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A B S T R A C T

Compared to the space-borne estimation of PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm), the
investigation of PM1 (≤1 μm) remains less intensive and thus unclear. Here we estimated four years
(2014–2017) of ground-level PM1 concentrations from MODIS aerosol optical depth (AOD) in attempt to gain a
better understanding of much finer particles. The Yangtze River Delta (YRD) region, with a relatively dense
ground-based PM1 station network, was selected as the study area. The geographically and temporally weighted
regression (GTWR) model simultaneously accounting for spatial and temporal variability existing within various
predictors was constructed. Validation of satellite-estimated PM1 against ground-measured PM1 yields a high
consistence, significant improvement over previous work (R2= 0.74 VS 0.59, RMSE=13.02 μg/m3 VS 22.5 μg/
m3). This suggests the PM1 estimates from GTWR model are reliable and robust enough to obtain large-scale fine
particle contents. The population exposure of air pollution in the YRD region, therefore, has been analyzed by
calculating population-weighted mean PM1 concentrations, which reaches as high as 37.22 μg/m3. Further
analysis indicates that near half the people live in locations with high-level PM1 concentration (> 35 μg/m3),
which has profounding implication for improving our understanding of human exposure to fine aerosol particles.

1. Introduction

China is suffering from serious air pollution (Che et al., 2014; Guo
et al., 2016b; Chen et al., 2017a; Tong et al., 2018a, 2018b; 2018c; Luo
et al., 2018; Liu et al., 2018a; Yang et al., 2018), which is dominated
with aerosol particles that adversely affect human health (Gu and Yim,
2016; Cohen et al., 2017; Li et al., 2017; Ho et al., 2017; Gu et al.,
2018). PM1 (particulate matter with aerodynamic diameter≤1 μm), a
major component of PM2.5 (≤2.5 μm), is more harmful than PM2.5 due
to its smaller particle size that makes it easily reach deeper into the
respiratory system (Agudelo-Castañeda et al., 2017; Chen et al., 2017b).

Due to its large spatial coverage, satellite-retrieved aerosol optical
depth (AOD) has been widely used to obtain the large-scale variabilities
of ground-level aerosol particles (Wang and Christopher, 2003; Van
Donkelaar et al., 2006; Gupta et al., 2006, 2007; Paciorek et al., 2008;
Martin, 2008; Liu et al., 2005, 2007, 2009; Wu et al., 2012; Just et al.,
2015; Xu et al., 2016; Guo et al., 2017, 2017), most of which are limited
to PM2.5 or PM10. The methods used to estimate PM from space based

on the AOD-PM relationships include semi-empirical methods based on
a priori knowledge (e.g., Tian et al., 2010; Wang et al., 2010; Lin et al.,
2016), simulation-based methods using chemical transport models
(e.g., Van Donkelaar et al., 2010; Geng et al., 2015), and statistical
methods that require sufficient ground station measurements (e.g., Lee
et al., 2011; Kloog et al., 2012; Beckerman et al., 2013; Hu et al., 2014;
Liu et al., 2018).

In particular, the estimates of PM2.5 in China from space are in-
creasingly relying on statistical methods, considering the huge amount
of PM2.5 observations (about 1500 stations) being released for public
access by Chinese government since 2013. These statistical methods
include the geographically weighted regression model (Song et al.,
2014; Ma et al., 2014; You et al., 2016; Zou et al., 2016a), the geo-
graphically and temporally weighted regression (GTWR) model (Bai
et al., 2016), the linear mixed effect model (Ma et al., 2016a,b; Wang
et al., 2012), the generalized additive model (Zou et al., 2016b), the
timely structure adaptive model (Fang et al., 2016), the Gaussian pro-
cesses model (Yu et al., 2017), the machine learning approach (Liu
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et al., 2018b), and the deep learning approach (Li et al., 2017). Notably,
the GTWR model that simultaneously reconciles the spatio-temporal
variabilities well existing within the variables, is increasingly popular
in air quality studies (Qin et al., 2017; He and Huang, 2018a, 2018b).

Compared with PM2.5, PM1, no matter it is from ground-level ob-
servation or space-borne estimation, has been less intensively studied.
In China, the ground-level PM1 concentrations are largely measured
through the China Atmosphere Watch Network (CAWNET) of the China
Meteorological Administration, which consists of about one hundred
PM1 stations across mainland China. More PM1 stations have been es-
tablished over past few years. Particularly, 101, 118, 112 and 110
stations were installed in 2014, 2015, 2016 and 2017, respectively
(Fig. 1). As a first attempt, Chen et al. (2018) estimated the PM1 from
MODIS AOD in China based on measurements from 77 CAWNET sta-
tions from November 2013 to July 2014 using the generalized additive
model. Later on, Zang et al. (2018) retrieved the hourly PM1 con-
centrations from Himawari-8 aerosol optical depth in China, using the
same ground-based PM1 measurements. Nevertheless, the models they
used have limited capability in dealing with small-scale temporal and
spatial variability in the PM1-AOD relationship (He et al., 2018a), even
though the variables such as province, month and day of week have
been taken to account for the regional and seasonal variations of the
PM1-AOD associations. Therefore, there remains considerable room for
improvement of PM1 estimation.

It is worth noting that the PM1 stations are unevenly distributed,
nearly half of which are concentrated in the Yangtze River Delta (YRD)
region, one of the most polluted regions in China (Wang et al., 2012).
This gives us an unprecedented opportunity to improve the estimation
of PM1 from MODIS AOD over the YRD region. Therefore, the main
purpose of this study is twofold: (1) the GTWR model will be used to
estimate PM1 over the YRD of China, given the fact that this method
takes full advantage of spatio-temporal autocorrelation of the PM1-AOD
relationship; (2) the PM1 data will be produced over the PRD for the
period from 2014 to 2017, which is used for preliminary assessment of

human exposure to aerosol pollution. The remainder of this paper is
organized as follows. Section 2 describes the data and method. Section
3 presents main results of PM1 estimate from MODIS, and the PM1

exposure levels are discussed as well, followed by the comparison
analyses of PM1 estimates from 10 km and 3 km MODIS AOD data. The
key findings are summarized in section 4.

2. Data and methods

2.1. MODIS aerosol optical depth

The Aqua and Terra MODIS Collection 6 (C6) AOD product at 10 km
resolution (at nadir) derived by the Deep Blue (DB) algorithm (DB10km)
from January 2014 to December 2017 were obtained from the Goddard
Space Flight Center (http://ladsweb.nascom.nasa.gov/data). The
MODIS DB algorithm was originally developed for AOD retrievals over
bright land (e.g., urban and desert) to fill the gaps left by the Dark
Target (DT) algorithm (Hsu et al., 2006). The DB10km AOD product in
the MODIS C6 based on the enhanced DB algorithm has been validated
and reported better retrieval accuracy than the DT AOD at 10 km re-
solution (DT10km) product (Sayer et al., 2013; Tao et al., 2015; Bilal
et al., 2015). As a supplement to the coarse resolution DT10km, a DT
AOD product at 3 km resolution (DT3km) based on the same retrieval
algorithm as used in the DT10km is introduced in the MODIS C6 AOD
product (Remer et al., 2013; Levy et al., 2013). To estimate the ground
PM1 concentrations at a better spatial resolution, the DT3km and a
merged DT and DB AOD product at 3 km resolution (DTB3km) based on
the Simplified Merge Scheme (SMS) developed by Bilal et al. (2017a;
2018), from January 2016 to December 2016 were used. Here, only the
AOD data at 550 nm with high quality (i.e., Aerosol Confidence
Flag=2, 3, corresponding to good and very good data quality, re-
spectively) have been used in the following paragraphs unless noted
otherwise.

Fig. 1. The distribution of PM1 observational stations (black dots) in China from the China Atmosphere Watch Network (left panel). The red rectangle represents the
Yangtze River Delta region, and the right-hand side panel shows the distribution of PM1 station over YRD. Black dots represent the stations that have observations for
all the four years. Red dots represent the stations that have observations only for 2014, 2015 and 2016. White dots represent the stations that have observations only
for 2015 and 2016. Yellow dots represent the stations that have observations only for 2016 and 2017. Orange dots represent the stations that have observations only
for 2015, 2016 and 2017. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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2.2. Ground PM1 measurements

Four years (2014–2017) of ground-level PM1 data were acquired
from the CAWNET. The measurements are conducted using the GRIMM
EDM 180 optical laser light aerosol spectrometer, which records the
particle size number distribution in 31 size channels between 0.25 μm
and 32 μm and converts these results simultaneously to PM10, PM2.5,
and PM1 mass concentrations. The GRIMM EDM 180 is operated at a
flow rate of 1.2 L/min and 5-min temporal resolution. Details about the
measurements and calibration were reported by Guo et al. (2009). To
control the data quality, the outliers outside the range of mean plus or
minus three standard deviations were screened out. As such, only 37,
45, 48 and 55 PM1 stations were selected for further analyses in 2014,
2015, 2016 and 2017, respectively.

2.3. Meteorological data

Given the unanimous and significant aerosol-meteorology interac-
tion (Li et al., 2017), the PM retrieval from satellite AOD have to take
meteorological variables into account (Liu et al., 2009). Here the me-
teorological variables, air temperature at 2m above ground (T), relative
humidity (RH), planetary boundary layer height (PBLH), wind speed at
10m above ground (WS), and ambient pressure near ground (Pre), were
included. All these meteorological variables were obtained from simu-
lations at hourly intervals during the period from 2014 to 2017, using
the Weather Research and Forecasting model (WRF version 3.9) that is
a mesoscale numerical weather prediction system. The initial and
boundary conditions for each simulation experiment were set up based
on the National Centre for Environmental Prediction (NCEP) global
Final (FNL) reanalysis with a grid spacing of 1°× 1° (http://rda.ucar.
edu/datasets/ds083.2/), following the methods proposed by Guo et al.
(2016a). Two nested domain schemes with horizontal grid spacing of
30 km and 10 km was applied. The inner domain encompasses the YRD
region shown in Fig. 1. The main physical parameterization schemes
adopted in the WRF simulation include the single-moment 3-class
(WSM3) microphysics, the Rapid Radiative Transfer Model (RRTM)
longwave and Dudhia shortwave radiation schemes, the Yonsei Uni-
versity (YSU) PBL scheme, and Noah land surface model. We conducted
48-h simulations for each day of the study period, which started from
0000 UTC of the previous day. For each two-day (48 h) simulation, the
former day was considered as a spin-up period, and the latter day was
left for further analyses.

2.4. Other data

Global Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (DEM) data at 1 km resolution was downloaded from the CGIAR
Consortium for Spatial Information (http://srtm.csi.cgiar.org/).
Gridded population data at 1 km resolution was obtained from the Sixth
National Population Census of the People's Republic of China for the
year 2010 (http://www.stats.gov.cn/ztjc/zdtjgz/zgrkpc/dlcrkpc/
dlcrkpczl/).

2.5. Data integration

To integrate the various datasets, MODIS AOD pixels were re-
sampled to the 10 km×10 km grid and 3km×3 km grid for 10 km and
3 km AOD observations, respectively, using the nearest neighbor algo-
rithm (Bilal et al., 2017). The PM1 data from the stations within the
corresponding grid during 0200–0300 UTC and 0500-0600 UTC were
averaged to match the Terra and Aqua satellite AOD, respectively. The
hourly meteorological data during 0200–0300 UTC and 0500-0600
UTC were averaged to match the Terra and Aqua satellite AOD, re-
spectively, which were resampled or interpolated to the 10 km and
3 km grids. Given the range of PBLH in China (Guo et al., 2016c; Zhang
et al., 2018), the raw dataset with the PM1 concentration< 1 μg/m3

and the PBLH<200m were excluded for further analyses. Finally,
16,756 matched datasets, co-located in both space and time from 1
January 2014 to 31 December 2017, were included in the model de-
velopment for 10 km PM1 estimation, and 4054 matched datasets from
1 January to 31 December 2016 were used for 3 km PM1 estimation.
Descriptive statistics of all the variables used in the 10 km PM1 esti-
mation are summarized in Table S1. Overall, the average ground-level
PM1 concentration is as high as 35.08 μg/m3 with a large standard
deviation of 25.16 μg/m3, exhibiting a large variability ranging from
1.28 μg/m3 to 302.14 μg/m3. Correspondingly, the DB10km AOD data
have a mean value of 0.36, but with a high standard deviation of 0.35.

2.6. GTWR model development and evaluation

To construct the GTWR model, a few of meteorological variables,
DEM and population data were used as inputs to the model. Taking the
aforementioned variables into account, the relationship of ground PM1

concentrations and satellite AOD in the GTWR model can be simply
expressed as:
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where PM i1( ) represents the ground-measured PM1 concentration for
sample i at time ti at location u v( , )i i ; u v t( , , )i i i0 stands for the intercept,

u v t( , , )i i i1 , u v t( , , )i i i2 , u v t( , , )i i i3 , u v t( , , )i i i4 , u v t( , , )i i i5 , u v t( , , )i i i6
and u v t( , , )i i i7 are the slopes of AOD, RH, T, PBLH, WS, P, and DEM,
respectively, and is the random error (ε∼N(0.0155, 7.9027ˆ2)).

The spatio-temporal weight matrix u v tW( , , )0 0 0 (Huang et al.,
2010) based on Gaussian distance decay-based functions and Euclidean
distance, was used to estimate the intercept and slope. The spatio-
temporal distance between two samples was calculated following
Huang et al. (2010).

We applied a 10-fold cross validation (CV) to evaluate the model
performance. The original samples were randomly partitioned into 10
equal-size subsets. Of the 10 subsets, a single subset was retained as the
validation data for testing the model, and the remaining 9 subsets were
used as training data. This step was then repeated 10 times until every
fold was tested. Furthermore, the coefficient of determination (R2) and
root mean square error (RMSE) were used to evaluate the model ac-
curacy by comparing the satellite-estimated PM1 concentration with
ground PM1 measurements. The R2 is an indicator of the explained
variation of the satellite-estimated PM1 to the observed PM1 con-
centrations. The RMSE describes how the estimation uncertainty is
sensitive to systematic and random errors. The R2 and RMSE are cal-
culated following Equations (2) and (3), respectively.
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where n is the number of ground observation, PMobs
1 and PMobs

1 re-
presents the original and averaged concentration of ground observed
PM1, respectively, and PMsat

1 denotes for the concentration of satellite-
estimated ground-level PM1.
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3. Results and discussion

3.1. General performances of GTWR model

Fig. 2 shows the scatterplots between ground-measured and sa-
tellite-estimated PM1 concentrations. The R2 value is found to reach as
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high as 0.93 and the RMSE 6.86 μg/m3 for model fitting (Fig. 2a), while
they are 0.74 and 13.02 μg/m3 respectively for model validation
(Fig. 2b), suggesting an over-fitting. Basically, our R2 value is similar to
the validation R2 of 0.725 for PM2.5 estimation over the YRD region
using a nested linear mixed effects model (Ma et al., 2016a,b). The
slopes of 0.92 and 0.82 for model fitting and validation indicate a little

underestimated. Table 1 shows the step-by-step performances of PM1

estimation for model validation with the addition of each consecutive
variable. As expected, the AOD-only model produces a promising result
(R2= 0.62, RMSE=15.4 μg/m3), since the satellite AOD is the domi-
nant predictor for PM estimations. The error in satellite AOD may cause
over-/under-estimation of PM concentrations. Tao et al. (2015) found

Fig. 2. Scatterplots between ground-measured and satellite-estimated PM1 concentrations using the GTWR model, based on (a) fitting dataset, (b) validation dataset,
and (c) validation dataset with AOD errors. The black solid line is the 1:1 line as a reference, the red solid line is the trend line and the red dash lines are the 95%
confidence intervals. The color bar indicates the number of data points. Note that Terra and Aqua satellite AOD, PM1 and other variables spatiotemporally matched
with each other were included here. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Model performances for cross validation of PM1 estimation with selected variables.

Variable Slope Intercept R2 RMSE (μg/m3)

AOD 0.60 13.76 0.62 15.43
AOD +PBLH 0.65 12.09 0.66 14.71
AOD +PBLH +T 0.69 10.73 0.68 14.23
AOD +PBLH +T+WS 0.72 9.51 0.70 13.82
AOD +PBLH +T+WS+RH 0.76 8.39 0.71 13.52
AOD +PBLH +T+WS+RH +Pre 0.79 7.35 0.72 13.42
AOD +PBLH +T+WS+RH +Pre+DEM 0.81 6.48 0.73 13.28
AOD +PBLH +T+WS+RH +Pre+DEM+ Pop 0.82 6.17 0.74 13.02

Note: AOD is aerosol optical depth; PBLH is planetary boundary layer height; T is air temperature at 2m above ground; WS is wind speed at 10m above ground; RH is
relative humidity; Pre is ambient pressure near ground; DEM is digital elevation model; Pop is population. Terra and Aqua satellite AOD, PM1 and other variables
spatiotemporally matched with each other were included in this dataset.

Fig. 3. Scatterplots between ground-measured and satellite-estimated PM1 concentrations using GTWR model, based on (a) daily validation dataset, (b) monthly
validation dataset, and (c) seasonal validation dataset. The black solid line is the 1:1 line as a reference, the red solid line is the trend line and the red dash lines are
the 95% confidence intervals. The color bar indicates the number of data points. Note that daily, monthly, and seasonal datasets were averaged from the Aqua and
Terra MODIS estimated PM1. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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that the MODIS C6 DB10km AOD retrievals at Hangzhou had an RMSE of
0.251 as compared to the ground-based sunphotometer observations.
For the sensitivity analysis, we introduced normally distributed AOD

errors with a mean of zero and a standard deviation of 0.251 to the
model. As the comparison results shown in Fig. 2(b)-2(c), the un-
certainty of our model was very small in terms of expected errors from
the MODIS AOD. The other variables made similar contributions and
gradually improved the model performance (Table 1), i.e. the R2 and
the slope increased, where the RMSE and the intercept decreased.

Moreover, Aqua and Terra MODIS estimated PM1 were averaged to
get daily PM1 concentrations, and further averaged to get monthly and
seasonal PM1 concentrations. The model validation result shows an
improved predictive ability for daily estimations (R2=0.79 and
RMSE=10.93 μg/m3, Fig. 3a), monthly estimations (R2=0.84 and
RMSE=8.01 μg/m3, Fig. 3b) and seasonal estimations (R2= 0.88 and
RMSE=5.95 μg/m3, Fig. 3c). These are much better than the results
across China by Chen et al. (2018a), which reported the R2 values of
0.59, 0.71 and 0.77 for daily, monthly and seasonal mean PM1, re-
spectively.

It should be noted that the daily estimations are only based on the
data averaged over the estimations during 0200–0300 UTC and 0500-
0600 UTC. Fig. 4 present a comparison of annual average satellite-es-
timated PM1 concentrations during 2014–2017 and the corresponding
ground observations averaged over 24-h data. Almost all of the stations
possess low mean discrepancies of less than 10 μg/m3.

Fig. 4. Annual average PM1 concentrations from satellite-estimated (0200-0300 UTC and 0500-0600 UTC) and ground-measured (24 h) during the period 2014 to
2017 for 55 ground stations.

Fig. 5. Spatial distribution of average PM1 con-
centrations during the period 2014 to 2017 over the
YRD region from satellite-estimated (left) and
ground-measured (right). Note that the area of Taihu
Lake between Wuxi, Shuzhou and Huzhou are
masked as blue (null value) due to near unavail-
ability of MODIS AOD retrievals over turbid waters.
(For interpretation of the references to color in this
figure legend, the reader is referred to the Web ver-
sion of this article.)

Table 2
Model performances for cross validation of PM1 estimations of different sea-
sons.

Season Slope Intercept R2 RMSE (μg/m3)

Spring 0.77 7.86 0.68 12.56
Summer 0.77 5.53 0.63 11.39
Autumn 0.79 6.20 0.70 11.85
Winter 0.82 9.02 0.75 16.07

Table 3
Model performances for cross validation of PM1 estimations of different years.

Year Slope Intercept R2 RMSE (μg/m3)

2014 0.81 8.26 0.71 16.36
2015 0.83 6.37 0.76 13.27
2016 0.80 6.28 0.73 11.70
2017 0.81 5.66 0.72 11.57
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As shown in Fig. 5, the spatial patterns of satellite-estimated and
ground-observed PM1 mean concentrations during the period 2014 to
2017 are highly consistent with each other. It demonstrates that con-
tiguous high PM1 areas are mainly distributed in the cities of north
Zhejiang province and Jinhua-Quzhou basin, whereas mountains have
low PM1 concentration. Obviously, satellite approach can obtain the
spatial variations of surface PM1 concentrations where the ambient
monitoring stations are sparse and unevenly distributed. It is worth
noting that the megacity of Shanghai possesses relatively low PM1,
which is different from the high PM2.5 in previous studies (e.g. Ma et al.,
2016a,b). This could be attributed to different proportions of PM1 and
PM2.5 emitted from various sources (Wang et al., 2010; Chen et al.,
2018a). The four-years averaged PM1 concentrations over the YRD re-
gion ranged from 19.99 μg/m3 to 47.66 μg/m3, with a spatial mean

value of 34.76 ± 2.47 μg/m3.

3.2. Seasonal and inter-annual variations of PM1

In addition, we assessed our PM1 estimations for different seasons
and years, which is summarized in Tables 2 and 3, and presented the
seasonal and inter-annual variations in Figs. 6 and 7, respectively. Our
analyses yield seasonal validation R2 values of 0.68, 0.63, 0.70 and 0.75
for spring, summer, autumn and winter, respectively, slightly higher
than those for satellite-based PM2.5 estimations over the YRD region by
Zheng et al. (2016). The spatial distributions of seasonal mean PM1

concentrations (Fig. 6) displays the highest values in winter
(mean= 43.55 μg/m3, maximum=61.35 μg/m3) and the lowest in
summer (mean=24.38 μg/m3, maximum=39.96 μg/m3). Spring and

Fig. 6. Spatial distribution of seasonal average satellite-estimated PM1 concentrations during the period 2014 to 2017 over the YRD region. Note that the area of
Taihu Lake between Wuxi, Shuzhou and Huzhou are masked as blue (null value) due to nearly unavailability of MODIS AOD retrievals over turbid waters. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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autumn have approximate seasonal mean values of 32.84 μg/m3 and
33.96 μg/m3, respectively. This seasonal variation is generally con-
sistent with the conclusion by Chen et al. (2018b) who analyzed
ground-measured data from 96 PM1 stations in China for the period
from November 2013 to December 2014. The difference in the spatial
distribution of seasonal average PM1 could relate to the variation of
local anthropogenic emissions, such as diesel emissions, gasoline
emissions and coal combustion (e.g., Tao et al., 2012) and meteor-
ological conditions (PBLH, wind, pressure, temperature and precipita-
tion, etc.), as well as regional transportation of biomass burning aero-
sols (e.g., Tang et al., 2016).

As presented in Table 3, the evaluation metrics (namely, R2, slope,
intercept, and RMSE) of the PM1 estimations for different years are very
close to each other for each year, indicting a stable model performance.
Fig. 7 presents the spatial distribution of the annual average PM1,

which exhibits an overall year-by-year decline from 2014 to 2016, with
spatial mean values of 39.94 ± 2.97 μg/m3, 35.66 ± 2.58 μg/m3, and
30.84 ± 2.18 μg/m3 for 2014, 2015, and 2016, respectively. The level
of PM1 in 2017 was similar to that in 2016.

3.3. Population exposure to PM1

Given the adverse PM1 impact on human health, it is imperative to
evaluate long-term population exposure levels over different pre-
fecture-level cities in the YRD regions for the period from 2014 to 2017.
We calculated the four-years population-weighted mean PM1 (MPPM1)
concentrations using the following formula.

=
×

MPPM
Population PM

Population
1j i

N j i j i

i
N j i

,
1

,

, (4)

Fig. 7. Spatial distribution of annual mean satellite-estimated PM1 concentrations during the period 2014 to 2017 over the YRD region. Note that the area of Taihu
Lake between Wuxi, Shuzhou and Huzhou are masked as blue (null value) due to nearly unavailability of MODIS AOD retrievals over turbid waters. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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where MPPM1j is the population-weighted PM1 for the city j, PM j i
1

, and
Population j i, are the PM1 concentration and population data of the pixel
i in the city j respectively.

The population-weighted mean PM1 concentration over the YRD
regions is 37.22 μg/m3 (Table 4). The highest levels of PM1 exposure
occurred at Ningbo with the value of 53.23 μg/m3, while the lowest
exposure occurred at, Wenzhou with the value of 30.93 μg/m3. Cur-
rently, there is no air quality standard for PM1 concentration. There-
fore, we used the World Health Organization Air Quality Interim
Target-1 of 35 μg/m3 for PM2.5 as the standard of high-level PM1 (World
Health Organization, 2006). Near half of total population in the YRD
region inhabits in places with high-level PM1 levels. People from Wuxi,
Jinhua, Huangshan, Quzhou, Xuancheng and Wuhu suffer from the
most serious PM1 pollution, with more than 80% of people affected by
high-level PM1 concentrations. These findings could help to evaluate
the long-term effects of PM1 air pollution and disease burden attributed
to PM1 exposures over the YRD region in China.

3.4. Comparisons using 10 km and 3 km AOD datasets

The satellite-based ground-level PM1 estimation at a higher spatial
resolution facilitates our explicit and full understanding of population

exposures to aerosol pollution. First of all, it is imperative to see the
performance discrepancy of PM1 retrievals from MODIS at two different
grid sizes. The MODIS C6 DT AOD product at 3 km (DT3km) has been
used to estimate PM2.5 concentrations (Xie et al., 2015; Bilal et al.,
2017b). However, the DT3km product exhibits larger errors than the
DT10km product due to the errors in the estimated surface reflectance
(Remer et al., 2013; Nichol and Bilal, 2016). Bilal et al. (2018) devel-
oped a new DT and DB merged AOD product at 3 km resolution
(DTB3km) using the DT3km AOD and DB3km AOD resampled from the
DB10km using the nearest neighbor algorithm, supplement with high-
resolution information over dense vegetation regions where DT3km is
susceptible to error. As compared in Fig. 8, the PM1 estimations using
the DTB3km product yields the best result (namely, the highest value of
R2, the most number of matched dataset, and the lowest value of
RMSE), while the DB10km is the second, and the DT3km is the worst. This
could be attributed to more matched samples and smaller retrieval er-
rors in the DTB3km AOD. Comparing Fig. 9a and Fig. 9b demonstrates
that the 3 km PM1 map from the DTB3km provides more details than
those from the DT10km. Notably, Fig. 9b shows that a gradual change in
PM1 concentration occurs from southern to central Zhejiang province
(e.g., Jinhua-Quzhou basin), while it is a sudden change (Fig. 9a) due to
coarse resolution of AOD. These results suggest that the DTB3km sig-
nificantly improves the PM1 estimation with more AOD retrievals in
revealing the local-level spatial variability of PM1 concentration.

4. Summary and concluding remarks

In this paper, the geographically and temporally weighted regres-
sion (GTWR) model that can better characterize the spatial and tem-
poral variability between aerosol optical depth (AOD) and particulate
matter (PM), were used to estimate ground-level PM1 concentrations
over the YRD region, based on hourly ground-based PM1 measurements
over the PRD of China, along with MODIS C6 Deep Blue AOD at 10 km
resolution (DB10km), Weather Research and Forecasting model (WRF)
simulated meteorological data, digital elevation model (DEM) and po-
pulation data.

In general, the satellite-based PM1 estimated from the GTWR model
showed a good agreement with ground-level PM1 measurements with
R2 value of 0.74 and RMSE value of 13.02 μg/m3 for model validation.
It also exhibited a reasonable and representative pattern in terms of the
regional variability of PM1 over the YRD region, similar to that from
ground measurements. The highest PM1 level was found in winter with
the largest R2. The PM1 level continuously declined from 2014 to 2016,
but remained stable during the period from 2016 to 2017. The

Table 4
Population-weighted PM1 concentration during the period 2014 to 2017 for 16
prefecture-level cities in the YRD region.

City/region Population-weight
Mean (μg/m3)

The proportion of people exposed to high-
level PM1 concentrations (> 35 μg/m3)

Ningbo 53.23 46.89
Wuxi 48.77 94.04
Shaoxing 47.86 47.83
Jinhua 40.92 80.15
Huangshan 39.67 82.87
Huzhou 39.04 76.17
Shanghai 32.50 0
Quzhou 37.98 93.47
Hangzhou 37.47 51.32
Xuancheng 37.28 96.94
Wuhu 36.56 100
Suzhou 36.16 78.59
Taizhou 35.6 34.09
Lishui 35.51 4.85
Jiaxing 34.13 18.33
Wenzhou 30.93 44.64
YRD 30.93 44.64

Fig. 8. Scatterplots between ground-measured and satellite-estimated PM1 concentrations using GTWR model, based on validation dataset in 2016 for (a) MODIS
DB10km AOD, (b) MODIS DT3km AOD, and (c) MODIS DTB3km AOD. The black solid line is the 1:1 line as a reference, the red solid line is the trend line and the red
dash lines are the 95% confidence intervals. The color bar indicates the number of data points. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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population-weighted mean of PM1 concentrations over the YRD region
was 37.93 μg/m3 and near half the people lived in locations with high-
level PM1 concentration (> 35 μg/m3). A new merged MODIS Dark
Target and Deep Blue AOD product at 3 km resolution (DTB3km) based
on the simplified merged scheme (Bilal et al., 2017, 2018), yielded a
better PM1 estimation result than the DB10km and the MODIS C6 Dark
Target AOD at 3 km resolution (DT3km). Overall, the present work im-
proves much over previous similar work regarding the accuracy of sa-
tellite-estimated PM1 concentrations.

In the long end, the results obtained here could help to evaluate the
long-term effects of PM1 air pollution on disease burden over the YRD
region in China. In future studies, the new merged DTB3km could be
used to elucidate the spatial and temporal variability of PM1 in more
details.
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