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Abstract Autonomous vehicles will most likely participate in traffic in the near
future. The advent of autonomous vehicles allows us to explore innovative ideas
for traffic control such as norm-based traffic control. A norm is a violable rule that
describes correct behavior. Norm-based traffic controllers monitor traffic and effec-
tuate sanctions in case vehicles violate norms. In this paper, we present an extension
of SUMO that enables the user to apply norm-based traffic controllers to traffic sim-
ulations. In our extension, named TrafficMAS, vehicles are capable of making an
autonomous decision on whether to comply with norms. We provide a description
of the extension, a summary on its implementation and demonstrative experiments.

1 Introduction

Recent developments in the automotive industry steer toward a future where
autonomous vehicles are part of everyday traffic (cf. [1, 2, 15]). Vehicles will no
longer have a human driver, but will drive themselves and communicate with smart
road infrastructures and other vehicles. Clearly, human drivers are different from
software programs that operate vehicles. For instance, the response of human drivers
to receiving events is considerably slower and less accurate in comparison with a
computer program. These differences pose new challenges and opportunities [8]. For
example, delegating cruise control to the vehicles’ board computers allows vehicles
to coordinate and form platoons, which improves the traffic flow [12].
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In this paper, we are particularly interested in future challenges and opportunities
for traffic control. Traffic controllers can exert some level of influence on vehicles in
order to improve traffic flow and safety. Currently, traffic is controlled by means of
traffic laws and signs which require the education of general traffic regulations and
the interpretation of signs. The government as a regulator creates incentive to follow
the regulations by imposing sanctions on anybody who is caught violating them.
This control mechanism is tailored for humans, as they are currently the road’s only
occupants. For example, speed limits are given in easy round numbers, as we expect
humans to only approximate their limits within an error margin. An autonomously
controlled vehicle has a more precise control over its velocity and hence its error
margins are different. This allows us to give an autonomous vehicle more precise
directives. We shall address the question of howwe can design, analyze, and test new
traffic controllers where (a portion of) the vehicle is driven by autonomous software
systems.

We envision a future where the traffic infrastructure consists of smart roads,
enriched with software systems that control traffic. We will call such a software sys-
tem a traffic controller. The function of a traffic controller is to observe and evaluate
traffic, and communicate personalized directive to vehicles. Such a traffic controller is
required to respect the autonomy of the vehicles as autonomous vehicles are assumed
to be self-interested with possibly personal incentives to violate traffic regulations
[5]. Traffic controllers will be allowed to impose sanctions on autonomous vehicles
as a way to promote desired behavior. Thus, in our vision autonomous vehicles,
which are aware of traffic regulations and their corresponding sanctions, may still
violate traffic regulations and accept the imposed sanctions whenever their personal
objectives are worth the incurred sanctions. Traffic controllers should also be easily
maintainable in terms of the traffic regulations. In our approach, we focus on drivers,
the state of traffic, the regulations, and the traffic controllers. We shall argue that a
suitable paradigm for these kinds of control systems is that of norm-based control
for multi-agent systems. Norms are violable regulations, whose violations result in
the imposition of sanctions, much like current traffic regulations.

Aside from design, we also want to see what the effect is of a new traffic
control system. As real-world experiments are an expensive affair, a traffic con-
trol research project starts often with traffic simulations. We choose SUMO [13]
as a simulation platform because it is open-source, has a track record of research
behind it, and performs well. We did observe, however, that SUMO does not pro-
vide a straightforward platform to implement concepts from the paradigm of norm-
based control for multi-agent systems. In this paper, we present an extension to
SUMO, named TrafficMAS, that allows the user to specify and execute norm-
based traffic controllers for traffic. This software is open-source and can be found at
https://github.com/baumfalk/TrafficMAS. A small user guide on the extension can
be found in Appendix 2, and more information is available on the Github page.

The running example in this paper is a ramp-merging scenario, where two traffic
streams have to merge together. For a schematic overview, see Fig. 1. There is one
main input stream and one ramp input stream, resulting into a single output stream.
The goal is to make optimal use of the output capacity of the network while not
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Fig. 1 Example scenario
where two traffic streams
must merge

causing unnecessary traffic jams for the ramp input stream or compromising safety.
A solid analysis of this scenario can be found in [8]. Our approach is to use a traffic
controller that assigns individual directives to vehicles. In particular, vehicles are
obligated to move or stay on a lane and/or adopt a certain target speed until they are
released of this directive.

Our paper is structured as follows. We first give a brief introduction in the field of
norm-based control systems. We will then show how the norm-based control system
for SUMO is designed and discuss its application in our example scenario. Following
that, we describe how vehicles can reason about the norms that are directed to them
by the traffic controller. We then explain our implementation approach. In the next
section, we evaluate our extension through a series of experiments that highlight
different aspects of our contribution. Finally, we look at related work and compare
them with our approach.

2 Norm-Based Control Systems

Norm-based control systems are a popular technology for coordination in the multi-
agent systems [10] community. A multi-agent system consists of a set of agents that
interact within a shared environment. The agents may communicate with each other
or perform actions in their shared environment. In addition to reactively responding to
environmental changes, autonomous agents are assumed to have their own objectives
(goals) for which they proactively initiate actions in order to achieve them. Aside
from its objectives, the knowledge/belief of an agent may determine the actions
it decides to perform. A simple model of an agent’s internal process is the sense–
reason–act cycle. In this cycle, the agent first senses what the state of the environment
is; then reasons about its goals, preferences, etc., to determine what action it wants to
perform; and then executes the action. Although the agents’ behavior is not always
predictable or controllable, multi-agent systems are often required to satisfy some
global properties. For our purposes, we consider smart roads as a multi-agent system
where the state of traffic as well as the infrastructure is seen as the environment, and
the drivers of vehicles, whether human or not, are seen as the agents in a trafficMAS.
The throughput and safety of smart roads are considered as the global properties that
are required to be satisfied.
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2.1 Background on Norm-Based Control Systems

The behavior of individual agents needs to be controlled and coordinated in order to
ensure the desirable properties at the system level [10]. A possible approach would
be to design and implement hard constraints at both individual agent and multi-
agent system levels. However, this approach may not always be desirable or feasible
since limiting the autonomy of individual agents can be costly or even impossible.
For instance, in our smart roads scenario it is undesirable, if not impossible, to fully
control and determine the behavior of all individual autonomous cars as these vehicles
are assumed and designed to be able to make their own decisions.

Norm-based control systems are widely proposed as an effective mechanism to
control and coordinate the behavior of individual agents [9]. In norm-based control
systems, norms are considered as specifying the standards of behavior that can be
used to govern the interaction between autonomous agents (cf. [4, 11, 19]). Across
various theories and frameworks, there is no general consensus on what a norm is.
In this paper, we use the term norm as a reference to both norm schemes and norm
instances. With the concept norm scheme, we refer to the specification of the cir-
cumstances after which a specific agent is obliged to achieve a system state, and
the sanction that will be imposed should this obligation not be met before a certain
deadline (cf. [19]). With the concept norm instance, we refer to a specific directive
and sanction that is in effect for a specific agent. In general, norms can take the
form of an obligation, prohibition, or permission, but the scope of this paper con-
cerns only obligation norms. The application of norms in multi-agent systems, called
norm-based multi-agent systems, requires continuous monitoring of the behavior of
individual agents, evaluation of their behavior with respect to the specified norms,
and assurance that norm-violating agents are sanctioned. This approach maintains
the agents’ autonomy and can still promote desirable behavior. We observe that traf-
fic regulations can be formulated following the normative approach. For instance,
one can straightforwardly formulate a speed limit measure in terms of a condition
(entering the road), obligation (maintaining maximum velocity), deadline (passing
a camera), and sanction (a fine).

Some applications are inherently distributed and require distributed control sys-
tems. There are various benefits for distributed control such as increased robustness,
parallel processing of data, less communication of data, and modular maintenance
[18]. We believe this is also strongly the case for future traffic in smart roads where
sensors and traffic controllers are geographically distributed, different sections of
road networks are governedbydifferent sets of norms and regulations, and the amount
of data generated and processed is big. Therefore, we aim at decentralized traffic
control consisting of decentralized monitoring of sensor data as well as distributed
enforcement of norms. Our extension allows for a straightforward implementation
of individual traffic controllers and their communication. Although a decentralized
traffic control mechanism is more robust in the sense that it avoids the problem of
single point of failure, it also introduces new issues. In decentralized monitoring, one
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has to make sure that the sensors are cooperating correctly to detect norm violations
in a timely fashion [17].

2.2 Norm-Based Traffic Controllers for Traffic

A norm-based traffic controller monitors vehicle behavior and reacts to it. The mon-
itoring functionality of traffic controller serves two purposes. The first purpose is to
detect violations of norms, such as speeding, tailgating, or driving on a priority lane
without a permit. If such a violation is detected, then a sanction coupled with this vio-
lation will be issued toward the violating vehicle. The second purpose of monitoring
is to issue new norms. If the traffic controller continues to observe situations where
either the throughput or safety of vehicles declines, then a norm might be issued to
improve the situation. This norm might be global, or tailored to a specific vehicle.
This allows the traffic controller to be very adaptive to traffic dynamics. Furthermore,
the severity of a sanction might be increased if the coupled violation either occurs
an excessive amount of times or seems to be the cause of problematic situations. In
our framework for norm-based traffic controller, both autonomous vehicles and the
traffic controller show adaptive behavior toward the ever-changing traffic flow and
enable the system to cope with difficult and dynamic traffic situations.

A norm-based traffic controller on smart roads has a collection of sensors with
which it can sense the state of the environment, in this case, the state of traffic and the
infrastructure. Examples of these sensors are inductive-loop detectors or cameras that
can perform image processing aside from speed measurements. Traffic regulations
are formulated as norms. A traffic controller has a set of norm schemes that given
sensor data can make norm instances. The norm instances are maintained by the
traffic controller for as long as they are applicable. Finally, a traffic controller may
have subscribers and subscriptions. In a decentralized setting, traffic controllers can
subscribe to each other in order to receive sensor data which they cannot obtain
locally. Hence, we obtain a form of decentralized norm-based traffic control.

The norm-based traffic controllers in our extension aremodeled as a cyclic process
that continuously senses its environment (sense phase), evaluates the norms (reason
phase), and imposes sanctions when norms are violated (act phase). In the sense
phase, traffic controllers have twoways of observing the environment: (i) Obtain data
from the sensors that are placed in the environment, and (ii) obtain data from other
traffic controllers (by means of communication) to which the norm-based controller
is subscribed. In case of the SUMO simulations, this happens every tick. Immediately
after the data is received from the sensors, information is communicated between the
traffic controllers. In the reason phase, the traffic controllers apply their information
to their norm schemes in order to instantiate norm, if possible at all. Finally, the
traffic controllers act on these new norm instances by communicating the directives
to the vehicles in order for drivers to adapt their behavior. Furthermore, the traffic
controllers act by imposing sanctions on the drivers when they fail to comply to
existing obligations when a deadline has been reached.
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In our smart road application, norm instances are announced by the norm-based
traffic controller to autonomous vehicles, just like drivers are assumed to be aware
of traffic regulations. Norm awareness allows an autonomous vehicle to reason and
decides whether or not to comply with the norms (cf. [3, 16]). Norm awareness is
crucial for future traffic on smart roads as autonomous vehicles need to know the
consequences of norm violations before deciding whether or not to comply with the
norms.

3 Application of Norm-Based Traffic Control in SUMO

In our use-case scenario, we illustrate a fairly simple norm-based traffic controller.
The traffic controller first calculates when individual vehicles would arrive on the
merge point of the traffic streams. The algorithm used is described in [21] and returns
an ordering of vehicles. Next, the target velocity is calculated for each individual
vehicle that ensures that it a) crosses the merge point at least two seconds after the
vehicle that will cross the point before it, and b) the maximum safe velocity is still
maintained. In case the mainstream road has two lanes, a vehicle can be obliged to
move to the left lane too. This happens when target velocity of a vehicle on the main
road is below a predefined threshold. The sanctions of violating norms are captured
by a low or high fine.

In Fig. 2, a schematic representation of the aforementioned ramp-merging sce-
nario is given. Triangles are vehicles that travel in the direction toward they point.
White vehicles are the ones that have not yet received their directive from the traffic
controller, while the black vehicles have passed a sensor and have thus received a
personalized norm instance. The vehicles without a norm instance in Fig. 2 are vehi-
cles A, B,C , and D. Lane sensors (s1 to s5) are placed on the roads. These sensors
can detect the status of vehicles that are driving over them. For the scenario to work
correctly, it is necessary that either the sensors are sufficiently long or the vehicles
are sufficiently slow, so that no vehicle can pass the sensors undetected. The sensors
should also be placed at a distance far enough from the merge point m such that
vehicles have enough time to comply with the directive before the deadline. There
are two important points on the road: point m where the two roads merge, and point
e where the vehicles exit the scenario. Distances dA and dC are agents A and C’s
distances tom, dexit is the distance from the m to e, and dsa f e is the distance between
vehicles that are deemed safe (i.e., the minimal gap between cars). Ideally, A and C
traverse dA and dC such that they arrive atm with a distance dsa f e and can accelerate
to their maximum speed within the distance dexit .

Monitoring happens through interpreting the observations of sensors. In the case
of SUMO,we use lane detectors that can sense the vehicles that driving along the area
they cover. Specifically, each sensor can detect the identity, velocity, and position of
each vehicle on the sensor’s area. Further parameters such as the maximum velocity,
acceleration, and deceleration capacities can be assumed within reasonable margins.
If the traffic controller instantiates a norm, then the subjected vehicle is notified of
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Fig. 2 Scenario with two lanes

the directive that it has to fulfill and the associated sanction that will be imposed if
the directive is not followed.

The standard traffic rule in the ramp-merging scenario is that the stream that
originates on the main road has priority over the ramp road’s stream. However, if
the main road is busy, this may lead to large traffic jams on the secondary road.
Therefore, the traffic controller uses the traffic data from sensors 1–3 and calculates
the optimal velocities of the vehicles in such a way that the traffic streams merge
smoothly together at the merge point. More specifically, the traffic controller notifies
vehicles passing sensor 1 to stay on the left lane. Sensors 2 and 3 are used by the
traffic controller to coordinate the scheduling of vehicles on the merge point. If a
vehicle passing sensor 2 has to slow down too much, i.e., to a velocity less than a
given threshold, then it receives the directive to move to the left lane.

In order to not overcomplicate the scenario, we decided to simplify some aspects
of the traffic controller. The sanction that a vehicle can receive for violating a norm
is modeled by either a low or a high fine. A directive that a vehicle can receive
is an obligation to be on the left or right lane of the main road at a certain target
velocity. For instance, (right, 10) is read as the obligation to be on the right lane
at 10m/s. Given that autonomous vehicles are accurate, we take real numbers for
the specification of target velocity rather than multiples of 10km/h as is common
in current traffic controllers. A norm instance consists of a directive that is paired
with a sanction. The sets of possible sanctions, directives, and norm instances for
this scenario are global throughout the paper and given by:

• S = {low, high} are the possible sanctions.
• O = {le f t, right} × R are the possible directives.
• N = O × S are the possible norm instances.

For each simulation step, the new norm instances are created. Recall that norm
instances are created based on norm schemes.
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3.1 Norm Scheme: Example

For our scenario, the traffic controller instantiates a norm scheme into a vehicle-
specific norm in such a way that vehicles cannot arrive on the merge point at the
same time if they comply with their norms. This will cause vehicles to slow down
considerably on the main road. If they have to slow down too much, then they will
be obliged to move to the left lane which is assumed to be more free-flowing. The
exact explanation of this norm is provided in Appendix 1.

We also have another norm scheme that obliges vehicles that enter on the left
lane of the main road to stay on their lane at a preset maximum velocity vMAX . We
shall illustrate the different aspects of a norm scheme according to this scheme’s
pseudocode that is given in Algorithm1. We assume that there exists a current set of
norm instances N, a function sanction that given a vehicle and fine issues the fine for
that vehicle, and a function read that returns the vehicles on a sensor’s area that has
not been seen before by that sensor. Though not a forced pattern, we do encourage
future users of our extension to use the same code structure as in Algorithm1. Every
norm scheme has a specification of when norm instances are created, when they are
retracted, and when a sanction should be issued.

Algorithm 1 Pseudocode for the stay-on-lane norm scheme
1: L ← read(s1)
2: for all agent ∈ L do
3: N ← N ∪ {(agent, ((le f t, vMAX ), low))}
4: L ← read(s4)
5: for all agent ∈ L do
6: if (agent, ((le f t, vMAX ), low)) ∈ N&agent.v < vMAX then
7: sanction(agent, low)

8: N ← N\{(agent, ((le f t, vMAX ), low))}
9: L ← read(s5)
10: for all agent ∈ L do
11: if (agent, ((le f t, vMAX ), low)) ∈ N then
12: sanction(agent, low)

13: N ← N\{(agent, ((le f t, vMAX ), low))}

The code of Algorithm1 is executed after every simulation tick. We begin with
creating new norm instances (lines 1–3). In this case, sensor 1 is read. In Fig. 2, it
can be seen that this sensor detects all vehicles that enter the scenario on the left
lane of the road. Hence, we give each vehicle on the left lane the directive to stay
on the left lane and also obtain a preset maximum velocity to ensure that the flow
stays high (line 3). We then continue by checking sensor 4 (lines 4–8). Vehicles with
instances of this norm that pass sensor 4 fulfilled their directive to stay on the left
lane. However, if their velocity is not the obliged velocity, they receive a low fine
(lines 6–7). After passing this sensor, the vehicles are relieved of their directives (line
8). The same holds for sensor 5 (line 9). However, if a vehicle passes sensor 5 then
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it means that it switched to the right lane. Hence, each vehicle that has received a
directive to stay left but passes sensor 5 is fined (line 12).

4 Norm-Aware Vehicles

Our goal is to build autonomous norm-aware vehicles that operate on smart roads
where vehicles’ behaviors are automatically monitored, evaluated with respect to
traffic norms, and possibly sanctioned. As mentioned before, we assume that indi-
vidual vehicles have their own objectives (e.g., destination, arrival time, travel cost)
and are able to deliberate and decide on actions that achieve their objectives. This
implies that a vehicle can choose to obey/violate a norm, when this contributes to the
achievement of its objectives. In this section, we will discuss norm awareness and
how we adopted it in our own driver models.

4.1 Background on Norm Awareness

We have explained norm-based controllers in a multi-agent system as being external
entities to the agents,whichmay oblige/forbid certain behavior and impose sanctions.
This abstraction comes from the human way of organizing. It is beneficial to make
agents in a multi-agent system norm-aware, especially in simulations where we want
the agents to change their behavior due to the norms as humans do. Norm awareness
falls under the umbrella of organizational awareness [20]. Organizational awareness
is about allowing agents to reason about their role within an organization. However,
for traffic simulation purposes, all agents have the same role (i.e., being a driver),
hence we will focus on norm awareness only.

Being norm-awaremeans that an agent can reason about the norms that it receives.
The directives that an agent receives are unlikely to match its goals and desires. Oth-
erwise, there would be no need for sanctions. Reasoning about norms hence entails
weighing for a course of actions the benefits (reaching goals, fulfilling desires, etc.)
and the penalties (expected sanctions from the norm-based controller). In general,
the more complex the planning mechanism of the agent is, the harder it is to incorpo-
rate reasoning about norms. For an example language for programming norm-aware
agents that can deliberate about norms w.r.t. their own goals and plans, we refer the
reader to N-2APL [3].

4.2 A Norm-Aware Driver Model

In order tomodel normawareness,wedeviate from the standardSUMOdrivermodels
[14]. There are several reasons for this. First, vehicles in SUMO are goal-directed
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only in a limited way. For example, the goal of SUMO drivers is to follow a certain
route, as opposed to the goal of having a specific location as the destination. Second,
SUMO agents are preprogrammed to follow a specific route. They only respond
reactively to their environment, instead of deliberating on what action would best
suit them. Third, vehicles in SUMO are inherently incapable of deciding to break
the rules. For example, they always stop for a red light and they obey to the right of
way. This is because of vehicles in SUMOmove according to specific car-following
and lane-changing rules. The car-following model is not created with norm-aware
vehicles in mind. The most commonly used car-following model made by Stefan
Krauss is designed purely to create realistic traffic flows in general since in most
traffic simulations individual movement on the microscopic level is not interesting
[14]. In contrast, we aim at designing futuristic autonomous cars with a more fine-
grained sense of control and, most importantly, the ability to violate norms. In our
work, we model drivers with different possible actions, a belief state, and personal
preferences. The available actions of a vehicle depend on the scenario. The belief
state of a vehicle consists of:

• A description of its runtime variables which contain its velocity, position (given
by a lane and distance from that lane’s start), and current norm instances.

• An expected arrival time (at the goal location) function that reflects, for instance,
the GPS planning tools that vehicles have available. This function is equal for
all vehicles, but can be parameterized in the future in order to make more opti-
mistic/pessimistic drivers.

• A local effect function that returns the next expected runtime variable configura-
tion, given the runtime variables of a vehicle and an action. For instance, if the
current velocity is 20m/s and a vehicle accelerates by 5 as an action, then it expects
for the next simulation tick to be at 25m/s if this is possible within its acceleration
capabilities. This function is also equal for all vehicles.

• Adirective distance function that returns a positive expectancy ofwhether the vehi-
cle can fulfill the directive in time before it is sanctioned, given runtime variables
and a directive. The precise definition of this function depends on the possible
directives and driver specifics in an application. However, a high distance should
mean that it is likely that the sanction will be incurred in the future, whereas a
distance of zero should indicate that the current state fulfills the directive. This
function is also equal for all vehicles.

The personal preferences of a vehicle are given by its personal profile. This profile
consists of:

• A maximum desirable velocity of the vehicle.
• A sanction grading function that returns how bad a sanction is to the vehicle. The
higher the number, the worse the sanction. This can be used to model how affluent
or greedy a vehicle is.

• A arrival time grading function that returns how good or bad an arrival time is. This
encodes the desired arrival time of the vehicle. Anything before the desired time



A SUMO Extension for Norm-Based Traffic Control Systems 65

Fig. 3 Sense–reason–act
cycle of an agent

should be evaluated to zero or less, and everything after it should monotonically
increase in their evaluation.

Our vehicles are assumed to use a sense–reason–act cycle. In our extension, this
cycle is performed at each simulation tick of SUMO (Fig. 3). In practice, it is not
required that the vehicles run synchronously with the traffic controllers and/or other
vehicles. In practice, a vehicle perceives its road environment by its onboard sensors.
In our extension, this information is obtained from SUMO, which gives a vehicle its
local information. A vehicle also receives newly instantiated or retracted directives
that apply to itself. This information updates the vehicle’s belief state (its runtime
variables). Using its knowledge of the road network, the vehicle estimates the utility
of each of its actions by balancing between the value of achieving its objectives
and possible sanctions that will occur if it performs the action. The arrival time and
expected sanctions are used to calculate the utility for each action.

The action with the highest utility is chosen by the agent’s action selection func-
tion, using a priority-based tie-break mechanism for ties. The tie-break mechanism
is used when two or more actions have the highest utility. If such a situation occurs,
then the action with the highest priority is chosen. In our implementation, the less an
action changes the agent state, the higher its priority is. For example, in a tie-break
situation, doing nothing is preferred to increasing velocity to a small amount, which
in turn is preferred to increasing velocity to a larger amount, which in turn is pre-
ferred to changing lane. We chose for this ‘least impactful action’ tie-break ordering
since we believe this to be in line with human behavior. However, we stress that this
ordering is not essential to our framework and can be replaced by arbitrary tie-break
orderings. Finally, the simulator executes this action.
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Recall that S is the set of possible sanctions, O the set of possible directives, and N
the set of possible norm instances. The relevant components of an agent are modeled
as follows:

• A is the set of actions to choose from.
• 〈v, l, d, n〉 is a specification of the runtime variables of a vehicle, where v is the
current velocity, l is the current lane, d is the distance from the starting point of
that lane, and n ⊆ N are norm instances.

• B is the set of all possible runtime variables configurations.
• f : B �→ N is the expected arrival time function.
• e : B × A �→ B is the local action effect function.
• δ : B × O �→ R is the directive distance function.
• 〈vmax , gs, gt 〉 is a specification of a vehicle’s personal profile, where vmax is the
maximum velocity, gs : S �→ R is the sanction grading function, and gt : N �→ R

is the arrival time grading function.
• P is the set of all possible personal profiles.
• u : B × P × A �→ R is the utility function, given by:

u(b, p, a) = gt( f (b
′)) +

∑

(o,s)∈n
(δ(b′, o) · gs(s)),

where b = 〈v, l, d, n〉, p = 〈vmax , gs, gt 〉, and b′ = e(b, a).
• α : B × P → A is the action selection function given by:

α(b, p) = max
a∈A

u(b, p, a)

5 Application of Norm-Aware Driver Models

In this section, we shall go into detail how the norm-aware drivermodels are specified
for our scenario. We give a specification of the scenario’s specific components and
discuss utility calculations.

5.1 Vehicle Driver Specification

A vehicle reasons about all its actions when it deliberates for a next action. Among
all actions in our scenario are de-/accelerating action. We have simplified this by
discretizing the possible de-/acceleration values. The other possible actions available
to a vehicle are switching a lane to the left or right.More specifically, the set of actions
A that a vehicle can decide to perform are:
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A = {ax | x ∈ {0, 0.1, −0.1, 1, −1, 5, −5, 10, −10, 20, −20, 50, −50}} ∪ {lle f t , lright },

where ax is read as adding x to the current velocity (i.e., de-/accelerating) and
lle f t/ lright is read as moving a lane to the left or to the right.

We also specify how the directive distancemeasure is calculated given the possible
directives in our scenario. In our scenario, the factors that a vehicle considers are the
time it takes to fulfill the directive, the current time, and the expected time that the
sanction will be issued if the directive is not followed.We have implemented vehicles
in such a way that they expect that the traffic controller check whether a directive is
followed somewhere between the current time t and the current expected exit time
texi t for the vehicle. The minimal amount of time needed to adhere to the norm is
denoted δt . For instance, if a vehicle at time step t is being instructed to drive 25m/s
and can accelerate to this speed in minimally three time units, then δt = 3. If we
need zero steps to adhere to the norm, the distance is zero. Otherwise, the distance
proportionally moves to 1 given the current time. If the traffic controller will check
directive fulfillment before the driver can achieve compliance (i.e., texi t − t < δt ),
then δ should be 1. Hence, the directive distance measure is given by:

δ(b, (lo, vo)) = min(δt , texi t − t)

(texi t − t)
,

where t is the current time, texi t is the expected exit time, and δt is theminimal number
of steps needed for compliance of (lo, vo) given the current runtime variables b.

Note that this means that the drivers expect the traffic controller to issue a sanction
if a directive is not followed between now and texi t − t time units later. This distance
measure can be modified easily in our framework.

5.2 Utility Calculations: Example

To illustrate this notion, suppose we have two drivers, a poor one and an affluent one
in an identical situation. They currently drive 20m/s, their maximum speed is 30m/s,
they can accelerate or decelerate with 10m/s and their travel distance is 1080m. Both
are in a hurry, so their gt is defined as gt(time) = bestT ime

time .
Here, bestT ime is defined by the minimal travel time, i.e., the time it would take

the drivers to travel the distance if they could go their maximum speed all the time.
In this case, bestT ime = 1080/30 = 36. However, the road the drivers travel on has
a speed norm, with the maximum speed being 10m/s. Not complying with this norm
gives a high fine. The poor agent cannot afford this fine, so it has gs(high) = −20.
The affluent driver can easily afford this fine, so it has gs(high) = −0.2. Suppose
for this example that drivers can only take the actions a0, a10 and a−10.

In Table1, we see the utilities for each of these actions for both drivers. Here, we
see that the highest rewarded action for the poor driver is the one that obeys the norm
since it cannot afford the fine, while the affluent driver is in a position to violate the
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Table 1 Example of the deliberation of a poor and affluent agent

a0 a10 a−10

Speed after action 20m/s 30m/s 10m/s

Norm speed 10m/s 10m/s 10m/s

Travel time remaining 54s 36s 108s

gt 0.67 1.00 0.33

Steps needed to oblige
the norm

1 2 0

δ 0.02 0.06 0.00

Utility poor agent 0.30 −0.11 0.33

Utility rich agent 0.66 0.99 0.33

Fig. 4 Overview of the presented extension

speed norm since it can afford the fine. In fact, the affluent driver will increase its
speed since it then maximizes its time grade and thereby its utility.

6 Implementation Approach

The structure of the presented norm-based traffic controller for SUMO is depicted
in Fig. 4. As stated before, we use the native SUMO application as the environment.
However, we do not use SUMO’s driver models. Instead, we communicate com-
mands from our own agent model to the vehicles. We have also implemented our
own sensor business logic. These sensors are connected to lane area detectors as
implemented in SUMO. The communication between the extension software and
SUMO is provided by the TraaS library. We use and provide a new version of TraaS.
In addition to improved performances, the new version has some extra functionalities
that are needed for our extension.

The software in our extension is composed mainly of the agent models and the
traffic controller. The software executes in lockstepwith SUMO; i.e., each simulation
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Fig. 5 Model-View-
Controller
structure

tick in SUMO is also a tick in the extension. We chose to provide our work as an
extension to SUMO, rather than modifying the source code of SUMO directly.

There are various pragmatic reasons to propose a SUMO extension rather than
altering its code. For example, we can now support multiple versions of SUMO,
starting from SUMO 0.20 and upwards. This also makes our extension more acces-
sible to users, since it eliminates the need for users to recompile SUMO before they
can use the framework. The framework is developed in Java since most norm-based
autonomous agent frameworks are written in Java and Java programs are easy to use
on a variety of platforms. We have designed the framework using the Model-View-
Controller pattern, as can be seen in Fig. 5. A multi-agent system can be specified
in XML and is converted to a MAS model. We furthermore use TraaS to retrieve
the simulation state of SUMO. These models can be manipulated by the controller
software (note that the controller is a control component in the software engineering
sense; it is not the same as the conceptual traffic controller). The agent framework
simulates our driver models. The view of the system allows the user to see the state
of the MAS side of the simulation. This decomposition allows other researchers to
easily create their own front-end by changing the view implementation. It is also
possible to create a new data format for scenarios by changing the data model imple-
mentation, or to change the simulation package by providing a different simulation
model implementation. Each part can be changed without the need to change other
parts of the framework.

In Fig. 6 an UML overview of the traffic controller structure is shown. As men-
tioned previously, traffic controllers observe by using sensors. These sensors are an
extension of a physical object, occupying space within the environment on a certain
road, lane, and distance and have a certain length. The traffic controller consists of
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Fig. 6 UML overview of
traffic controllers

five attributes. First, NormSchemes, which is a set of traffic regulations to be effectu-
ated by the traffic control system. Second, NormInstances, a set containing all norms
instantiated by the controller. In effect, this means a specific regulation is sent to a
vehicle. Third is the set Sensors, which is a set of sensors at its disposal to sense the
vehicles driving in the environment. Fourth, a traffic controller is subscribed to a set
of other traffic control systems denoted by the set SubscribedControllers. Finally,
KnowledgeBase is a set containing data about the vehicles in the simulation.

At regular intervals, vehicle data is collected fromboth the sensors and other traffic
controllers and is used to update the traffic controller’s knowledge base. It uses its
knowledge base in three ways. The first usage is to decide if the traffic regulation
should be applied and instantiates a specific regulation for a vehicle. Secondly, a
traffic controller employs its knowledge base to determine if the regulation is violated
in order to impose sanctions. Finally, the knowledgebase is used to determinewhether
the deadline of an instantiated regulation is met. If so, the regulation is retracted and
the relevant vehicle is notified.

The communication of the regulations to vehicles as well as the communication
of sensor readings between traffic controllers is assumed to be done wireless. The
actual communication protocol is unspecified.

An UML overview of the agent structure is shown in Fig. 7. Agents are an exten-
sion of physical objects since they occupy a certain space and have a certain position
in the world. ABasic Agent is a prototype AgentProfile. The agent profile is specified
by the SanctionGrade and ArrivalTimeGrade functions which are the sanction and
arrival time appraisal functions discussed in Sect. 4.2. In the doAction function, the
directive distance measure is used to calculate the utility for each individual action.
In this manner, the agent profile of the agent together with the current state decides
what action the agent will choose toward achieving its goal. These design choices
were made to model the agents in such a way that new agent profiles can easily be
created to model norm-aware human or driverless autonomous vehicles, while still
keeping the agents as simple as possible. With each deliberation cycle, agents can
pick the action most suited to their goals and the current state, one of the actions
listed by the AgentAction enumeration in Fig. 7.
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Fig. 7 UML overview of the agent structure

7 Experimental Evaluation

We tested the performance of our normative agent-based traffic approach using
four experiments. In these experiments, variations of the ramp-merging scenario,
as explained in Sect. 3, are used. The first experiment considers a ramp-merging sce-
nario where the main road consists of a single lane, while on the second, third, and
fourth experiment, the main road has two lanes. In the second experiment, the second
lane is accessible for all drivers, but in the third experiment the second lane is marked
as an emergency-only lane. Finally, in the fourth experiment, the ramp-merging sce-
nario is used twice in succession in order to demonstrate the use of communication
and coordination between decentralized traffic controllers.

The experiments were set up as follows. Each experiment is run for a length of
one hour (3600 ticks). The spawn rate shown in the tables of the experiments is
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defined as the chance of a vehicle spawning every tick. If there is not enough room
to spawn a vehicle at a certain time, then SUMO puts the vehicle on hold and spawns
it at the earliest possible time when space is available. The maximum speed at the
merge point, vmax , was set to 80km/h. Furthermore, the four experiments consist
of comparing two scenarios, both ran for one hundred times. The values displayed
in the tables are the averages over hundred runs. The throughput is defined as the
number of vehicles leaving the simulation every tick. Average speed is the average
speed over all runs in m/s, and finally the average gap is the average distance between
two cars in meters. Also, we define for each experiment the maximum (expected)
throughput. This is the expected throughput if each vehicle could keep driving its
maximum speed throughout the scenario and can be calculated by the following
formula: throughputmax = 60p, where p is the probability of a car entering the
simulation on that tick.

7.1 Experiment 1: SUMO and TrafficMAS

The first experiment illustrates the behavior difference between the default SUMO
vehicles and the norm-aware driver models implemented in the TrafficMAS exten-
sion. A single traffic controller observes the vehicles in the simulation and commu-
nicates tailored norm instances to each vehicle. In this experiment, a norm instance
is simplified to just a target velocity since there is no choice of lanes on the main
road. The expected result is that norms result in a higher average velocity and a better
throughput of vehicles since traffic jams will be prevented. In this scenario, a classic
ramp-merging situation is implemented, where both the main road and ramp consist
of a single lane. The spawn rate of the vehicle input stream will be slightly higher
on the main road to resemble a realistic traffic situation. In the TrafficMAS sce-
nario, three sensors are placed on the road: one on the main road, one on the ramp,
and a control sensor on the output road. The traffic controller instantiates norms,
removes norms, or applies sanctions when the vehicles are detected by the sensors.
In the SUMO scenario, the main road has priority over the ramp road, comparable
to real-life merging situations.

As is clear from the results in Table2, there is an increase in both throughput,
average speed, and the average amount of space between the vehicles. This is the
case since in the SUMO scenario a traffic jam instantly forms on the ramp, because
of the relatively high density of cars on the main road (Fig. 8). These results confirm
our expectation of coordination by a norm-based traffic controller improving on
classic ramp-merging scenarios. Note that the throughput % value exceeds a hundred
percent, this is possible because the spawn rate is probability based and thus can
exceed the maximum expected throughput.



A SUMO Extension for Norm-Based Traffic Control Systems 73

Table 2 Results for the first scenario

SUMO agents Norm-aware agents

Main road spawn rate 20% 20%

Ramp spawn rate 15% 15%

Throughput 16.16 21.01

Max throughput 21 21

Throughput % 76.95% 100.05%

Average speed 3 20.97

Average gap 13.81 101.82

Fig. 8 Screenshot depicting the difference in performance in experiment 1. The top scenario uses
our framework and merge norm. The bottom scenario uses the default SUMO driver models

7.2 Experiment 2: Simple Norms and Advanced Norms

The goal of the second experiment is to compare traffic controllers using simple
and advanced norms. The traffic controller in the SingleNorm scenario observes and
controls the same norm as in experiment 1. In theAdvancedNorm scenario, the traffic
controller can also issue directives for the vehicles to change lanes in order to relieve
the rightmost lane traffic and prevent congestion. The lane change directive will be
given to a vehicle when its calculated velocity on the merge point is below a certain
threshold. For this experiment, the threshold was set to 1/2vmax . Our expectation
is that in this multi-lane scenario, the traffic controller with the advanced norm can
successfully cope with a higher input stream of vehicles.

The setup for the SingleNorm scenario is a copy of the TrafficMAS scenario
in experiment 1, except that in this case the main road has two lanes instead of
one, and moreover, the input stream of vehicles of both roads are increased. The
AdvancedNorm scenario implements extra sensors on the second lane, but is exactly
the same in every other aspect.
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Table 3 The results for the second scenario

SimpleNorm AdvancedNorm

Main road spawn rate 30% 30%

Ramp spawn rate 20% 20%

Throughput 20.38 29.91

Max throughput 30 30

Max throughput % 67.93% 99.70%

Average speed 3.31 14.91

Average gap 14.2 61.49

As can be observed from the results in Table3, the simple norm cannot cope
properly with the increased spawn rate of vehicles in this scenario. The average speed
has diminished severely, as well as the average gap between vehicles. This means
congestion is abundant in the SimpleNorm scenario. However, the AdvancedNorm
seems to cope very well with the increased input stream of vehicles. In this scenario,
the throughput approximates the maximum expected throughput by a factor 0.3%,
which indicates that the vehicles move throughout the simulation without much
congestion.

7.3 Experiment 3: Sanction Severity

The third experiment illustrates that drivers are able to reason about norms. Exper-
iment 1 has shown that drivers are norm-aware. However, TrafficMAS agents also
have the capabilities to violate norm if these violations do not have significant impact
on them. In this experiment, the leftmost lane is an emergency lane, reserved for cer-
tain traffic in order to help with accidents and other emergencies. Therefore regular
drivers will get sanctioned if caught driving on this lane. Since this lane remains
mostly empty, this is a viable option for drivers who greatly value a faster arrival
time and are in a financial position which makes them willing to accept a fine. We
expect that the more affluent drivers will choose to accept sanctions in order to
improve their arrival time, resulting in distinct behavior between the two groups of
drivers.

This experiment is set up in the sameway as experiment 2, except that the leftmost
lane is reserved for emergencies and the spawn rates are lowered. In the Poor Drivers
scenario, the input stream consists of drivers who are impatient, but in a substandard
financial position. The Affluent Drivers scenario spawns drivers who care about
sanctions, but are willing to accept fines if by doing so they can arrive earlier to their
destinations.

The results of this experiment are listed in Table4. With this experiment, the
differences in throughput, average speed, and average gap are much smaller, and
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Table 4 The results for the third scenario

Poor drivers Affluent drivers

Main road spawn rate 20% 20%

Ramp spawn rate 15% 15%

Throughput 20.48 20.88

Average speed 12.95 14.42

Average gap 48.37 69.29

Sanctions 0 133.12

s5

s3

s2

s1 s4

s8

s10s7

s6 s9

Fig. 9 Distributed traffic control setting. Rounded boxes indicate local traffic controllers. The left
controller is connected to sensors 1–5 and the right controller to sensors 6–10

not significant enough to lead to any conclusions about improvement. However,
a significant distinction in the number of sanctions can be seen. This indicates a
difference in behavior between the groups of drivers. On average about 133 affluent
drivers decide to drive on the emergency lane in an hour of simulation. This shows a
clear difference in behavior from the poor drivers, who never decide to change lanes.

7.4 Experiment 4: Communication in Distributed Traffic
Control Systems

The final variation of the merging scenario that we consider demonstrates the decen-
tralized version of our framework. Specifically we demonstrate the ability of one
traffic controller to share data about traffic with another traffic controller so that the
receiver can adjust its norms. In this variation there are two merge points in sequence
(Fig. 9). Each of the merge points is controlled by a local traffic controller as in the
previous scenarios. For this, they have their own local sensors.

When running this scenariowithout communicating traffic controllers,weobserved
that the traffic streams tend to flow like the top situation in Fig. 10. Traffic that arrives
on the left lane of the main road keeps that lane, as it is faster than switching to the
right lane. The ramp traffic streams merge in on the right lane of the main road.
After the merge scenario, the vehicles can freely move from left to right and back.
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Fig. 10 Top: Traffic streams
(arrows) without
coordination. Bottom: traffic
streams with coordination

However, if the stream of vehicles in the second ramp is too dense, then congestion
occurs at the second merge point. The problem is that the second merge point has to
process too many vehicles.

A solution might be to redirect all traffic observed by the left traffic controller to
the left lane of the main road when high-density streams are observed at the ramp
road of the right traffic controller (the second ramp road). This way all traffic on the
second ramp road can continue through on the right lane of the main road without
being obstructed by oncoming traffic. However, the left traffic controller can only
sense the traffic situation using its local sensors. Therefore the right traffic controller
needs to inform the left traffic controller about the traffic density on the second
ramp.

This coordination is realized as follows. The left traffic controller subscribes
to traffic density observed by sensor s8 of the right traffic controller. If the left
traffic controller detects a high traffic density on the second ramp, it will issue new
norm instances that obliges vehicles to move to the left lane. As a result the input
traffic streams of the right traffic controller should be easily manageable as the
vehicles on the main road are obliged to stay left such that the vehicles on the
second ramp roads can move on the right lane of the main road. The resulting traffic
streams should resemble the streams in the bottom depiction of Fig. 10. We expect
that the coordinating traffic controller performs better in terms of throughput, average
speed, and average gap, since less congestion should occur at the second merge
point.

The results of experiment four are listed inTable5.A small increase in the through-
put and a larger increase the average speed and gap in the coordinated traffic con-
trollers scenario compared with uncoordinated traffic controllers scenario can be
observed. Thus, giving vehicles on the main road the obligation to change to the left
lane quickly after the first merging point appears to prevent the delays as observed
in the original scenario. These preliminary results support our hypothesis that obser-
vation sharing and communication between traffic control systems can be effective
for traffic regulation.
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Table 5 The results for experiment four

No coordination Coordination

Main road spawn rate 25% 25%

Ramp #1 spawn rate 15% 15%

Ramp #2 spawn rate 35% 35%

Throughput 43.81 44.74

Max throughput 45 45

Max throughput % 97.36% 99.36%

Average speed 11.32 14.60

Average gap 62.47 66.03

8 Contributions and Comparison to Other Work

The results of our reported experiments were positive in the sense that the advanced
version of our framework performed better than the SUMObaseline/simpler versions
of our framework.However, as noted previously, some scenarioswere not completely
realistic. The merge scenario did not have an acceleration lane aligned with the main
road. Moreover, in the final experiment, the traffic density of the second merge lane
was higher than onewould expect in the real life.However, the aimof our experiments
was not to show simulate calibrated realistic scenarios. Our goal was rather to show
that our extension is an enabling technology for the specification and testing of norm-
based traffic control, which can be extended into a more complex and feature-rich
framework.

The contributions of our work are as follows. First of all, we have created a
lightweight framework for autonomous norm-aware vehicles and norm-based traffic
controller on top of SUMO. This framework is easy to extend with different types
of driver profiles. It also allows for the easy usage of a different simulation package.
Secondly, we have created the possibility to conduct traffic experiments and mea-
suring the impact of a norm-based traffic controller. Finally, we have improved the
TraaS performance, yielding a performance increase of up to four times over the
original TraaS library in certain scenarios.

Our approach has some similarity with Baines et al. [6] since they employ
autonomous agents and use governing institutions to influence agents to have desir-
able behavior. However, Baines et al. concentrate on agents’ internal architecture,
situational awareness, and the communication between agents. The project is set
up with realistic maps imported from the Open Street Map foundation and used
real-world data from a highway in the UK, the M25.

While our framework is related to the work done by Baines et al., the aim of our
research is different. Our driver model is deliberately kept simple in order to focus on
the interaction between traffic controllers on the one hand, and between agents and
traffic controller on the other hand. Furthermore, our framework is not developed in
order to simulate the existing real-world scenario. Finally, our framework supports
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decentralized traffic controllers while Baines et al. focus on a single, all-knowing,
institution.

Another comparable line of research has been done by Balke et al. [7]. In this
extended abstract, Balke et al. discuss the difference between off-line and on-line
reasoning of institutions (similar to norm-based traffic controllers) governing open
multi-agent systems. They state that most research up to that point had been focused
on the off-line reasoning of institutions, which can be used to research the static
properties of institutions. The on-line reasoning of institutions concerns the monitor-
ing and controlling of agents, observing if norms are being violated and informing
agents if this is the case. In this implementation, there is a single institution with the
title “The Governor” with which agents can communicate and receive information
regarding possible consequences of their actions.

Our approach is most related to the on-line reasoning as described by Balke et al.
However, communication between the agents and the institution is handled in a
different way. With our framework, the information provided by agents to the traffic
controller is acquired via sensors. This is a more realistic representation of traffic
situations, since it is often beneficial for the agent to not disclose any information
about itself. Furthermore, in TrafficMAS, multiple traffic controllers are present,
creating a more robust and better-controlled system through communication and
coordination between these institutions.

9 Future Work

Our framework could be extended in a number of ways. One can add support for
contrary to duty norms. Contrary to duty norms consist of a hierarchy of norms. An
agent should comply with all hierarchies, but if it does not comply with the first norm
level (and thus incurring a sanction), it should at least comply to the second norm
level, or get an even higher sanction. An example is the norm “You shouldn’t break
the speed limit, but if you do, you should drive on the leftmost lane.”

Secondly, we want to implement a full-fledged decentralized norm-based traffic
controller. Currently TrafficMAS supports only decentralization of monitoring in the
sense that sensor data can be shared. However, we want to also steer toward a system
where norm instances, meta-analyses of sensor data, and sanction commands can be
sent between traffic controllers.

Finally, a graphical user interface (GUI) could be added to (i) allow for easy
creation of scenarios and (ii) allow for on the fly monitoring and editing of norms.
For example, with a GUI one could investigate how the vehicle behavior changes
when one changes the sanction severity of a norm. Because of our Model-View-
Controller structure of the framework, this can be implemented by only altering the
View part of our extension.
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10 Conclusion

Our goalwas to create a traffic simulationMulti-Agent Systemwhere vehicles should
generally follow traffic regulations, yet are able to ignore these regulations in certain
circumstances without implementing hard constraints on the agents themselves. We
used norm-based traffic controllers since they can properly deal with these kinds of
situations.

Our work is an extension to SUMO. It features a norm-based traffic controller
which monitors and possibly sanctions the vehicles. We assume deliberative pro-
active drivers that make autonomous decisions according to their goal and received
sanctions. The extension features (i) driver profiles which model different types of
behavior, (ii) traffic controllers and norms to control vehicles, and (iii) an easy way to
add new driver profiles, traffic controllers and norms. This plug and play extension
to SUMO can serve as a testing suite for all experiments concerning norm-based
traffic control.

We showed in our experiments that the performance of normative systems is better
than the default behavior in a ramp-merge scenario. Furthermore, we presented that
complex norms allow for finer grained steering of behavior in complicated scenarios.
Moreover, we illustrated the autonomy of drivers, by demonstrating a difference in
behavior between poor and affluent drivers. Finally, we demonstrated the ability
of traffic controllers to coordinate their activities, yielding better results in certain
scenarios.

Appendix 1: Merge Norm Scheme

For the merge norm scheme, we use the same pseudocode structure (Algorithm2)
as for the stay-on-lane norm scheme. As with the other norm scheme we begin with
the instance of the norm (lines 0–8).7 Initially we read sensors 1 and 3 and merge
the readings using the algorithm of Wang et al. [21] (line 1). The result is an ordered
list of agents, which, if they continue as they are, will arrive at the merge point in
the same order. We maintain a global variable t f ree that indicates the next moment
in time that the merge point is free. With optimalV eloci ty we calculate the optimal
speed for an agent s.t. it will arrive at t f ree on the merge point plus some safe margin,
or later if the agent cannot make it in time physically (line 3). If the agent is at the
right lane of the main road and the optimal velocity is below a predefined threshold,
then it is obliged to move to the left lane (line 5), otherwise it is obliged to adapt its
velocity to the optimal velocity and pass the merge point on the right lane (line 7).
An agent is sanctioned if it is not passing the merge point on the correct lane (lines
11–12, and 15–16). Otherwise, an agent can also be sanctioned if it did not achieve
its predetermined velocity (lines 19–20).
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Algorithm 2 Pseudocode for the merge norm scheme
1: L ← merge(read(s1), read(s3))
2: for all agent ∈ L do
3: s ← optimalV eloci ty(agent, t f ree)
4: if agent.lane = right&s < vthreshold then
5: N ← N ∪ {(agent, ((le f t, vMAX ), high))}
6: else
7: N ← N ∪ {(agent, ((right, s), high))}
8: L ← read(s4)
9: for all agent ∈ L do
10: N ← N\{(agent, ((le f t, vMAX ), high))}
11: if (agent, (right, s), low)) ∈ N then
12: sanction(agent, high)

13: L ← read(s5)
14: for all agent ∈ L do
15: if (agent, (le f t, vMAX , high)) ∈ N then
16: sanction(agent, high)

17: N ← N\{(agent, ((le f t, vMAX ), high))}
18: else if (agent, (right, s), high)) ∈ N then
19: if s �= agent.v then
20: sanction(agent, high)

21: N ← N\{(agent, ((right, s), high))}

Appendix 2: Using Our Code

Our framework is open-source and available on-line on Github at https://github.com/
baumfalk/TrafficMAS. It can be compiled from source, or it can be downloaded as
a binary version.

How to Run It

Our framework can be run as follows. Assuming you use the binary JAR file, a
scenario can be run with the following command:

java -jar TrafficMAS.jar ./scen/ scenario.mas.xml
path/to/sumo scenario.sumocfg [seed].

In this command scen is the directory the scenario is located in, scenario.
mas.xml is the main configuration file for the scenario and path/to/sumo
denotes the SUMO executable to use. The SUMO-GUI program can also be used.
The parameter scenario.sumocfg denotes the SUMO configuration file used
by the scenario. Finally, the parameter seed is used to prepare the random number
generator, which is used to spawn vehicles in a probabilistic fashion. If no seed is
provided, a random one is generated by the system.

https://github.com/baumfalk/TrafficMAS
https://github.com/baumfalk/TrafficMAS
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How to Create Your Own Scenario

Our framework also allows for the creation of your own scenarios. A TrafficMAS
scenario consists of several XML files:

• a global configuration file, containing the paths to the other XML files, as well as
the simulation duration.

• a configuration file specifying which norms are used. In this file, the norms are
also parameterized with scenario-specific information, such as road names.

• a configuration file which describes the norm-based traffic controllers. The file is
used to define which controllers there are, which sensors they have access to and
to which other controllers they are subscribed.

• a configuration file containing the vehicle profile distributions. This file contains
the distributions of the various driver profiles and the traffic density of the different
roads.

• various SUMO XML files: the XML file containing the nodes, the edges, the
sensors and the routes.
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