
Original Investigation | Psychiatry

Machine Learning Approach to Inpatient Violence Risk Assessment
Using Routinely Collected Clinical Notes in Electronic Health Records
Vincent Menger, MSc; Marco Spruit, PhD; Roel van Est, MSc; Eline Nap, MSc; Floor Scheepers, MD, PhD

Abstract

IMPORTANCE Inpatient violence remains a significant problem despite existing risk assessment
methods. The lack of robustness and the high degree of effort needed to use current methods might
be mitigated by using routinely registered clinical notes.

OBJECTIVE To develop and validate a multivariable prediction model for assessing inpatient
violence risk based on machine learning techniques applied to clinical notes written in patients’
electronic health records.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study used retrospective clinical notes
registered in electronic health records during admission at 2 independent psychiatric health care
institutions in the Netherlands. No exclusion criteria for individual patients were defined. At site 1, all
adults admitted between January 2013 and August 2018 were included, and at site 2 all adults
admitted to general psychiatric wards between June 2016 and August 2018 were included. Data
were analyzed between September 2018 and February 2019.

MAIN OUTCOMES AND MEASURES Predictive validity and generalizability of prognostic models
measured using area under the curve (AUC).

RESULTS Clinical notes recorded during a total of 3189 admissions of 2209 unique individuals at site
1 (mean [SD] age, 34.0 [16.6] years; 1536 [48.2%] male) and 3253 admissions of 1919 unique
individuals at site 2 (mean [SD] age, 45.9 [16.6] years; 2097 [64.5%] male) were analyzed. Violent
outcome was determined using the Staff Observation Aggression Scale–Revised. Nested cross-
validation was used to train and evaluate models that assess violence risk during the first 4 weeks of
admission based on clinical notes available after 24 hours. The predictive validity of models was
measured at site 1 (AUC = 0.797; 95% CI, 0.771-0.822) and site 2 (AUC = 0.764; 95% CI,
0.732-0.797). The validation of pretrained models in the other site resulted in AUCs of 0.722 (95% CI,
0.690-0.753) at site 1 and 0.643 (95% CI, 0.610-0.675) at site 2; the difference in AUCs between the
internally trained model and the model trained on other-site data was significant at site 1 (AUC
difference = 0.075; 95% CI, 0.045-0.105; P < .001) and site 2 (AUC difference = 0.121; 95% CI,
0.085-0.156; P < .001).

CONCLUSIONS AND RELEVANCE Internally validated predictions resulted in AUC values with good
predictive validity, suggesting that automatic violence risk assessment using routinely registered
clinical notes is possible. The validation of trained models using data from other sites corroborates
previous findings that violence risk assessment generalizes modestly to different populations.
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Key Points
Question To what extent can inpatient

violence risk assessment be performed

by applying machine learning

techniques to clinical notes in patients’

electronic health records?

Findings In this prognostic study,

machine learning was used to analyze

clinical notes recorded in electronic

health records of 2 independent

psychiatric health care institutions in the

Netherlands to predict inpatient

violence. Internal predictive validity was

measured using areas under the curve,

which were 0.797 for site 1 and 0.764 for

site 2; however, applying pretrained

models to data from other sites resulted

in significantly lower areas under

the curve.

Meaning The findings suggest that

inpatient violence risk assessment can

be performed automatically using

already available clinical notes without

sacrificing predictive validity compared

with existing violence risk

assessment methods.
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Introduction

Violence in psychiatric inpatient wards remains a significant problem. A study1 combining data from
35 sites worldwide shows 14% to 20% of patients commit at least 1 act of violence during inpatient
treatment, and surveys2 consistently show most practitioners being affected by violence at some
point during their career. Adverse effects on both patients’ and caregivers’ well-being, such as injury,
low morale, and high absentee levels, are well known.3,4

As an important part of managing inpatient violence, structured violence risk assessment (VRA)
instruments have been proposed on the basis of a combination of static and dynamic risk factors.
Their predictive validity surpasses that of unstructured clinical judgment, and a reasonable adoption
in practice has been achieved, with more than half of all risk assessments performed using an
instrument.5 However, meta-analyses reveal that only a small subset of risk factors for violent
behavior generalize to different populations,6,7 and VRA instruments are consequently limited by the
robustness of the individual factors that compose them.8,9 In addition, the time needed to perform
a structured assessment, ranging from minutes to hours, has been identified as an obstacle for daily
practice. Although adopting a VRA instrument diminished the number of violent incidents in 1
randomized clinical trial,10 other research11,12 suggests that its benefits in practice are still moderate
because of its limitations.

Developing a prognostic model based on textual data registered in patients’ electronic health
records (EHRs) might offer a novel approach to improve VRA. The fact that these data are
unstructured and originally designated for treatment presents methodologic challenges but also
opportunities in combating selection bias and exploring new associations.13 Machine learning, a term
that refers to a set of statistical techniques that learn from large and potentially noisy data sets, is
eminently well suited for this kind of task. Prognostic models obtained using these techniques are
automatically tailored to the relevant population and can be fitted in the care process without
imposing additional administrative load, circumventing drawbacks of structured VRA instruments.
Although many fields of medicine have seen convincing cases of algorithms aiding clinical decision
making (eg, cardiology,14 dermatology,15 and oncology16), the field of psychiatry still seems only on
the verge of transforming in this direction.17,18 In this prognostic study, we tested to what extent
textual data from the EHR can be used to automatically assess violence risk by developing and
validating multivariable prediction models based on routinely collected clinical notes from 2
independent psychiatric treatment centers in the Netherlands.

Methods

In this study, we used data extracted from EHRs of 2 independent psychiatric treatment centers in
the Netherlands. Data sources were not connected to each other or to sources outside the separate
hospitals. We used deidentified data sets by deidentifying clinical notes using the Deindentification
Method for Dutch Medical Text (DEDUCE) method.19 Demographic variables were limited to sex,
year of birth, and Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) diagnosis.
The study was reviewed and approved by the University Medical Center Utrecht ethical committee.
The committee assessed that obtaining informed consent retroactively was not necessary because of
the retrospective nature of the study, the number of participants, the fact that no extra data were
obtained, and the use of deidentified data. This report follows the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline20

and Reporting Guidance for Violence Risk Assessment Predictive Validity Studies (RAGEE).21

Cohort Definition
Site 1, used for internal method validation, was the psychiatry department of the academic medical
center in Utrecht, the Netherlands. It delivers both secondary and tertiary care in 4 closed short-term
treatment wards, including an acute ward and wards that focus on treatment of patients with
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psychotic disorders, mood disorders, and developmental disorders. A new admission was registered
both when a new patient was admitted and when a patient was transferred between psychiatric
wards. We allowed an absence of 2 weeks at most during admission, such as for discharge and
readmission or temporary admission in a nonpsychiatric department; longer absences were
registered as a new admission. Admissions in the developmental disorder ward were excluded
according to patient age and the nature of violence. All admissions in other wards that started
between January 2013 and August 2018 were included in the data set. We defined no exclusion
criteria according to diagnosis, comorbidity, or other psychopathological conditions to maximize the
translational value of predictive models. The resulting data set consisted of 3201 admissions of 2211
unique patients.

Site 2, used for external method validation, was a general psychiatric hospital that delivers
secondary care, with an additional focus on addiction care. It consists of 47 treatment wards in the
area of Rotterdam, the Netherlands. To match the original data set, admissions to 2 forensic
psychiatric wards, 25 long-term care wards, and 9 wards that exclusively offer addiction care were
not included in the study. All admissions in the 11 retained wards that started between June 2016 and
August 2018 were included in the data set. Other conditions were kept equal. The resulting data set
consisted of 3277 admissions of 1937 unique patients. Details explaining how data sets from both
sites were extracted from EHR systems and how data quality was secured are shown in eAppendix 1
in the Supplement. We did not merge data sets but used the data set from site 1 for developing a
machine learning approach, then used the data set from site 2 for externally validating this approach,
and finally exchanged trained models between the sites.

Data Selection
Clinical notes that were written by psychiatrists and nurses were directly extracted from patients’
EHRs. We hypothesized that free text contains information that cannot easily be captured in
structured form (eg, behavioral cues or social interactions) yet is relevant for VRA. Notes that were
written in the 4 weeks before admission up to the first 24 hours of admission were included in the
data sets. Admissions with fewer than 100 words registered after 24 hours (12 admissions in site 1
and 24 admissions in site 2) were excluded from the data set.

Outcome Variable
Reports of violent incidents were used to determine the outcome for each admission. In both sites
mandatory reporting of all violent incidents takes place, including patient-staff and patient-patient
violence. On the incident form, staff members who were involved in the incident were required to fill
in structured information, a textual description of the incident, and incident severity as measured by
the Staff Observation Aggression Scale–Revised.22 Our definition of a violent incident included all
threatening and violent behavior of a verbal or physical nature directed at another person but
excluded self-harm and inappropriate behavior, such as substance use, sexual intimidation, or
vandalism. A positive outcome was defined as the presence of at least 1 incident in the first 4 weeks
of admission, excluding the first 24 hours. No distinction in incident severity was made.

Exploratory Analysis
To examine the potential predictive power hidden in clinical notes, we extracted the 1000 most
frequent terms in the clinical notes, including bigrams, as binary variables. We then assessed the
strength of each term’s association with the outcome using a χ2 test and computed Matthews
correlation coefficients to obtain the direction of the association. We selected the top 10% of
predictors on the basis of their χ2 scores in 1000 repeated samples with replacement, computing the
fraction of times a term was included among the top predictors as a measure of within–data set
generalizability of predictors.
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Machine Learning Models
We used a machine learning approach to perform VRA. Machine learning algorithms are able to
detect patterns, if present, in historical data, and a prediction of the future course of treatment can
be made on the basis of those patterns. Such an approach applied to textual data must comprise 2
steps: transforming clinical notes into a suitable numerical representation and subsequently feeding
these numerical representations into a classification model.

To transform the clinical notes into a numerical form, we used the novel paragraph2vec
algorithm,23 which learns an accurate numerical representation from a large corpus of text in an
unsupervised way (ie, unrelated to outcome). This algorithm, founded in deep learning theory, is
capable of using not only verbatim words in a text to determine a representation but also word order
and the context of words such as negations. In previous work,24 we have shown the added value of
this technique over a traditional bag-of-words approach when applied to VRA. The model was trained
using a large internal set of clinical notes (ie, not only notes relevant for assessment), with model
settings based on available literature without optimization (eAppendix 2 and eTable 1 in the
Supplement).

The numerical representations of text were subsequently fed into a support vector machine
with a radial kernel,25 a model that has previously been shown as appropriate for text classification.26

It works by first mapping data points to a higher-dimensional space and then inferring a decision
boundary that maintains a maximum margin to these data points. New data points are subsequently
classified according to the side of the boundary on which they lie.

Statistical Analysis
Model training and estimation of model predictive validity were done in a nested cross-validation
setup, ensuring that admissions used for learning models were never used to simultaneously
determine predictive validity. Different admissions of the same patient were additionally never split
over different folds to ensure that predictions were not influenced by information from future
admissions of the same patient. The final area under the curve (AUC) was computed by averaging the
AUCs of the 5 outer cross-validation folds, while CIs and SEs were established using the method of
DeLong et al.27 Additionally, performance metrics, such as sensitivity, specificity, and relative risk,
were computed by pooling predictions over folds.28 The experimental setup is detailed further in
eAppendix 3 in the Supplement. After finalizing the results in site 1, an external validation of the
machine learning approach was performed in site 2 by training a new model with equal experimental
setup. To further elucidate model performance, we investigated predictive validity for early-
violence vs late-violence and short-admission vs long-admission subgroups. Finally, trained models
were exchanged between sites to test their generalizability.

For the tokens discovered in exploratory analysis, the association with the outcome was
determined using a χ2 test with a Holm-Bonferroni correction to control the familywise error rate.
Differences in AUCs between various internal and external validations were tested for significance
using the method of DeLong et al27 and Robin et al.29 We used a paired test when comparing 2
models on the same data set (ie, when comparing the cross-validated assessment and assessment
using a pretrained model) to account for correlation between the 2 AUCs. In all other cases we used
an unpaired test. All statistical significances in this study were assessed using 2-sided tests, and
P < .01 was considered significant. The code for machine learning and statistical analysis was
developed in Python software version 3.6 (Python Software Foundation) and is publicly available
(eAppendix 4 in the Supplement).

Qualitative Evaluation
After finalizing the method and results in both sites, a qualitative evaluation was conducted in a focus
group with participants, including practitioners, data analysts, and patient representatives from both
sites. Participants discussed the method as presented by a researcher (V.M.) and interpreted the
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results. The participants’ attitude toward the method was positive, and its translation between sites
was deemed appropriate. No changes were introduced to the study as a result of the focus group.

Results

Data Sets
The final data sets (Table 1) consisted of 3189 admissions from 2209 unique patients in site 1 and
3253 admissions from 1919 unique patients in site 2. Populations differed in age (mean [SD] age, 34.0
[16.6] and 45.9 [16.6] years, respectively), sex (1536 [48.2%] and 2097 [64.5%] men, respectively),
and distribution of diagnoses. In both sites, the most commonly occurring diagnosis was
schizophrenia or other psychotic disorders, followed by mood disorders and personality disorders in
site 1 and substance-related disorders and bipolar disorders in site 2. Similar median (interquartile
range [IQR]) lengths of stay (16.0 [6.0-41.0] and 15.0 [5.0-40.5] days), median (IQR) length of clinical
notes (2091 [1541-2981] and 1961 [1160-3060] words), and admissions with a violent incidence (290
[9.1%] and 247 [7.7%]) were registered in both sites.

Table 1. Descriptive Statistics of the Data Sets Obtained From the 2 Sites

Characteristic

No. (%)

Site 1 Site 2
Demographic characteristics

Age, mean (SD), y 34.0 (16.6) 45.9 (16.6)

Men 1536 (48.2) 2097 (64.5)

Data set

Admissions, No. 3189 3253

Unique patients, No. 2209 1919

Length of stay, median (IQR), d 16.0 (6.0-41.0) 15.0 (5.0-40.5)

No. of words in notes,
median (IQR)

2091
(1541-2981)

1961
(1160-3060)

Admissions with violent
incidents

290 (9.1) 247 (7.7)

Incidents

During admission, No. 962 652

During first 4 wk 658 (68.4) 318 (48.8)

During first 24 h 90 (9.4) 42 (6.4)

Staff Observation Aggression
Scale–Revised score,
median (IQR) [range]

12.0 (8.0-16.0)
[2-21]

11.0 (7.0-14.0)
[2-19]

Diagnostic and Statistical Manual
of Mental Disorders diagnosisa

Anxiety disorder 92 (2.9) 63 (1.9)

Bipolar disorder 65 (2.0) 170 (5.2)

Delirium, dementia, amnesia,
and other cognitive disorders

20 (0.6) 109 (3.4)

Depressive disorder 106 (3.3) 150 (4.6)

Developmental disorder 180 (5.6) 29 (0.9)

Eating disorder 57 (1.8) 10 (0.3)

Mood disorder 580 (18.2) 10 (0.3)

Personality disorder 214 (6.7) 116 (3.6)

Substance-related disorder 99 (3.1) 373 (11.5)

Schizophrenia or other psychotic
disorder

860 (27.0) 685 (21.1)

None within 12 wk 795 (24.9) 1392 (42.8)

Other 121 (3.8) 146 (4.5)

Abbreviation: IQR, interquartile range.
a Percentage relative to the total number of admissions.
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Machine Learning Models
Several performance metrics of predictive validity, both for in-site validation using nested cross-
validation and for other-site validation of pretrained models, were computed (Table 2). Optimal
hyperparameters are shown in eTable 2 in the Supplement. An optimal AUC of 0.797 (95% CI, 0.771
to 0.822) was achieved for the internal validation of the method in site 1, while the optimal AUC for
the external validation of the method in site 2 was 0.764 (95% CI, 0.732 to 0.797) (Figure). The
difference in internal cross-validation AUCs between the 2 sites was not significant (AUC
difference = 0.032; 95% CI, −0.009 to 0.074; P = .12). Specificity (ie, prediction in the negative class)
of models was higher (0.935 to 0.947) than sensitivity (ie, prediction in the positive class; 0.334 to
0.336). The relative risk of violent outcome for patients with predicted high risk vs low risk was 5.121
(95% CI, 4.109-6.330) in site 1 and 6.297 (95% CI, 4.956-7.922) in site 2.

The validation of pretrained models in the other site resulted in AUCs of 0.722 (95% CI, 0.690-
0.753) in site 1 and 0.643 (95% CI, 0.610-0.675) in site 2. The difference in AUCs between the
internally trained model and the model trained on other-site data was significant both in site 1 (AUC
difference = 0.075; 95% CI, 0.045-0.105; P < .001) and site 2 (AUC difference = 0.121; 95% CI,

Table 2. Predictive Validity of Prognostic Models in Both Sites and Both Internally and Externally Trained

Evaluation

Internal Cross-validation External Model

Site 1 Site 2 Site 1 Site 2
Model evaluated in site 1 2 1 2

Model trained in site 1 2 2 1

AUC (95% CI) [SE] 0.797 (0.771-0.822) [0.013] 0.764 (0.732-0.797) [0.017] 0.722 (0.690-0.753) [0.016] 0.643 (0.610-0.675) [0.017]

Admissions, No. 3189 3253 3189 3253

Negative, No. (%)

True 2711 (85.0) 2847 (87.5) 2682 (84.1) 2793 (85.9)

False 193 (6.1) 164 (5.0) 218 (6.8) 214 (6.6)

Positive, No. (%)

True 97 (3.0) 83 (2.6) 72 (2.3) 33 (1.0)

False 188 (5.9) 159 (4.9) 217 (6.8) 213 (6.5)

Specificity (95% CI) 0.935 (0.930-0.940) 0.947 (0.943-0.951) 0.925 (0.921-0.930) 0.929 (0.926-0.933)

Sensitivity (95% CI) 0.334 (0.287-0.383) 0.336 (0.285-0.389) 0.248 (0.205-0.296) 0.134 (0.097-0.179)

Relative risk (95% CI) 5.121 (4.109-6.330) 6.297 (4.956-7.922) 3.314 (2.581-4.214) 1.885 (1.305-2.673)

Abbreviation: AUC, area under the curve.

Figure. Receiver Operator Characteristic Curves for Internal Cross-validations
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0.085-0.156; P < .001). Although specificity was still similar, both sensitivity and relative risk were
lower compared with in-site validations.

We examined model performance in assessing early vs late violence and violence during short
vs long admissions. In both internal and external validations and in both sites, predictive validity was
higher for early violence than for late violence as well as higher for short admissions than for long
admissions. However, the difference was never significant. For example, for the internal validation in
site 1, the difference in AUCs for assessing early violence vs late violence was 0.046 (95% CI, −0.003
to 0.094; P = .06), and the difference in AUCs for assessing violence during short admissions vs long
admissions was 0.012 (95% CI, −0.041 to 0.066; P = .65). Full subgroup analysis is included in
eTable 3 and eTable 4 in the Supplement.

Exploratory Analysis
Of the 1000 most frequent terms from clinical notes, the top 20 terms by generalizability within a
data set were selected (Table 3).30 Several terms, such as aggressive, angry, verbal, threatening, and
irritated, can directly be associated with violence, whereas other terms, such as reacts, walks, and
speaks, describe behavioral cues that may indirectly be associated with violence. The terms
aggressive and walked and their synonyms are seen in both sites. Other terms do not directly
co-occur in both sites but have a counterpart with a similar meaning (eg, colleague vs staff and door
vs office). All terms generalize well within the data set, being chosen among the top 10% in repeated
sampling at least 95% of the time. In site 1, the terms aggressive, reacts, and offered generalize best
within the data set, whereas in site 2 the terms verbal, threatening, and aggression compose the top
3. The 47 terms in site 1 and 21 terms in site 2 with highest χ2 scores were significantly associated

Table 3. Results of Exploratory Analysis

Ranka

Site 1 Site 2

Term (English Translation)b Ratio MCC (95% CI)c P Valued Term (English Translation)b Ratio MCC (95% CI)c P Valued

1 Agressief (aggressive) 1.00 0.17 (0.13 to 0.21) <.001 Verbaal (verbal) 1.00 0.14 (0.10 to 0.18) <.001

2 Reageert (reacts) 1.00 0.15 (0.11 to 0.19) <.001 Dreigend (threatening) 1.00 0.13 (0.08 to 0.16) <.001

3 Aangeboden (offered) 1.00 0.14 (0.11 to 0.18) <.001 Agressie (aggression) 1.00 0.15 (0.11 to 0.17) <.001

4 Boos (angry) 1.00 0.16 (0.12 to 0.19) <.001 Hierop ([up]on this) 1.00 0.13 (0.09 to 0.16) <.001

5 Deur (door) 1.00 0.14 (0.10 to 0.18) <.001 Kantoor (office) 1.00 0.12 (0.08 to 0.16) <.001

6 Loopt (walks) 1.00 0.15 (0.11 to 0.18) <.001 Personeel (staff) 1.00 0.12 (0.07 to 0.16) <.001

7 Ibs (arrest) 1.00 0.14 (0.10 to 0.17) <.001 Aangesproken (spoke to) 1.00 0.11 (0.08 to 0.15) <.001

8 Aanbieden (offer) 1.00 0.12 (0.08 to 0.15) <.001 Agressief (aggressive) 0.99 0.11 (0.08 to 0.15) <.001

9 Noodmedicatie
(emergency medication)

0.99 0.14 (0.10 to 0.17) <.001 Gevaar agressie (danger
aggression)

0.99 0.11 (0.07 to 0.15) <.001

10 Liep (walked) 0.99 0.12 (0.08 to 0.16) <.001 Agitatie (agitation) 0.99 0.11 (0.07 to 0.14) <.001

11 Agressie (aggression) 0.99 0.13 (0.09 to 0.18) <.001 Geirriteerd (irritated) 0.99 0.10 (0.06 to 0.14) .001

12 Vraagt (asks) 0.99 0.13 (0.10 to 0.17) <.001 Separeer (seclusion room) 0.99 0.10 (0.06 to 0.15) <.001

13 Status vrijwillig (status
voluntary)

0.99 −0.12 (−0.14 to −0.09) <.001 Loopt (walks) 0.99 0.11 (0.08 to 0.14) .02

14 Psychotisch (psychotic) 0.98 0.12 (0.09 to 0.16) <.001 Grond (ground) 0.98 0.10 (0.06 to 0.14) <.001

15 Collega (colleague) 0.98 0.11 (0.07 to 0.15) <.001 Aanvang (commencement) 0.98 0.11 (0.08 to 0.14) .01

16 Spreekt (speaks) 0.97 0.12 (0.08 to 0.15) <.001 Mede (also) 0.98 0.10 (0.07 to 0.14) .001

17 Gehouden (obliged) 0.97 0.11 (0.07 to 0.15) <.001 Dhr wilde (Mr wanted) 0.98 0.10 (0.06 to 0.14) .001

18 Beoordelen (judge), verb 0.96 0.11 (0.07 to 0.15) <.001 Liep (walked) 0.98 0.10 (0.06 to 0.14) .006

19 Momenten (moments) 0.96 0.12 (0.08 to 0.15) <.001 Geagiteerd (agitated) 0.96 0.10 (0.06 to 0.14) .01

20 Somber (dejected) 0.95 −0.14 (−0.17 to −0.11) <.001 cvd (not available) 0.96 0.10 (0.06 to 0.14) .004

Abbreviation: MCC, Matthews correlation coefficient.
a The top 20 terms with highest within–data set generalizability (ratio) are included.
b The Van Dale Dutch–English Dictionary, 3rd edition,30 was used for translations.
c Matthews correlation coefficient is computed to assess the direction of association

between the term and outcome.

d P values derived from χ2 test, and a Holm-Bonferroni correction was applied to obtain
corrected P values.
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with the outcome after applying a Holm-Bonferroni correction. Matthews correlation coefficients
ranged from −0.14 to 0.17, showing weak correlations. Most terms had a positive correlation with
violent outcome, except status voluntary and dejected in site 1, which were negatively correlated with
violent outcome (status voluntary: Matthews correlation coefficient, −0.12; 95% CI, −0.14 to −0.09;
P < .001; dejected: Matthew correlation coefficient, −0.14; 95% CI, −0.17 to −0.11; P < .001).

Discussion

To our knowledge, this is the first time that readily available clinical notes from patients’ EHRs were
used to assess inpatient violence risk. We applied machine learning techniques to retrospective
textual data, to train a model that differentiates patients who show violent behavior during the first
4 weeks of admission from patients who do not. As far as we know, no study has performed VRA
using clinical text, and no study has tested automatic VRA in multiple sites. The AUCs of internally
cross-validated predictions (0.797 and 0.764) from this study lie in the range that can be seen as
acceptable for application in practice. Although in-site validation of models obtained good results,
other-site validation of pretrained models resulted in significantly lower predictive validity,
corroborating previous findings that VRA generalizes modestly over different populations. This
strengthens the case for using locally developed and/or trained models and methods for VRA. Our
choice to balance between false-positive and false-negative findings for reporting outcomes resulted
in higher predictive validity in the low-risk class (eg, sensitivity) than in the high-risk class (eg,
specificity), which is largely in line with existing VRA research. To our knowledge, no assessment
method has shown both high sensitivity and high specificity, characterizing the difficulty of
performing VRA and the need for further improvements.

Violence risk assessment is a research topic that has been thoroughly described, and the
predictive validity of many existing methods, such as VRA checklists and unstructured clinical
judgment, has been reported in literature. Although our study, based on other data sets, does not
allow making strong claims about whether machine learning improves predictive validity,31 we note
that our internally validated predictive validities of AUC = 0.797 and AUC = 0.764 lie in the same
range of existing methods while overcoming some of their drawbacks. For example, a study by Fazel
et al32 assessed median (IQR) predictive performance of the 4 most commonly used VRA
instruments over 30 different studies (AUC = 0.72 [0.68-0.78]), while another study by Teo et al33

assessed the level of accuracy of psychiatric residents (AUC = 0.52) and trained psychiatrists
(AUC = 0.70). A study by Suchting et al34 performed automatic VRA based on roughly 300
structured variables with comparable performance to our approach (AUC = 0.78).

The terms obtained in exploratory analysis, before application of modeling techniques,
demonstrate a potential new type of risk factor that should be taken into account. Violence risk
assessment instruments are often based on a combination of static factors (eg, previous violent
behavior or employment status) and dynamic factors (eg, hostility or disorder symptoms). The terms
we extracted from text are mostly dynamic and pertain to behavioral cues (eg, angry or walked) and
social interactions (eg, reacts or offered), which may be more difficult to capture in a structured
instrument but appear to provide important additional information.

A major strength of our research is the translational value that is obtained by using clinical notes
from the EHR. Clinical text is already recorded as part of treatment by most psychiatric health care
institutions, implying that our machine learning approach can be widely used to support violence
management in daily practice. Second, applying a flexible machine learning approach allows method
customization to local requirements and furthermore reveals the predictive validity for the relevant
population, which is of particular importance given the lack of robustness and generalizability of
existing models and methods. Finally, much attention has been devoted to the actuarial vs clinical
debate,35 pertaining to the question of whether actuarial VRA instruments or VRA instruments based
on clinical judgment are superior. Our approach essentially combines both approaches by using
clinical judgment captured in clinical notes as input for an actuarial tool. This allows leveraging of
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health care professionals’ clinical experience while establishing a reasonably objective judgment
through subsequent statistical modeling.

Limitations
This study has limitations. One limitation is that the data obtained from EHRs were originally
designated for treatment rather than research. This introduces some noise to our data set, in clinical
notes and in violence incident reports, for example, in reporting discrepancies among different
wards. This source of measurement uncertainty cannot be quantified, warranting some caution
when interpreting our results. Furthermore, we predominantly used AUC, a measure of
discrimination, to measure the predictive validity of our models. This measure is known to have some
limitations, such as an inability to account for prevalence.36 We used a black box modeling approach
combining the paragraph2vec and support vector machine algorithms to assess violence risk,
inhibiting a straightforward substantiation of probability of violent behavior. Although the terms
obtained in exploratory analysis together with the subgroup analysis of predictive validity have
elucidated the problem context to some extent, they do not directly explain model behavior. How
such explanations can reliably be obtained, both at the patient level and the model level, is still a topic
of ongoing research in computer science.37 An exploration of model explainability is included in
eAppendix 5 and the eFigure in the Supplement.

Before an automatic VRA approach can be used in practice, some important challenges need to
be addressed. Our results point out that both high sensitivity and high specificity are unlikely to be
achieved simultaneously. Further research is needed to point out the desired balance between false-
positives and false-negatives, and hence, whether our prognostic models are most useful to identify
patients at high or at low risk of violence. Additionally, what level of substantiation is necessary
before automatic VRA can be used in practice also remains an open question, which should be
addressed in discussion with professionals in the field.

Conclusions

In the near future, we envision that further advancements toward a data-driven psychiatric practice
will be made and that EHR data will become an even more valuable asset in supporting important
decisions in the clinical process. Machine learning approaches have been able to contribute
substantially in other fields of medicine, and our study provides evidence that such progress is
possible in mental health care as well. Although some crucial challenges need to be addressed before
adoption is possible, this study highlights the potential value of EHR data, and clinical notes in
particular, for decision support. Such support systems may in the future be widely applied in daily
practice, contributing to more effective and efficient psychiatric treatment.
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