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Soil function

Plant-beneficial microbes improve while pathogens reduce plant performance. When introduced in soils, such
microbes can induce entire microbiome changes. However, the impact of those microbial introductions on
protists — key predators within the soil microbiome - remain unknown. Here, we tracked how soil protists
respond to bacterial (Bacillus and Ralstonia) and fungal (Trichoderma and Fusarium) introductions, with both
microbial groups represented by one beneficial and one pathogenic taxon. We found that plant-beneficial Bacillus

bacteria change the protist community structure. This community-shift was likely induced by an increased
fungi/bacteria ratio, supported by a negative correlation of the fungi/bacteria ratio with the relative abundance
of phagotrophic protists across all treatments. Our results indicate that microbial introductions can impact
protist communities, thereby altering microbiome-derived multi-functionality.

Plant beneficial organisms have the potential to improve plant
performance (Berendsen et al., 2012; Toju et al., 2018), while plant
pathogens can be detrimental for plant health. Both plant beneficial and
pathogenic microbes interact with, and thereby change, the community
composition and functioning of other organisms in soil (Chapelle et al.,
2016; Mallon et al., 2015). Among these soil organisms, protists re-
present the most diverse and abundant eukaryotes (Adl et al., 2005;
Geisen et al.,, 2018). Protists function as dynamic hubs within soil
communities that drive microbiome composition and turnover (Gao
et al., 2018; Geisen et al., 2018). However, we have little knowledge on
how plant beneficial microbes and plant pathogens affect protist com-
munities as the few studies that examine these links are generally
confounded by the fact that microbial amendments are typically ap-
plied in combination with organic fertilizers (Xiong et al., 2018). This
makes it difficult to tease apart impacts induced by microbes them-
selves and those of abiotic factors. In this study, we monitored the
temporal impact of two well-studied plant-beneficial microbes, con-
sisting of one bacterium (Bacillus amyloliquefaciens) and one fungus
(Trichoderma guizhouense) and two plant pathogens (the bacterium
Ralstonia solanacearum and the fungus Fusarium oxysporum) and control
(sterilized water) on protist communities after inoculation to bulk soil
(without plants) over four weeks using 18S rRNA gene sequencing.
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In doing so, we first compared the exact sequence variants (ESVs)
approach “Unoise3” (Edgar, 2016) with “Swarm v2” (Mahé et al., 2015)
and the commonly used Operational Taxonomic Units (OTUs) clus-
tering by “Uparse” (Edgar, 2013), to identify an appropriate criterion to
study eukaryotic community. In line with Glassman and Martiny
(2018), our results suggest that ecological patterns provided by the
three approaches are similar (Fig. Sla and Fig. S1b). However, the
Unoise and Swarm approaches artificially over-estimated eukaryotic
diversity by an order of magnitude, while only the Uparse method with
a 97% similarity threshold provided expected OTU numbers (Table S1,
Fig. S1c and Fig. S1d). We therefore utilized Uparse clustered sequences
in all further analyses. We also traced the performance of each in-
oculated microbe and the total abundance of bacteria and fungi using
gPCR approaches (see Supplementary Information for additional de-
tails).

The abundances of two beneficial microorganisms (Bacillus and
Trichoderma) and the pathogenic Fusarium showed no decline over the
course of the experiment (Fig. S2), while the abundance of the pathogen
Ralstonia significantly (P < 0.05, Tukey's test) decreased by 87.96%
within 4 weeks (Fig. S2c). These results may be related to the fact that
both fungi (Trichoderma and Fusarium) can produce spores (Gordon,
2017; Papavizas et al., 1982) and Bacillus can form endospores (Pérez-
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Fig. 1. Fungi/bacteria ratio as a function of the
different microbial inoculation treatments.
Inoculation consisted of two plant-beneficial mi-
crobes (bacterial Bacillus amyloliquefaciens and
fungal Trichoderma guizhouense) and two plant pa-
thogenic microbes (bacterial Ralstonia solanacearum
and fungal Fusarium oxysporum). Sterilized water as
control. Different capital letters inside the bars in-
dicate a significant difference between the different
time points for each treatment and different lower-
case letters above the bars indicate a significant dif-
ference between the treatments for each time point
at the 0.05 probability level according to Tukey's
post-hoc tests. NS = not significant.

Treatment

Bl Ficld soils

B3 Control (Sterilized water)
B3 Bacillus amyloliquefaciens
BE Dichoderma guizhouense
B3 Ralstonia solanacearum

B Fusarium oxysporum

Field soils 1 Week 2 Weeks 4 Weeks

Garcia et al.,, 2011), contributing to long-term survival in bulk soil,
while Ralstonia solanacearum is a non-spore forming bacterium. Strik-
ingly, we found that the plant-beneficial Bacillus bacteria, significantly
increased (P < 0.05, Tukey's test) the fungi/bacteria ratio over time
(Fig. 1). This shift in fungi/bacteria ratio was mostly due to the mar-
ginal (P > 0.05) decrease in bacterial abundance after Bacillus in-
oculation (Fig. S3a). Although it is tempting to speculate that the ability
to influence fungi/bacteria ratio may be a more general property of
plant-beneficial microorganisms, our study only examined two micro-
bial amendments, with observed effects being driven to a large extent
by Bacillus amyloliquefaciens bacteria. Future research is therefore re-
quired to examine the extent to which other plant-beneficial organisms
may affect fungi/bacteria ratio.

Amendment with Bacillus bacteria further affected protist commu-
nity structures (Fig. 2), with protist Bray-Curtis distance increasing
(P < 0.05, Tukey's test) in comparison to control over time (Fig. 2b).
The larger effects of Bacillus in comparison to the other three in-
troduced microorganisms may be attributed to the antibiotic

compounds produced by Bacillus amyloliquefaciens. This strain, which
produces the antibiotics bacillomycin D and difficidin, has been shown
to inhibit a range of soil-borne pathogens (Xu et al., 2014, 2013). When
examining taxonomic shifts within the protist community, we found
that Rhizaria (mostly composed of Cercozoa, see Table S2 for details)
was lower (P < 0.05, Tukey's test) in the Bacillus treatment as com-
pared to the Ralstonia treatment after one week (Fig. S4g), and Amoe-
bozoa decreased over time in the Bacillus treatment (Fig. S4b). Both
Rhizaria and Amoebozoa are numerically dominant protist groups in
soils (Fig. S4) and largely consist of phagotrophic protists (Geisen et al.,
2015; Grossmann et al., 2016), predominantly bacterivores (Table S2).
In addition, the Bacillus treatment increased (P < 0.05, Tukey's test)
the proportion of Hacrobia (mostly phototrophic Cryptophyta) within 4
weeks (Fig. S4e and Table S2), suggesting that newly available habitat
niches (spatial niches) resulting from a relative decrease of phagotrophs
can be filled by functionally different protists, such as phototrophs.
Thus, inoculated Bacillus bacteria may induce bottom-up changes in
higher trophic level protists, which can critically affect the soil
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Fig. 2. Protist community structures based on Bray-Curtis distances as a function of the different microbial inoculation treatments (a), and Bray-Curtis
distances of protist communities between the inoculated microorganisms and the control treatment (inoculated with the sterilized water) (b). Inoculation
consisted of two plant-beneficial microbes (bacterial Bacillus amyloliquefaciens and fungal Trichoderma guizhouense) and two plant pathogenic microbes (bacterial
Ralstonia solanacearum and fungal Fusarium oxysporum). Sterilized water as control. Different capital letters inside the bars indicate a significant difference between
the different time points for each treatment and different lowercase letters above the bars indicate a significant difference between the treatments for each time point
at the 0.05 probability level according to Tukey's post-hoc tests. NS = not significant. PERMANOVA means Permutational multivariate analysis of variance test.
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Fig. 3. The relationship between the fungi/bac-

teria ratio and the relative abundance of phago-
trophic protists in relation to total protist reads.
Inoculation consisted of two plant-beneficial mi-
crobes (bacterial Bacillus amyloliquefaciens and
fungal Trichoderma guizhouense) and two plant pa-
thogenic microbes (bacterial Ralstonia solanacearum
and fungal Fusarium oxysporum). Sterilized water as

Treatment
® CK (Sterilized water)

Bacillus amyloliquefaciens

Trichoderma guizhouense

Ralstonia solanacearum

Fusarium oxysporum

-1.0
In(Fungi/bacteria ratio)

-0.5 0.0

microbiome composition and associated functions (Schuldt et al., 2018;
Soliveres et al., 2016). Furthermore, we found that Colpoda was posi-
tively (P < 0.05) correlated with bacterial abundance, and Chlorella
was positively correlated (P < 0.05) with fungal abundance (Table
S3), indicating that some protist taxa are linked with overall bacterial
and fungal community properties. Overall, bacterial abundance, but not
fungal abundance, positively (P < 0.01) correlated with protist
Shannon diversity (Fig. S5). This provides additional evidence for a
tight link of protist and bacterial communities through predator-prey
interactions (Geisen et al., 2018), pointing to the importance of top-
down control of protists on bacterial communities. This suggestion is
further strengthened by the fact that most protists were putatively
identified as phagotrophic consumers, particularly bacterivores (Table
S2). We further found that the fungi/bacteria ratio was negatively
(F = 9.581, P = 0.003**) correlated with the relative abundance of
phagotrophic protists (Fig. 3). The possible underlying reason for this
observed effect is that the antibiotics-producing Bacillus increased
fungi/bacteria ratio by the decrease of bacterial abundance (although
not significant) leading to reductions of bacterivorous protists — the
dominant phagotrophic protists in soils (Geisen, 2016; Murase, 2017).
Together, we found that changes in protist communities were related to
the addition of the inoculated bacteria and fungi and correlated with
fungi/bacteria ratio.

Understanding the interactions between soil bacteria and fungi with
higher trophic level protists has recently gained increasing scientific
attention (Gao et al., 2018; Hassani et al., 2018; Zhao et al., 2019). Our
results reveal that inoculation with the plant-beneficial Bacillus amylo-
liquefaciens strain increased the fungi/bacteria while impacting the
structure of the protist community, with a pronounced effect on pha-
gotrophic protists over time. We thus highlight that the tight interac-
tions within soil microbiomes, such as bottom-up bacterial-driven ef-
fects on higher trophic level protists, can be altered through microbial
amendments. In sum, microbial amendments could therefore serve as
leverage for targeted, bottom-up driven, modulations of soil micro-
biomes and entire food webs that might open new perspectives in future
soil management.
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control. The black solid line shows the significantly
(P < 0.01**; R> = 0.14) negative relationship be-
tween the fungi/bacteria ratio and the relative
abundance of phagotrophic protists across all the
treatments. “In” denotes the natural logarithm.
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