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Highlights
We discuss three productive pathways
for protein folding in the cell: (i) spon-
taneous, chaperone-independent
folding; (ii) Hsp70 cycling; and (iii)
Hsp70–Hsp90 chaperone cascade.

Chaperone-assisted protein folding
counts on the ATP-dependent action
of Hsp70 and Hsp90 in the early
stages in the folding reaction; protein
folding proceeds subsequently in a
chaperone-free fashion so that the glo-
bal kinetics of the reaction remain
Conserved families of molecular chaperones assist protein folding in the cell.
Here we review the conceptual advances on three major folding routes: (i)
spontaneous, chaperone-independent folding; (ii) folding assisted by repetitive
Hsp70 cycles; and (iii) folding by the Hsp70–Hsp90 cascades. These chaper-
ones prepare their protein clients for folding on their own, without altering their
folding path. A particularly interesting role is reserved for Hsp90. The function of
Hsp90 in folding is its ancient function downstream of Hsp70, free of cocha-
perone regulation and present in all kingdoms of life. Eukaryotic signalling
networks, however, embrace Hsp90 by a plethora of cochaperones, trans-
forming the profolding machinery to a folding-on-demand factor. We discuss
implications for biology and molecular medicine.
unaltered.

Hsp90 has two defined functions: (i)
the ancient, evolutionarily conserved
function in protein folding downstream
from Hsp70, independent of cocha-
perones; and (ii) the regulation of
sophisticated signalling networks in
the eukaryotic cytosol, finely tuned
by a plethora of cochaperones.

Progress in understanding the Hsp70–
Hsp90-assisted protein folding
mechanism may inspire new therapeu-
tic strategies for the treatment of
proteinopathies.

1Cellular Protein Chemistry, Bijvoet
Center for Biomolecular Research,
Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
2Science for Life, Utrecht University,
Padualaan 8, 3584 CH Utrecht, The
Netherlands
3Center for Molecular Biology of
Heidelberg University (ZMBH), DKFZ-
ZMBH-Alliance, Im Neuenheimer Feld
282, 69120 Heidelberg, Germany

*Correspondence: s.g.d.rudiger@uu.nl
(Stefan G.D. Rüdiger).
Assisted Protein Folding
Molecular chaperones are crucial for maintaining the integrity of the proteome (see Glossary)
in cells [1]. Diverse families of conserved molecular chaperones manage protein homeostasis
from numerous fronts (Box 1). In particular, the highly abundant Hsp70 and Hsp90
families cooperate in a multitude of protein folding and maturation processes [2,3]. Succes-
sive action of chaperones with complementary activity is a general concept in protein quality
control (PQC) (Box 2). What makes Hsp70 and Hsp90 unique is that they are the major
conserved ATP-dependent chaperone machines, appearing together in most organisms and
main cellular compartments. Hsp90 is dispensable in bacteria but essential and highly
abundant in eukaryotes, representing 1–2% of the cytosolic proteome even under nonstress
conditions [4,5].

Here we review recent progress that allows classification of the role of chaperones in three main
folding paths, the function of Hsp90 in folding and regulation, the consequences of chaperone
action in evolution, and the possible implications of drug development in protein folding
diseases. We describe three main routes for protein folding in the cell: (i) spontaneous folding,
without the aid of any chaperone; (ii) folding assisted in cycles of Hsp70 binding and release; (iii)
folding along the Hsp70–Hsp90 cascade (Figure 1).

Productive Folding Pathways
Spontaneous Protein Folding
The native conformation of a protein is determined by its amino acid sequence [6]. The protein
folding landscape resembles an energy funnel with the native state at a thermodynamic
minimum [7,8]. The surface of this energy landscape is rugged, entailing trapping or ‘frustra-
tion’, which proteins need to overcome during folding. During this process, proteins might
expose hydrophobic side chains destined to be buried inside the folded core or at domain
interfaces that might engage in unproductive interactions [7] Small single-domain proteins such
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Glossary
CHIP: cochaperone that binds to
both Hsp70 and Hsp90 through its
TPR domain and functions as an E3
Ub ligase to regulate proteasomal
degradation of chaperone client
proteins. The name was coined as
acronym for carboxyl terminus
hsp70-interacting protein.
Cochaperones: nonclient regulatory
proteins for the main chaperones,
including Hsp70 and Hsp90,
participating in their function and
mediating the outcome of
chaperone-assisted proteostasis.
Although there are over 100
cochaperones identified in
eukaryotes, many fall into two
categories � ‘J domain-containing
cochaperones’ and ‘TRP
cochaperones’.
Heat-shock proteins (HSPs): a
group of proteins the cellular levels of
which are increased in response to
environmental, chemical, and
physical stress and that limit the
consequences of damage, facilitating
cellular recovery. Many are members
of conserved chaperone families
such as Hsp70 or Hsp90 and assist
in repair or targeting of proteins to
degradation. NB: Not all HSPs are
chaperones and vice versa.
Hop: cochaperone of the two major
molecular chaperones Hsp70 and
Hsp90 that facilitates their interaction
and substrate transfer by acting as
an adaptor between them. Hop can
bind simultaneously to the C-terminal
domain of both chaperones through
its TPR domains. The name was
coined as acronym for Hsp70/Hsp90
organising protein.
J-domain cochaperones: proteins
containing a J domain that interact
with Hsp70, catalysing the hydrolysis
of ATP. Some JDPs can recognise
client proteins on their own and may
have potential aggregation-
prevention activity, such as the
bacterial DnaJ.
Proteasomal degradation:
pathway through which most
proteins are degraded; precisely, the
Ub–proteasome pathway (UPP). It
comprises a series of enzymatic
activities that link Ub onto proteins
that are then recognised by the 26S
proteasome, a very large protease
complex found in the cytoplasm and
nucleus that degrades the proteins
to small peptides.

Box 1. PQC: Maintaining Proteostasis in the Cell

The PQC network is a complex system in the cell that strives to maintain each protein in a native, active
conformation, providing robustness to the proteome in changing environments and cellular conditions. This network
not only ensures the basal functionality of the proteome but is also in charge of responding rapidly to conditions of
stress when many proteins become prone to misfolding and aggregation [85]. The PQC network is unique for each
species and cell type and involves many mechanisms to adjust protein homeostasis, or ‘proteostasis’, to boost
survival [86]. Protection of the proteome relies to a large extent on the action of molecular chaperones, but also on a
large number of other proteins that contribute to PQC; these proteins include components of the proteolytic
systems, RNA- and DNA- modifying enzymes, metabolic enzymes, and regulatory proteins such as kinases and
transcription factors [1].

The proteostasis network dynamically adapts to meet the requirements of the cell. The response to proteotoxic stress
in the cytosol is mainly at the level of transcription through heat-shock transcription factors (e.g., s32 in prokaryotes,
Hsf1 in eukaryotes), which bind to specific promoter sequences enhancing the expression of a large set of target genes
[87,88]. These genes control the composition of the chaperone machinery and the Ub proteasomal system, helping to
restore proteostasis in the cell by stimulating refolding or degradation processes [88].

The capacity of the PQC network is particularly challenged on ageing and disease, including neurodegenerative
diseases, inherited diseases, and many forms of cancer. Restoring proteostasis using small-molecule regulators
emerges as an attractive strategy for the prevention and treatment of protein folding diseases like Parkinsonism,
Huntington chorea, Alzheimer’s disease, amyloidosis, and many other amyloidosis [57].
as ribonuclease A, barnase, and chymotrypsin inhibitor 2 (CI2) overcome these traps sponta-
neously and efficiently by themselves [6,9].

Larger, multidomain proteins present a more complex topology and often fold slower, chal-
lenging spontaneous protein folding [10]. Nevertheless, unassisted protein folding is possible;
even a paradigm chaperone substrate, the 60-kDa two-domain firefly luciferase refolds with up
to 80% yield in highly diluted solution in the presence of detergent [11]. This indicates that
complex proteins can also fold on their own, if aggregation and dead-end pathways are
circumvented. However, larger proteins often fold inefficiently unless the conditions regarding
protein concentration, temperature, and timescales are far from physiological requirements.
Luciferase is a prime example that inside cells molecular chaperones are required for high
folding yields [12,13]. The folding challenge increases with the complexity of the organism, as
70% of the proteome in higher eukaryotes is multidomain proteins [14].

Hsp70 Binding-Release Mechanism
The Hsp70 chaperone is a major player in facilitating folding, including multidomain proteins,
both during de novo folding and after heat stress [12,15]. Together with J-domain proteins
(JDPs) and nucleotide exchange factors (NEFs), Hsp70 assists protein folding by ATP-
regulated cycles of substrate binding and release [13,16,17]. The affinity of Hsp70 for its
substrates is enhanced by hydrolysis of ATP and subsequent closure of the substrate-binding
cavity, a process stimulated by JDPs (Box 3) [18,19]. Rebinding of ATP after NEF-stimulated
ADP release reopens the substrate-binding cleft, granting substrate dissociation [15]. After
release, either the protein folds on its own or Hsp70 rebinds.

Understanding the folding mechanism of Hsp70 requires a closer look at its client recogni-
tion mode. The hydrophobic properties of the conserved Hsp70-binding cavity allow the
promiscuous recognition of short stretches of up to five hydrophobic residues, typically
located in folded proteins in the hydrophobic core [20,21]. Binding of such core segments
protects the protein from aggregation but also stalls the hydrophobic collapse. The
specificity principle of Hsp70 chaperones is, in fact, that of a folding preventer. These
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Proteome: the totality of proteins
that are present at a given time in a
cell under defined conditions.
Compared with the genome, the
complexity of the proteome is higher
due to alternative gene splicing and
post-translational modifications.
Proteostasis network: cells
possess a protein homeostasis
network, a protein management
system that keeps the cellular protein
composition in a dynamic equilibrium
through the coordinated regulation of
gene expression, protein synthesis,
protein folding and degradation,
maintaining the health of the
proteome and the organism.
hydrophobic Hsp70-binding stretches appear frequently in protein sequences – on average
every 36 residues for the Escherichia coli Hsp70 DnaK – implying the likely binding of
several Hsp70 molecules per substrate [20,22,23]. Thus, high Hsp70 levels could be
detrimental for folding.

Hsp70 levels need to be stringently controlled in vivo. For example, expression of Hsp70 in
otherwise unstressed cells has deleterious effects on Drosophila cell growth [24]. Abnormally
elevated levels of Hsp70 expression are also a hallmark of malignancy in cancer tissues [25,26].
However, Hsp70 promotes folding of luciferase and other complex proteins in vitro and in vivo
[12,15,27]. Given the high cellular concentration of Hsp70, binding to segments of the future
core might locally beat substrate release; how can Hsp70 promote completion of the folding
process?

Hsp70 does not directly fold proteins, in line with the concept of binding and release. Indeed,
recent findings show that Hsp70 inhibits protein folding when present at physiological
concentrations [28]. This is the case for luciferase but also for the ligand-binding domain
of the glucocorticoid receptor. Fast rebinding of Hsp70 can lead to the binding of several
Hsp70s to the same substrate molecule, which triggers an extended substrate conformation
and hinders formation of the folding nucleus [22,28]. Recent single-molecule experiments
suggest that in certain circumstances Hsp70 may also engage in additional interactions
involving its helical lid domain more prominently than its hydrophobic substrate-binding
pocket, which may also give this chaperone a possible role at later stages in the folding
process [29]. It will be interesting to see how this activity complements Hsp70 binding to
hydrophobic stretches at the ensemble level. The activity of Hsp70 to counter formation of the
core of the folding protein implies that although binding and release cycles are a possible
folding scenario, there are limitations, as high levels of Hsp70 prevent effective substrate
release.

Together, these findings suggest the need for an additional cellular factor that makes Hsp70
chaperoning robust regardless of any fluctuations in cellular concentrations as may appear on
heat shock and other cellular stress conditions.

Hsp70–Hsp90 Chaperone Cascade
Hsp70 and Hsp90 form an effective relay team, overcoming the limitations of the Hsp70 binding
and release mechanism [28]. The two chaperone machines participate together in countless
cellular processes. Hsp90 acts downstream of Hsp70 to improve folding and to optimise the
maturation of key regulatory proteins [30–34]. Hsp70 and Hsp90 interact transiently to facilitate
cooperation [32,35,36]. In eukaryotic cells, the cochaperone Sti1/Hop promotes the link
between Hsp70 and Hsp90 by forming a physical bridge via simultaneous binding to the C
termini of both Hsp70 and Hsp90 [31,37].

The substrate folding path leads via Hsp70 to Hsp90 and subsequently towards the native
state [30,32,34]. This sequential interaction is conserved in the endoplasmic reticulum [38].
It is the substrate specificity that determines the order of action in the Hsp70–Hsp90
cascade [39]. Hsp70 binds early to core-forming segments that characterise nearly
unfolded proteins whereas Hsp90 recognises late-folding intermediates [20,39,40].
Hsp90 makes use of an extended binding site, recognising scattered hydrophobic and
charged patches typical of late folding stages [39,41–43]. In contrast to Hsp70, Hsp90
does not block folding. Rather, the substrate can reach the native state while bound to
Hsp90 [31,34].
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Box 2. Chaperone Pathways

Successive and synergistic action of different chaperones provides a decentralised strategy to maintain protein
homeostasis. From all chaperone pathways, the Hsp70–Hsp90 cascade stands out by combining two chaperone
systems that are ATP dependent, evolutionarily conserved, and abundant in folding compartments. This box gives
examples of other chaperone pathways.

In bacteria, nascent chains count on the assistance of the chaperone trigger factor (TF) at the exit from the ribosome,
which prevents and reverses early misfolds until folding is achieved [89,90]. TF and DnaK have overlapping substrate
pools and their combined deletion leads to large aggregation events in the cell [91]. Deletion of both TF and DnaK is
synthetically lethal [92,93]. This does not necessarily require, however, that both chaperones act in a defined order to
fold proteins, as DnaK may backup post-translationally if TF does not sufficiently function cotranslationally. Additionally,
DnaK can cooperate bidirectionally with the chaperonin GroEL/ES, which is also an ATP-controlled chaperone [94–96].

To reverse aggregation, the molecular chaperone ClpB collaborates with DnaK, which assists the process both
upstream and downstream of ClpB, allowing reactivation of aggregated proteins [70,97,98].

Small heat-shock proteins (sHsps) protect the cell from irreversible protein aggregation and favour aggregate solu-
bilisation [99]. However, the association of sHsps with aggregates needs to be outcompeted by Hsp70, and subse-
quently assisted by Hsp100, for reactivation of aggregated proteins [100,101].

Protein translocation is assisted by the bacterial signal recognition particle (SRP) or on a different pathway, by SecA and
SecB acting downstream of TF [102]. Subsequently, periplasmic chaperones such as Skp, FkpA, and SurA participate
in the folding and assembly of envelope proteins and soluble periplasmic proteins emerging from the translocon [103].
Similarly, competition at the ribosome determines the compartment-targeting specificity of the nascent chain in
eukaryotic cells [104].
Hsp90 optimises chaperoning downstream of Hsp70 by resolving the Hsp70-inflicted folding
block [28]. Remarkably, this is the case even for luciferase, for which the binding and release
paradigm was established. Binding to Hsp90 allows the completion of the substrate core and
the attainment of the native state. Hsp90 takes over the client from Hsp70 in an ATP-dependent
manner [28,34]. Consistently, Hsp90 ATPase activity is essential for Hsp90 function in vivo and
critical for refolding of exogenous internalised substrates [44–46]. There are only certain
bacteria without Hsp90, and some cellular compartments where Hsp90 is not essential. This
implies that, although there may exist alternative folding paths, Hsp90 efficiently buffers
detrimental effects caused by high Hsp70 levels, providing the cell with a robust folding
machine [28].

The Hsp70–Hsp90 cascade does not change the Anfinsen folding principle [6]. All information
defining the shape of the native state is encoded in the primary amino acid sequence and it is
not the task of chaperones to change that. Despite dramatically increasing the folding yields,
neither Hsp70 nor Hsp90 alters the global kinetics of the folding reaction [28]. For the folding
reaction, the activity of the Hsp70–Hsp90 cascade is restricted to the early folding phase.
ATPase activity of both Hsp70 and Hsp90 is required in the first seconds to minutes, but
afterwards the protein enters a folding trajectory that does not require either chaperone
(Figure 2) [28].

How does the Hsp70–Hsp90 cascade stimulate protein folding? We propose that the key of the
mechanism could be the exposure of the client to a gradient of decreasing hydrophobicity by
subsequent interaction with Hsp70 and Hsp90 (Figure 3). First, the highly hydrophobic binding
cleft of Hsp70 binds to hydrophobic segments in the unfolded protein that are meant to form
the folded core [20]. Thus, Hsp70 binding is incompatible with nucleus formation. Next, Hsp90
exposes the substrate to a large binding surface sprinkled with hydrophobic and charged
residues [39]. The more hydrophilic Hsp90 shell stimulates formation of the nucleus, preparing
the substrate for progression to the native state. The bipartite Hsp70–Hsp90 system resembles
Trends in Cell Biology, February 2019, Vol. 29, No. 2 167



Figure 1. Three Productive Folding Routes. Route 1: Spontaneous protein folding (yellow cycle). The folding
intermediate reaches the native state without interference by chaperones. Route 2: Repetitive cycles of Hsp70 binding
and release (green cycle). Hsp70 (green) binds fast to early folding intermediates. After release from Hsp70, the
intermediate either folds to the native state in a chaperone-free manner or Hsp70 rebinds, starting another cycle. Binding
of several Hsp70 s may result in an unproductive, dead-end equilibrium (red). Hsp70 substrate interaction is controlled by
J-domain proteins and nucleotide exchange factor (not visualised). Route 3: The Hsp70–Hsp90 chaperone cascade (blue
cycle). Hsp90 (blue) takes over the folding intermediate from Hsp70, shortcutting the Hsp70 cycling and preventing dead
ends caused by multiple Hsp70 binding. The representations of Hsp70 and Hsp90 are based on structures in ADP-bound
conformations and do not represent the conformational cycles (Box 3). The representation of the client is schematic
(yellow, core-forming segments; red, noncore segments).
the mechanism of action of the chaperonin. The bacterial GroEL/GroES initially binds the
substrate in a hydrophobic entry chamber that turns into a more polar folding chamber after
ATP and GroES binding [47].
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Box 3. Conformational Dynamics of Hsp70 and Hsp90

Hsp70 and Hsp90 are the main ATP-controlled chaperone families. Both are evolutionarily conserved from bacteria to
humans and conformationally highly dynamic. Their ATPase domain controls drastic structural changes that are tightly
coupled to their function (Figure I).

Hsp70 comprises a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD), which is subdivided into a
b-sandwich subdomain that harbours the polypeptide-binding cleft and an a-helical lid subdomain. Binding and
hydrolysis of ATP in the NBD trigger allosteric conformational changes in the SBD that regulate Hsp70’s affinity for the
substrate [105]. Joint binding of the substrate and a JDP, in turn, stimulates Hsp70’s ATPase activity [19]. In the ATP-
bound state, the lid and b-sandwich subdomains of the SBD dissociate and dock onto the NBD. This opens the
substrate-binding cleft, leading to high association and dissociation rates and lower affinity for substrates [15,106,107].
Substrate association with this open conformation and ATP hydrolysis dissociate the lid and b-sandwich subdomains
from the NBD, resulting in trapping of the substrate [15,21].

Hsp90 is a homodimer that binds ATP in the N-terminal domain [108]. In ADP-bound and apo-states, Hsp90 is in a
dynamic, extended conformation [109]. ATP binding favours closure by a second dimerisation site in the N-terminal
domain [3,110]. The stringency of ATP-dependent closure varies between homologues; Escherichia coli Hsp90-ATP is
predominantly closed while human Hsp90-ATP is predominantly open and closes only transiently [109]. Hsp90 can
interact with substrates in both open and closed conformations [39,58].

+ SUBSTRATE + SUBSTRATE

Figure I. Illustration of Nucleotide-Driven Conformational Changes of Hsp70 (Green) and Hsp90 (Blue).
Two Distinct Hsp90 Functions
The Hsp90 machine has two functions: (i) an evolutionarily conserved folding function down-
stream of Hsp70; and (ii) a specific regulatory activity adapted to specific needs in the
eukaryotic cytosol.

Hsp90 in Protein Folding
E. coli Hsp90 improves folding downstream of Hsp70 in an ATP-dependent manner without
specific cochaperones [28,32]. Such cochaperones have not been discovered yet and E. coli
Trends in Cell Biology, February 2019, Vol. 29, No. 2 169



Figure 2. Timing of the Hsp70–Hsp90 Cascade. Hsp70 and Hsp90 act fast and early in the folding path (chaperones
are represented in YRB colours [115]: yellow, hydrophobic; red, negative charges; blue, positive charges). Hsp70 binds to
hydrophobic residues of the folding intermediate that will later be part of the folded core of the protein (yellow). Hsp90 binds
to the substrate downstream from Hsp70, offering a larger surface with both hydrophobic and charged residues that
allows the formation of the protein core, which also prevents rebinding to Hsp70 (red). Afterwards, the substrate slowly
reaches the native state on its own, without interference by chaperones.
Hsp90 is fully functional without any other regulatory component [28]. Notably, human Hsp90
also has full folding activity downstream of Hsp70, in the absence of the regulatory cochaper-
ones such as p23, Aha1, Cdc37, and Cpr6 [28]. This is remarkable, as the ATPase activity of
human Hsp90 in the cytosol is regulated by a plethora of cochaperones [3,48,49]. Although the
Charge ( –)
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Figure 3. Gradient of Decreasing Hydrophobicity in the Hsp70–Hsp90 Cascade. Hsp70 and Hsp90 expose the
folding intermediate successively to a decreasingly hydrophobic environment. The earliest stages of the unfolded protein
still expose hydrophobic stretches that will be part of the core of the folded protein (yellow). The highly hydrophobic
substrate-binding pocket of Hsp70 chaperones is tailored for such stretches. It protects the substrate from aggregation,
but also prevents the intermediate to complete the formation of its hydrophobic core. Hsp90 offers a larger, more extended
binding surface with both hydrophobic and charged residues that allows core formation, which allows the intermediate to
subsequently proceed towards the native state.
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activity of Hsp90 in folding is strictly ATPase dependent, human Hsp90 has the same folding
function as the bacterial homologue, in the absence of these cochaperones. This suggests that
the Hsp90 function in folding downstream of Hsp70 is the ancient activity of this chaperone
system.

Hsp90 is highly conserved and present in all kingdoms of life, including the main eukaryotic
folding compartments [50]. The evolutionarily conserved function of Hsp90 evolved without
developing a conserved set of regulatory cochaperones. The mitochondrial TRAP1 does not
have any known cochaperones [51]. The endoplasmic Grp94 uses the CNPY family members
CNPY3 and CNPY5/MZB1/pERp1 to act on Toll-like receptors and immunoglobulin, respec-
tively [52–54]. These, however, are specific redox factors tailored to the specific situation in the
endoplasmic reticulum and are not comparable with the ATPase cycle controlling cochaper-
ones in the eukaryotic cytosol [55]. In line with this, most cytosolic Hsp90 cochaperones do not
have a general function [49,56]. Taken together, these findings suggest a conserved Hsp90 role
in protein folding free of cochaperone control (Figure 4A).

Hsp90 Regulatory Activity in Protein Maturation
The unique plethora of cochaperones in the eukaryotic cytosol implies evolved Hsp90 functions
that are unique to this compartment (Box 4). The eukaryotic cytosol is rich in regulatory proteins
that, for their activation, depend on cofactors and post-translational modifications. Before
activation, these proteins are often less stable. For these clients, a fully efficient Hsp70–Hsp90
cascade would be counterproductive, as the substrate protein cannot reach a state of self-
sufficient stability before either binding a cofactor or another activating modification. This Hsp90
function requires proper tuning, retardation, and stimulation to ensure that the substrate does
not leave Hsp90 prematurely (Figure 4B). Inhibition of Hsp90 results in the degradation of many
substrates, including newly made proteins and mature clients [3,57]. Degradation occurs,
presumably, due to blocking of the regulatory action and failure of Hsp90 to further support the
substrate in the premature state. The most prominent client classes are steroid hormone
receptors and kinases [3,43].

In the case of steroid hormone receptors, Hsp90 binds to the apo state of the ligand-binding
domain and its presence is required to maintain them in a nearly completely folded conforma-
tion, competent for ligand binding [3,34]. Binding of the hormone significantly stabilises the
receptor and triggers receptor dissociation from Hsp90 and import into the nucleus [3,34]. Until
this moment the Hsp90 activity needs to be retarded. Thus, this process is modulated by
cochaperones.

Hsp90 interaction with kinases is also determined by the client thermodynamic properties.
Hsp90 interacts with up to 60% of the human kinome together with the kinase targeting
cochaperone Cdc37 [3,58,59]. Noticeably, Hsp90 is particularly recruited to those kinases
with lower intrinsic stability and the presence of agents that stabilise kinases decreases their
association with Hsp90 [59]. Hsp90 keeps the kinase in a semifolded state, ready for
activation [58]. It should be noted that stable kinases that do not need Hsp90 have evolved
and there is no reason to assume that the Hsp90 client kinases could not evolve into a stable
conformation. However, the presence of Hsp90 may have reduced evolutionary pressure to
increase stability for kinases at the cost of dynamics, in particular as many of them appear
only at low levels. Other examples for Hsp90 substrates that are regulated by ligands or
cofactors are the argonaute proteins involved in RNA biogenesis and inducible nitric oxide
synthase (iNOS) [60,61]. Consistently, interaction of iNOS with Hsp90 is enhanced on
depletion of its cofactor [61].
Trends in Cell Biology, February 2019, Vol. 29, No. 2 171
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Figure 4. Evolutionary Branching of Hsp90 Functions. (A) The folding function of Hsp90 is evolutionarily conserved. Hsp90 acts downstream of Hsp70 in protein
folding without the need of further cochaperones. (B) In the eukaryotic cytosol, Hsp90 acquired additional functions in regulation. Eukaryotic Hsp90 substrates are often
regulatory proteins that do not acquire a stable and active conformation until either a cofactor is bound (mid-ocean blue) or another post-translational event such as
phosphorylation occurs. Cochaperones such as p23 and Aha1 take care of the tuning up/down of the activity, delaying or accelerating it, or opening the way to
degradation, depending on the presence of the cofactor needed for the active folded structure of the substrate. Cochaperones also control the influx of certain substrate
classes; for example, kinases are targeted to Hsp90 by Cdc37. The cochaperone CHIP connects the Hsp90 machine to the degradation machinery.
Eukaryotic proteins are, in general, larger than bacterial proteins. It is possible that the
complexity of substrates in the cytosol with special requirements has resulted in an increasingly
complex Hsp90 chaperone machine to accommodate a more diverse clientele [62,63]; or, the
other way around, a more elaborate Hsp90 machinery allowed the evolution of more complex
proteins. However, folding of neither the complex 60-kDa luciferase nor the ligand-binding
domain of the glucocorticoid receptor stringently depends on the presence of cochaperones.
Also, in the endoplasmic reticulum some large and complex clients of the extracellular pathway
such as immunoglobulins and extracellular domains for cell-surface proteins are able to fold
although there are no known ATPase-regulating Hsp90 cochaperones [53].
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Box 4. Cochaperones

The term cochaperone is used for nonclient proteins that interact with Hsp70 and Hsp90 regulating their activities and
aiding in their function. Cochaperones are thus considered to be drivers of Hsp70 and Hsp90 functional diversity.

The crew of cochaperones assisting Hsp70 differs highly from that of Hsp90. The JDPs are crucial players in the Hsp70
ATP cycle, promoting ATP hydrolysis and targeting Hsp70 to its substrates [15]. Escherichia coli has six JDPs; humans
have 54 [111]. The other main Hsp70 cochaperones, the NEFs, catalyse ADP release allowing ATP binding and
substrate release [15]. In E. coli, GrpE is the only NEF present, as opposed to the several families of NEFs in eukaryotic
organisms, which generates the supremely conserved Hsp70–JDP–NEF system that works together in a variety of
processes [112].

In contrast to the high conservation of the Hsp70–JDP–NEF system, the number of cochaperones in the Hsp90 system
is not conserved. So far, no cochaperones have been identified for Hsp90 in E. coli, TRAP1 in mitochondria, and
Hsp90C in plastids. A wide array of Hsp90 cochaperones mainly evolved in the eukaryotic cytosol and are, with few
exceptions, not essential for viability [3,48,49]. Hsp90 cochaperones bind in diverse regions and have different
regulatory functions. The cochaperones p23 and Aha1 preferentially bind the dimerised N-terminal domain of
Hsp90. p23 stabilises the closed conformation but inhibits the ATPase activity, whereas Aha1 stimulates ATP hydrolysis
by Hsp90. Cdc37, a kinase-associated cochaperone, inhibits Hsp90 N-terminal dimerisation and ATPase activity.

A particularly interesting cochaperone family is the TPR domain-containing family, as they use the same recognition
principle for both Hsp70 and Hsp90, and some even bind to both. They are unique to the eukaryotic cytosol and
recognise the C-terminal EEVD sequence specific for eukaryotic cytosolic Hsp70s or Hsp90s [113]. One of them is Hop,
which uses multiple TPR domains to bind Hsp70 and Hsp90 simultaneously [114]. Another example is the cochaperone
CHIP that is able to bind either chaperone with its single TPR domain [64]. Other TPR-domain cochaperones
preferentially recognise Hsp90 and compete for its binding site; for example, FKBP51, FKBP52, Cyp40, and PP5 [3].

Cochaperone evolution in higher organisms accounts for the differing needs in the range of biological processes that
require Hsp70 and Hsp90 regulation and specificity.
Together, this shows that the need for cochaperones controlling the Hsp90 ATPase activity in
the eukaryotic cytosol is linked to the appearance of regulatory clients that are not yet ready to
complete folding. Client activation–retardation is a novel evolutionary feature unique to eukary-
otic Hsp90.

Hsp90 Regulatory Activity in Protein Degradation
An important regulatory switch for eukaryotic chaperones is decision-making between folding
and degradation. Both Hsp70 and Hsp90 have a C-terminal recognition motif for tetratrico-
peptide repeat (TPR)-binding proteins, one of which is the E3 ubiquitin (Ub) ligase CHIP.
Targeting substrates to degradation via CHIP is a general function of eukaryotic Hsp70 and
Hsp90 [64,65]. One example is control of the NLR innate immunity receptors in an Hsp90–
CHIP-dependent manner [66].

The linkage of chaperones to the degradation machinery is crucial for the management of proteins
causing neurodegenerative diseases. A common feature of diseases such as Alzheimer, Par-
kinson, and Huntington is the aggregation of a protein into insoluble fibrils [67,68]. Hsp70 and
Hsp90 interact with potentially nontoxic precursors: Tau in Alzheimer’s disease, a-synuclein in
Parkinsonism, and huntingtin in Huntington chorea [69–71]. Remarkably, the proaggregation
segments of these fibril-forming proteins are all intrinsically disordered. Thus, none of them folds
but all of them interact with Hsp70 and Hsp90 [69,71]. Significant conceptual progress comes
from the control of the protein homeostasis of Tau. Hsp90 induces proteasomal degradation of
Tau [72]. Still, Hsp90 recognises it as a bona fide client [39,41,72]. The cochaperone CHIP is
crucial in ubiquitinating Tau to target it to proteasomal degradation [72]. Interestingly, Hsp70 also
interacts with Tau [73]. It is unclear whether Hsp70 and Hsp90 act here as a cascade as in the
folding reaction or whether they function independently of each other.
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Outstanding Questions
What is the molecular mechanism of
the substrate transfer from Hsp70 to
Hsp90?

How is the life time of the Hsp90–client
complex tuned?

How are clients released from Hsp90?

When and how does the Hsp90 sys-
tem decide between folding and deg-
radation of a bound client?

Can we improve the effectiveness of
the Hsp70–Hsp90 cascade, and pos-
sibly modulate its function?

How do cochaperones switch Hsp90
between the regulatory state and the
folding state?

Can we exploit the mechanistic prog-
ress on chaperone mechanism to
tackle protein folding and aggregation
diseases?

Can we treat Hsp70 and Hsp90 differ-
ently in ‘gain-of-function’ and ‘loss-of-
function’ diseases?

What is the impact of ageing and dis-
ease on the Hsp70 and Hsp90
cascade?

How can proteins escape Hsp70- and
Hsp90-dependent clearance in dis-
ease to aggregate into toxic species
instead of being degraded?
The cooperation of chaperones and proteases in controlling degradation is also known in
bacteria; for example, the degradation of s32 by the protease FtsH is Hsp70 dependent [74].
However, a function of Hsp90 in the bacterial degradation process is neither known nor
expected. Potential clients for Hsp90-dependent degradation such as Tau or kinases are
not present in bacteria. The evolution of the CHIP system in the eukaryotic cytosol may thus
have been an essential requirement for this evolutionarily new Hsp90 function.

Chaperones’ Role in Buffering Evolution
A particular challenge for the PQC system is buffering the consequences of mutations.
Mutations may lead to a protein with increased or decreased function, but often with
decreased stability. Hsp70 and Hsp90 control the protein-folding path at different stages,
which gives them different roles in buffering the consequences of mutations at the protein
level. Hsp90 stabilises metastable disease mutations that populate late folding stages [75].
Instead, Hsp70 predominantly binds to unfolded or partially folded proteins, targeting in
particular hydrophobic stretches as they are required in the nucleation of the hydrophobic
core [20,28]. Hsp70 can prevent the aggregation of proteins with reduced stability as
consequence of severe mutations, which precludes them from folding into the active state
[75,76]. At the stage of Hsp70 action, the client protein has not yet reached a sufficiently
folded state that would allow selection based on its function. By contrast, Hsp90 is able to
buffer mutations allowing them to function normally and to promote the acquisition of
stabilising secondary mutations [77,78]. Under conditions that impair Hsp90 function, how-
ever, Hsp90 is inefficient and hidden abnormal phenotypes emerge [77,79]. In genetic
disorders such as Fanconi anaemia, Hsp90 but not Hsp70 buffers the effect of some
mutations helping them maintain the functionality. A reduction in Hsp90 availability brings
out the detrimental effect of the mutations [75].

The specific ability of Hsp90 to buffer compromised late folding stages is also important in
buffering the effect of silent mutations that alter the translation rate [80]. Hsp90 shows an
effect in local translation kinetics, which is related to cotranslational folding, implying
that Hsp90 buffers mutations not only at the protein level but also indirectly at the RNA
level [80].

Concluding Remarks
The ability of Hsp90 to buffer the consequences of mutations makes it a key player in diseases
such as cancer, promoting cell proliferation. Also, Hsp70, which is upregulated in most
cancers, is thought to provide a survival advantage by interacting with components of both
the apoptotic and the prosurvival pathway [57,81]. Tumour development relies on altered
properties of mutated regulatory proteins, including several kinases, p53, SRC, and UHRF1
[82]. Tumour cells typically have disrupted proteostasis and therefore often elevated levels of
heat-shock proteins (HSPs), including Hsp70 and Hsp90 [57]. The Hsp70 and Hsp90
chaperone machineries integrate tightly in the tumour environment, promoting cell survival
but also leading to an enhanced effect of the inhibitors [83]. Therefore, tumour cells have
generally enhanced sensitivity to Hsp90 inhibitors [57,84].

Several inhibitors of Hsp90 have been tested in clinical trials. So far none have reached the
clinic, reflecting that inhibition of chaperones is a drastic measure. Recent years have seen
mechanistic progress in understanding the Hsp70–Hsp90 cascade, largely due to prog-
ress in understanding the function of Hsp90. Combining the progress in mechanistic
understanding of chaperone action with the experience obtained with Hsp90 inhibitors
may help to stimulate a new generation of therapies, not only for cancer but also for other
174 Trends in Cell Biology, February 2019, Vol. 29, No. 2



misfolding diseases such as cystic fibrosis and neurodegeneration (see Outstanding
Questions).
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