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Abstract

Excessive use of cocaine is known to induce changes in brain white and gray matter. It

is unknown whether the extent of these changes is related to individual differences in

vulnerability to cocaine addiction. One factor increasing vulnerability involves reduced

expression of the serotonin transporter (5‐HTT). Human studies have shown that

inherited 5‐HTT downregulation is associated with structural changes in the brain.

These genotype‐related structural changes may contribute to risk for cocaine addic-

tion. Here, we tested this idea by using ultrahigh‐resolution structural magnetic reso-

nance imaging (MRI) on postmortem tissue of 5‐HTT−/− and wild‐type (5‐HTT+/+) rats

with a history of long access to cocaine or sucrose (control) self‐administration. We

found that 5‐HTT−/− rats, compared with wild‐type control animals, self‐administered

more cocaine, but not sucrose, under long‐access conditions. Ultrahigh‐resolution

structural MRI subsequently revealed that, independent of sucrose or cocaine self‐

administration, 5‐HTT−/− rats had a smaller amygdala. Moreover, we found an interac-

tion between genotype and type of reward for dorsal raphe nucleus volume. The data

point to an important but differential role of the amygdala and dorsal raphe nucleus in

5‐HTT genotype–dependent vulnerability to cocaine addiction.

KEYWORDS

cocaine self‐administration, serotonin transporter knockout rat, structural MRI
1 | INTRODUCTION

Cocaine use remains a pressing health and societal concern. According

to the “European Drug Report 2017” of the European Monitoring Cen-

tre for Drugs and Drug Addiction, 17.5 million Europeans (5.2%) have
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taken cocaine in their lifetime, making it the second most used illicit

drug of abuse in Europe after cannabis.1 Fundamental understanding

of cocaine addiction–related psychopathology is essential for improve-

ments in the management of the disorder. It has been well established

that heavy cocaine use can lead to changes in brain gray2,3 and white

matter (WM).4,5 There are, however, substantial individual differences

in these structural changes, to which various factors contribute,
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including predisposition.6 One factor shaping predisposition involves

the short (s)‐allele of the serotonin transporter (5‐HTT)–linked poly-

morphic region (5‐HTTLPR).7 This polymorphism is particularly known

for its association with affective disorders like depression8 but has also

been linked to psychostimulant addiction.9-11 The 5‐HTTLPR s‐allele

goes along with lower levels of 5‐HTT messenger RNA (mRNA) tran-

scription,12 implying that reduced 5‐HTT expression and possibly

increased synaptic levels of serotonin (5‐HT) have downstream effects

on the brain that contribute to the predisposition.

Of interest, structural and functional magnetic resonance imaging

(MRI) studies, which bring the advantage of brain‐wide analyses,

revealed that 5‐HTTLPR s‐allele carriers display smaller gray matter

(GM) volumes in the amygdala (AMY),13-15 hippocampus (Hip),13,16,17

orbital frontal cortex (OFC),17,18 anterior cingulate cortex (ACC),19,20

and insula21 compared with homozygous long (l)‐allele carriers. Addi-

tionally, diffusion tensor imaging (DTI) measurements have revealed

reduced fractional anisotropy (FA), pointing towards reduced fiber

density, reduced axonal diameter, or reduced myelination,22 in the

uncinate fasciculus23 of healthy s‐allele carriers. Interestingly, many

of these brain regions that differ between s‐ and l‐allele carriers have

also been implicated in addiction, suggesting that some of the brain

regions mentioned above may contribute to risk for psychostimulant

addiction in s‐allele carriers.24

To investigate this further and keep control over environmental fac-

tors that may contribute to structural changes in the brain unrelated to

drug exposure (eg life stress), rodent models are very helpful. 5‐HTT

knockout (5‐HTT−/−) rats are a well‐established model to study the

consequences of the 5‐HTTLPR polymorphism (Hariri et al25). Of

particular interest for this study, 5‐HTT−/− rats show higher extracellular

levels of 5‐HT in the Hip and nucleus accumbens (NAc),26 increased

anxiety‐ and depression‐like behavior,27,28 enhanced cocaine‐induced

conditioned place preference (CPP), and most importantly, increased

intravenous cocaine self‐administration under both short‐29 and long‐

access conditions.30,31 5‐HTT−/− rats also display an increased motiva-

tion for cocaine,28,29 an impairment in the extinction of cocaine‐seeking

behavior,29,30 and insensitivity to punishment.30 These latter three

behavioral manifestations correspond to the three criteria that have

been proposed to assess addiction‐like behavior in rats.32 These findings

together suggest that 5‐HTT−/− rats show higher levels of cocaine self‐

administration to “self‐medicate” their negative emotional state. In sup-

port, we found that increased long‐access cocaine self‐administration in

5‐HTT−/− rats is associated with increased anxiety and with changes in

corticotropin‐releasing factor (CRF) levels in the AMY. The latter is a

key feature of the negative reinforcement theory of addiction.33

Therefore, we postulated that increased long‐access cocaine self‐

administration in 5‐HTT−/− rats is driven by negative reinforcement.

So far, only one animal imaging study has directly investigated the

relationship between reduced 5‐HTT expression, structural brain con-

nectivity, and sensitivity to cocaine. In this study, using functional MRI

and structural DTI, Van der Marel and coworkers34 did not observe

structural differences between cocaine‐naive 5‐HTT−/− and 5‐HTT+/+

rats, with the exception of reduced FA values in the genu of the corpus

callosum (CC) of 5‐HTT−/− rats. In response to an acute cocaine chal-

lenge, brain activity patterns were also comparable for both geno-

types.34 Despite these negative findings for the effects of acute
passive exposure to cocaine, chronic voluntary use to the drug may still

be associated with structural changes in the brain, not least because of

the distinct neural sequelae of active versus passive drug exposure (see,

eg, Jacobs et al35). Because we expected that any structural differences

between 5‐HTT+/+ and 5‐HTT−/− rats are more subtle than could be

detected in Van der Marel's study, we here used ultrahigh‐resolution

(75‐μm isotropic voxels vs 250 μm in Van der Marel's study) structural

MRI on postmortem fixed brain tissue of 5‐HTT−/− and 5‐HTT+/+ rats

after long access to cocaine or sucrose self‐administration, in a

brain‐wide, hypothesis‐free manner. In line with previous (MRI) studies

in rats and to rule out the effects of operant training, sucrose

self‐administration was chosen as control.36,37 Because rats that self‐

administer sucrose undergo the exact same handlings as rats that self‐

administer cocaine, such as surgery, catheter flushing, social isolation,

and repeated testing, structural differences can only be attributed to

differences in the type of reward. Hence, comparing structural changes

in the brain between rats self‐administering sucrose and those self‐

administering cocaine informs about the impact of repeated cocaine

intake specifically. Since both the 5‐HTTLPR s‐allele (see above) and

cocaine addiction are associated with GM volume decreases in the

AMY, insula, and prefrontal areas,38-40 we hypothesized that long‐

access cocaine versus sucrose self‐administration is associated with

structural changes specifically in these areas.
2 | MATERIALS AND METHODS

2.1 | Animals

The 5‐HTT knockout rat line was generated by N‐ethyl‐N‐nitrosourea

(ENU) mutagenesis as described by Smits et al41 and Homberg et al.27

Male 5‐HTT+/+ and 5‐HTT−/− rats were generated through heterozy-

gous breeding. All rats were housed in Makrolon cages (Type III H

Tecnilab‐BMI, Someren, The Netherlands) measuring 40 × 25 × 18 cm

(l ×w × h) in climate‐controlled rooms at 21 ± 1°C and 55 ± 15% relative

humidity. Rats that underwent behavioral experiments were housed

under a reversed 12‐hour day‐night cycle (lights on at 7:00 PM). Food

and water were available ad libitum except during self‐administration

sessions. Animals were divided into two groups: cocaine (5‐HTT+/+

[n = 11] and 5‐HTT−/− [n = 7]) or sucrose (5‐HTT+/+ [n = 9] and 5‐

HTT−/− [n = 8]) self‐administration. All animal experiments were

approved by the Animal Ethics Committee of Utrecht University and

were conducted in accordance with Dutch laws (Wet op de

Dierproeven, 1996) and European regulations (Guideline 86/609/EEC).
2.2 | Surgery

Rats (PND 90‐120) that underwent sucrose and cocaine self‐

administration were subjected to surgery as previously described.42,43

The animals were anesthetized using 0.8 mL/kg im Hypnorm

(0.315 mg/mL fentanyl citrate, 10 mg/mL fluanisone, VetaPharma Ltd)

and 0.5 mL/kg ip Dormicum (1 mg/mL midazolam, Roche). Rats were

then implanted with a single catheter (Camcaths, Ely, UK) consisting

of a 22‐g stainless steel cannula attached to a nylon mesh and silastic

tubing with a 0.30‐mm internal diameter. The catheter was placed in
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the right jugular vein and aimed towards the superior vena cava. The

mesh at the end of the catheter was sutured under the skin of the dor-

sum. Rimadyl (50mg/kg, Pfizer) and gentamicin (50mg/kg) were admin-

istered subcutaneously 15 minutes prior and 24 and 48 hours after

surgery. Starting 2 days after surgery, catheters were flushed daily with

0.3‐mL sterile saline containing heparin (50 IU/mL, LEO Pharma) and

gentamicin (10 mg/mL, Life Technologies). The animals were allowed

at least 7 days to recover from surgery.

2.3 | Apparatus

Self‐administration experiments were conducted in operant‐

conditioning chambers measuring 29.5 × 24 × 25 cm, l × w × h (Med

Associates, St Albans City, USA). The floor of the boxes consisted of

stainless steel rods over an aluminum waste pan, the left and right

walls consisted of aluminum, and the back wall, top, and door at the

front consisted of clear polycarbonate. The boxes were placed in

sound‐attenuating cubicles, which were equipped with a ventilation

fan that produced a constant background noise. Two 4.8‐cm‐wide

retractable levers were placed on the right wall, 11.7 cm apart, and

6.0 cm from the grid floor. Positioned above each lever was a cue light

(28 V, 100 mA), and a house light (28 V, 100 mA) was placed in the top

far corner on the opposite wall. The food cup for delivering sucrose

pellets was located on the right wall between the levers. Cocaine infu-

sions were controlled by an infusion pump placed on top of the cubi-

cles. During the cocaine self‐administration sessions, polyethylene

tubing ran from the syringe placed in the infusion pump via a swivel

to the cannula on the animals' back. In the operant chamber, tubing

was shielded with a metal spring. The experiment was controlled and

recorded by MEDState Notation using MED‐PC for Windows.43,44

2.4 | Experimental procedures

2.4.1 | Long‐access cocaine and sucrose
self‐administration

After recovery from surgery, rats were placed in the administration

boxes and connected to the syringe pump. The session started when

both the levers extended into the box and the house light was turned

on, which remained on during the entire session. During the self‐

administration sessions, two levers were present, an active lever and

an inactive lever. The left or right position of the active and inactive

levers was counterbalanced for individual animals. Pressing the active

lever resulted in a reward consisting of either a 45‐mg sucrose pellet

or a 0.5‐mg/kg cocaine hydrochloride infusion (volume 0.1 mg/kg),

depending on the experimental group, under an FR1 schedule of rein-

forcement.31 Reward delivery was accompanied by illumination of the

cue light for 30 seconds. During this period, active lever responding

did not result in reward but was recorded as a response. Incorrect lever

responding was recorded but had no programmed consequences. To

prevent cocaine overdose, the maximum amount of rewards was set

to 25 for the first three sessions, 30 for the next session, 50 for session

6, and 150 for the remainder of the experiment. When the maximum

amount of rewards was reached, both levers retracted, prohibiting the

rats from responding further. Rats were trained for 5 days a week for
6 hours a day, ie, long‐access sessions, according to Ahmed and Koob.45

In the 19th session, rats were tested under a progressive ratio (PR)

schedule of reinforcement, to measure motivation for cocaine or

sucrose.46 Under the PR schedule, the number of active lever presses

to receive reward increases exponentially according to the following

equation47: required active lever presses = (5 × e[injection number×0.2]) − 5.

The session ended when the rats did not earn a reward for 30 minutes.

On day 20 of testing, the rats were switched back to an FR1 schedule of

reinforcement for 6 hours.31

2.4.2 | Transcardial perfusion and tissue preparation

The rats were anesthetized 24 hours after self‐administration session

20 using 120 mg/kg of pentobarbital (AST pharma) injected intraperi-

toneally and transcardially perfused using 0.1M phosphate‐buffered

saline (PBS) (pH = 7.3) followed by 4% paraformaldehyde (PFA,

Sigma‐Aldrich (St. Louis, Missouri USA), pH = 7.2). Heads

(brain + skull + skin + muscle) were postfixed in 4% PFA overnight at

4°C and stored in PBS at 4°C. After fixation, the skin and muscle were

removed, and the brain was retained in the skull. The perfusion‐fixed

skulls were inserted in a custom‐made holder and immersed in non-

magnetic and magnetic resonance (MR) invisible oil (Fomblin, Solvay

Solexis) for MRI experiments (see below).

2.4.3 | High‐resolution structural MRI

Structural MRI was performed using a 9.4‐T horizontal bore MR sys-

tem (Varian, Palo Alto, California) equipped with a 6‐cm ID gradient

insert with gradients up to 1 T/m. A custom‐made solenoid coil with

an internal diameter of 2.6 cm was used for excitation and reception

of the MR signal. DTI was performed using a 3‐D diffusion‐weighted

spin‐echo sequence with an isotropic spatial resolution of 150 μm.

The read and phase encode directions were acquired using eight‐shot

echo‐planar imaging (EPI) encoding, and the second phase direction

was linearly phase encoded (repetition time [TR]/echo time [TE]

500/32.4 ms, 220 × 128 × 108 matrix, field of view [FOV]

33 × 19.2 × × 16 mm3, Δ/δ 15/4 ms, b 3842 s/mm2, 60 diffusion‐

weighted images in noncollinear directions and four images without

diffusion weighting [b = 0], number of averages 1, total number of

images 64). Subsequently, four 3‐D balanced steady‐state free pre-

cession (BSSFP) images were acquired with an isotropic spatial reso-

lution of 75 μm (TR/TE 15.4/7.7 ms, flip angle 40°,

426 × 214 × 256 matrix, FOV 32 × 16 × 19 mm3, 12 averages, pulse

angle shift 0°, 90°, 180°, and 270°). The four images were added as

complex images to obtain a single BSSFP image with reduced banding

artifacts in the brain, which will be referred to as an anatomical MR

image. Total acquisition time was 11 hours and 15 minutes.

2.4.4 | Morphometric analysis

Anatomical MR images were used to obtain brain masks using a brain

extraction tool (BET2) as implemented in the FMRIB Software Library

(FSL).48 The brain‐extracted images were subsequently linearly

registered to one of the brain images from the control group using

FSL's linear registration tool FLIRT,49,50 followed by the nonrigid
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registration tool FNIRT. A template image was generated by nonrigid

registration of the images of the control group to a starting template

(one representative image of the control group) followed by averaging

all the transformed images to the final template.

Segmentation of GM, WM, and cerebrospinal fluid (CSF) in the

regions of interest (ROIs) was accomplished through thresholding.

In the anatomical images, thresholding was based on signal intensity.

All anatomical images were normalized by setting the median signal

intensity of the motor cortex to 1. Subsequently, tissue signal

intensities lower than 0.85, between 0.85 and 1.35, and higher than

1.35 were defined as GM, WM, and CSF, respectively.
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equal to 0.34 × 10−9 mm2/s. CSF was defined as tissue with FA below

or equal to 0.25 and MD above 0.34 × 10−9 mm2/s.
2.5 | Statistics

All statistical analyses were performed by using IBM SPSS version 24

(IBM software). Day‐to‐day consumption of cocaine/sucrose was ana-

lyzed using a genotype (two levels) × session (19 levels) repeated‐

measures analysis of variance (ANOVA), while total rewards consumed

and PR breakpoint were analyzed using independent two‐sided t tests.

Breakpoint is defined as the ratio at which the rats fail to complete the

response requirement, which is equivalent to the number of rewards

earned. All MRI variables were analyzed using multivariate ANOVAs

using the Benjamini‐Hochberg correction for multiple testing on all

acquired P values.52 The level of significance was set at P < 0.05

(NS = nonsignificant).
FIGURE 2 Whole‐brain differences in WM and CSF volume. All data
are represented as mean ± SEM. White bars represent 5‐HTT+/+ rats
while black bars represent 5‐HTT−/− rats. A significant genotype (G)
effect was observed for WM A, and CSF B. Post hoc analysis
revealed the effects were caused by lower WM and CSF volumes in 5‐
HTT−/− rats from the control cohort. Cocaine self‐administration
reduced WM volumes in 5‐HTT+/+ rats. CSF: cerebrospinal fluid; 5‐
HTT: serotonin transporter; SEM: standard error of the mean; WM:
white matter. *P < 0.05 (versus 5‐HTT+/+). #P < 0.1 (versus 5‐HTT+/+)
3 | RESULTS

3.1 | Long‐access cocaine and sucrose
self‐administration

Figure 1 shows sucrose and cocaine‐taking behavior across sessions.

In the sucrose cohort (Figure 1A,C,E), no significant genotype

differences in self‐administration over the 6 hours–lasting sessions

or PR performance were observed (self‐administration [Figure 1A]:

F 18,288 = 1.426, NS; PR [Figure 1E]: t17 = 0.101, NS). However, when

all the rewards received during the 19 self‐administration sessions

were pooled, 5‐HTT−/− animals consumed slightly less sucrose pellets

compared with their 5‐HTT+/+ counterparts (Figure 1C:

t10.645 = −2.922, P < 0.05). In contrast, in the cocaine cohort, 5‐

HTT−/− rats self‐administered more cocaine over the 6 hours–lasting

sessions (Figure 1B: F 18,288 = 2.164, P < 0.01) and received more

cocaine throughout the whole experiment compared with 5‐HTT+/+

rats (Figure 1D: t11.746 = 3.271, P < 0.01). Additionally, the 5‐HTT−/−

rats were also more motivated to take cocaine as measured under a

PR schedule of reinforcement (Figure 1F: t14.283 = 2.212, P < 0.05).
3.2 | Structural MRI analysis

3.2.1 | Structural analysis of GM, WM, and CSF

Whole‐brain GM, WM, and CSF volume, MD, and FA values for 5‐

HTT+/+ and 5‐HTT−/− rats after sucrose or cocaine self‐administration

are displayed in Table 1. A genotype effect was observed for CSF and

WM volume (WM: Figure 2A, F 1,31 = 4.962, P < 0.05; CSF: Figure 2B,

F 1,31 = 5.481, P < 0.05). Independent‐samples t test post hoc analysis

revealed that this genotype effect in the WM was caused by a signif-

icant reduction of WM volume in the 5‐HTT−/− rats in the sucrose

cohort (see Figure 2A: t15 = −2.780, P < 0.05). Post hoc analysis of

the CSF volume failed to reach statistical significance in either cohort,

although a trend towards significantly smaller CSF volume was

observed in 5‐HTT−/− rats of the sucrose, but not cocaine group (see

Figure 2B; sucrose: t11.829 = −1.970, P = 0.073; cocaine: t16 = 1.349,
NS). Additionally, when not correcting for multiple testing, a significant

genotype × treatment interaction was observed for WM volume (for

statistics, see Table 1).

3.2.2 | Structural analysis of the predefined ROIs

Volume, MD, and FA values of the 10 predefined ROIs for 5‐HTT+/+

and 5‐HTT−/− rats after sucrose or cocaine self‐administration are

displayed in Table 2. Figure 3 presents the images on which these

values were based. Without correction for multiple testing, CC volume

was, independently of the type of reward, smaller in 5‐HTT−/− versus

5‐HTT+/+ rats, and an additional significant effect of genotype was

observed in the AMY (for statistics, see Table 2). After the

Benjamini‐Hochberg correction, 5‐HTT−/− rats showed a significantly

lower AMY volume (Figure 4A: genotype effect, F 1,31 = 25.911,

P < 0.001). Post hoc independent t testing revealed that this effect

was significant in both cohorts (sucrose: t15 = −3.910, P < 0.001;

cocaine: t16 = −3.241, P < 0.01). A significant genotype × treatment

interactionwas observed for DRN volume (Figure 4B: genotype × treat-

ment interaction, F 1,31 = 11.770, P < 0.01). Post hoc independent t

test analysis of this effect revealed a significant lower DRN volume

in the control 5‐HTT−/− rats receiving sucrose compared with 5‐

HTT+/+ rats of the same cohort (t15 = −3.003, P < 0.01). In addition,
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FIGURE 3 Overview of images for serotonin transporter (5‐HTT)+/+ and 5‐HTT−/− rats with a history of sucrose or cocaine self‐administration.
A, Reference brains and region‐of‐interest (ROI) overlays. B, Volumetric images. C, Mean diffusivity (MD) images. D, Fractional anisotropy (FA)
images
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long‐access cocaine self‐administration reduced DRN volume in 5‐

HTT+/+, but not 5‐HTT−/−, rats (t18 = 3.597, P < 0.01).
4 | DISCUSSION

We observed that in 5‐HTT−/−, compared with 5‐HTT+/+, rats AMY

volume was reduced, regardless of reward type. However, no signifi-

cant microstructure or volume changes in prefrontal cortical areas

were observed. Furthermore, we found an interaction between

reward type and genotype for the volume of the DRN and a significant

positive correlation between DRN volume and the motivation to self‐

administer cocaine, but not sucrose. These findings suggest not only

that long access to cocaine leads to neurotoxicity53 but also that struc-

tural changes in response to cocaine can be influenced by 5‐HTT

genetic variation.

5‐HTT−/− rats self‐administered significantly more cocaine

throughout the experiment, as reflected by higher day‐to‐day self‐

administration and an increase in the total amount of cocaine
infusions taken compared with 5‐HTT+/+ rats. Additionally, 5‐HTT−/−

animals were more motivated to take cocaine, as reflected by

increased PR breakpoints. These results are in line with observations

by us and others that 5‐HTT−/− rats are more vulnerable to

psychostimulant self‐administration.28,29,54 In contrast to these find-

ings, self‐administration of sucrose pellets did not differ between

genotypes on a day‐to‐day basis, and the total amount of these pellets

consumed was in fact slightly decreased in 5‐HTT−/− rats. In addition,

no difference in motivation to work for sucrose was observed under

the PR schedule of reinforcement. Together, these data suggest that

the observed higher intake of cocaine in 5‐HTT−/− versus 5‐HTT+/+

rats is not driven by genotype differences in operant responding or

general positive reinforcement mechanisms. Rather, as we replicate

here our previous findings of increased cocaine intake in 5‐HTT−/− rats

under long‐access conditions, which was associated with a stronger

(withdrawal‐induced) negative emotional state,31 negative emotional-

ity may drive the genotype differences in long‐access cocaine intake.

On the whole‐brain level, both WM and CSF (ventricle) volumes

tended to be smaller in the 5‐HTT−/− rats after sucrose self‐



FIGURE 3 Continued.
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administration. A recent MRI study in 5‐HTT−/− mice revealed overall

reduced brain volume and reduced WM, but this was observed in

female and not male mice.55 Potentially female 5‐HTT−/− rats also

demonstrate larger genotype differences compared with male 5‐

HTT−/− rats. We focused here on male rats, since addiction is more

prevalent in males than in females. Nonetheless, investigation of sex

differences would be an important asset for future research. In addi-

tion, cocaine self‐administration reduced WM volume in 5‐HTT+/+

rats, while whole GM volume did not differ between genotypes

and/or treatments. WM changes have previously been observed fol-

lowing extended exposure to cocaine in animals56 and humans.57,58

A decrease in WM could be indicative of reduced microstructural
integrity or demyelination, potentially contributing to the emotional

and affective problems seen in cocaine addicts.59,60

When analyzing the 10 predefined ROIs, 5‐HTT−/− rats showed

smaller AMY volumes, independent of sucrose or cocaine self‐

administration history. As mentioned in Section 1, reduced AMY vol-

ume has also been observed in the 5‐HTTLPR s‐allele carriers.13-15

Furthermore, Ellegood et al55 demonstrated that in 5‐HTT−/− mice

(both sexes combined), absolute volume was decreased in the AMY.

Moreover, a recent study in rats reported that AMY volume correlated

with the inability to refrain from drug seeking and taking.61 Although

not measured in this study, we previously observed that 5‐HTT−/−

show impaired extinction of cocaine‐seeking behavior.29,30 Potentially,



FIGURE 4 Altered AMY and DRN volume in 5‐HTT+/+ and 5‐HTT−/−

rats that underwent sucrose or cocaine self‐administration. All data
are represented as mean ± SEM. White bars represent 5‐HTT+/+ rats
while black bars represent 5‐HTT−/− rats. A, A significant genotype (G)

effect was observed for the AMY. B, A significant interaction of
genotype and treatment (G*T) was observed for DRN. Post hoc
analysis revealed the effect of the AMY was caused by a lower volume
in 5‐HTT−/− rats from both reward cohorts. Post hoc analysis revealed
a lower DRN volume in sucrose‐receiving 5‐HTT−/− rats versus
sucrose‐receiving 5‐HTT+/+ rats and in 5‐HTT+/+ rats receiving
cocaine versus 5‐HTT+/+ rats receiving sucrose. AMY: amygdala; DRN:
dorsal raphe nucleus; 5‐HTT: serotonin transporter; SEM: standard
error of the mean. *P < 0.05
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volume changes in the AMY relate to the negative emotional states

that 5‐HTT−/− rats experience during withdrawal.28 In addition to this

genotype effect on the AMY, a significant interaction of genotype and

reward type was found for DRN volume. The DRN was significantly

smaller in the control 5‐HTT−/− rats exposed to sucrose. Furthermore,

cocaine self‐administration reduced DRN volume in 5‐HTT+/+ rats.

Ellegood et al55 also found an effect of 5‐HTT genotype on DRN vol-

ume in mice. The DRN, where forebrain projection serotonergic neu-

rons are located, plays a critical and complex role in reward

seeking.62,63 The DRN has also been shown to contribute to a

withdrawal‐induced negative emotional state in 5‐HTT−/− rats31 and

in long‐access cocaine self‐administration.64 In line with a smaller

DRN, a decrease in the number of serotonergic cells in the DRN has

been observed in 5‐HTT−/− mice.65 These DRN results, together with

the AMY results discussed above, may support our previous finding

that the DRN and AMY work in concert to cause the increased long

access and compulsive cocaine intake in 5‐HTT−/− versus control rats

(see also Verheij et al28). The AMY may do so because of direct struc-

tural effects of the 5‐HTT genotype, while the involvement of the
DRN is dependent on the interaction between 5‐HTT genotype and

cocaine. A more detailed analysis of the WM tracts between the

DRN and AMY, and subsequent causal manipulations of connections

between these areas, may further contribute to our understanding of

increased cocaine self‐administration in 5‐HTT−/− rats.

A major strength of our study involves the high‐resolution nature

of the structural MRI we conducted, allowing us to identify structural

changes in areas as small as the DRN. A potential limiting factor is that

while we observed absolute volume differences in the AMY and DRN,

there may be no relative volume differences after correction for the

reduced whole‐brain WM and CSF volume in 5‐HTT−/− rats. We did

not apply such a correction because the genotype and treatment

effects on whole‐brain WM, GM, and CSF volume are critical readouts

of the study. Furthermore, we compared the effect of cocaine self‐

administration with that of sucrose self‐administration but did not

include a naive control group. We therefore cannot exclude the possi-

bility that there are differences between experimentally naive rats and

rats with a history of sucrose self‐administration, as a result of mere

operant conditioning. However, we recently reported that in terms

of expression of immediate early genes and plasticity‐related genes,

the differences between naive control rats and rats with a history of

sucrose self‐administration are modest at most.42,44 In contrast, in

these studies, profound differences were found between sucrose

and cocaine self‐administering groups.42,44 In the present study, we

found that 5‐HTT−/− rats show a slight reduction in sucrose self‐

administration and a strong increase in cocaine self‐administration.

We are therefore confident that by using sucrose self‐administration

as control, this study provides insight into which brain regions contrib-

ute to increased cocaine self‐administration in 5‐HTT−/− rats.

In conclusion, we show that increased long‐access cocaine self‐

administration in 5‐HTT−/− rats is associated with decreased AMY

and DRN volume, providing a neural substrate for increased vulnera-

bility seen in individuals characterized by inherited 5‐HTT downregu-

lation. Furthermore, our findings indicate that the DRN contributes

to an increased motivation for cocaine. Because animal studies allow

control over genetic and environmental factors that could influence

brain structure, they can provide important contributions to under-

standing of the heterogeneity in structural brain differences found in

cocaine addicts.6
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