaction tests without correcting for main effects. Uncorrected main effect

can induce apparent interactions thereby allowing to reject some hypotheses where all differences come from main effects (or

orders not included). For these reasons, we will interpret these tests as global tests.

3 SIMULATION STUDY

To evaluate the finite sample properties of the proposed reparametrization and the association tests, we performed a simulation

study. In the first part, we investigated type I error and power of the tests in data simulated based on real three-SNP haplotype

frequencies from the WTCCC RA study. Here, we focus on the four most significant associations identified from the WTCCC

data analysis. In the second part, we study the performance of the tests under several disease generating models, for example

SNPs with main effects only, interacting pairs of SNPs and “super-alleles.”

In each simulated dataset, all tests described in the previous section were applied. We compare these testing strategies to a

number of alternative tests. First, we test SNPs separately that corresponds to the strategy used in most genome wide analyses

(SNP 𝑖). We also consider the minimum P-value of these tests (MinPvalSingle) in order to get a combined P-value. Second,

we compare to an implementation of a standard haplotype analysis as implemented in R package haplo.stats (Sinnwell &

Schaid, 2013). Third we compare with a method suggested by Kim, Morris, Won, & Elston (2010) that uses joint genotypes

instead of haplotypes (Kim et al.). As implemented, this method uses pairs of adjacent SNPs and a logistic regression with a

main effect for each genotype and the square of genotypes as well as an interaction term to test for association, against a null

model that only contains an intercept (Table 2, Model 5 from Kim et al. (2010)). In a given SNP window, we applied the test

for pairs of consecutive markers. P-values for each pair are computed (Pair i) and a minimum P-value strategy was used to
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T A B L E 1 Estimated haplotype frequencies in the cases (Ca), controls (Co). and pool (P) of cases and controls samples for each of the four

triplets identified from the WTCCC data analysis (Burton et al., 2007)

Triplet 1 Triplet 2 Triplet 3 Triplet 4
P Ca Co P Ca Co P Ca Co P Ca Co

𝜃000 0.596 0.569 0.613 0.499 0.479 0.512 0.477 0.464 0.486 0.358 0.340 0.370

𝜃001 0.059 0.063 0.056 0.200 0.189 0.208 0.135 0.172 0.110 0.088 0.115 0.071

𝜃010 0.104 0.098 0.107 0.015 0.015 0.015 0.029 0.031 0.028 0.240 0.228 0.247

𝜃011 0.003 0.006 0.002 0.047 0.054 0.043 0.010 0.008 0.011 0.101 0.084 0.112

𝜃100 0.192 0.211 0.180 0.147 0.165 0.135 0.115 0.112 0.115 0.148 0.166 0.137

𝜃101 0.028 0.037 0.022 0.062 0.059 0.064 0.067 0.060 0.071 0.004 0.004 0.004

𝜃110 0.017 0.014 0.019 0.025 0.033 0.020 0.132 0.116 0.142 0.054 0.058 0.052

𝜃111 0.002 0.002 0.001 0.004 0.006 0.003 0.036 0.035 0.037 0.006 0.006 0.006

combine results from all pairs in a window MinPvalKim. Finally, we investigated two naive strategies to evaluate the potential

of sequential strategies. Method IterHLD is a bottom-up strategy first testing 𝑃 = {1} at level 𝛼. If not rejected, the procedure

tries to reject 𝑃 = {1, 2} at level 𝛼∕2 and will continue until the highest level is reached, adjusting the 𝛼 level for the number of

tests performed. MinPvalHLD selects the minimum P-value of all Bottom-up testing strategies.

For all simulation scenarios both under the null and alternative hypotheses, 103 datasets were simulated, each consisting of

2,000 cases and 3,000 controls. Under the null hypothesis, an 𝛼-level of 5% level is used. Under the alternative, we reject at the

genome-wide threshold of 𝛼 = 5 × 10−8.

3.1 Data simulation and results using real haplotype frequencies
For each of the four triplets identified as significant from the analysis of the WTCCC data, we estimated the haplotype frequencies

in the sample of cases, the sample of controls and the pool of samples. We list these values in Table 1. The LD parameters to

which these frequencies correspond are listed in Table A.1 of Appendix A.3. In order to simulate data under the null hypothesis,

we draw random samples from a multinomial distribution using the frequencies estimated from the pool of samples. In order to

simulate data under the alternative hypothesis, we draw random samples separately for the group of cases and controls from a

multinomial distribution using the frequencies estimated in the sample of case and controls, respectively.

Results on type I error rate for all tests and triplets are listed in Table 2. At the nominal level, type I error should lie in the

interval (4.68, 5.31)% for a test to properly maintain type I error. In general, the type I error rate is well maintained. With the

exception of the three naive testing procedures, that is IterHLD, MinPvalHLD, and MinPvalSingle, all reject rates lie between

4.56% and 5.82%. Tests MinPavlueSingle and MinPvalHLD were inflated, with type I error rate around 14% and 9%, respectively.

Test IterHLD was only slightly inflated at 6.6%.

The power for all tests and triplets is also listed in Table 2. In all triplets, the single SNP test, the MinPvalSingle and both

Top-Down tests reach power below 70%. Regarding the other tests, different tests seem to be more powerful in each triplet with

the IterHLD test and Bottom-Up test for 𝑃 = {1, 2} being the ones with the most consistent power across all triplets. In all

triplets the score test from haplo.stats performs comparable to the Full test or the Bottom-Up test for 𝑃 = {1, 2}.

3.2 Data simulation and results under different disease generating models
In this section, we further study the type I error rate and power properties of each test under different disease models and different

LD structures. In all scenarios, we considered four SNPs with allele frequencies equal to .05, .18, .31, and .45, respectively. Two

structures of LD among the SNPs are considered. In Scenario 1, the SNPs were in equilibrium, thus all second, third and fourth

LD parameters were equal to zero. In Scenario 2, the second-order standardized LD parameters were set to .4, the third-order

LD standardized parameters were set to .1 and the fourth-order LD parameter was set to zero. In both cases, we mapped the

LD parameters to haplotype frequencies, which are listed in Table A.2 of Appendix A.3, and used those frequencies to generate

haplotype data for a large population of individuals. The LD parameters in Scenario 1 correspond to frequencies in which 11

out of 16 haplotypes had frequencies below 5% and six had frequencies below 1%. On the other hand, in Scenario 2 only four

haplotypes had frequencies below 5%.

Using different disease models, we generate the disease status 𝑌 of each individual and then sampled 2,000 individual from

the population of cases and 3,000 individuals from the population of controls. For each disease model the following logistic
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T A B L E 2 Result on type I error rate (%, 𝛼 = 0.05) and power (%, 𝛼 = 5 × 10−8) for the scenarios simulated based on parameters from

significant findings from the WTCCC data

Test df Triplet 1 Triplet 2 Triplet 3 Triplet 4
Type I Error Rate (%)

Bottom-Up 𝑃 = {1} 3 5.13 5.31 5.21 5.06

𝑃 = {1, 2} 6 4.94 4.82 4.98 4.91

Full 7 5.28 4.81 4.95 5.45

MinPvalHLD 8.90 8.86 8.83 9.13

IterHLD 6.70 6.79 6.63 6.55

Top-Down 𝑃 = {3} 1 5.27 4.91 5.08 5.33

𝑃 = {2, 3} 4 5.53 5.56 5.02 5.83

Single SNP SNP 1 1 5.05 4.89 4.83 5.12

SNP 2 1 5.15 4.56 4.87 4.82

SNP 3 1 5.33 5.14 5.28 4.91

MinPvalSingle 14.68 13.92 13.56 13.98

haplo.stats 7* 5.65 5.14 4.98 4.89

Power (%)

Bottom-Up 𝑃 = {1} 3 65.49 74.96 88.58 69.65

𝑃 = {1, 2} 6 69.00 69.39 94.60 97.57

Full 7 65.37 65.96 97.18 97.15

MinPvalHLD 73.58 77.74 97.54 97.79

IterHLD 71.45 76.83 96.48 97.07

Top-Down 𝑃 = {3} 1 0.03 0.02 5.29 24.49

𝑃 = {2, 3} 4 0.00 0.00 0.21 0.00

Single SNP SNP 1 1 21.45 22.64 11.49 9.76

SNP 2 1 0.00 17.76 1.51 10.63

SNP 3 1 16.43 0.00 44.57 0.01

MinPvalSingle 33.99 35.67 51.78 19.06

haplo.stats 7* 68.43 69.12 97.28 97.19

Parameter values for each scenario are listed in Table A.1

*df might be different because the package automatically groups rare haplotypes.

model was used

logit{P(𝑌 = 1 ∣ 𝐃)} = 𝛼0 +
4∑
𝑗=1

𝛼𝑗𝐺𝑗 +
4∑

𝑗,𝑘=1,𝑗≠𝑘
𝛼𝑖𝑗𝐺𝑗 × 𝐺𝑘 +

∑
𝑠∈𝑆

𝛾𝑠𝑆𝐴𝑠, (5)

where 𝛼0 is the intercept; 𝛼𝑗, 𝑗 = 1,… , 4 are the main effect odds ratios of each SNP, 𝛼𝑗𝑘, 𝑗, 𝑘 = 1,… , 4, 𝑗 ≠ 𝑘 are the interaction

effect for each pair of SNP; 𝛾𝑠 are the main effects of the “super-allele” at loci 𝑠 ∈ 𝑆, with 𝑆 = {{2, 3}, {1, 2, 3}, {1, 2, 3, 4}}
and

𝑆𝐴23 =
⎧⎪⎨⎪⎩
0 if both ℎ1 and ℎ2 ∉ 𝐷23

1 if one of ℎ1, ℎ2 ∈ 𝐷23

2 if both ℎ1 and ℎ2 ∈ 𝐷23

, 𝑆𝐴123 =
⎧⎪⎨⎪⎩
0 if both ℎ1 and ℎ2 ∉ 𝐷123

1 if one of ℎ1, ℎ2 ∈ 𝐷123

2 if both ℎ1 and ℎ2 ∈ 𝐷123

,

𝑆𝐴1234 =
⎧⎪⎨⎪⎩
0 if ℎ1 ≠ “1111” and ℎ2 ≠ “1111”

1 if ℎ1 = “1111”, ℎ2 ≠ “1111” or ℎ1 ≠ “1111”, ℎ2 = “1111”

2 if ℎ1 = “1111” and ℎ2 = “1111”

,
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T A B L E 3 Result on type I error rate (%, 𝛼 = 0.05) for scenarios simulated under different disease generating models

Type I Error Rate
Test df Scenario 1 Scenario 2
Bottom-Up 𝑃 = {1} 4 5.15 5.27

𝑃 = {1, 2} 10 5.14 5.24

𝑃 = {1, 2, 3} 14 4.78 4.44

Full 15 4.59 4.31

IterHLD 7.03 7.14

MinPvalHLD 10.39 10.22

Top-Down Tests 𝑃 = {4} 1 4.54 5.78

𝑃 = {3, 4} 5 4.35 4.64

𝑃 = {2, 3, 4} 11 4.45 4.13

Single SNP SNP 1 1 4.82 5.21

SNP 2 1 5.05 5.37

SNP 3 1 4.93 4.91

SNP 4 1 4.90 5.03

MinPvalSingle 18.38 18.47

haplo.stats 15* 6.55 4.68

Kim et al Pair 1 5 5.29 5.72

Pair 2 5 5.01 4.78

MinPvalKim 10.05 10.20

Parameter values for each scenario are listed in Table A.2

* df might be different because the package automatically groups rare haplotypes.

and 𝐷23 = {“0110”, “1110”, “0111”, “1111”}, that is all haplotypes that contain the “1” allele at loci 2 and 3 and 𝐷123 =
{“1110”, “1111”} the haplotypes that contain the “1” allele at loci 1, 2, and 3.

Under the null hypothesis, all parameters in (5), besides the intercept, were zero. Results on type I error rate for all tests and

scenarios are listed in Table 3. Rejection rates for the three Bottom-Up tests, the Full test, the three Top-Down tests, the four

single SNP tests and the two Kim et al. tests lie between 4.13% and 5.78%. Type I error rate for haplo.stats is 6.55% and

4.67%. Inflation of IterHLD is slightly higher still at 7%. MinPvalHLD, MinPavlSingle, and MinPvalKim show strong inflation,

rejection rates of 10%, 18%, and 10%, respectively.

For scenarios under the alternative hypothesis, six different disease models were considered. In Model 1, the four SNPs had

only main effects on disease risk. In Model 2, SNP 2 and 3 had main and interaction effects on disease risk. In Model 3, SNPs

1, 2, and 3 had only interaction effects. We also studied the power of our approach in the presence of “super-alleles.” In this

case, we assumed that the combination of alleles over two, three, and four SNPs also had an effect of disease risk. In Model 4,

SNP 2 and 3 and the haplotype “11” over these two loci had a main effect; in Model 5, SNP 1, 2, and 3 and the haplotype “111”

had a main effect and in Model 6, all four SNPs and the haplotype “1111” had a main effect. Results on power for all tests and

models, as well as the exact parameter values for each model, are listed in Table 4 for Scenario 1 and in Table 5 for Scenario 2.

Based on these results, we make the following observations. First, as expected, in the presence only of main effects, that

is Model 1, for both Scenarios (1:, 2:), the most powerful test is the Bottom-Up test with 𝑃 = {1} (1: 90%, 2: 73%). Second,

although the Bottom-Up test with 𝑃 = {1} does not include second-order parameters, its power is comparable to the power of

Bottom-Up test with 𝑃 = {1, 2} in the presence of both main and interaction effects, that is Model 2 (1: 91% vs 86%, 2: 95%

vs 91%), or in the presence only of interacting effects, that is Model 3 (1: 70% vs 89%, 2: 81% vs 80%). In the presence of

“super-alleles,” the power to detect association when the LD among the involved loci is zero and the effect is spread across

three or four loci, that is Model 5 (< ≈ 30% for all tests) and 6 (< ≈ 20% for all tests) in Scenario 1, is much lower compared

to the power in the presence of LD, that is Models 5 and 6 in Scenario 2 (> ≈ 30% for some Buttom-Up models, IterHLD,
MinPvalHLD). For both scenarios and all models, except Model 6 for Scenario 1, at least one of the Bottom-Up tests is more

powerful than haplo.stats. The Bottom-Up test with 𝑃 = {1, 2} was the one with the most consistent power across all models

and scenarios (>70% in 8 out of 12 cases). Most importantly, test IterHLD shows very consistent results. In view of the slight

inflation of this test (type I error ≈ 7%), “true” power would be slightly lower, but the consistency across scenarios suggest that



BALLIU ET AL. 755

T A B L E 4 Power results for Scenario 1 (%, 𝛼 = 5 × 10−8)

Power
Test df Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Bottom-Up 𝑃 = {1} 4 90.24 90.84 69.78 65.94 29.53 13.83

𝑃 = {1, 2} 10 73.79 85.76 88.70 62.80 20.19 10.97

𝑃 = {1, 2, 3} 14 63.16 77.91 81.83 51.59 14.95 9.74

Full 15 60.76 75.91 80.26 48.94 13.90 9.08

IterHLD 90.29 91.86 87.75 70.22 31.21 16.45

MinPvalHLD 90.37 92.27 89.61 71.85 32.15 17.84

Top-Down Tests 𝑃 = {4} 1 0.00 0.00 0.00 0.00 0.00 0.00

𝑃 = {3, 4} 5 0.00 0.00 0.00 0.00 0.00 0.00

𝑃 = {2, 3, 4} 11 0.00 0.00 1.66 0.00 0.00 0.01

Single SNP SNP 1 1 0.03 0.00 4.43 0.00 0.00 0.10

SNP 2 1 3.04 79.20 17.49 30.50 1.94 0.14

SNP 3 1 10.74 11.10 3.21 15.10 1.30 0.25

SNP 4 1 15.57 0.00 0.00 0.00 0.90 0.34

MinPvalSingle 27.04 81.25 23.53 40.65 4.09 0.83

haplo.stats 15* 64.21 78.82 81.58 54.40 18.17 22.29

Kim et al Pair 1 5 2.10 53.55 46.70 11.35 0.42 0.85

Pair 2 5 47.56 2.74 0.47 4.01 5.49 0.89

MinPvalKim 48.67 54.78 46.93 14.86 5.89 1.72

Nonzero parameters for Model 1: 𝛼𝑖 = log(1.2), 𝑖 = 1,… , 4; Model 2: 𝛼2 = 𝑙𝑜𝑔(1.2), 𝛼3 = 𝑙𝑜𝑔(1.1), 𝛼23 = 𝑙𝑜𝑔(1.2); Model 3: 𝛼𝑗𝑘 = 𝑙𝑜𝑔(1.3), 𝑗, 𝑘 = 1, 2, 3, 𝑗 ≠ 𝑘; Model

4: 𝛼2 = 𝛼3 = 𝑙𝑜𝑔(1.1), 𝛾23 = 𝑙𝑜𝑔(1.5); Model 5: 𝛼𝑖 = 𝑙𝑜𝑔(1.1), 𝑘 = 2, 3, 4, 𝛾234 = 𝑙𝑜𝑔(1.5); Model 6: 𝛼𝑖 = 𝑙𝑜𝑔(1.1), 𝑖 = 1, 2, 3, 4, 𝛾1234 = 𝑙𝑜𝑔(5)
*df might be different because the package automatically groups rare haplotypes.

T A B L E 5 Power results of each test on Scenario 2 (%, 𝛼 = 5 × 10−8)

Power
Test df Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Bottom-Up 𝑃 = {1} 4 72.95 94.70 81.76 78.77 86.70 79.31

𝑃 = {1, 2} 10 47.81 89.14 80.27 65.76 74.49 71.28

𝑃 = {1, 2, 3} 14 35.48 81.36 69.80 52.33 64.64 62.47

Full 15 33.19 79.69 68.04 50.33 62.67 60.75

IterHLD 73.00 95.12 85.06 79.64 87.31 81.42

MinPvalHLD 73.10 95.24 85.93 80.16 87.67 82.20

Top-Down Tests 𝑃 = {4} 1 0.00 0.00 0.00 0.00 0.00 0.00

𝑃 = {3, 4} 5 0.00 0.00 0.00 0.00 0.00 0.00

𝑃 = {2, 3, 4} 11 0.00 0.01 0.01 0.00 0.00 0.00

Single SNP SNP 1 1 1.61 0.00 31.24 0.01 0.00 17.36

SNP 2 1 38.07 86.59 49.42 66.91 51.38 16.20

SNP 3 1 10.72 66.42 11.92 38.04 40.71 15.93

SNP 4 1 6.93 0.11 0.00 0.00 23.63 10.14

MinPvalSingle 45.84 92.79 64.03 75.17 70.60 42.64

haplo.stats 15* 36.84 80.80 72.23 54.34 65.60 66.56

Kim et al Pair 1 5 30.97 65.51 74.01 38.73 25.93 37.72

Pair 2 5 13.82 39.86 4.60 15.72 50.10 20.96

MinPvalKim 38.24 74.62 74.43 45.44 58.92 47.57

Nonzero parameters for Model 1: 𝛼1 = 𝛼2 = 𝑙𝑜𝑔(1.2), 𝛼3 = 𝛼4 = 𝑙𝑜𝑔(1.1) ; Model 2: 𝛼2 = 𝛼3 = 𝑙𝑜𝑔(1.1), 𝛼12 = 𝑙𝑜𝑔(1.2); Model 3: 𝛼𝑗𝑘 = 𝑙𝑜𝑔(1.2), 𝑗, 𝑘 = 1, 2, 3, 𝑗 ≠ 𝑘;

Model 4: 𝛼1 = 𝛼2 = 𝑙𝑜𝑔(1.1), 𝛾23 = 𝑙𝑜𝑔(1.3); Model 5: 𝛼𝑖 = 𝑙𝑜𝑔(1.1), 𝑘 = 1, 2, 3, 𝛾123 = 𝑙𝑜𝑔(1.3); Model 6: 𝛼𝑖 = 𝑙𝑜𝑔(1.1), 𝑖 = 1, 2, 3, 4, 𝛾1234 = 𝑙𝑜𝑔(2)
*df might be different because the package automatically groups rare haplotypes.
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the strategy underlying IterHLD is very promising. The Top-Down tests show essentially power of zero. When evaluated at the

5% level, power is ≈5% in 20 out of the 32 models and is >80% only in two cases. This is discussed below.

4 DATA EXAMPLE

4.1 Candidate loci analysis
To illustrate an application of the proposed association tests, we performed an analysis of a dataset from the WTCCC, consisting

of 1,860 cases of RA and 2,938 controls. In the initial analysis, single SNP tests were performed and several SNPs, strongly

associated with RA, were identified (Burton et al., 2007). In addition, a list of 59 SNPs, showing “moderate” association with

RA, with nominal significance in the range of 10−3 to 10−6, was provided in the initial article. Some of these SNPs map to genes

with plausible biological relevance however the single SNP analyses failed to pass the significance threshold.

Here, we investigate possible increase in the significance level of the 59 SNPs when a three SNP haplotype-based analysis

is used. For each of these SNPs we choose 40 neighboring SNPs that had passed quality control, 20 to the left and 20 to the

right side of the SNP and construct all possible triplets between the SNPs that contain the moderately associated SNP. For

each of the 59 SNP, 780 triplets were constructed. To avoid problems caused by high LD, we excluded from the analysis all

triplets in which at least one of the standardized pairwise LD parameters was above 0.8. For the remaining triplets, the tests

mentioned in the previous section were applied. A triplet of SNPs was considered to be associated with RA if the P-value was

below the threshold 5 × 10−8∕(𝑁𝑡𝑒𝑠𝑡𝑠 ×𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠), where 𝑁𝑡𝑒𝑠𝑡𝑠 = 5 is the total number of tests performed on each triplet and

𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 the total number of triplets tested for each “moderately” associated SNP. We also applied the IterHLD strategy with

𝛼 = 5 × 10−8∕𝑁𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠. For comparison purposes, we also show results from the single-SNP analysis.

Several triplets containing the SNPs rs12723859 and rs12205634 showed a strong association with RA. Specifically, for

rs12723859 we identified 40 triplets with 20 unique SNPs, and for rs12205634 we identified five triplets with four unique SNPs

(see Supplementary Information). For rs6920220, three triplets consisting of four unique SNPs, had P-values smaller than the

genome-wide significance threshold 5 × 10−8 but they were no longer significant when adjusting for the multiple number of

tests and triplets. For the other 56 SNPs, no strong association with RA was identified from the haplotype analysis. In Table 6,

we list for each of rs6920220, rs12723859, and rs12205634, the P-values of all tests for the two triplets that show the strongest

association with RA. For rs6920220, we tested a total of 21 triplets. Only the Bottom-Up test for allele frequencies yields a

P-value below 5 × 10−8. If we correct for the number of tests and triplets tested no test yields a significant P-value. For

rs12723859 and rs12205634, we tested a total of 144 and 38 triplets, respectively. The Full test and the Bottom-Up tests for

𝑃 = {1} and 𝑃 = {1, 2} yield P-values below 5 × 10−8. After correcting for the number of tests performed the Bottom-Up tests

for 𝑃 = {1} no longer gives a significant association, the Bottom-Up tests for 𝑃 = {1, 2} is still significant.

Using the IterHLD strategy, we find 57 significant triplets for rs12723859, 39 of which are rejected at the 𝑃 = {1} level, 17

are rejected at the 𝑃 = {1, 2} level, and one which is only rejected at the full level (see Supplementary Information). Similarly,

for rs12205634, we find the same four triplets described above, all of which are rejected at the 𝑃 = {1, 2} level. We do not find

any significant triplets for rs6920220 after adjusting for multiple testing.

T A B L E 6 Results on real data

SNPs in the triplet Bottom-Up Test Full Test Top-Down Test Single SNP tests
𝑷 = {𝟏} 𝑷 = {𝟏, 𝟐} 𝑷 = {𝟑} 𝑷 = {𝟐, 𝟑}

SNP rs6920220

rs11961920 rs11970411 2.6e-08 7.9e-08 2.3e-07 0.89 0.21 5e-06 0.16 1.2e-05

rs11970411 rs674451 8.5e-09 9.9e-08 2.8e-07 0.81 0.56 5e-06 1.2e-05 0.25

SNP rs12723859

rs12739961 rs1113523 1.8e-10 4.4e-11 5.6e-12 7.78e-03 8.50e-04 3e-05 0.0013 2.2e-07

rs12739961 rs17013326 2.4e-10 7.3e-11 7.9e-12 6.40e-03 9.29e-04 3e-05 0.0013 3.1e-07

SNP rs12205634

rs411136 rs210137 1.9e-08 4.8e-12 1.2e-11 0.41 2.26e-05 5.2e-05 4.3e-05 6.9e-02

rs411136 rs210138 2.1e-08 1.1e-11 2.1e-11 3.7e-05 5.1e-05 5.2e-05 4.3e-05 6.9e-02
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T A B L E 7 Summary of GWAS analyses by all test for haplotypes spanning 2 or 3 loci (number after ’:’)

Test:2 Infl.:2 #:2 #T:2 Test:3 Infl.:3 #:3 #T:3
Single SNP 1.06 277 22 – – – –

Kim et al 1.43 8690 33 – – – –

haplo.stats 1.37 6836 84 haplo.stats 1.53 10824 230

Bottom-Up 𝑃 = {1} 1.18 889 59 Bottom-Up 𝑃 = {1} 1.38 1047 26

– – – – Bottom-Up 𝑃 = {1, 2} 1.27 4201 35

Full 1.36 7151 17 Full 1.29 4247 29

– – – – Top-Down 𝑃 = {2, 3} 1.17 3945 33

Top-Down 𝑃 = {2} 1.20 6662 26 Top-Down 𝑃 = {3} 1.40 3465 341

HLDmin 1.97 7156 18 HLDmin 2.66 4613 22

iterHLD 1.57 7145 18 iterHLD 1.98 4608 24

Test is the name of the test. Infl. denotes the inflation factor, # denotes the number p-values < 5 × 10−8. #T denotes number of significant P-values filtered by the tower

criterion (see text). Single SNP is given for reference and refers to a SNP-by-SNP logistic regression

4.2 Genome-wide analysis
In addition to the analysis of candidates from the RA dataset, we also analyzed a full genome wide dataset for which we acquired

a case-control dataset on Primary Biliary Chirrosis from the European Genome-Phenome Archive (EGAS00000000039). Our

study was approved by the data access committee of the WTCCC3 datasets. Details on the dataset are given elsewhere (Mells

et al., 2011). We excluded markers and individuals as provided from the original study. According to the study protocol, variants

with an exact P-value below 10−6 for HWE were excluded from the analysis. Additionally, we filtered markers at a minor allele

frequency of 0.15 and pruned LD using plink (Purcell et al., 2007) (window size 50, shift 5, VIF 2) for moderate LD to avoid

collinearity problems. After these selections, 97442 SNPs remained in the dataset that were analyzed marginally using logistic

regression. Haplotype tests for pairs and triples were employed in a sliding window approach. The data contained 1,906 cases

and 2,859 controls after quality control.

Inflation factors (IFs) (Devlin & Roeder, 1999; Yang et al., 2011) for the tests are shown in Table 7. The original publication

reports an IF of 1.09. The marginal baseline model using logistic regression had an IF of 1.06 indicating moderate inflation. All

models using two loci had higher IFs with the model Bottom-Up.1 performing best in terms of inflation with an IF of 1.18. As

expected, haplo.stats, Bottom-Up-Full had identical IFs of 1.36. QQ-plots for the tests are shown in Figure 1. Analyzing three

loci simultaneously, IFs increased for the models, with the exception of Bottom-Up with 𝑃 = {1, 2}, Bottom-Up-Full, and Top-
Down with 𝑃 = {2, 3}. In the latter cases, an increase in inflation was masked by a peak of P-values in the histogram close to 1,

indicating numeric problems when performing the model fit. Owing to the inflation of results, all findings have to be interpreted

strictly exploratorily. To this end, we have limited locations shown in the Manhattan plots to those that had a local correlation

between log-P-values and position. The precise definition of this filtering step is given in the supplement (Tower criterion). The

number of hits with this local support are shown in Table 7. Manhattan plots for pairs of SNPs are shown in Figure 2. A list of

loci for which at least three tests agreed at a threshold of 5 × 10−8 and had local support is shown in Table 8.

5 DISCUSSION

In this article, we propose a reparametrization of the multinomial haplotype distribution into allele frequencies, standard pairwise

LD parameters, and higher order LD parameters. Our reparametrization enables us to employ flexible testing strategies over a

range of parameter sets. For example, joint tests of single-SNPs and joint tests of single-SNPs and their pair-wise LD. We

showed in both simulated and real data that such tests can often have increased power as compared to the full global haplotype

or single-SNP based tests.

In this study, we use rather simplistic multiple testing strategies, namely using a Bonferroni correction for multiple tests

performed on the same genotype data. This is certainly not optimal as the performed tests are usually highly correlated. Among

our future interests is to develop iterative or sequential testing procedures, for example (Meinshausen, 2008), which better

exhaust the 𝛼 level. Another option is to use information criteria such as AIC or BIC for model selection. Moreover, we have

not focused on the choice of haplotype size or region covered as an optimal strategy. It is likely that the optimal number of SNPs

used for haplotype-based approaches will depend on the population history and the genomic region, which is beyond the scope
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F I G U R E 1 QQ plot for all two locus tests, including the marginal test. P-values were inflation-corrected before plotting (see text). Blue lines

represent point-wise confidence limits for ordered P-values

of this report. We are currently working on implementation of the hierarchical LD model in the context of equivalence testing

for reconstruction of independent haplotype blocks, which, apart from gains in statistical efficiency, would help to obviate SNP

pruning in genome wide datasets.

Even with this conservative strategy, we could demonstrate a new association that makes our method an interesting alternative

for the analysis of genome wide data. The exploratory investigation of the methods IterHLD and MinPvalHLD indicate that power

gains are to be expected by better exhaustion of the 𝛼 level as compared to a simple Bonferroni correction. Especially IterHLD
seems to offer a worthwhile testing strategy. Proper 𝛼-level control would need to be developed in future work. We stress that

the data analysis should be considered exemplary and more general conclusions require more extensive data analyses. In our

simulations Bottom-Up performed better than Top-Down procedures. The estimation of higher order parameters depends on

lower order parameters. This implies reduced precision of estimates when going up the hierarchy and explains the findings for

Top-Down procedures. This can be exploited by testing accurately estimated parameters first as done by IterHLD and is another

component in the power trade-off in the HLD framework apart from reducing df.

For a case-control sample, population substructure and cryptic relatedness among subjects lead to overdispersion of the chi-

square test statistic for association and causes spurious rejections of the null hypothesis. The dataset we are using for the candidate

gene analysis is known to be fairly homogeneous (Burton et al., 2007) and we did not expect population stratification artifacts.

In this analysis, we found only small differences in haplotype frequencies (≤6%) between cases and controls, but nevertheless

suggest these could be relevant. Our GWAS analysis on the other hand shows that haplotype-based analyses are indeed very
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F I G U R E 2 Manhattan plot of P-values for all test when haplotypes span two loci. Colors are applied to P-values < 10−3. P-values < 5 × 10−8

were filtered by the tower criterion (see text). P-values < 10−15 were truncated

T A B L E 8 Positions (chr, pos) and P-values for tests for which at least three tests reached a P-value < 5 × 10−8 when haplotypes span two loci

chr pos Kim et al Full HLDmin iterHLD haplo.stats Top-Down 𝑷 = {𝟐} Bottom-Up 𝑷 = {𝟏} Singe SNP
1 31008523 1.8e-249 3.3e-309 3.3e-309 6.5e-309 8.6e-171 7.1e-311 – –

1 31032093 1.7e-28 2.9e-33 2.9e-33 5.8e-33 – 7.4e-35 – –

1 31033624 1.5e-185 1.1e-224 1.1e-224 2.2e-224 1.6e-08 2.7e-226 – –

1 90440693 1.8e-32 – 1.2e-33 2.3e-33 6.0e-33 – – –

1 90481133 9.6e-185 – 2.1e-224 4.2e-224 5.4e-165 – – –

5 59580410 2.2e-09 2.6e-10 2.6e-10 5.2e-10 – – – –

5 122166044 – – 4.1e-151 8.2e-151 2.1e-119 – – –

5 153251949 – 3.3e-189 3.3e-189 6.5e-189 2.3e-140 – – –

6 26564048 1.7e-251 5.5e-302 5.5e-302 1.1e-301 5.5e-172 – – –

7 88709037 – 3.4e-140 – – 6.7e-145 4.5e-90 – –

7 149498823 2.9e-100 3.2e-09 6.3e-10 6.3e-10 1.0e-11 – 6.3e-10 –

7 149504002 – 4.6e-11 1.1e-11 1.1e-11 1.0e-13 – 1.1e-11 2.5e-13

12 68141467 – 8.8e-79 8.8e-79 1.8e-78 1.1e-68 – – –

12 99342932 5.1e-56 1.0e-59 1.0e-59 2.0e-59 1.2e-54 – – –

13 82025812 8.4e-246 1.1e-320 1.1e-320 2.1e-320 – 1.5e-323 – –

16 60188415 8.5e-10 8.0e-11 8.0e-11 1.6e-10 1.3e-10 – – –

17 66951514 – 1.1e-35 1.1e-35 2.2e-35 – – – –

18 56526010 – 2.5e-162 2.5e-162 5.0e-162 3.3e-126 9.9e-165 – –

19 63603580 4.5e-17 6.6e-19 6.6e-19 1.3e-18 3.1e-18 8.9e-21 – –

P-values were filtered by the tower criterion (see text)
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sensitive to population stratification as indicated by IFs. Careful control of inflation seems necessary. As presented, our method

does not allow incorporation of additional covariates. An option to deal with covariates at the moment is to perform stratified

analyses in a Mantel–Haenszel framework. Due to the excessive anti-conservative nature of all tests in the GWAS analysis, we

do not discuss specific loci. When comparing the testing options, we note, that our family of tests has the advantage over the

competing methods considered here that the complexity in terms of degrees of freedom and parameter interpretation can be

controlled. For example, the Bottom-Up procedure (𝑃 = {1}) had a clearly lower IF as compared to the other tests. A limitation

of our GWAS analysis is the stringent LD pruning employed that was necessary to run all tests on all SNP sets. Results presented

in Tables 7 and 8 are expected to change with different pruning criteria, however, the ability to control robustness by chosing

dfs should be unaffected.

To avoid diminished power from the large number of haplotype configurations, Schaid et al. (2002) proposed to either pool

rare haplotypes into a single baseline group or to scan a large chromosomal region for subsegments that may be associated

with the trait, starting with single-locus associations, followed by “sliding” tests for two-locus haplotypes, followed by “sliding”

tests for three-locus haplotypes, and so forth. We saw from our simulation study that, as the number of haplotype configuration

increases, pooling rare haplotypes does not avoid the diminished power problem. In addition, analyses involving a series of

adjacent markers assume that the most informative markers are the physically closest. However, this is not always the case and

tests based on such associations will not always be optimal. Consider for example the case when relatively recent mutations

have introduced correlation among two SNPs in a low LD region, with for example five SNPs separating them. In order to

include the pairwise correlation of the two SNPs of interest, we would have to use a sliding window of size 7 and perform a

test with 27 − 1 = 127 df. Given the large number of haplotype configurations, most haplotype frequencies will be very low and

pooling most haplotypes would be unavoidable. On the other hand, one could repeat the same procedure, using again a sliding

window of 7, but testing only for allele frequencies and pairwise LD parameters. In this case, one would need to perform a test

with 7 +
(7
2

)
= 28 df. In this study, we followed a similar, heuristic strategy that lead to the identification of novel associations.

Regarding computational efficiency, we offer a way to estimate haplotype frequencies directly, that is without an EM algorithm.

Conceptually, this should lead to improved performance although we did not investigate this systematically. For larger number

of loci (say > 7), we expect that that heuristic strategies to limit the number of parameters will dominate run-time performance

rather than choice of parametrization.

In a given population, the mutations that are causal in disease etiology will have arisen on one or more ancestral haplotypes

(Degli-Esposti, Leelayuwat, & Dawkins, 1992) and thereafter will have spread to other haplotypes by recombination. Early on in

this process, very-high-order association will exist, and the most powerful test for association will be a very-high-order associa-

tion test, since the strength of the high-order effect more than outweighs the large number of df. However, this advantage will not

survive in perpetuity, since, as shown in Clayton and Jones (1999) high-order effects will be rapidly diluted by recombination, at

progressively more rapid rates than first-order association between a single marker or a pair of markers and disease. As a result,

tests based on lower order effects will in general be more powerful than the full haplotype tests. This result is also supported by

our simulation study, since in the scenarios we considered, Bottom Up tests are the most powerful across all different disease

models. Our proposed method allows to flexibly accommodate both higher and lower order LD scenarios. The test for joint

marginal effects seems to be particularly relevant for many situations.
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APPENDIX

A.1 Proof of lemma 1

Consider again the case of genotype measurements of𝑀 biallelic loci. Let ℎ ∈ 𝐻 be a haplotype at these loci, with𝐻 = {0, 1}𝑀
enumerating the 2𝑀 possible haplotypes. Assume that ℎ ∼𝑀𝑢𝑙𝑡(1,𝜽) with 𝜽 = (𝜃ℎ)ℎ∈𝐻 the parameter vector of the haplotype

frequencies of each haplotype, 𝜽 ∈ Θ and Θ = {𝜽 ∣ 𝜽 ∈ (0, 1)2𝑀 ,
∑
ℎ∈𝐻 𝜃ℎ = 1}. Let𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑀} a set of𝑀 random

variables with𝐴𝑗 ∈ {0, 1} the indicator random variable for either one of the two alleles at locus 𝑗, 𝑗 = 1,… ,𝑀 . Let𝑆 = 2𝐴 ⧵ ∅
be the power set of𝐴, in lexicographical order, without the empty set, that is, the set of all singletons, pairs, triplets, etc. of allele

indicator random variables.

In order to prove that 𝜹 is a reparametrization of 𝜽, we introduce an intermediate parametrization, denoted as 𝜼. Then the

proof goes as follows. First, we show that 𝜼 is a reparametrization of 𝜽. To prove this, we introduce the function 𝑓 (𝜽, 𝑆) and

prove that 𝑓 is bijective. Then, we show that 𝜹 is a reparametrization of 𝜼, which implies that 𝜹 is also a reparametrization of 𝜽.

Similarly, to prove this, we introduce the function 𝑞(𝜼, 𝑆) and prove that 𝑞 is bijective.

Mapping function 𝒈

For a set of random variables 𝑠 ∈ 𝑆, let 𝜏𝑠 = {𝑣 ∈ {0, 1}𝑀 ∣ 𝐴𝑗 ∈ 𝑠 ⇔ 𝑣[𝑗] = 1} a tuple of all haplotypes whose 𝑗-th element is

1 if𝐴𝑗 ∈ 𝑠. We define 𝑔 to be a function that takes as an input the parameter vector 𝜽 = (𝜃ℎ)ℎ∈𝐻 and outputs the joint expectation

of random variables in 𝑠, which we denote with 𝜂𝑠. That is,

𝑔(𝜽, 𝑠) = 𝐸

(∏
𝐴∈𝑠

𝐴

)
=
∑
ℎ∈𝜏𝑠

𝜃ℎ = 𝜂𝑠.

We illustrate 𝑔 with the following example. Let 𝑀 = 3 and 𝑠 = {𝐴1, 𝐴2}. Then 𝜏𝑠 will contain two haplotypes, that is

𝜏{𝐴1,𝐴2} = {(1, 1, 0), (1, 1, 1)}, and 𝑔(𝜽, {𝐴1, 𝐴2}) = 𝐸(𝐴1𝐴2) = 𝜃(1,1,0) + 𝜃(1,1,1). We are thus computing the joint expectation

of 𝐴1 and 𝐴2 or the haplotype frequency for loci 1 and 2 with allele 1 chosen at each locus.

http://CRAN.R-project.org/package=haplo.stats
https://doi.org/10.1002/bimj.201800053
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For a haplotype (1,1,1), we will write 𝜃111 as a shorthand of 𝜃(1,1,1). Similarly, for a set {𝐴1, 𝐴2, 𝐴3} of random variables, we

will write 𝜂123 as a shorthand of 𝜂{𝐴1,𝐴2,𝐴3}.

Mapping function 𝒇

We define 𝑓 to be a function that takes as input the parameter vector 𝜽 = (𝜃ℎ)ℎ∈𝐻 and outputs the joint expectation of random

variables in 𝑠 for all 𝑠 ∈ 𝑆. That is,

𝑓 (𝜽, 𝑆) =
{
𝑔

(
𝜽𝜏𝑠 , 𝑠

)}
𝑠∈𝑆

=

(∑
ℎ∈𝜏𝑠

𝜃ℎ

)
𝑠∈𝑆

=
(
𝜂𝑠
)
𝑠∈𝑆.

We illustrate 𝑓 with the following example. For 𝑀 = 3 markers,

𝑆 =
{
{𝐴1}, {𝐴2}, {𝐴3}, {𝐴1, 𝐴2}, {𝐴1, 𝐴3}, {𝐴2, 𝐴3}, {𝐴1, 𝐴2, 𝐴3}

}
.

Moreover 𝜏𝐴1
= {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)}, 𝜏𝐴2

= {(1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 1, 0)}, 𝜏𝐴3
= {(1, 1, 1), (0, 1, 1),

(1, 0, 1), (0, 0, 1)}, 𝜏{𝐴1,𝐴2} = {(1, 1, 1), (1, 1, 0)}, 𝜏{𝐴1,𝐴3} = {(1, 1, 1), (1, 0, 1)}, 𝜏{𝐴2,𝐴3} = {(1, 1, 1), (0, 1, 1)}, and

𝜏{𝐴1,𝐴2,𝐴3} = (1, 1, 1). Hence

𝑓 (𝜽, 𝑆) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑔(𝜽𝜏𝐴1 , {𝐴1})
𝑔(𝜽𝜏𝐴2 , {𝐴2})
𝑔(𝜽𝜏𝐴3 , {𝐴3})
𝑔(𝜽𝜏{𝐴1 ,𝐴2} , {𝐴1, 𝐴2})
𝑔(𝜽𝜏{𝐴1 ,𝐴3} , {𝐴1, 𝐴3})
𝑔(𝜽𝜏{𝐴2 ,𝐴3} , {𝐴2, 𝐴3})
𝑔(𝜽𝜏{𝐴1 ,𝐴2 ,𝐴3} , {𝐴1, 𝐴2, 𝐴3})

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃111 + 𝜃110 + 𝜃101 + 𝜃100
𝜃111 + 𝜃110 + 𝜃011 + 𝜃010
𝜃111 + 𝜃011 + 𝜃101 + 𝜃001
𝜃111 + 𝜃110
𝜃111 + 𝜃101
𝜃111 + 𝜃011
𝜃111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜂1
𝜂2
𝜂3
𝜂12
𝜂13
𝜂23
𝜂123

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
We are thus computing the frequency of the “marginal” haplotypes over sets of singletons, pairs, and triplets of markers.

Lemma 2 (reparametrization 𝜼). Let 𝜼 = (𝜂𝑠)𝑠∈𝑆 = 𝑓 (𝜽, 𝑆) = {𝑔(𝜽𝜏𝑠 , 𝑠)}𝑠∈𝑆 , with 𝜼 ∈ Λ, and Λ = {𝜼 ∣ 𝜼 = 𝑓 (𝜽, 𝑆),𝜽 ∈ Θ}.
Then, 𝜼 is a reparametrization of 𝜽. That is, 𝑓 ∶ Θ → Λ is bijective.

Notice here that we limit 𝜼 to take values in the image of function 𝑓 . This guarantees that when a bijective function is used to

map 𝜼 back to 𝜽’s, those haplotype frequencies will be properly defined, that is 𝜽 ∈ (0, 1)𝑀 and
∑
ℎ∈𝐻 𝜃ℎ=1. Before we proceed

to prove Lemma 2, we introduce the inverse functions of 𝑔 and 𝑓 .

Mapping function 𝒈−𝟏

Let 𝐻∗ = {𝑣 ∈ {0, 1}𝑀 ∣ ⟨𝑣, 𝑣⟩ ≠ 0} the set of all possible haplotypes over 𝑀 loci except the haplotype containing only “0”

alleles. For a haplotype ℎ ∈ 𝐻∗, let 𝑠ℎ = {𝑠 ∈ 𝑆 ∣ ℎ[𝑗] = 1 ⇔ 𝐴𝑗 ∈ 𝑠} and 𝜏ℎ = {𝑠 ∈ 𝑆 ∣ 𝑠ℎ ⊆ 𝑠}. We define 𝑔−1 to be a func-

tion that takes as an input the parameter vector 𝜼 = {𝜂𝑠}𝑠∈𝑆 and outputs 𝜃ℎ, the frequency of haplotype ℎ, for ℎ ∈ 𝐻∗. That

is,

𝑔−1(𝜼, ℎ) =
∑
𝑠∈𝜏ℎ

(−1)|𝑠ℎ|+|𝑠|𝜂𝑠 = 𝜃ℎ.
We illustrate 𝑔−1 with the following example. Let 𝑀 = 3 markers and ℎ = (1, 0, 0). Then 𝑠ℎ = {𝐴1} and

𝜏ℎ = {{𝐴1, 𝐴2}, {𝐴1, 𝐴3}, {𝐴1, 𝐴2, 𝐴3}}. Thus 𝜃100 = (−1)1{(−1)1𝜂1 + (−1)2𝜂12 + (−1)2𝜂13 + (−1)3𝜂123} = 𝜂1 − 𝜂12 −
𝜂13 + 𝜂123 = 𝜂1 − (𝜂12 − 𝜂123) − (𝜂13 − 𝜂123) − 𝜂123 = 𝜂1 − 𝜃110 − 𝜃101 − 𝜃111.
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Mapping function 𝒇−𝟏

We define 𝑓−1 to be a function that takes as input the parameter vector 𝜼 and outputs the haplotype frequencies 𝜽. That is,

𝑓−1(𝜼,𝐻) =

[{
𝑔−1

(
𝜼𝑠ℎ , ℎ

)}
ℎ∈𝐻∗

, 1 −
∑
ℎ∈𝐻∗

𝑔−1
(
𝜼𝑠ℎ , ℎ

)]
.

Notice here that the frequency of the haplotype that contains the “0” allele at all the markers is computed as one minus the

sum of the frequencies of all other haplotypes, that is all ℎ ∈ 𝐻∗. This guarantees that
∑
ℎ∈𝐻 𝜃ℎ = 1.

We illustrate 𝑓−1 with the following example. For 𝑀 = 3 markers

𝐻∗ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)},

and

𝑠(1,0,0) = {𝐴1} and 𝜏(1,0,0) = {{𝐴1}, {𝐴1, 𝐴2}, {𝐴1, 𝐴3}, {𝐴1, 𝐴2, 𝐴3}}.

𝑠(0,1,0) = {𝐴2} and 𝜏(0,1,0) = {{𝐴2}, {𝐴1, 𝐴2}, {𝐴2, 𝐴3}, {𝐴1, 𝐴2, 𝐴3}},

𝑠(0,0,1) = {𝐴3} and 𝜏(0,0,1) = {{𝐴3}, {𝐴1, 𝐴3}, {𝐴2, 𝐴3}, {𝐴1, 𝐴2, 𝐴3}},

𝑠(1,1,0) = {𝐴1, 𝐴2} and 𝜏(1,1,0) = {{𝐴1, 𝐴2}, {𝐴1, 𝐴2, 𝐴3}},

𝑠(1,0,1) = {𝐴1, 𝐴3} and 𝜏(1,0,1) = {{𝐴1, 𝐴3}, {𝐴1, 𝐴2, 𝐴3}},

𝑠(0,1,1) = {𝐴2, 𝐴3} and 𝜏(0,1,1) = {{𝐴2, 𝐴3}, {𝐴1, 𝐴2, 𝐴3}},

𝑠(1,1,1) = {𝐴1, 𝐴2, 𝐴3} and 𝜏(1,1,1) = {𝐴1, 𝐴2, 𝐴3}.

Hence

𝑓−1(𝜼,𝐻) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃111
𝜃011
𝜃101
𝜃110
𝜃001
𝜃010
𝜃100
𝜃000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜂123
𝜂23 − 𝜂123
𝜂13 − 𝜂123
𝜂12 − 𝜂123
𝜂3 − 𝜂13 − 𝜂23 + 𝜂123
𝜂2 − 𝜂12 − 𝜂23 + 𝜂123
𝜂1 − 𝜂12 − 𝜂13 + 𝜂123
1 −

{∑
ℎ∈𝐻∗ 𝑔

−1
(
𝜼𝑠ℎ , ℎ

)}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now proceed with the proof of Lemma 2. To prove that 𝑓 is bijective we need to show that 𝑓 is both injective, that is

∀𝜽,𝜽∗ ∈ Θ, 𝑓 (𝜽,𝐻) = 𝑓 (𝜽∗,𝐻) ⇒ 𝜽 = 𝜽∗, and surjective, that is ∀𝜼 ∈ Λ,∃𝜽 ∈ Θ ∶ 𝑓 (𝜽,𝐻) = 𝜼. Now that we have defined

the inverse function of 𝑓 , it is easy to show that,

𝑓 (𝜽,𝐻) = 𝑓 (𝜽∗,𝐻) ⇒ 𝑓−1{𝑓 (𝜽,𝐻)} = 𝑓−1{𝑓 (𝜽∗,𝐻)} ⇒ 𝜽 = 𝜽∗

and ∀ arbitrary parameter vectors 𝜼 ∈ Λ we can choose 𝜽 = 𝑓−1(𝜼,𝐻) such that 𝑓 (𝜽, 𝑆) = 𝑓{𝑓−1(𝜼,𝐻), 𝑆} = 𝜼. This con-

cludes the proof of the bijectiveness of 𝑓 , which concludes also the proof of Lemma 2.

We now proceed to prove that 𝜹 is a reparametrization of 𝜼 and hence a reparametrization of 𝜽. First, we introduce functions

𝑐(𝜼, 𝑠) and 𝑞(𝜼, 𝑆).
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Mapping function 𝜿

Let 𝑃𝑠 refer to the family of sets of all possible partitions of a set of random variables 𝑠, 𝑠 ∈ 𝑆, into nonempty subsets (blocks).

So, for 𝑝 ∈ 𝑃𝑠, each 𝑏 ∈ 𝑝 is a block. Moreover, let 𝜏′
𝑠
= 2𝑠 ⧵ ∅ the power set of 𝑠 minus the empty set. We define 𝜅 to be a

function that takes as an input the parameter vector 𝜼 = (𝜂𝑠)𝑠∈𝑆 and outputs the joint cumulant of the set of random variables in

𝑠, which we denote by 𝛿𝑠. That is,

𝜅(𝜼, 𝑠) =
∑
𝑝∈𝑃𝑠

(−1)|𝑝|−1(|𝑝| − 1)!
∏
𝑏∈𝑝

E

(∏
𝐴∈𝑏

𝐴

)
=
∑
𝑝∈𝑃𝑠

(−1)|𝑝|−1(|𝑝| − 1)!
∏
𝑏∈𝑝

𝜂𝑏 = 𝛿𝑠.

We illustrate function 𝑐 with the following example. Let 𝑀 = 3 and 𝑠 = {𝐴1, 𝐴2, 𝐴3}. Then, 𝑃𝑠 = {{𝐴1, 𝐴2, 𝐴3},
{{𝐴1, 𝐴2}, {𝐴3}}, {{𝐴1, 𝐴3}, {𝐴2}}, {{𝐴2, 𝐴3}, {𝐴1}, }, {{𝐴1}, {𝐴2}, {𝐴3}}} and 𝜼𝜏′𝑠

= (𝜂1, 𝜂2, 𝜂3, 𝜂12, 𝜂13, 𝜂23, 𝜂123).
Thus, 𝜅(𝜼𝜏′𝑠 , 𝑠) = (−1)1−1(1 − 1)! 𝜂{𝐴1,𝐴2,𝐴3} + (−1)2−1(2 − 1)! 𝜂{𝐴1,𝐴2}𝜂{𝐴3} + (−1)2−1(2 − 1)!𝜂{𝐴1,𝐴3}𝜂{𝐴2} + (−1)2−1(2 −
1)! 𝜂{𝐴2,𝐴3}𝜂{𝐴1} + (−1)3−1(3 − 1)! 𝜂{𝐴1}𝜂{𝐴2}𝜂{𝐴3} = 𝜂123 + 𝜂12𝜂3 + 𝜂13𝜂2 + 𝜂23𝜂1 + 2 𝜂1𝜂2𝜂3

Mapping function 𝒒

We define 𝑞 to be a function that takes as input the parameter vector 𝜼 = (𝜂𝑠)𝑠∈𝑆 and outputs the joint cumulant of random

variables in 𝑠 for all 𝑠 ∈ 𝑆. That is,

𝑞(𝜼, 𝑆) =
{
𝜅

(
𝜼𝜏′𝑠
, 𝑠

)}
𝑠∈𝑆

=
{
𝛿𝑠
}
𝑠∈𝑆.

We illustrate 𝑞 with the following example. For 𝑀 = 3, 𝑃{𝐴1} = {𝐴1}, 𝑃{𝐴2} = {𝐴2}, 𝑃{𝐴3} = {𝐴3}, 𝑃{𝐴1,𝐴2} =
{{𝐴1, 𝐴2}, {{𝐴1}, {𝐴2}}, 𝑃{𝐴1,𝐴3} = {{𝐴1, 𝐴3}, {{𝐴1}, {𝐴3}}, 𝑃{𝐴2,𝐴3} = {{𝐴2, 𝐴3}, {{𝐴2}, {𝐴3}}, and 𝑃{𝐴1,𝐴2,𝐴3} =
{{𝐴1, 𝐴2, 𝐴3}, {{𝐴1, 𝐴2}, {𝐴3}}, {{𝐴1, 𝐴3}, {𝐴2}}, {{𝐴2, 𝐴3}, {𝐴1}}, {{𝐴1}, {𝐴2}, {𝐴3}}}.

Hence 𝑞(𝜼, 𝑆) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜂1
𝜂2
𝜂3
𝜂12 − 𝜂1𝜂2
𝜂13 − 𝜂1𝜂3
𝜂23 − 𝜂2𝜂3
𝜂123 − 𝜂12𝜂3 − 𝜂13𝜂2 − 𝜂23𝜂1 + 2𝜂1𝜂2𝜂3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We are thus computing the joint cumulant of all possible sets of singletons, pairs, and triplets of markers.

Lemma 3 (reparametrization 𝜹). Let 𝜹 = (𝛿𝑠)𝑠∈𝑆 = 𝑞(𝜼, 𝑆) = {𝜅(𝜼𝜏′𝑠 , 𝑠)}𝑠∈𝑆 , with 𝜹 ∈ Δ and Δ = {𝜹 ∣ 𝜹 = 𝑞◦𝑓 (𝜽, 𝑆),𝜽 ∈ Θ}.
Then 𝜹 is a reparametrization of 𝜼. That is, 𝑞 ∶ Λ → Δ is a bijective mapping function.

Notice here that we limit 𝜹 to take values in the image of function 𝑞. This guarantees that when a bijective function is used

to map 𝜹 back to 𝜼 and then back to 𝜽’s, those haplotype frequencies will be properly defined. Before we proceed to prove

Lemma 3, we introduce the inverse functions of 𝑐 and 𝑞.

Mapping function 𝜿−𝟏

We define 𝜅−1 to be a function that takes as an input the parameter vector 𝜹 = (𝛿𝑠)𝑠∈𝑆 and outputs 𝜂𝑠, the joint expectation of

the set of random variables in 𝑠. That is,

𝜅−1(𝜹, 𝑠) = 𝛿𝑠 −
∑

𝑝∈𝑃𝑠⧵𝑠
(−1)|𝑝|(|𝑝| − 1)!

∏
𝑏∈𝑝

⎧⎪⎨⎪⎩𝛿𝑏 −
∑

𝑝′∈𝑃𝑏⧵𝑏
(−1)|𝑝′|(||𝑝′|| − 1)!

∏
𝑏′∈𝑝′

𝛿𝑏′

⎫⎪⎬⎪⎭.
We illustrate function 𝜅−1 with the following example. Let 𝑀 = 3 and 𝑠 = {𝐴1, 𝐴2, 𝐴3}. Then, 𝜹𝜏′𝑠

=
(𝛿1, 𝛿2, 𝛿3, 𝛿12, 𝛿13, 𝛿23, 𝛿123). Hence,

𝜅−1
(
𝜹𝜏′𝑠
, 𝑠

)
= 𝛿{𝐴1,𝐴2,𝐴3} + (−1)2(2 − 1)!

(
𝛿{𝐴1,𝐴2} + (−1)2(2 − 1)! 𝛿𝐴1

𝛿𝐴2

)
𝛿𝐴3

+ (−1)2(2 − 1)!
(
𝛿{𝐴1,𝐴3} + (−1)2(2 − 1)! 𝛿𝐴1

𝛿𝐴3

)
𝛿𝐴2
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+ (−1)2(2 − 1)!
(
𝛿{𝐴2,𝐴3} + (−1)2(2 − 1)! 𝛿𝐴2

𝛿𝐴3

)
𝛿𝐴1

+ (−1)3(3 − 1)! 𝛿𝐴1
𝛿𝐴2
𝛿𝐴3

= 𝛿{𝐴1,𝐴2,𝐴3} +
(
𝛿{𝐴1,𝐴2} + 𝛿𝐴1

𝛿𝐴2

)
𝛿𝐴3

+
(
𝛿{𝐴1,𝐴3} + 𝛿𝐴1

𝛿𝐴3

)
𝛿𝐴2

+
(
𝛿{𝐴2,𝐴3} + 𝛿𝐴2

𝛿𝐴3

)
𝛿𝐴1

− 2𝛿𝐴1
𝛿𝐴2
𝛿𝐴3

Which is the same expression we would get if we used the definition of 𝛿{𝐴1,𝐴2,𝐴3}, and solved for 𝜂123, that is

𝜂123 = 𝛿{𝐴1,𝐴2,𝐴3} + 𝜂12𝜂3 + 𝜂13𝜂2 + 𝜂23𝜂1 − 2𝜂1𝜂2𝜂3 = 𝛿{𝐴1,𝐴2,𝐴3} + (𝛿{𝐴1,𝐴2} + 𝛿𝐴1
𝛿𝐴2

)𝛿𝐴3
+ (𝛿{𝐴1,𝐴3} + 𝛿𝐴1

𝛿𝐴3
)𝛿𝐴2

+
(𝛿{𝐴2,𝐴3} + 𝛿𝐴2

𝛿𝐴3
)𝛿𝐴1

− 2𝛿𝐴1
𝛿𝐴2
𝛿𝐴3

.

For a set {𝐴1, 𝐴2, 𝐴3} of random variables, we will write 𝛿123 as a shorthand of 𝛿{𝐴1,𝐴2,𝐴3}.

Mapping function 𝒒−𝟏

We define 𝑞−1 to be a function that takes as input the parameter vector 𝜹 = (𝛿𝑠)𝑠∈𝑆 and outputs 𝜼 = (𝜂𝑠)𝑠∈𝑆 , the joint expectation

of the set of random variables in 𝑠 for all 𝑠 ∈ 𝑆. That is,

𝑞−1(𝜹, 𝑆) =
{
𝜅−1

(
𝜹𝜏′𝑠
, 𝑠

)}
𝑠∈𝑆

=
(
𝜂𝑠
)
𝑠∈𝑆.

We illustrate 𝑞−1 with the following example. For 𝑀 = 3,

𝑞−1(𝜹, 𝑆) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛿1
𝛿2
𝛿3
𝛿12 + 𝛿1𝛿2
𝛿13 + 𝛿1𝛿3
𝛿23 + 𝛿2𝛿3
𝛿123 + 𝛿12𝛿3 + 𝛿13𝛿2 + 𝛿23𝛿1 − 2𝛿1𝛿2𝛿3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜂1
𝜂2
𝜂3
𝜂12
𝜂13
𝜂23
𝜂123

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We now proceed with the proof of Lemma 3. To prove that 𝑞 is bijective we need to show that 𝑞 is both injective, that is

∀𝜼, 𝜼∗ ∈ Λ, 𝑞(𝜼, 𝑆) = 𝑞(𝜼∗, 𝑆) ⇒ 𝜼 = 𝜼∗, and surjective, that is ∀𝜹 ∈ Δ,∃𝜼 ∈ Λ ∶ 𝑞(𝜼, 𝑆) = 𝜹. Now that we have defined the

inverse function of 𝑞, it is easy to show that, 𝑞(𝜼, 𝑆) = 𝑞(𝜼∗, 𝑆) ⇒ 𝑞−1{𝑞(𝜼, 𝑆)} = 𝑞−1{𝑞(𝜼∗, 𝑆)} ⇒ 𝜼 = 𝜼∗ and for all arbitrary

parameter vectors 𝜹 ∈ Δ, we can choose 𝜼 = 𝑞−1(𝜹, 𝑆) such that 𝑞(𝜼, 𝑆) = 𝑞{𝑞−1(𝜹, 𝑆), 𝑆} = 𝜹. This concludes the proof of the

bijectiveness of 𝑞, which concludes also the proof of Lemma 3 and thus of Lemma 1.

A.2 Standardized parameters

Recall that 𝛿𝐴 can be expressed as

𝛿𝐴 = 𝜂𝐴 −
∑

𝑝∈𝑃𝐴⧵𝐴
(−1)|𝑝|(|𝑝| − 1)!

∏
𝑏∈𝑝

𝜂𝑏 = 𝜂𝐴 −
∑

𝑝∈𝑃𝐴⧵𝐴
𝑅𝛿(𝑝) = 𝜂𝐴 −𝑅𝛿

where 𝑅𝛿(𝑝)’s depend on loci 𝑏 ∈ 𝑝 with |𝑏| < 𝑀 . These rest terms 𝑅𝛿(𝑝) are considered fixed and bounds for 𝛿𝐴 are to be

determined completely analogous to the two locus case based on 𝜂𝐴.

First, 𝜂𝐴 is upper bound by all lower order 𝜂𝑠 and lower bound by 0. That is

𝜂𝐴 ≤ 𝑈1(𝐴) ∶= min{𝜂𝑠 ∣ 𝑠 ∈ 𝑆 ⧵ 𝐴}.

𝜂𝐴 ≥ 𝐿1(𝐴) = 0

Second, further constraints are imposed by the relationship between 𝜂𝐴 and lower order haplotype frequencies 𝜂𝑠. It is straight-

forward to see that 𝜂𝑠 can be restated as:

𝜂𝑠 = 𝑔(𝜃, 𝑠) = 𝜃ℎ𝑠 +
∑

𝑡∈𝑆,𝑡⊃𝑠
(−1)|𝑡|−|𝑠|−1𝜂𝑡
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Here, 𝜃ℎ𝑠 is the frequency for haplotype ℎ𝑠 = {𝑣 ∈ {0, 1}𝑀 ∣ 𝑣[𝑗] ⇔ 𝐴𝑗 ∈ 𝑠}, the haplotype with 𝑀 loci with 1-alleles at

loci 𝑠 and 0-alleles elsewhere. Note that all the sums above include 𝜂𝐴. Solving for 𝜂𝐴 gives us:

𝜂𝐴 = (−1)|𝐴|−|𝑠|−1
{
𝜂𝑠 − 𝜃ℎ𝑠 −

∑
𝑡∈𝑆⧵𝐴,𝑡⊃𝑠

(−1)|𝑡|−|𝑠|−1𝜂𝑡
}

= (−1)|𝐴|−|𝑠|
{
𝜃ℎ𝑠 −

∑
𝑡∈𝑆⧵𝐴,𝑡⊇𝑠

(−1)|𝑡|−|𝑠|𝜂𝑡
}

= 𝜎𝑠
(
𝜃ℎ𝑠 −𝑅𝑠

)
,

where 𝜎𝑠 = (−1)|𝐴|−|𝑠| and 𝑅𝑠 =
∑
𝑡∈𝑆⧵𝐴,𝑡⊇𝑠(−1)|𝑡|−|𝑠|𝜂𝑡. Each 𝜂𝑠 therefore contributes an upper and lower bound to 𝜂𝐴 by

choosing 𝜃ℎ𝑠 = 0 or 𝜃ℎ𝑠 = 1:

𝜂𝐴 ≤ 𝑈𝑠 ∶=

{
max(1 −𝑅𝑠, 0) if 𝜎𝑠 ≥ 0 and

min(−𝑅𝑠, 0) if 𝜎𝑠 < 0,

and

𝜂𝐴 ≥ 𝐿𝑠 ∶=

{
max(−𝑅𝑠, 0) if 𝜎𝑠 ≥ 0 and

min(1 − 𝑅𝑠, 0) if 𝜎𝑠 < 0
.

With 𝑈2(𝐴) ∶= min{𝑈𝑠 ∣ 𝑠 ∈ 𝑆 ⧵ 𝐴} and 𝐿2(𝐴) ∶= max{𝐿𝑠 ∣ 𝑠 ∈ 𝑆 ⧵ 𝐴}, we get

𝜂max
𝐴

∶= min{𝑈1(𝐴), 𝑈2(𝐴)},

𝜂min
𝐴

∶= max{𝐿1(𝐴), 𝐿2(𝐴)}.

Then 𝜂max
𝐴

and 𝜂min
𝐴

can be used as above to standardize 𝛿𝐴.

A.3 Additional Tables

T A B L E A . 1 Linkage disequilibrium parameters in the cases (Ca), controls (Co), and pool (P) of cases and controls samples for each of the

four triplets identified from the WTCCC data analysis

Triplet 1 Triplet 2 Triplet 3 Triplet 4
P Ca Co P Ca Co P Ca Co P Ca Co

𝛿1 0.239 0.264 0.223 0.239 0.264 0.223 0.350 0.324 0.366 0.213 0.234 0.199

𝛿2 0.126 0.120 0.130 0.091 0.108 0.081 0.207 0.191 0.218 0.401 0.376 0.417

𝛿3 0.091 0.108 0.081 0.314 0.308 0.319 0.247 0.276 0.229 0.199 0.209 0.193

𝛿12 −0.374 −0.502 −0.279 0.111 0.135 0.081 0.712 0.696 0.720 −0.297 −0.268 −0.306

𝛿13 0.111 0.135 0.081 −0.112 −0.199 −0.046 0.103 0.033 0.170 −0.759 −0.790 −0.739

𝛿23 −0.544 −0.382 −0.663 0.363 0.351 0.377 −0.105 −0.174 −0.040 0.227 0.088 0.335

𝛿123 0.172 0.084 0.229 −0.697 −0.665 −0.716 −0.160 −0.119 −0.190 0.203 0.521 −0.126
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T A B L E A . 2 Corresponding haplotype frequencies for SNPs in linkage equilibrium (Scenario 1), and SNPs in LD (Scenario 2)

Haplotype Scenario 1 Scenario 2
𝜃0000 0.292 0.416

𝜃0001 0.239 0.183

𝜃0010 0.135 0.066

𝜃0011 0.111 0.126

𝜃0100 0.065 0.022

𝜃0101 0.054 0.042

𝜃0110 0.030 0.029

𝜃0111 0.025 0.065

𝜃1000 0.015 0.001

𝜃1001 0.013 0.008

𝜃1010 0.007 0.006

𝜃1011 0.006 0.010

𝜃1100 0.003 0.007

𝜃1101 0.003 0.005

𝜃1110 0.002 0.003

𝜃1111 0.001 0.011


