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General introduction
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1HEALTH TECHNOLOGY ASSESSMENT

In the majority of nations in the world, promotion of health and wellbeing as well as consequent 
prevention of ailment or disease of citizens is a legal obligation to governments laid out in 
national constitutions [1–3]. Given the vast breadth of the concept of health and wellbeing, 
the task of safeguarding and advancing these now widely adopted fundamental human rights 
is by no means an easy one. Unsurprisingly, the resulting amount of resources that are globally 
devoted to this cause are immense [4,5]. 

Indeed, the world spent $7.5 trillion on healthcare in 2016 which translates into nearly 10% of 
global Gross Domestic Product (GDP) [5]. In the European Union (EU), 9.8% of the total GDP 
was devoted to healthcare in 2018 [4,6]. For the Netherlands, the situation is similar at a 9.9% 
share of the total GDP, equalling €76,9 billion in 2018 [7,8]. 

In light of these vast but not unlimited resources, choices regarding the investment in specific 
types, quantity and quality of care are inevitable. To assist and inform policy-makers on 
the consequences of (not) investing in specific types of care and healthcare related technologies, 
Health Technology Assessment (HTA) is conducted [9]. 

HTA is typically defined as the systematic evaluation of the properties, (wanted and unwanted) 
effects and, for example, budgetary, societal or organisational impacts of a health technology 
with the aim of informing policy decision-making [9,10]. Health technology is a very broad 
concept in this regard as it includes medicines, medical devices, procedures, diagnostics but 
also other clinical, public health and organisational interventions, as well as the efficient use of 
resources in healthcare [9,10]. 

Within the scope of new health technologies, medicines play a crucial role. Not only in their 
contribution to the advancement of health and society, but also by means of its profound impact 
on national healthcare budgets and ensuing public debate [11]. It is therefore that HTA has, in 
many jurisdictions, become an important advisory or even formal decision-making criterion in 
reimbursement or access decisions of new medicines [12,13]. 

UNCERTAINTY

The concept of uncertainty is inherent of life. This lack of certainty, aside from its more 
philosophical implications, is reflected in a plethora of real-world materialisations such as 
the existence of any conceivable type of insurance plan, the need for daily updated predictions 
of the weather and, for example, the absence of knowing a-priori which patient might benefit 
from a certain type of treatment.
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In cost-effectiveness models, various types of uncertainty can be identified [14,15]. A major 
type is parameter uncertainty and relates to the precision and validity which an input parameter 
is estimated [16]. These input parameter estimates should reflect the true (unbiased) value of 
the population but are typically generated using only a sample of this population. Parameter 
uncertainty can therefore partly be regarded as a lack of information as a larger sample size 
would, in general, yield a more precise estimate [16]. Crucially, parameter uncertainty is 
different from variability, the inevitable difference between individuals and therefore a source 
of uncertainty, which is irreducible [14-17]. A second major type of uncertainty is structural 
or modelling uncertainty. It refers to a lack of validity of outcomes due to limitations that are 
inherent to a type of model, technique or model structure [14,15,18,19]. 

Given the potential influence of uncertainty on modelling outcomes, various techniques have 
been developed to quantify, reduce and manage various types of uncertainty [14,20]. Many of 
those techniques are now mandatory when cost-effectiveness models are used as part of an 
application for reimbursement of medicines [21–23]. 

DETERMINANTS OF DECISION MAKING AND THE ROLE 
OF UNCERTAINTY

Current reimbursement decision-making is driven by the clinical or therapeutic value of 
the medicine in question but also by economic outcomes as the Incremental Cost-Effectiveness 
Ratio (ICER) and Budget Impact (BI) [24–26]. The ICER, designed to quantify this clinical 
or therapeutic value, is generally compared to- or benchmarked against a Willingness to Pay 
(WTP) threshold. The role, value and legal status of WTP thresholds however differs greatly 
between jurisdictions [27–29].   

As BI, ICER and WTP are core aspects of this thesis, the current status, role and methods for 
managing the uncertainty of these three major determinants will be elaborated further. 

ICER
The models underlying ICER outcomes are prone to parameter and structural uncertainty. For 
quantifying parameter uncertainty, probabilistic sensitivity analysis (PSA) and the resulting 
Value of Information (VOI) analysis have been developed and are now widely used [30]. In 
a PSA, all input parameters are simultaneously varied along predefined ranges according to 
their probability distribution, with the outputs generally presented as a scatterplot in the cost-
effectiveness plane [31]. It has been shown that decision makers are less likely to reimburse 
drugs with a highly uncertain ICER [24].  

The traditional scatterplot is however limited in its capacity to display differences in the relative 
density of ICER samples [32]. This obfuscates the true distribution and could hide intricate 



GENERAL INTRODUCTION 11

1
details of the underlying distributions or small areas with differing densities. Furthermore, 
due to overdrawing of samples in high density areas, the actual probability of individual PSA 
samples (especially outliers) within the total sample is often over-estimated [32]. As PSA is often 
used for supporting decision-making, the validity of this method is crucial but can currently be 
questioned.  

WTP
The WTP, or ICER threshold, is not an outcome of a cost-effectiveness model and could therefore 
currently be regarded as a fixed or constant value. The WTP does however have different 
fixed values or fixed ranges in various jurisdictions [27,28]. In England, an upper limit of  
£20,000 - £30,000 per QALY is deemed cost-effective whilst an informal threshold varies 
between €20,000 - €80,000 in the Netherlands. 

In a healthcare system with fixed budgets, new innovations can only be funded by savings or 
disinvesting in other care and thus cause displacement [25,33,34]. In healthcare systems with 
less restricted budgets, resources are still not unlimited so at least some opportunity costs will 
exist and policy-makers are likely to prefer lower BI over higher BI [24,25]. Research shows 
that a high BI and / or highly uncertain BI is a potential risk to decision makers and that they 
are then more likely to limit reimbursement or to issue a type of managed entry agreement  
(MEA) [35–37]. 

These displacement effects and opportunity costs should, at least to some degree, be reflected 
in the WTP threshold [25,33–35,38]. The WTP is typically used to reflect the maximum 
amount society is willing pay for one additional Quality Adjusted Life Year (QALY). WTP could 
however also be regarded as the marginal cost per additional QALY [33]. When assuming that 
decision-makers have a preference for displacing high ICER care before low ICER care and are 
able to implement this preference, the following could be deducted: A high BI would displace 
more care than a low BI would. So, when care is displaced from high to low ICER, the higher 
the BI, the lower the average ICER of the total care that is displaced. When WTP would include 
displacement, a higher BI would thus result in a lower WTP [33]. Currently used WTP ranges 
are established somewhat arbitrarily or, for example, based on a jurisdictions’ gross domestic 
product or on disease severity but they do not include BI as a factor [21,28,39,40].

Based on the aforementioned displacement effects, the exact value of the WTP threshold has 
been a topic of scientific debate as for example Shiroiwa et al. and Claxton et al. and Lomas 
et al. have described [28,41,42]. WTP values of, for example, £12,936 (England) and €74,000 
(the Netherlands) have been proposed to better reflect opportunity costs and could therefore be 
more suitable for decision-making [33,43]. A recent literature review reported an even wider 
range of WTP estimates and found a mean of €24,226 per QALY [39].
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In the Netherlands, the proportional shortfall (PS) underlies the value of the WTP and is based 
on the normative standpoint that (investment in) treatment should be prioritised to those who 
lose the largest proportion of their remaining QALYs due an illness [40]. This is an equity-
based paradigm where social values or social preferences drive budgetary prioritisation on 
(new) treatments. Other examples of equity-based policy tools are increased WTP thresholds 
for end of life- and oncology care in England and regulatory benefits for orphan drugs in Europe 
[40,44,45]. Inherent to these choices is a loss of efficiency, as additional investment on specific 
‘preferred’ diseases or patients must be compensated by reduced spending in other potentially 
more cost-effective areas. 

When the goal is to maximise health output given the available resources and irrespective of 
its impact on equity of care, efficient spending should be prioritised. Efficiency is achieved 
when the WTP threshold reflects the cost per QALY at the margin and when this WTP 
threshold is then strictly enforced. Claxton, Lomas, Adang, Sculpher and others have all 
argued that opportunity cost should be reflected in decision-making and therefore in the WTP  
threshold [33,42,46–48]. 

As mentioned, the Dutch system is primarily based on the concept of equity. The current 
restrictive policies based on affordability do however not fit within this concept as affordability 
does not influence PS. Instead, affordability reflects the existence of a balance between equity 
and efficiency in health-care systems: affordability concerns, which in the Netherlands influence 
reimbursement decisions, must indeed be caused by maintaining or striving for some level 
of efficiency and therefore imply that opportunity cost must play a role and must therefore 
influence the WTP. Given the crucial role of WTP in relation to the ICER and potentially to BI, 
this topic is of major interest to this thesis. 

It is henceforth assumed that for any healthcare system, at least some efficiency is strived for 
so that for any healthcare system, opportunity costs and marginal benefits are relevant. From 
a decision-making standpoint, we think that the eventual WTP threshold (be it based on equity, 
efficiency or both) should be adhered to in practice. Also, for interpretability and simplicity, we 
henceforth assume a strict enforcement of WTP in relation to the ICER. 
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1BI
Budget Impact Analysis (BIA) is required for reimbursement applications in many jurisdictions 
[25,35,49]. Whilst submitting a BIA is often mandatory, the role of Budget Impact (BI) outcomes 
in decision-making is less clear than, for example, the role of cost-effectiveness [24,26,50,51]. 
Although the role of BI is often informal, many recent cases, (e.g. new drug introductions for 
hepatitis C such as Sovaldi1 (sofosbuvir)), have shown that BI can be a crucial and even a decisive 
factor in reimbursement decisions [24,36,38,49,52–54].

As BIA are generally constructed using point estimates of various uncertain parameters and 
time-horizons, uncertainty in BI estimations is inevitable [55,56]. Mainly due to limited data, 
quantification of BI uncertainty remains limited to scenario analyses [55]. Therefore, BI is 
typically presented (for one or more scenarios) as a point estimate accompanied by a minimum 
and maximum value. A highly uncertain BI could lead to less or deferred access by means of, for 
example, managed entry agreements (MEA) [35,57,58]. 

According to a review by Van de Vooren et al., many published BIAs still fail to reach an 
acceptable quality [59]. Many BIAs are short term (one year), quite subjective or based on 
expert opinion and determined by estimations of population size and eventual treatment 
regimen [60,61]. If the general methodological quality of BI analyses is low, one would expect 
the predictive accuracy of these analyses to also be low. 

Broder et al., who evaluated BI forecasts of US drug launches between 1-Sep-2010 and 1-sep-
2015, concluded that the average predicted BI was 5.5 times the observed BI [60,61]. Cha et al. 
concluded that 60% of the drug forecasts were off by more than 40% [60]. Keeping et al. recently 
reported that BI estimates used by Welsh payers that were specifically produced to inform access 
decisions were off by more than 40% in 80% of the cases [62]. We believe that these findings 
illustrate that the methodological quality as well as the predictive accuracy of current BIAs can 
be considered as low. 

Not only are these estimations insufficient in providing adequate clarity on the costs of a new 
drug, they also fail to quantify the uncertainty that is associated with these predictions. In other 
words, the current point estimates or ranges given are not based on an underlying probability 
distribution and thus provide insufficient insight in the possible range of financial outcomes. 
Especially given the concerns regarding accuracy and methodological quality mentioned 
previously, insights into uncertainty surrounding BI estimates could prove to be a crucial step 
in increasing the use and validity of BIA. 

1. As budget impact is estimated and used in a product specific context, medicines are designated by their 
product name when they are discussed in the context of budget impact. 



14

AFFORDABILITY, COST-EFFECTIVENESS AND 
UNCERTAINTY IN DECISION-MAKING

Affordability and cost-effectiveness are typically appraised separately whilst they both inform 
on the same decision: does the new technology deliver a health gain? Various studies have 
attempted to integrate the appraisal of these two aspects for decision-making. Still, none of these 
efforts have specifically included the uncertainty in affordability (as BI) and cost-effectiveness 
(as ICER). The criticality of the integration of uncertainty will be shown by means of  
the following examples:

An imaginary €10 bet which has a 50% chance to yield €25 and 50% change to yield €0. 
The expected return of this bet is positive at €2.50. To most people, €10 would be a loss without 
detrimental impact to their lives, making this bet very acceptable. 

This second imaginary bet is different as it has two stages: The first stage determines the amount 
one should bet, where there is a 50% chance to a required bet of €10 and a 50% chance to 
a required bet of €100.000. The second stage determines the outcome, with a 50% chance of 
a 2.5-fold multiplication of the initial bet and a 50% chance of losing the entire bet. Still, this 
bet retains the 25% profit margin of the first bet. Clearly though, the potential impact on one’s 
life are vastly different in this second bet thereby presumably altering the willingness to invest 
to many people.

In the second example, the amount one must bet reflects BI and the associated chance is 
the uncertainty in BI. Similarly, the potential return (25% profit) is the ICER and the probability 
of both outcomes reflect the ICER uncertainty. The potential €100.000 loss is the opportunity 
cost and can also be seen as displacement (having to sell a car for example). The hypothetical 
‘willingness to bet’ is a reflection of the WTP threshold. Many more examples of bets reflecting 
reimbursement decision and the synergy between affordability, cost-effectiveness and 
uncertainty can be devised. 

As a final example, consider a 80% chance on 500% return and 20% chance on 0% return, 
combined with a 80% chance on a €100.000 investment and a 20% chance on a €10.000.000 
investment. Clearly, this is a very profitable investment opportunity. If however the potential 
return (ICER) is appraised separately from the amount required to invest (BI), the risk (a 4% 
chance of losing €10.000.000) is inadequately considered. 

In reality, potential outcomes are much less defined as the dichotomous examples presented, 
making management of risk much less straightforward. Still, the outlined principles remain valid: 
uncertainty in affordability has a synergistic relationship with uncertainty in cost-effectiveness. 
The only way therefore to properly integrate risk as well as potential value of an innovation is 
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1
an integrated appraisal of affordability, cost-effectiveness and their individual uncertainties. As 
WTP should be driven by opportunity costs and therefore BI, an innovation’s value should be 
composed of an integration of the three core components including their uncertainty, being 
ICER, WTP and ICER.

TEMPORAL ASPECTS OF DECISION-MAKING 

When access decisions have to be taken, data on outcomes is often immature and/or significant 
uncertainty in outcomes remains [63–66]. In light of new, potentially effective treatments, 
decision-makers have to balance rapid access to patients and thereby accepting higher uncertainty 
with postponing access and waiting for more mature data [23,51,63–68]. Formal schemes 
have been developed for coping with these scenarios regarding marketing authorisation and 
reimbursement decisions, herein collectively denoted as Managed Entry Agreements (MEA) 
and, within a reimbursement decision-making scope, refers to concepts such as coverage with 
evidence development, various risk-sharing schemes and conditional coverage [23,51,63–68]. 

Such MEAs are now frequently used to grant patients early access to promising treatments 
whilst, towards payers, they assist in managing uncertainty in BI and clinical and/or cost-
effectiveness [23,51,63–68]. By design, these schemes specifically recognise time and timing as 
a factor and eventual access decisions are relatively dynamic. Also, active management of new 
innovations or label changes (e.g., changes in indication) do happen over time [69]. Naturally, 
these temporal events (e.g., changes in price, indication, population, coverage status) influence 
cost-effectiveness. The phenomenon of time is thus a major factor and should therefore be 
included in economic analyses [69,70]. 

Current CEA and BIA however employ the Net Present Value (NPV) paradigm; future benefits 
and costs are discounted towards a present-day value and the investment or reimbursement 
decision is to be taken now or never [71]. Flexibility can be added by means of scenario analyses 
or reperforming a CEA or BIA after some time, but in the essence of these analyses, delaying 
the decision is not an available option. Therefore, current CEA or BIA methodology does not 
fully incorporate the role of active management of healthcare related projects or the development 
of uncertainty over time. Clearly, this is a hiatus in current decision-analytic modelling and 
consequent reimbursement decision-making. 

TEMPORAL ASPECTS OF DECISION-MAKING: EARLY HTA

Economic evaluations by HTA bodies and concomitant price negotiations can take up to 
a year, delaying patient access [72]. To reduce delays in patient access, it is possible to start 
early with the assessment of added value of a new therapy. This is a different approach than 
the aforementioned MEA, where the decision itself is taken earlier (or more dynamically) 
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whereas in early HTA, the economic evaluation itself is performed earlier. The process of early 
HTA can start during preclinical development but is more regularly executed during phase 
I or II clinical trials. One method is the use of early cost-utility analyses, which can clarify 
the relative impact of the parameters that drive cost-effectiveness. Early cost-utility analyses 
allow decision makers and manufacturers to streamline clinical development and reimbursement  
processes [73–75]. 

Also, during the development of novel diagnostics, the price of a diagnostic as well as the eventual 
influence on treatment pathways and health outcomes is often unknown. From a health system 
perspective it is therefore important to assess, at an early stage, the potential impact of a test in 
daily practice. When price and the sensitivity (true positive rate) and specificity (true negative 
rate) of the test are still unknown, the estimation of cost-effectiveness is done in a turn-around 
analysis: investigate the required parameter-values that would make the test a cost-effective 
diagnostic. By evaluating an intervention at an early stage, its value becomes clear early and this 
can inform either further research, an implementation trajectory or an exit strategy.

In both these examples, parameter uncertainty plays a vital role. As early HTA has become 
an essential tool in advancing patient access, it is crucial that the current decision-analytical 
frameworks are suitable for these types of early analyses and that parameter uncertainty is 
handled in an optimal manner. 

AN INTEGRATED APPROACH FOR DECISION-MAKING 
ON MEDICINES 

The previous paragraphs have outlined the three core components of reimbursement decision-
making. The ICER is typically characterised well, including the associated uncertainty. BI 
on the other hand, is methodologically less mature and appears to be estimated inaccurately. 
The WTP thresholds used to appraise the ICER currently do not include opportunity costs 
whilst evidence states that this should be done when a healthcare system (at least partly) strives 
for efficient spending. 

Cost-effectiveness, affordability and their uncertainty are now however appraised separately. As 
described above, this leads to incorrect valuation of potential risks and benefits. Furthermore, 
the aspect of timeliness of data availability and uncertainty is hardly integrated in current 
decision-making practice. These issues form the motivation for the studies presented in  
this thesis. 
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1OBJECTIVES

The main objective of this thesis is to develop an integrated approach of cost-effectiveness, 
affordability and the associated uncertainty. Uncertainty in this regard also pertains to 
the temporal aspects of evidence and uncertainty. 

To achieve this, the current magnitude of uncertainty and its management in reimbursement 
decision-making needs to be assessed. Furthermore, it is imperative to identify and to develop 
methods for improved quantification as well as improved management of various sources 
of uncertainty, thereby contributing to improved decision-making on access to innovative 
medicines. The incorporation of timing of decisions and the temporal development of 
uncertainty will be crucial aspects, as well as the role of a dynamic WTP within the integration 
of affordability and cost-effectiveness. 

The following specific objectives will be addressed in this thesis:

•	 To assess the possibility of accurate establishment of parameter or outcome thresholds 
in early HTA and whether these can be used to inform reimbursement- or market access 
decision-making (Chapter 2). 

•	 To assess the accuracy of Dutch BI estimations that are used for informing reimbursement 
decisions, to assess the resulting influence of this potential source of uncertainty on decision-
making and to evaluate whether it is justified to use current BI estimations for informing 
decision-making (Chapter 3).  

•	 To develop methodology to reduce BI uncertainty, incorporating timeliness in BI estimation 
and to improve quantification and visualisation of ICER uncertainty (Chapter 4). 

•	 To develop conceptual frameworks that unify cost-effectiveness, affordability, willingness to 
pay and the associated uncertainty and where the aspect of time regarding data availability, 
uncertainty and decision-making is explicitly included (Chapter 5). 
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ABSTRACT 

Background
To assess the required characteristics (cost, sensitivity and specificity) of a pharmacogenomics 
test for being a cost-effective prevention of ACEi-induced angioedema. Furthermore, we 
assessed the influence of only testing high risk populations.

Methods
A decision tree was used. 

Results
With a willingness-to-pay (WTP) threshold of €20,000 and €80,000 per QALY, a 100% sensitive 
and specific test may have a maximum cost of €1.30 and €1.95, respectively. When only genotyping 
high risk populations, the maximum test price would be €5.03 and €7.55, respectively.

Conclusions
This theoretical pharmacogenomic test is only cost-effective at high specificity, high sensitivity 
and a low price. Only testing high-risk populations yields more realistic maximum test prices 
for cost-effectiveness of the intervention.  
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INTRODUCTION

The use of pharmacogenomics is becoming more common in daily clinical practice. In many 
cases it improves patient outcomes by predicting the response to drugs or adverse events, 
allowing health care providers to adjust treatment accordingly [1]. Recent literature shows 
variation in the performance of pharmacogenomics: it varies from a large effect with a large 
increase in efficiency to a large increase of costs per patient without much benefit [2]. Technology 
in pharmacogenomics is advancing and the number of known single nucleotide polymorphisms 
(SNPs) impacting pharmacological treatment is rapidly increasing.

Since both the advancement of technology as well as an ageing population cause an increased 
pressure on health care budgets, cost-effectiveness of innovations is on the health care policy 
agenda of many countries. To determine the coverage of innovations from public funds, many 
countries use a threshold which indicates the maximum costs to be paid for the gain of one extra 
quality adjusted life year (QALY) by the new intervention. For the UK for example, the threshold 
is indicated at £30,000 per QALY. For the Netherlands, the discussion on the threshold is 
ongoing. The current thresholds range from €20,000 to €80,000 per QALY gained, based on 
disease burden [3]. 

The price of testing as well as the effect of genetic variation on treatment response or adverse 
events is often unknown. From a health system perspective, it is therefore important to assess, at 
an early stage, the impact of a test in daily practice. When price and the sensitivity (true positive 
rate) and specificity (true negative rate) of the test are still unknown, the estimation of cost-
effectiveness is done in a turn-around analysis: investigate the required specifications that would 
make the test a cost-effective diagnostic. The threshold for costs per QALY is used as the basis 
of this evaluation. By evaluating an intervention at an early stage, its value becomes clear early 
and this can inform either further research, an implementation trajectory or an exit strategy. 

In this study, we take a case example of an early HTA assessment of the prediction of angioedema 
caused by the use of Angiotensin Converting Enzyme Inhibitors (ACEi). ACEis are amongst 
the most frequently prescribed drugs and serve as an important treatment modality for several, 
highly prevalent cardiovascular indications [4–6]. They are generally well tolerated. Non-
productive, persistent cough is the most common adverse drug reaction (ADR) and occurs in 
approximately 9% of ACEi users [7]. Besides this mild and well-known ADR, ACEis can cause 
the rare ACEi induced angioedema, a serious and frightening sudden swelling of the upper 
airways that can be fatal [5,6,8–10].  

ACEi induced angioedema is characterised by a transient, localised swelling of the deep reticular 
dermis, subcutaneous or submucosal tissues of the head and neck region and occasionally 
the viscera [11]. It frequently affects the face, lips, tongue and upper airways and is usually 
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accompanied by symptoms such as a lump in the throat, hoarse voice and difficulties in 
swallowing and breathing [11]. Typically, ACEi induced angioedema develops over 4-6 hours 
and resolves within 1-2 days [11,12]. Rare lethal cases with severe airway obstruction have 
also been reported [6,7]. The factors predisposing to ACEi induced angioedema are not fully 
elucidated. Among clinical risk factors of ACEi induced AE are female sex, age over 65 years, 
African-American ethnicity, local trauma, smoking, history of drug rash, type 2 diabetes, 
seasonal allergies and ACEi induced cough. The mechanism of ACEi induced angioedema is 
thought to involve the accumulation of bradykinin, due to a dysregulation of its inactivation 
by ACE and alternative enzymes [13]. Genetic variants identified in the membrane metallo-
endopeptidase gene (MME) and the X-prolyl aminopeptidase 2 gene (XPNPEP2), belonging 
to the bradykinin degradation pathway, could contribute to the development of AE in some of 
the patients [13]. However, the effect of genetic variation on the susceptibility to AE caused by 
ACEis is yet to be fully uncovered.

The identification of patients at risk of ACEI-induced angioedema using a pharmacogenomic 
(PG) test prior to treatment initiation could prevent harm caused by this ADR and reduce 
healthcare expenses. 

Hence, the goal of this study is to assess required test characteristics (cost, sensitivity & 
specificity) in order for the test to be a cost-effective measure for preventing ACEi induced 
angioedema. In addition, we investigate the benefits of only testing specific populations that are 
known to have an increased risk of developing this serious ADR. 

METHODS

We used a decision tree model to compare genotyping vs no genotyping prior to starting an ACEi. 
The model reflects the patient pathway and is depicted in figure 1. In constructing the model, 
we conformed to the ISPOR Modeling Good Research Practices [14]. As angioedema risk is 
greatest immediately after starting an ACEi and because of scarce data on angioedema risk in 
long term ACEi use, a decision tree was the preferred model to simulate patient pathways. 

Angioedema incidence
ACEi induced angioedema incidence rates (per 1000 person-years) have been reported to be in 
the 1.97 – 4.38 range in observational studies by Miller et al. and Toh et al [15,16]. The OCTAVE 
randomised controlled trial (omapatrilat vs enalapril) by Kostis et al. reported 0.68% of patients 
developing angioedema during 24 weeks of follow-up [17]. Cumulative incidence of 1.79 (1.73-
1.85) per 1,000 persons reported by Toh et al. was used for model input, based on 3,301 events 
in 1,845,138 exposed persons. 326 (9.88%) of these events were classified as ‘serious’, indicating 
the need for inpatient care [16]. 
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ACEi treatment characteristics
After the initial ACEi prescription, patients stop and/or switch to another drug class in up to 
44% of cases [18,19]. However, it is unlikely that switching and discontinuation patterns are 
influenced by being genotyped for angioedema prior to starting an ACEi. We therefore assume 
that all patients stay on the ACEi for one year unless they develop angioedema or receive 
a positive diagnosis by genomic assay. In these cases, according to guidelines, they are switched 
to another antihypertensive. The price of ‘other antihypertensive’ is the weighed per person 
average of the cost per user*number of users of ATC-classes C03 (diuretics), C08 (calcium 
antagonists) and C07 (beta-blockers), yielding an average cost per user per year of €23.77. This 
is higher than the annual per user cost of ACEis at €13.62 [20,21]. The difference between 
these two treatments (€10.15) is used as model input. Appendix 1 presents the data used for 
calculating treatment costs.

Subgroups 
Subgroups of patients with an increased risk for developing ACEi induced angioedema have 
been identified by Miller et al [15]. People from African ancestry are at highest risk for 
developing ACEi induced angioedema, as shown in table 1.

Estimation of QALYs
Mortality due to ACEi related angioedema is extremely rare but, per case, results in a large loss 
of QALYs. Evidence on mortality is scarce and is mainly available in the form of case reports. 
To estimate mortality risk, studies that recorded intensive care unit (ICU) admittance or direct 

Figure 1. Model structures used. ACEi: Angiotensin-converting enzyme inhibitors.
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mortality due to angioedema, were selected. The selected studies are shown in appendix 2. We 
assumed that all lethal cases would be admitted to the ICU. Then, lethal cases were divided by 
the total number of patients with angioedema admitted to the ICU to yield a mortality probability 
of 0.66% per ICU admittance. The average ACEi starter was 62 years old [22]. QALYs lost by 
premature mortality were calculated using life expectancy data from Statistics Netherlands and 
data on quality of life (QoL) per age group, yielding 17.20 QALYs [23,24].

Utilities
By making assumptions regarding answers to the validated EQ5D questionnaire and using 
the Dutch value set to calculate utility scores, specific health state utilities were generated [25].   

Costs – resource use
Banerji et al. assessed the percentage of ACEi induced angioedema among all patients 
with angioedema presenting to the emergency department and described their healthcare 
requirements [26]. We combined these results with the data presented by Toh et al. to 
calculate the fraction of ICU stays of per total inpatient stays [16]. ICU stays were further 
specified using data from Soo Hoo et al [27]. They investigated ACEi induced angioedema 
requiring ICU admission, yielding data on hospitalisation duration [27]. Drug utilisation for 
the treatment of angioedema was not assessed as these costs are included in reference prices for  
hospital admittance.

Costs – prices
Costs for inpatient stays, GP & ED visits and ambulance use were based on reference prices 
published by the Dutch Manual for Costing in Economic Evaluations [28]. Drug utilisation and 
costs were retrieved from The Drug Information System and The Pharmacy Purchase Price 
database of the Dutch National Health Care Institute [20,21]. All costs are in Euros and, if 
applicable, indexed to 2016. Because of the one-year time horizon, discounting of future costs 
and effects was not necessary.    

Analysis
The main outcome was the incremental cost effectiveness ratio (ICER) which is the ratio 
indicating the extra costs per QALY gained. In the OCTAVE-randomised controlled trial, 

Table 1. Subgroups with increased risk of developing ACEi induced angioedema. Data taken with permission 
from [15].

Risk Factor Relative Risk

African ancestry 3.88
Age 65-74 1.42 
Female Gender 1.45 
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significantly more patients experienced angioedema in the first month of treatment (3.6/1000 
vs 0.4/1000 after 24 weeks of follow-up) [17,29]. Observational studies by Toh et al. and Miller 
et al. reported that respectively 66% and 55% of events occurred in the first 90 days after ACEi 
initiation [15,16]. Based on these findings, we assume a one-year timeframe for the development 
of angioedema and all related healthcare utilisation. Model parameters are shown in table 2. 
Model parameter sensitivity was assessed by probabilistic and deterministic sensitivity analysis. 
In a deterministic sensitivity analyses the robustness of the model is tested for variations 
between the extremes of a plausible range of all parameters. In a probabilistic sensitivity analysis 
uncertainty of the analysis is examined by first constructing distributions for all parameters in 
the model. Secondly, the model picks a random value for all parameters from these distributions 
and the results are recalculated. This is repeated 5,000 times and the results are depicted in 
a scatterplot. We did not vary the cost components as these are based on reference prices. 

Table 2. Model parameters and probability distributions.

Parameter Value Distribution EQ5D input

Prob. of visiting ED* 0.4256 fixed
Prob .of observational stay at ED* 0.0773 beta
Prob. of patient stay (regular ward) * 0.0515 beta
Prob. of ICU stay* 0.0472 beta
Prob. of ambulance* 0.1141 beta
Prob. of visiting GP* 0.574 beta
Incidence rate of angioedema (per 1,000) 1.79 beta
Prob. of mortality* 0.0004 beta
Cost of visiting ED (€) 170.59 fixed
Cost of observational stay at ED (€) 283.56 fixed
Cost of inpatient stay (regular ward) (€) 737.14 fixed
Cost of ICU stay (€) 8434.26 fixed
Cost of requiring ambulance (€) 331.00 fixed
Cost of visiting GP (€) 28.00 fixed
Additional cost on other antihypertensive (€) 10.15 fixed
Utility during ED visit 0.569 fixed 33333
Utility during observational stay at ED 0.569 fixed 33333
Utility during inpatient stay (regular ward) 0.569 fixed 33333
Utility during ICU stay 0.115 fixed 55533
Utility during GP visit 0.638 fixed 22222
Quality of Life lost by fatal angioedema 17.78 fixed

*Probability is per angioedema event. ED = emergency department, ICU = intensive care unit, GP = general practitioner.  
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RESULTS

Base-case
The influence of sensitivity, specificity and test price on the ICER are shown in figures 2.1 and 
2.2. Data points represent the test price at which the ICER exactly matches the WTP threshold. 
A grey point reflects a negative test price and a black point reflects a positive test price. 

With a willingness-to-pay (WTP) threshold of €20,000 and €80,000 per QALY, a 100% sensitive 
and 100% specific test has a maximum cost of €1.30 and €1.95, respectively. A free and 100% 
sensitive test must at least be 87% and 81% specific to be cost effective at aforementioned WTP 
thresholds. The ICER of a free and 100% specific test is, only in this scenario, not influenced by 
sensitivity as it is free anyway and does therefore not generate false positives. At 90% specificity, 
a free test should be at least 79% and 52% sensitive for €20,000 and €80,000 WTP thresholds. 

A change in specificity has a 3.5-fold higher impact on the ICER than a change in sensitivity. 
This is due to the additional cost of switching to another, more expensive, antihypertensive 
treatment in the case of false positives. False negatives do not cause additional costs; they only 
lower the maximum but ever positive price, indicated by a black dot at 100% specificity and 
lowest (50%) sensitivity. 

Subgroups 
Limiting genotyping to individuals at higher risk for ACEi induced angioedema has a profound 
influence on test requirements. Figures 3.1 and 3.2 display the relation between test parameters 
and the maximum price to meet WTP thresholds of €20,000 and €80,000, respectively. In 
this scenario, a perfect test meets the WTP thresholds at €5.03 and €7.55. The bandwidth for 
a positive test price has increased dramatically, as well as the spread between the two WTP 
thresholds. The requirement of a high specificity is no longer present: For a 100% sensitive test 
costing €3.00, the minimum specificity is 81% and 56% for aforementioned thresholds. Besides, 
the influence of specificity versus sensitivity lowered from ±3.5:1 to 1:1.

Probabilistic sensitivity analysis 
Probabilistic sensitivity analysis (PSA) was based on a 90% sensitive and 90% specific test costing 
€0.50. Results, shown in figure 4, indicate 100% probability for both QALY gain and higher 
costs. Furthermore, there is a 10.6% and 55.3% probability of meeting €20,000 and €80,000 
WTP thresholds, respectively. The base case ICER at specified parameters is €56,896. The PSA 
results are higher and lower than this base case in 57% and 43% of cases.   

Deterministic sensitivity analysis
Deterministic sensitivity analysis (DSA), shown in figure 5, was also performed with a 90% 
sensitive and 90% specific test costing €0.50. Incidence rate of angioedema resulted in 
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Figure 2a. Base-case results. Maximum test price to meet a willingness-to-pay threshold of €20,000.

Figure 2b. Base-case results. Maximum test price to meet a willingness-to-pay threshold of €80,000.

the largest effect, followed by the additional cost of ‘other antihypertensive’. ICU admission 
and mortality have a substantial effect on the ICER. The other parameters have a small or 
negligible influence.



34

Figure 3a. Subgroup results. Maximum test price when only testing people of African ancestry (HR = 3.88) 
to meet a willingness-to-pay threshold of €20,000.

Figure 3b. Subgroup results. Maximum test price when only testing people of African ancestry (HR = 3.88) 
to meet a willingness-to-pay threshold of €80,000. 
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Figure 5. Deterministic sensitivity analysis. X-axis indicates the magnitude of the difference in ICER 
compared with a parameter. Black indicates a negative parameter change, grey a positive change. 
Parameters used: fixed test price = €0.50, fixed test sensitivity = 90%, fixed test specificity = 90%. The x-axis 
indicates the factor of the response versus a change in a parameter. † Probability is per angioedema event.  
ED: Emergency department; GP: General practitioner; ICU: Intensive care unit

DISCUSSION

We evaluated the specifications of a pharmacogenomic test for preventing ACEi induced 
angioedema in terms of the required specificity, sensitivity and price for achieving cost 
effectiveness. Our findings indicate that testing all ACEi starters is unlikely to be cost effective 
as >90% specificity, >93% sensitivity and a low (<€1.00) price would be required.  
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Our results highlight that limiting testing to high risk populations can be a fruitful endeavour 
for increasing cost effectiveness. This statement is further supported by the DSA demonstrating 
a major influence of angioedema incidence on the ICER. Miller et al. reported a relative risk 
of 3.88 and 1.45 for people of African-American ethnicity and for women, respectively. In our 
model this had a profound positive impact on parameter requirements. Further clarification 
of risk factors, for example for women of African-American ethnicity, could prove to lower 
diagnostic accuracy and test price to more favourable ranges that could warrant actual 
development of a PG test for this specific indication.  

Nevertheless, individual tests for rare ADRs may not be very efficient. Plumpton and colleagues 
have shown that single testing is not always cost effective, even when a proper biomarker or 
SNP is present [1]. Their results indicate that mainly Human Leukocyte Antigen (HLA) 
polymorphisms are cost-effective single targets. These HLA polymorphisms predispose for 
hypersensitivity reactions, sometimes leading to very severe ADRs like Stevens-Johnson 
Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN), induced by carbamazepine, abacavir 
and allopurinol. Not only are these ADRs more severe with mortality ranging from 10% 
to 40% for TEN, incidence rates of up to 5% are much higher than incidence rates of ACEi  
induced angioedema [1,30]. 

There could be a solution to biomarkers that do have value but are too costly to implement 
separately: Combine many of these tests into a single package or perform them together with 
a test that will be performed in routine daily practice. This way, the fixed costs of sampling, 
transport to a lab and reporting the results are spread and incremental costs per test could 
decrease dramatically. We can extend the idea of combining tests to whole exome or whole 
genome sequencing. Currently, these sequencing techniques are considered to be too costly 
for implementation in routine practice but prices have been falling dramatically [31]. When 
routine sequencing becomes part of daily clinical practice, all future genomic markers will 
deliver additional benefit to patients, regardless of the rarity of the predictor. Sadly, the full 
potential value that innovations may deliver in the future cannot be captured in traditional cost 
effectiveness analysis. 

The two most important limitations of our study need to be addressed. Firstly, the DSA indicates 
a strong influence of the additional cost of antihypertensive treatment. This is the cost of a false 
positive case. In Dutch practice, switching to another antihypertensive is more expensive than 
ACEi treatment. This price difference is likely to be country specific. In other jurisdictions 
where ACEi treatment is more expensive than other antihypertensive treatment, the genotyping 
strategy would result in drug-cost savings in the event of a (false) positive diagnosis. 

Secondly, model parameters were based on multiple studies with different study designs possibly 
leading to biased estimates. Especially our assessment of mortality risk was based on suboptimal 
evidence that required some assumptions. However, the DSA indicates a relatively low influence 
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of mortality risk on model outcomes. Utility scores were assessed by estimating the answers to 
the EQ5D questionnaire which is clearly sub-optimal. The DSA indicates that these parameters 
have a negligible effect on the results.   

CONCLUSION

Our study indicates that testing all patients starting an ACEi for developing angioedema is 
unlikely to be cost effective as the test should have a high diagnostic accuracy combined with 
a sub €2.00 cost. Selectively testing only populations that have an increased risk of developing 
ACEi induced angioedema improves test characteristics needed and price for an ICER below 
€20,000 and €80,000. While separate testing for this variation for all ACEi starters or subgroups 
is not cost-effective, implementing whole exome or genome sequencing in routine clinical 
practice will result in economically attractive benefits of finding genetic variations like the one 
discussed here.
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APPENDICES
Appendix 1. Cost of switching to another antihypertensive.

Other 
Antihypertensive ATC No. users Cost/user (2014) Total costs

Diuretics C03 1,143,000 €22.48 €25,694,640
Calcium antagonists C08 831,430 €39.09 €32,500,599
Beta blockers C07 1,642,000 €16.91 €27,766,220
  Sum: 3,616,430 Sum: €85,961,459

Average cost per user 
per year:

€23.77      

ACEi (cost/user) €13.62
Difference: €10.15

Appendix 2. Studies included in mortality assessment.

Study No. Angioedema No. ICU No. mortality

OCTAVE [17] 86 0 0
ALLHAT [32] 38 1 (assumed) 1
Grant et al. [33] 228 0 0
Soo Hoo et al. [27] 50 50 0
Banerji et al. [26] 220 24 0
Kyrmizakis et al. [34] 31 1 0
Chan et al. [12] 88 75 0
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ABSTRACT

Objectives
The objective of this study was to construct an early economic evaluation for acalabrutinib for 
relapsed chronic lymphocytic leukaemia (CLL) in order to assist early reimbursement decision 
making. Scenarios were assessed to find the relative impact of critical parameters on incremental 
costs and quality-adjusted life years (QALYs).

Methods
A partitioned survival model was constructed comparing acalabrutinib to ibrutinib with 
a National Health Service (United Kingdom) perspective. This model included states for 
progression free survival (PFS), post-progression survival (PPS) and death. PFS and overall 
survival (OS) were parametrically extrapolated from ibrutinib publications and a preliminary 
hazard ratio based on phase I/II data was applied for acalabrutinib. Deterministic and 
probabilistic sensitivity analyses were performed, and 1296 scenarios were assessed.

Results
The base case ICER is 61,941 £/QALY, with 3.44 incremental QALYs and incremental costs 
of £ 213,339. Deterministic sensitivity analysis indicated that survival estimates, utilities and 
treatment costs of ibrutinib and acalabrutinib and resource use during PFS have the greatest 
influence on the ICER. Probabilistic results under different development scenarios indicated 
that greater efficacy of acalabrutinib will decrease the likelihood of cost-effectiveness (from 63% 
at no effect to 2% at maximum efficacy). Scenario analyses showed that a reduction in PFS did 
not lead to great QALY differences (-8 to -14% incremental QALYs) although it did greatly 
impact costs (-47 to -122% incremental pounds). For OS, the opposite is true (-89 to -93% 
QALYs and -7 to -39% pounds).

Conclusions
Acalabrutinib is not likely to be cost-effective compared to ibrutinib under current 
development scenarios. The conflicting effects of OS, PFS, drug costs and utility during PFS 
show that determining cost-effectiveness of acalabrutinib without insight into all parameters 
complicates HTA decision making. Early assessment of cost-effectiveness of new products can 
support development choices and reimbursement processes through effective early dialogues  
between stakeholders.
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INTRODUCTION

Bruton’s tyrosine kinase (BTK) inhibitors represent a new line of treatment for chronic 
lymphocytic leukaemia (CLL), with drugs in development and one already on the market: 
ibrutinib. Ibrutinib has now been approved for previously treated and untreated CLL patients 
and has shown to be clinically effective with a durable response [1–3]. However, ibrutinib is 
not entirely specific for BTK. It may also inhibit epidermal growth factor receptor (EGFR), 
interleukin-2–inducible T-cell kinase (ITK), T-cell X chromosome kinase (TXK), and tyrosine 
kinase expressed in hepatocellular carcinoma (TEC) family proteins leading to side effects such 
as bleeding, atrial fibrillation, rash and diarrhoea [4–6].

A more specific BTK inhibitor showing promise in preclinical and early clinical trials is 
acalabrutinib (ACP-196). In preclinical research acalabrutinib did not inhibit EGFR, TEC, 
ITK, or other agents [7–10]. Similar to ibrutinib, acalabrutinib binds covalently to Cys481 in 
the ATP binding pocket of BTK. It shows a rapid oral absorption with a short plasma half-life 
theoretically leading to less toxicity [11,12]. Early clinical studies with acalabrutinib have shown 
overall response rates of 95% at median follow-up of 14.3 months and mostly grade 1 or 2 
adverse events without dose-limiting toxicity [13]. 

Based on these findings, acalabrutinib would be a valuable addition to the therapeutic options 
for CLL. However, patient access also relies on the decisions of health technology assessment 
(HTA) bodies. In the United Kingdom the National Institute for Health and Care Excellence 
(NICE) reported that ibrutinib’s initial price led to a base case incremental cost-effectiveness 
ratio (ICER) of £45,486 per quality-adjusted life year (QALY) when compared with treatment 
with physicians’ choice [14]. They advised to reimburse ibrutinib only if the negotiated 
(confidential) discount would be upheld. Such evaluations by HTA bodies and concomitant 
price negotiations can take up to a year, delaying patient access.

To reduce delays in patient access, it is possible to start early with the assessment of added 
value of a new therapy. This can start during preclinical development but is more regularly 
executed during phase I or II clinical trials. One method is the use of early cost-utility analyses, 
which can clarify the relative impact of the parameters that drive cost-effectiveness. Early cost-
utility analyses allow decision makers and manufacturers to streamline clinical development 
and reimbursement processes [15–18]. 

The objective of this study was to construct, based on published phase I/II data, an early cost-
utility analysis comparing acalabrutinib to ibrutinib for chronic lymphocytic leukaemia in 
order to assist early reimbursement decision making. Sensitivity analyses are performed and 
possible development scenarios are assessed, identifying critical parameters and quantifying 
their relative impact on incremental costs and quality-adjusted life years.
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METHODS

General
An effectively lifetime partitioned survival model comparing acalabrutinib to ibrutinib was 
constructed in Microsoft Excel (Microsoft, Redmond, WA) from an NHS (UK) perspective. 
As portrayed in figure 1, included health states were progression free survival (PFS), post-
progression survival (PPS), and death. PPS is split into two sub-states, i.e. subsequent treatment 
(PPS-ST) and best supportive care (PPS-BSC). The modelled population is based on the only 
available phase I/II trial for acalabrutinib and assumed representative for the UK relapsed CLL 
patient population [13]. The model is based on the NICE assessment of the manufacturer’s 
submission for ibrutinib, appraisal number TA429 [14]. Patients move between health states in 
cycles of 28 days with a time horizon of 30 years (effectively lifetime). Half cycle corrections are 
applied. Costs and outcomes are both discounted by 3.5%. The model is constructed according 
to ISPOR Good Modelling Practice and method reporting follows the CHEERS statement for 
reporting standards [19].

Treatment, comparator and subsequent treatment
Ibrutinib is administered as 420 mg/day (3 capsules) until disease progression or until no longer 
tolerated by the patient. Acalabrutinib is given as 200 mg/day (2 capsules). After progression, 
41.9% of patients receive subsequent treatment. Subsequent treatment consists of rituximab and 
idelalisib. Rituximab is given during six cycles of four weeks, with an initial dose of 375 mg/m2 
and subsequent doses of 500 mg/m2, according to the NICE guideline for CLL [20]. Idelalisib is 
administered until disease progression or death in a dose of 150 mg twice daily. A dose intensity 
of 94.8% was applied for acalabrutinib, ibrutinib and idelalisib, in accordance with findings 

Figure 1. Model structure.
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from the RESONATE trial [2,14]. In this study, acalabrutinib is assessed relative only to its 
primary comparator from the same class within the same indication (ibrutinib), as it is expected 
this will be the main competitor in practice. Ofatumumab, physician’s choice or other treatment 
regimens are not assessed in this study.

Survival data
Efficacy of ibrutinib has been established in a phase III multicentre, open-label, randomised 
clinical trial comparing it to ofatumumab [2]. Preliminary efficacy of acalabrutinib was 
established in a multicentre, open-label, single-arm phase I/II trial [13]. 

PFS and OS individual patient data for ibrutinib was reconstructed from the reported Kaplan-
Meier curves [21]. Multiple parametric survival curves were tested: an exponential, Weibull, 
log-logistic and lognormal distribution. The exponential curve showed physiological plausibility 
and overall best fit for OS as well as PFS, corresponding with the Expert Review Group (ERG) 
comments on the ibrutinib submission for NICE [14]. For acalabrutinib, efficacy compared to 
ibrutinib was established through an indirect treatment comparison based on the extracted 
individual patient data, providing a hazard ratio (HR) of 0.479 for PFS (95% confidence interval 
(CI) 0.230 – 0.998) and 0.391 for OS (95% CI 0.141 – 1.081). Because these are based on very 
limited data, we set the range of variation in sensitivity and scenario analyses for these HR’s 
from 0.479 and 0.391 to 1.00, representing the full range up until no benefit for acalabrutinib. 
Furthermore, no assumptions are made about the distribution of this effect. The base case (which 
equals the maximum HR) is tested (0.479 and 0.391 for PFS and OS respectively) and five uniform 
steps up until no benefit, resulting in six scenarios for the HR’s (base case/maximum, 80%, 60%, 
40%, 20%, and no benefit). In the probabilistic sensitivity analysis, the base assumption is that 
OS and PFS are independent. To test the effect of this assumption, the six scenarios for the PSA 
are also implemented with the OS and PFS sharing the same random number when sampled, 
creating dependence. The full survival calculations, fitting criteria and ranges for all parametric 
models are provided in appendix 1.

Post-progression survival is defined as OS minus PFS and comprises patients on subsequent 
treatment as well as patients on best supportive care. Post-progression survival on subsequent 
treatment (PPS-ST) is implemented by plotting a Weibull curve from the progression free 
survival given in the Kaplan-Meier graph provided by Furman et al [22]. The Weibull curve 
was chosen because this was evaluated as the most suited curve for this treatment by NICE. 
In this multicentre, randomised, double-blind, placebo-controlled, phase 3 study, the efficacy 
of rituximab and idelalisib combination therapy was assessed in patients with relapsed CLL 
[22]. After 80 cycles (75 months), Weibull plotted survival is less than 0.01% and therefore 
assumed to be 0. Because transition probabilities to the PPS state are not explicitly modelled in 
a partitioned survival model, entry into the PPS state each cycle was calculated by subtracting 
a specific background mortality from the proportion of patients leaving PFS. This background 
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mortality was retrieved from the Life Expectancy Tables from the Office for National Statistics 
[23]. This method was also used in the ibrutinib submission though the background mortality 
was considered fixed whereas ours increases with increasing age.

Costs and resource use
Unit costs for the drug treatments are provided by the British National Formulary [24]. All 
costs are reported in 2018 UK pound sterling. When cost inputs were based on different years, 
they were inflated with the Hospital and Community Health Services Pay and Price Index and, 
after discontinuation of this index in 2017, with the health-specific subset of the consumer price 
inflation index [25]. Daily costs for acalabrutinib treatment are assumed equal to ibrutinib in 
the base case and sensitivity analyses and varied through scenario analyses, testing for 30% 
pricing premiums and reductions, see table 1. Costs for rituximab are only inflicted in the first 
six cycles of subsequent treatment, in accordance with its approved indication, and are based 
on an average body surface area of 1.9 m2 [14]. Full calculations for costs per cycle of treatment 
with acalabrutinib, ibrutinib and rituximab + idelalisib are provided in appendix 2.

Costs of grade 3 and 4 adverse events (AEs) were included according to the UK national 
schedule of reference costs 2015-2016 [26]. Incidences were implemented from clinical trials for 
acalabrutinib and from the NICE ibrutinib assessment [13,14]. Adverse event costs are inflicted 
once, in the first cycle. This matches the approach used in the NICE ibrutinib submission and 
is supported by the fact that onset of side effects was generally within the first half year and 
the duration of side effects was short [2,14]. 

Annual healthcare resource use such as hospital visits or blood tests associated with 
routine follow-up care was included. Resource use is based on expert elicitation reported 
by the manufacturer in the ibrutinib submission and differs per model state (PFS, PPS-ST 
& PPS-BSC) and whether the patient in the PFS state is a complete responder (CR), partial 
responder (PR) or non-responder (NR, including stable disease and progressive disease). 
Treatment responses for ibrutinib were reported to be 84% PR, 6% CR and 10% NR. For 
acalabrutinib, 95% were PR and 5% were NR [13,14]. Full calculations of adverse event costs 
and resource use per treatment are provided in appendix 3.

Costs for the death state are inflicted once in the cycle when death happens, and equal the per 
patient costs of health care utilisation during the last 30 days of life for patients of age 65+ with 
any cancer reported by Bekelman et al [27]. Costs and ranges for sensitivity analyses are stated 
in table 1.

Utilities
Utility for acalabrutinib was not available and is therefore assumed equal to the ibrutinib utility 
of 0.799 reported in the RESONATE trial, as measured by EQ-5D-5L. UK weights were used to 
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Table 1. Input parameters and their ranges. Calculations are presented in appendices 1 to 4. PFS: progression 
free survival, OS: overall survival, PPS-ST: post-progression survival on subsequent treatment, PPS-BSC: 
post-progression survival on best supportive care.

Parameter Base Min Max Distrib. Source

General          
Mean age 62 Fixed [13]
Mean body surface area (m2) 1.9 Fixed  
Time horizon (years) 30 Fixed N/A

Discount rates          
Costs 0.035 Fixed [25]
Effects 0.035 Fixed [25]

Utilities          
Progression-free survival  

Acalabrutinib 0.799 0.799 0.837 Beta [2,14]
Ibrutinib 0.799 0.799 0.837 Beta [2,14]
Post-progression survival 0.701 0.631 0.771 Beta [2,14]

Adverse event disutility  
Acalabrutinib 0.065 0.058 0.071 Beta [13,14]
Ibrutinib 0.091 0..082 0.100 Beta [1,2,14]

Costs (£)          
Treatment during progression-free survival  

Acalabrutinib 4279 2996 5563 Fixed [14]
Ibrutinib 4279 2996 5563 Fixed [14]

Adverse events  
Acalabrutinib 639 319 958 Gamma [13,14]
Ibrutinib 829 414 1243 Gamma [1,2,14]

Progression-free survival state  
Acalabrutinib 244 122 367 Gamma [14]
Ibrutinib 245 122 367 Gamma [14]

Post-progression survival state  
Rituximab + idelalisib cycle 1-6 5428 1206 7137 Gamma [20,23]
Rituximab + idelalisib cycle 7+ 3298 780 4368 Gamma [20,23]
Best supportive care 177 88 265 Gamma [14]
Death 3051 1525 4576 Gamma [26]

Survival parameters          
Ibrutinib (hazard rates)  

Progression free survival 0.013 0.018 0.010 Normal [2]
Overall survival 0.008 0.010 0.006 Normal [2]

Acalabrutinib (hazard ratios)  
Progression-free survival 0.479 1.000 0.479 6 steps [13]
Overall survival 0.391 1.000 0.391 6 steps [13]

Subsequent treatment (ST) (Weibull)  
Scale 0.008 0.008 0,008 Fixed [22]
Shape 1.582 1.758 1.439 Fixed [22]
Percentage receiving ST 0.419 0.219 0.619 Normal [14]
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generate patient utilities [14]. As an optimum utility for sensitivity and scenario analyses, utility 
was calculated according to utilities awarded to the response states [28]. Adverse event disutility 
was calculated according to the incidence and utility decrement of AEs reported in clinical trials 
for ibrutinib and acalabrutinib [1,2,13]. As with AE costs, disutility according to adverse events 
was inflicted once, in the first cycle. The full calculations for disutility due to adverse events are 
provided in appendix 4. To get the post-progression utility, the baseline utility is corrected for 
the reported utility decrement of 0.098 associated with progression [14]. Base case utilities and 
ranges are provided in table 1.

Sensitivity and scenario analyses
Uncertainties were assessed through sensitivity and scenario analyses. In a one-way sensitivity 
analysis, the impact of each model input parameter was assessed individually according to their 
minimum and maximum value provided in Table 1. This deterministic sensitivity analysis shows 
the impact of the minimum and maximum values for each separate parameter on the ICER. 
Additionally, probabilistic sensitivity analyses were performed for each of the six HR steps, thus 
testing cost-effectiveness for different acalabrutinib efficacy scenarios. Body surface area and 
age were not varied in the PSA, in line with the ibrutinib submission. 

From the deterministic analysis, important parameters were selected that had a profound 
influence on the ICER, defined by variations >5% from the base case ICER for the minimum 
and/or maximum scenario. For these critical parameters, all possible combinations of parameter 
values were tested in scenarios. This means that for each value for each important parameter 
(the base case, minimum and maximum values), all combinations of values for the other 
parameters are tested. This results in an overview of the impact of each parameter on incremental 
costs and QALYs. The calculation for this relative impact is given in appendix 5. 

RESULTS

The base case ICER is 61,941 £/QALY, with 3.44 incremental QALYs with incremental costs 
of £ 213,339. Absolute costs and QALYs are £317,853 and 5.88 for ibrutinib and £531,192 and 
9.33 for acalabrutinib, respectively. The one-way sensitivity analysis shown in figure 2 indicates 
that survival estimates, utilities and treatment costs of ibrutinib and acalabrutinib and resource 
use during PFS have a distinct influence on the ICER. As figure 2 also shows, OS and PFS have 
opposite effects, i.e. when OS for acalabrutinib is reduced, it increases the ICER, whilst reducing 
PFS leads to a smaller ICER. Higher utility and lower treatment and resource costs during PFS 
reduce the ICER. For ibrutinib, the opposite is true for all variables.

Results of the probabilistic sensitivity analysis are shown in figure 3. When the efficacy of 
acalabrutinib grows (HR further from 1.00), the incremental costs and incremental QALYs 
both increase, but not simultaneously. With no effect (HRs PFS & OS = 1.00), the probability 
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of cost-effectiveness is 63% with a WTP threshold of 50,000 £/QALY. This declines gradually 
from 42%, to 25%, 10%, 3% and 2% (HRs: 20, 40, 60, 80% and HR maximum, respectively). 
Thus, higher efficacy and the resulting higher QALYs lead to disproportionately higher costs 
for acalabrutinib, when the price is equal to ibrutinib. Assuming dependence between PFS and 
OS did not lead to very different results. Mean ICERs are within +/- 3% of mean ICERs without 
dependence. Probabilities of cost-effectiveness with a WTP threshold of 50,000 £/QALY are 
60%, 42%, 26%, 12%, 5% and 1% for HRs 1.00, 20%, 40%, 60%, 80% and maximum respectively.

Scenarios
The deterministic analysis provided ten parameters that explained the majority of the variation. 
Of those ten, resource use costs and treatment costs during PFS are perfectly correlated with 
each other. Therefore, these were combined into one parameter (called costs acalabrutinib/
ibrutinib) in order to reduce the number of scenarios. Eight parameters remain: four have base 
case, minimum and maximum values (costs during PFS for both treatments and PFS & OS 
survival parameters for ibrutinib) and 4 have only 2 values (base case and minimum (hazard 

Figure 2. Relative effects of individual parameters in comparison to the base case ICER of 61,941 £/
QALY. Note that some parameters are only varied one way because the base case represents the maximum 
or minimum. PFS = progression-free survival; OS = overall survival; PPS = post-progression survival; C = 
costs; U = utility; acal = acalabrutinib; ibru = ibrutinib; ST = subsequent treatment; BSC = best supportive 
care; AE = adverse events.
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ratios for acalabrutinib) or base case and maximum (utility during PFS for both treatments)). 
This led to a total of 34*24 = 1296 scenarios, which were all tested. For each parameter, the effect 
on incremental QALYs and incremental costs in the minimum and/or maximum scenario 
versus the base case scenario was calculated for all scenarios. Figure 4 shows these effects for 
each of the included eight parameters. The size of the impact a parameter has on incremental 
costs and QALYs depends on the scenario, i.e. the values of the other input parameters. Figure 
4 shows all distinctive values for each parameter. The results indicate that overall survival is 
a main driver of incremental QALYs throughout all scenarios, however, it does not impact costs 
proportionally. The inverse is the case for progression-free survival, which greatly impacts costs 
but does not impact QALYs proportionally. 

A minimal OS of acalabrutinib leads to a reduction in incremental QALYs (89 – 93% of base 
case QALYs) whilst not greatly influencing incremental cost (reduction of 7 – 39% of base case 
costs), leading to a higher ICER. A minimal PFS leads to smaller incremental costs (reduction 
of 47 – 122% of base case costs) but does not significantly affect QALYs (reduction of 8 – 14% 
of base case QALYs), leading to a smaller ICER. Effects of these parameters for ibrutinib are 
similar but have an opposite direction of effect (i.e. small PFS leads to a greater ICER). Utility 
has a relatively minor effect. Incremental QALY benefits due to greater utility during treatment 
(based on response rates as described in the methods section) are relatively small throughout all 
scenarios (4.5 – 9.7% of base case). QALY and cost benefits due to fewer side effects were even 
smaller (and thus not included in scenario analyses).

Figure 3. Cost-effectiveness planes for different hazard ratios. The dark grey dot indicates the base case.
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Figure 4. Range of variation in incremental costs and QALYs due to each critical parameter throughout 
all scenarios. 
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DISCUSSION

In this model, the base case ICER for acalabrutinib compared to ibrutinib was 61,941 £/
QALY, with 3.44 incremental QALYs and incremental costs of £213,339. This indicates that 
even with a price equal to ibrutinib, acalabrutinib is not cost-effective with a willingness-to-
pay threshold of £50,000. The probability for acalabrutinib to be cost-effective declines with 
greater efficacy. This finding is explained by the fact that longer progression-free survival leads 
to disproportionally higher costs, even though overall survival is prolonged as well.

In the deterministic analysis, all parameters associated with PFS and OS had significant impact 
on the ICER. Parameters that had little impact were all one-off parameters (adverse events, 
death costs) and parameters associated with the PPS state. Apparently, subsequent treatment 
choices do not greatly affect cost-effectiveness of acalabrutinib. 

A price for acalabrutinib higher than ibrutinib, with a threshold of £50,000/QALY, would not 
lead to a cost-effective scenario. This indicates that even though acalabrutinib would show good 
survival benefits, reimbursement for a higher price is still unlikely, impeding patient access. 
With treatment costs set at the base case, ibrutinib nor acalabrutinib is cost-effective in the PFS 
state. However, the DSA clarifies that treatment costs have a large impact on the ICER. Thus, 
a cost reduction may potentially lead to time spent the PFS state being cost-effective, which 
would greatly alter cost-effectiveness of both treatments. Indeed, in the tested scenario where 
both drug costs are minimal (with the rest of the parameters at base case), the ICER is £44,000 
per QALY. 

For decision purposes, the cost-effectiveness of an expensive treatment in a certain health 
state can be roughly estimated from its treatment costs and the utility in that state. If this 
estimate greatly exceeds the threshold, a modelling exercise may be redundant. However, as 
our analysis shows, modelling may still be very useful to provide insight in the relative effects 
of all parameters and their relevance to the ICER. When varied between their plausible bounds, 
improvements in PFS and OS led to opposite effects on the ICER. The relationship between PFS, 
OS, and the ICER is often not straightforward within the context of an incremental analysis. For 
example, when costs occur during PFS that are higher than the willingness-to-pay threshold, 
the moderate QALY improvement associated with prolonged PFS may not offset these costs if 
prolonged PFS does not translate to prolonged OS. A positive correlation may exist but previous 
publications have highlighted that these correlations are very inconsistent between and within 
different cancer types [29]. In this NICE decision support unit publication, it was furthermore 
deemed unclear how evidence supporting a correlation should be quantitatively implemented 
in a cost-effectiveness model. Thus, our primary assumption was independence of PFS and OS, 
but we ran scenario analyses assuming dependence through sampling from a shared random 
number. It should be noted that this was possible because an exponential curve was implemented 
for both survival curves. If one of the curves would have been parameterised differently (e.g. 
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Weibull), this approach would not have been viable. Correlating PFS and OS changed the shape 
of the cost-effectiveness plane but it did not greatly impact the probability of the treatment 
being cost-effective. However, the impact of correlation between PFS and OS may be greater for 
other drugs or in different disease areas. For early cost-effectiveness models, when there is fairly 
little information on the relation between PFS and OS, we strongly advise to test the effects of 
correlation between survival curves in scenario analyses. 

Recent research has shown that overall survival was included as a primary outcome in studies 
in only 18/68 (26%) of drug indications, whereas PFS accounted for another 31 (46%) and 
response rates for 11 (16%) [30]. For drug indications that lacked data on OS at time of approval, 
after a median follow-up of 5.4 years after market entry, only 7% were subsequently shown to 
extend life. Our findings emphasise that this lack of demonstrated OS benefit induces problems 
in reimbursement processes. 

Acalabrutinib has been approved by the FDA for mantle cell lymphoma (MCL) via the accelerated 
approval pathway based on benefit in overall response rate. Though treatments for MCL and 
CLL are different, of interest is that our analysis shows that the manufacturer would get the best 
price in CLL when they solely show benefit through better response rates and do not prove 
PFS benefit. Acalabrutinib is currently being investigated in several phase II and III clinical 
trials for first-line and subsequent treatment in CLL, MCL and at least eight other indications 
varying from rheumatoid arthritis to urothelial carcinoma [10]. Our analysis has shown that 
perverse incentives might be present in reimbursement processes. Therefore, it is essential that 
stakeholders engage early and discuss adequate evidence generation plans prospectively based 
on scenario analyses such as the one presented here. 

Strengths and limitations
A strength of this research effort is that it establishes an indication of cost-effectiveness well in 
advance of any reimbursement considerations for acalabrutinib. Additionally, our model is based 
on a previous submission to NICE and assesses the influence of each parameter in sensitivity 
and scenario analyses, leading to well-founded conclusions on each parameters’ relevance. 

However, relying on a previous NICE submission has its caveats. The use of input parameter 
values provided for ibrutinib may lead to biased estimates. In the ibrutinib submissions, 
resource use was estimated through expert opinion. Furthermore, the public report of the NICE 
appraisal is redacted in many places, which made it hard to implement some of the features and 
numbers. For example, we had to estimate the survival curves from the published data because 
the parameters for the curves were redacted in the report. Additionally, the utility reported was 
established in patients in clinical trials different than those for acalabrutinib. The lack of mature 
data specifically for acalabrutinib leads to larger uncertainties in cost-effectiveness estimates but 
is also an inherent limitation to early modelling. We provide extensive sensitivity and scenario 
analyses to limit these risks. 
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Additionally, as mentioned, survival benefit was extracted from published phase I/II 
(acalabrutinib) and phase III studies (ibrutinib). Several valid methods exist to estimate 
individual patient data from published Kaplan-Meier curves which all vary slightly [21,31,32]. 
We have chosen the method developed by Hoyle & Henley but others may also have been 
appropriate [33]. All of them represent an approximation of individual patient data (IPD) and 
thus have limitations. Unfortunately, IPD is not shared by the company. 

While naive comparisons between trials have limitations, they are also common in the economic 
evaluation of pharmaceutical products. Additionally, a previous study investigated effect 
sizes between phase II and phase III and found that for solid malignancies, phase III studies 
yielded on average a 12.9% lower objective response rate [34]. Though our analysis is not in 
solid malignancies and the endpoints used from the trials are survival endpoints, it should be 
noted from this previous research that comparing a phase II with a phase III trial may not 
be appropriate. However, we have performed extensive sensitivity and scenario analyses on 
the hazard ratios provided by this comparison. To represent all possible outcomes for the survival 
benefit of acalabrutinib in comparison to ibrutinib, we chose the lower value for sensitivity 
analyses as no benefit (HR = 1.00). 

Partitioned survival modelling itself has limitations, because modelling PFS and OS without 
modelling the underlying events may lead to over or underestimation of long-term survival. 
However, partitioned survival modelling is a common approach in oncology and is usually 
accepted by HTA bodies, as it was in the case of ibrutinib. Because survival in the PPS state was 
time-dependent, we required the proportion of patients entering PPS from PFS. Our method 
to retrieve these events was similar to the ibrutinib submission in that it included correcting 
for background mortality. Still, the lack of actual information on progression of patients is 
a limitation to partitioned survival models. 

We also did not include subsequent treatments other than rituximab + idelalisib, but results show 
that the nature and costs of subsequent treatment are practically irrelevant for cost-effectiveness 
estimates. Last, we also did not include ofatumumab as a comparator. Though the benefits of 
acalabrutinib over ofatumumab may be different, it is likely that ibrutinib will be the primary 
comparator because it belongs to the same class. 

Further research
It was impossible to assess all scenarios when including all parameters (>650 million scenarios). 
Automated analyses might provide additional insight into parameters that we excluded from 
scenario analysis. Finally, combining multiple disease and treatment models leads to more 
insight into product dynamics and lifetime cost-effectiveness. Such interactive models can 
accommodate the complexity of value-based pricing within different indications for multiple 
drugs, leading to more appropriate reimbursement mechanisms. 
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CONCLUSION

In this early cost-utility analysis, survival benefits of acalabrutinib do not result in a cost-effective 
scenario compared to ibrutinib. The relative and conflicting effects of OS, PFS, drug costs and 
utility during PFS show that determining cost-effectiveness of acalabrutinib without insight 
into all parameters complicates HTA decision making. Early assessment of cost-effectiveness of 
new products can support development choices and reimbursement processes through effective 
early dialogues between stakeholders, ultimately improving patient access.
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APPENDICES

Appendix 1: Survival estimation 
For the estimation of the OS and PFS survival curves for ibrutinib, the Hoyle & Henley method 
to recreate individual patient data was used as described in Hoyle et al [21]. First, we extracted 
survival data from the Kaplan-Meier curve reported in Byrd et al [2]. We can input the number 
at risk and survival at each time point into the Excel file provided by Hoyle & Henley. This Excel 
file then approximates data on censoring and event times. Via the supplied R code of Hoyle & 
Henley we can then fit parametric survival models to the recreated data. 

These models include an exponential, Weibull, lognormal and a loglogistic curve. Table 1 shows 
the intercept and ln(scale) for each of these models. 

With these data, we can calculate survival at each time point, thus also allowing for extrapolation 
beyond the observed data. The relative goodness-of-fit for each curve is expressed in the Akaike 
information criterion (AIC) and the Bayesian information criterion (BIC), where lower values 
indicate better fit. Table 2 shows the AIC and BIC for the plotted ibrutinib curves, showing that 
for PFS the lognormal distribution shows the best fit to the KM curve, whereas for OS this is 
the Weibull distribution.

Table 1. Derived parameters for ibrutinib survival curves.

Parameter Exponential Weibull Log normal Log-logistic

Ibrutinib
PFS Intercept 4.096 4.307 3.929 3.830

Ln(scale) 0.198 0.619 0.003
OS Intercept 4.599 5.032 4.492 4.385

Ln(scale) 0.263 0.634 0.001

Table 2. AIC and BIC for extrapolated ibrutinib curves.

Exponential Weibull Lognormal Loglogistic

PFS AIC 316.7630 315.0908 313.0206 315.0640
BIC 321.2884 319.6161 317.5460 319.5893

OS AIC 217.7135 215.8702 216.0610 217.7807
BIC 222.1525 220.3092 220.5000 222.2198



62

For acalabrutinib, survival was extracted from the phase I/II study. It showed a Kaplan-Meier 
curve for progression free survival (PFS) and the text described overall survival (OS) (one 
person died during follow-up, at 13 months) [13]. According to Hoyle & Henley, survival 
at different time points was extracted. The data on time points for events and censoring as 
output of the Hoyle & Henley method were then inputted into SPSS and a Cox regression was 
performed for acalabrutinib OS and PFS in comparison to ibrutinib OS and PFS. 

The outcomes of the Cox regression are presented in table 3 and 4.

Hazard ratios (HR’s) of 0.479 (95% confidence interval (CI) 0.230 – 0.998) and 0.391 (95% CI 
0.141 – 1.081) were found for PFS and OS, respectively. Note that this is not a valid final measure 
of PFS and OS, as data are preliminary and incomparable. Therefore, we only use these estimates 
to define a range, with the maximum benefit representing these HR’s and the minimum benefit 
representing no effect (HR = 1.00).

These hazard ratios were then applied to find the survival for acalabrutinib simply by calculating 
S(t)acalabrutinib = S(t)ibrutinib^(hazard ratio). The survival curves that were derived via these methods 
are provided in figure 1 and 2. 

To select a curve, AIC and BIC criteria were assessed and physiological plausibility was investigated. 

Looking at AIC and BIC, for PFS the lognormal distribution shows the best fit while for OS this 
is the Weibull distribution, though the differences between the goodness-of-fit of the curves 
is relatively small. When looking at the extrapolated part of the curve, beyond the observed 
data, the exponential curves show the best fit, because they have the least people surviving 
after 30 years (400 cycles). This is physiologically the most plausible scenario. Considering that 

Table 3. SPSS results for the Cox regression on PFS between acalabrutinib and ibrutinib.

PFS B SE Wald df Sig. Exp(B)

95% CI for Exp(B)

Lower Upper

Treatment -0.735 0.374 3.865 1 0.049 0.479 0.230 0.998

Table 4, SPSS results for the Cox regression on OS between acalabrutinib and ibrutinib.

OS B SE Wald df Sig. Exp(B)

95% CI for Exp(B)

Lower Upper

Treatment -0.939 0.519 3.278 1 0.070 0.391 0.141 1.081



USE OF EARLY HTA TO INFORM MARKET ACCESS DECISIONS 63

2.2

the exponential curves were also used in the ibrutinib submission, we are confident in selecting 
these for further analysis [35]. 

For easy sensitivity and scenario analysis, acalabrutinib intercept values were calculated for 
the exponential curve from the survival found by applying the hazard ratio. The found intercept 
values were 5.045 for PFS and 5.808 for OS. 

Figures 3 – 6 show all the curves, including the published curves, for acalabrutinib and ibrutinib.

It is clear that the tail of the curves for acalabrutinib OS do not match the observed data very 
well, however, the observed curve is based on very limited data, and hence, the parametric 
curves may still be reasonable estimates given the overall uncertainty about OS.

For the subsequent treatment, a similar approach was followed. Via the Hoyle & Henley method, 
a Weibull curve was estimates from published data for survival on rituximab + idelalisib [22]. 
The parameters for this curve are presented in table 5 and the curve is presented in figure 7. 
Figure 7 includes two curves for sensitivity analysis where both the intercept and the scale are 
varied by 10%. 

Figure 1. Plotted survival curves for acalabrutinib and ibrutinib progression-free survival (PFS). 
The lower curves are for ibrutinib.



64

Figure 2. Plotted survival curves for acalabrutinib and ibrutinib overall survival (OS). The lower curves 
are for ibrutinib.

Figure 3. Curves for acalabrutinib progression-free survival (PFS), including the published curve.
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Figure 4. Curves for acalabrutinib overall survival (OS), including a curve based on published data.

Figure 5. Curves for ibrutinib progression-free survival (PFS), including the published curve.
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Figure 6. Curves for ibrutinib overall survival (OS), including the published curve.

Table 5. Parameters for the Weibull curve of subsequent treatment.

Subsequent treatment Base Case Minimum Maximum

Intercept 3.05 2.74 3.35
Ln(scale) -0.46 -0.56 -0.36

Figure 7. Base case and minimum and maximum curves for subsequent treatment with rituximab + idelalisib.
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Appendix 2: Drug treatment specifications and costs calculations
Ibrutinib is administered as 420mg/day (3 capsules) until disease progression or until no longer 
tolerated by the patient. Acalabrutinib is given as 200 mg/day (2 capsules). Subsequent treatment 
exists of rituximab and idelalisib. Rituximab is given during six cycles of four weeks according 
to the NICE guideline for CLL, with an initial dose of 375 mg/m2 and subsequent doses of 500 
mg/m2. Idelalisib is administered until disease progression or death in a dose of 150 mg twice 
daily [36]. Dosing intensity for all chronic treatments is assumed equal at 94.8%. No correction 
was applied for rituximab.

An overview of treatment costs is provided in table 6. Acalabrutinib unit costs are assumed 
equal to ibrutinib in the base case and calculated by multiplying the unit costs of ibrutinib 
treatment to the use per day and dividing this by the use of acalabrutinib units per day. Drug 
costs come from the British National Formulary [35,37].

Costs per cycle for acalabrutinib and ibrutinib is calculated by multiplying the unit costs with 
the unit size, the use per day, the dosing intensity and the days per cycle. This gives a treatment 
cycle costs of £4069.20 for both treatments.

For idelalisib and rituximab, the calculations are a bit more complicated. Idelalisib costs per 
day are calculated by multiplying use per day with costs per unit and the dose intensity, giving 
a cost of £98.43 per day. For the first 6 cycles (one cycle in the model is exactly four weeks, thus 
this matches the treatment with rituximab), rituximab is added to idelalisib. Rituximab costs are 
calculated by multiplying the square meters body surface (1.9m2) with the indicated dose per m2 
[35]. This is 375 mg in the first administration and 500 mg in the subsequent five administrations. 
For each dose, administration costs are added. These are found in the UK National Schedule of 
Reference costs 2015-2016 and include £383.13 for the ‘Delivery of Complex Chemotherapy, 
Including Prolonged Infusional Treatment, at First Attendance and £328.10 for the ‘Delivery 
of Subsequent Elements of a Chemotherapy Cycle, for first and subsequent administrations, 
respectively [38]. We assumed no vial sharing.

Table 6. Unit costs and sizes for modelled treatments.

Drug Dose/concentration Tablet or vial size Costs per unit Use per day

Acalabrutinib 100 mg 1 £76.65 2
Ibrutinib 140 mg 1 £51.10 3
Idelalisib 150 mg 1 £51.91 2
Rituximab 10 mg/ml 10 £174.63 N/A
Rituximab 50 mg/ml 10 £873.15 N/A
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For example, the first dose includes 375*1.9 = 712.50 mg. This means one vial of 500 mg and 3 
vials of 100 mg are needed. The total costs for those vials is £1397.04. Including administration 
costs of £383.13 gives a total cost of £1780.17.

This was repeated for all six treatment cycles giving a total cost of £12,152.17. Including 
the treatment of idelalisib means that average costs for each cycle during the first six cycles 
totalled £4,781.29. Starting at cycle 7, only costs for idelalisib are included, totalling £2,755.93 
per cycle. In sensitivity analyses, the variation of the costs by -80% to +30% was only applied to 
treatment costs, not administration costs.
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APPENDIX 3: RESOURCE USE AND STATE COSTS

Resource use was derived directly from the ibrutinib submission. The submission included an 
overview of the use of certain types of resources per disease state and response rate, as specified 
in table 7. These resources were determined through an expert panel by the manufacturer and 
were accepted by NICE [35]. 

Costs per resource unit were informed by the UK National Schedule of Reference Costs 
2015-2016 [38]. The exact terminology for which the costs were applied is specified in table 8.

To calculate total costs per response and per disease state, the units were multiplied by the price, 
and then summed. These annual costs were then corrected for cycle duration, as is presented 
in table 9.

To calculate resource costs per cycle per treatment, these costs per disease and response state 
were multiplied by treatment response known from literature. Treatment response for ibrutinib 
was reported to be 84% PR, 6% CR and 10% SD. For acalabrutinib, 95% had PR and 5% had SD 
[2,13,39]. Resource costs per disease and response state are presented in table 10. 

Other costs included are costs for adverse events and costs for death. Both are inflicted once, 
in the cycle they happen. For adverse events this is assumed to be the first cycle of the model. 
Costs for the death state are inflicted once in the cycle (when death happens), and equal the per 
patient costs of health care utilisation (£2,900.98) during the last 30 days of life for patients of 
age 65+ with any cancer reported by Bekelman et al [27]. Adverse event costs are calculated by 

Table 7. Resource unit use as defined by an expert panel in the ibrutinib submission. PFS-CR = progression 
free survival, complete response; PFS-PR = partial response; PFS-SD = stable disease; PPS-ST = post 
progression state, subsequent treatment; PPS-BSC = best supportive care.

Resources PFS-CR PFS-PR PFS-SD PPS-ST PPS-BSC

Full blood count 2 4 4 4 4
LDH 2 2.26 2 2 0
Lymphocyte counts 3.5 7 3.5 3.2 0
Chest X-Ray 0 1 2 2 0
Bone marrow exam 0 1 1 0 0
Haematologist visit 2.26 3 4.5 4 4.9
Inpatient visit 0.66 2 2 2 1
Nurse Home visit 1.5 2.64 3 2 4
Full blood transfusion 0 1 2 2 2
Platelet transfusion 0 1 0 0 0
Biopsy 0 0 2 2 0
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Table 8. Overview of costs and their sources within the National Schedule for Reference Costs.

Resources Code Source Costs (£)

Full blood count DAPS05 Other Currencies Data 3.10
LDH DAPS04 DIRECTLY ACCESSED PATHOLOGY SERVICES 1.18
Lymphocyte counts DAPS05 Other Currencies Data 3.10
Chest X-Ray DAPS02 DIRECTLY ACCESSED PATHOLOGY SERVICES 30.77
Bone marrow exam SA33Z OUTPATIENT PROCEDURES 266.83
Haematologist visit WF01A Outpatient CL - Clinical Haematologist - Non-Admitted 

Face to Face Attendance, Follow-Up
166.03

Inpatient visit WH53B Follow-Up Examination for Other Conditions, without 
Interventions

763.42

Nurse Home visit NURS COMMUNITY HEALTH SERVICES - District Nurse, 
Adult, Face to face - Nursing

37.98

Full blood transfusion SA13A OUTPATIENT PROCEDURES 225.11
Platelet transfusion SA13A OUTPATIENT PROCEDURES 225.11
Biopsy SA33Z ELECTIVE INPATIENT 1078.29

Table 9. Resource costs as calculated by multiplying unit costs with unit use. PFS-CR = progression free 
survival, complete response; PFS-PR = partial response; PFS-SD = stable disease; PPS-ST = post progression 
state, subsequent treatment; PPS-BSC = best supportive care.

Resources PFS-CR (£) PFS-PR (£) PFS-SD (£) PPS-ST (£) PPS-BSC (£)

Full blood count 6.20 12.41 12.41 12.41 12.41
LDH 2.36 2.67 2.36 2.36 0.00
Lymphocyte counts 10.86 21.72 10.86 9.93 0.00
Chest X-Ray 0.00 30.77 61.55 61.55 0.00
Bone marrow exam 0.00 266.83 266.83 0.00 0.00
Haematologist visit 375.23 498.09 747.13 664.12 813.55
Inpatient visit 503.86 1526.85 1526.85 1526.85 763.42
Nurse Home visit 56.97 100.26 113.93 75.95 151.91
Full blood transfusion 0.00 225.11 450.22 450.22 450.22
Platelet transfusion 0.00 225.11 0.00 0.00 0.00
Biopsy 0.00 0.00 2156.58 2156.58 0.00

Annual costs 955.47 2909.81 5348.71 4959.96 2191.51
Cycle costs 73.25 223.07 410.03 380.23 168.00

Table 10. Resource costs per disease state for acalabrutinib and ibrutinib.

Resources PFS-CR (£) PFS-PR (£) PFS-SD (£) PFS total (£) PPS-ST (£) PPS-BSC (£)

Acalabrutinib 0.00 211.91 20.50 232.41  380.23 168.00
Ibrutinib 4.39 187.37 41.00 232.77  380.23 168.00
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multiplying adverse event incidence with their costs. Grade 3 and 4 adverse event incidences 
are specified in table 11 and were based on clinical trials for ibrutinib and acalabrutinib and on 
the ibrutinib submission to NICE [2,13,35,39]. Adverse event average costs are specified in table 
12. For each adverse event, multiple costs are provided in the National Schedule for Reference 
Costs [38], depending on disease severity or score. Per adverse event, the average is calculated 
by multiplying the incidence of each score of the adverse event with the costs for that type, as 
is shown in table 13. The codes in table 12 indicate all severity types that were included per 
adverse event.

The costs for adverse events per treatment are then calculated by multiplying the average costs 
with the incidence and summing those, as is shown in table 13.

Table 11. Incidences for adverse events for ibrutinib and acalabrutinib.

Adverse event Ibrutinib incidence Acalabrutinib incidence

Anaemia 5.60% 5.60%
Atrial fibrillation 6.00% 0.00%
Diarrhoea 4.60% 2.00%
Hypertension 6.20% 7.00%
Neutropenia 18.50% 15.00%
Pneumonia 10.80% 10.80%
Sepsis 1.50% 1.50%
Thrombocytopenia 5.60% 0.00%

Table 12. Overview of costs for adverse events and their sources within the National Schedule for Reference Costs.

Adverse event Code Name Average costs (£)

Anaemia SA03G-H Haemolytic Anaemia 1,129.17 
Atrial fibrillation EB07A-E Arrhythmia or Conduction Disorders 996.67
Diarrhoea FZ91A-M Non-Malignant Gastrointestinal Tract 

Disorders
1,492.69

Hypertension EB04Z Hypertension 729.87
Neutropenia SA01G-K Acquired Pure Red Cell Aplasia or 

Other Aplastic Anaemia
1,498.86

Pneumonia DZ11K-V Lobar, Atypical or Viral Pneumonia, 
with Multiple Interventions

1,904.86

Sepsis WJ06A-J Sepsis 2,163.51
Thrombocytopenia SA12G-K Thrombocytopenia 636.19
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APPENDIX 4: CALCULATIONS FOR UTILITY 
DECREMENT

The utility decrement associated with adverse events is calculated as the utility lost per adverse 
event as reported in the ibrutinib submission times the incidence of that adverse event, as 
shown in table 14 [35]. Utility decrement for each treatment is inflicted once in the first cycle 
of the model.

Table 13. Total adverse event costs per treatment as is calculated by multiplying the incidence with the costs 
per adverse event.

Adverse event Ibru inc Acal inc Ibru costs (£) Acal costs (£)

Anemia 5.60% 5.60% 63.23 63.23
Atrial fibrillation 6.00% 0.00% 59.80 0
Diarrhea 4.60% 2.00% 68.66 29.85
Hypertension 6.20% 7.00% 45.25 51.09
Neutropenia 18.50% 15.00% 277.29 224.83
Pneumonia 10.80% 10.80% 205.72 205.72
Sepsis 1.50% 1.50% 32.45 32.45
Thrombocytopenia 5.60% 0.00% 35.63 0

Total 788.04 607.18

Table 14. Incidences and utility decrements for included adverse events.

Adverse event Ibru Acal
Utility 
decrement Ibru product Acal product

Anemia 5.6% 5.6% 0.088 0.0049 0.0049
Atrial fibrillation 6.0% 0.0% 0.195 0.0117 0.0000
Diarrhea 4.6% 2.0% 0.088 0.0040 0.0018
Hypertension 6.2% 7.0% 0.088 0.0055 0.0062
Neutropenia 18.5% 15.0% 0.185 0.0342 0.0278
Pneumonia 10.8% 10.8% 0.195 0.0211 0.0211
Sepsis 1.5% 1.5% 0.195 0.0029 0.0029
Thrombocytopenia 5.6% 0.0% 0.123 0.0069 0.0000

Total 0.0912 0.0646
Difference 0.0266
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ABSTRACT

Objectives
High budget impact (BI) estimates of new drugs limit access to patients due to concerns regarding 
affordability and displacement effects. The accuracy and methodological quality of BI analyses 
are often low, potentially mis-informing reimbursement decision making. Using hepatitis C as 
a case study, we aim to quantify the accuracy of the BI predictions used in Dutch reimbursement 
decision-making and to characterise the influence of market-dynamics on actual BI.

Methods
We selected hepatitis C direct-acting antivirals (DAAs) that were introduced in the Netherlands 
between January 2014 and March 2018. Dutch National Health Care Institute (ZIN) BI 
estimates were derived from the reimbursement dossiers. Actual Dutch BI data were provided 
by FarmInform. BI prediction accuracy was assessed by comparing the ZIN BI estimates with 
the actual BI data.

Results
Actual BI, from 1 Jan 2014 to 1 March 2018, was €248 million whilst the BI estimates ranged 
from €388–€510 million. The latter figure represents the estimated BI for the reimbursement 
scenario that was adopted, implying a €275 million overestimation. Absent incorporation of 
timing of regulatory decisions and inadequate correction for the introduction of new products 
were main drivers of BI overestimation, as well as uncertainty regarding the patient population 
size and the impact of the final reimbursement decision.

Discussion
BI in reimbursement dossiers largely overestimated actual BI of hepatitis C DAAs. When BI 
analysis is performed according to existing guidelines, the resulting more accurate BI estimates 
may lead to better informed reimbursement decisions.
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INTRODUCTION

The role of budget impact (BI) in healthcare decision-making varies across different jurisdictions 
as recent reviews indicate [1–4]. Germany and the USA are examples of jurisdictions that do 
not have a formal or informal role for budget impact in decision-making. Other countries, for 
example the Netherlands, France and Australia, do have guidance or even legislation on BI, but 
the actual role of BI or the impact on decision-making remains rather informal and moreover 
politically driven [1–4]. On the other end of the spectrum, England has one of the best-defined 
systems with a clear role for BI in healthcare decision making [2,3]. In general, however, there is 
an informal role for BI and its contribution to reimbursement decisions often remains unclear. 
As a result of that, the role of BI in decision-making remains an important topic for debate 
[1,5,6]. In particular, the growing attention for healthcare and pharmaceutical expenditures in 
combination with price negotiation mechanisms increasingly raises questions about the role of 
cost-effectiveness (CE).  

Whilst the role of BI is often unclear in reimbursement decision-making, there are ample 
examples where BI did play a significant role in either the reimbursement decisions or where 
high BI estimates resulted in restricted reimbursement for a specific patient population [6–11]. 
Recently, the introduction of new, very effective but high priced Direct-Acting Antivirals (DAA) 
in Hepatitis C sparked worldwide affordability concerns and access restrictions [7,8]. Also in 
oncology, patients have limited access to many high-priced products due to concerns regarding 
affordability as a result of high BI [9–11].  

Especially in the hepatitis C case, the cost-effectiveness of the innovations were generally 
regarded as positive and medical need was high [12–16]. The future will bring new products 
with potentially high short-term BI, which could spark further BI-guided restrictions and will 
call for further deliberation of the role of affordability in the political and societal debate and as 
such of relevant meaning in healthcare decision-making [17,18]. Therefore, clarity on the role 
and hierarchy of CE vs BI will not only be of interest but seems to become very important in 
informing reimbursement decisions. 

Unfortunately, the (methodological) quality and accuracy of BI analysis does not seem to match 
the proven scientific rigor of CEAs [6,19,20].  A review by Van de Vooren et al. reports that 
(methodological) quality of many published BI analyses is poor [21]. Furthermore, Broder 
et al. and Cha et al. illustrate that the accuracy of BI predictions is regarded as low [22,23]. 
These observations, in light of the increased debate on drug prices, growing interest in price 
negotiation, BI of pharmaceuticals as part of healthcare budgets (e.g. Hospital), and therefore 
burden to societies, warrant questions about whether BI is being used properly and what 
the extent of influence is on patient access.
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In this paper, the accuracy and role of BI in reimbursement decisions is investigated by 
assessing the life cycle of Hepatitis C DAAs in the Netherlands. This case was selected as 
there were concerns for an extremely high BI (up to €1.78 billion). The final reimbursement 
decision of Sofosbuvir (Sovaldi), the first DAA, resulted in restricting treatment to the most 
critically ill whilst this seems rather irrational from a cost-effectiveness perspective and 
was likely triggered by other elements like price, BI considerations and affordability  
discussions [12,13,24–28]. 

The aim of this hepatitis C case study is twofold: First, we aim to quantify the accuracy of the BI 
predictions used for informing the Dutch reimbursement decisions. Second, we attempt to 
characterise the influence of market-dynamics on actual BI and the way these are implemented 
in the BI predictions. This includes, for example, timing of regulatory decisions, influence of 
introductions of new hepatitis C products and the influence of a restricted reimbursement 
decision that limits the product’s indication.   

METHODS

Product inclusion
We included Hepatitis C DAAs that were mainly designated a standalone option for treatment 
of hepatitis C according to the EASL guidelines, thereby not considering co-treatment with 
ribavirin and/or pegylated interferon [29–32]. We subsequently excluded products that were 
not introduced or not used in the Netherlands in the period from 1 Jan 2014 to 1 March 2018. 
Lack of use or introduction was based on a publicly available national drug information system 
(GIP), which has national coverage and is maintained by the National Health Care Institute 
(ZIN) [33].  

Daclatasvir (Daklinza) and simeprevir (Olysio) were excluded as these products are mainly used 
in combination with sofosbuvir (Sovaldi) but not as monotherapy. The sofosbuvir/velpatasvir/
voxilaprevir (Vosevi) combination was not introduced and is thus excluded. Sovaldi, sofosbuvir/
ledipasvir (Harvoni), ombitasvir/paritaprevir/ritonavir (Viekirax) + dasabuvir (Exviera), 
sofosbuvir/velpatasvir (Epclusa), elbasvir/grazoprevir (Zepatier) and glecaprevir/pibrentasvir 
(Maviret) were included. 

BI Data and BI estimation accuracy 
The actual Dutch BI data was provided by FarmInform [34]. The population-level data of 
FarmInform comprises of monthly volume of all prescription drugs in the in- and outpatient 
setting multiplied by the respective monthly list price in the Netherlands [35]. Validity of 
the data is ensured as the data is crosschecked with patient-level data that is representative of 
the Netherlands (PHARMO) [36,37]. As DAAs target specific hepatitis C viral proteins, off-label 
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use of DAAs is highly unlikely and we therefore assume that all DAA BI is used for treatment 
of hepatitis C.

The BI estimates used to inform the reimbursement decisions of hepatitis C therapy in 
the Netherlands were collected from the published and publicly available ZIN reimbursement 
dossiers [12,13,24–27,38]. These dossiers typically project the BI for the 3 years after publication 
of the dossier. The ZIN BI estimation format and methodology are based on the most recent 
ISPOR guidelines for conducting BI analysis [39,40]. BI is based on market potential: it accounts 
for expected patient populations and one or more treatment regimens and associated costs 
[39,40]. Correction should be performed for 1st in class vs subsequent introductions by making 
assumptions regarding the market penetration [39]. It is also recommended to include the effects 
of restrictions in indication due to the eventual reimbursement decision [39].   

The treatment regimens or subpopulations that are mentioned in the reimbursement dossiers 
are based on (combinations of) METAVIR score, genotype, IFN or ribavirin co-medication 
and prior treatment experience. From the dossiers, estimated BI, population size and average 
treatment costs were recorded, as well as the subpopulations and the aforementioned 
characteristics these estimations were based on. The BI prediction accuracy was then assessed 
by comparing the ZIN BI estimates with the real world actual BI data for all included products.  

Treatment indication and resulting access
As there was a potential for significant budget impact, the Sovaldi reimbursement decision 
stated treatment was to be restricted to more severely ill patients [28]. In order to investigate 
the effect and extent of this reimbursement restriction and the development of access when 
DAAs without restrictions were introduced, we aimed to quantify the amount of DAA access by 
translating actual BI to a number of patients treated.  

Number of patients treated was calculated as follows: 

As BI is known from the actual BI data, average treatment cost per patient had to be established. 
Each product has a standard treatment duration (12 weeks for most products, 8 weeks for 
Maviret) that can be multiplied by the known list price to obtain the cost of treating one patient. 
Some subpopulations however require a longer treatment duration: 
•	 Genotype: The hepatis C virus is classified in 6 genotypes. They differ in susceptibility to 

(DAA) treatment as GT 3 typically requires longer treatment [29,31,32,41,42]. 
•	 Severity of disease: More severe disease evidently warrants not only (more) immediate 

treatment but also longer treatment [29,31,32]. 

setting multiplied by the respective monthly list price in the Netherlands [35]. Validity of 
the data is ensured as the data is crosschecked with patient‐level data that is representative 
of the Netherlands (PHARMO) [36,37]. As DAAs target specific hepatitis C viral proteins, off‐
label use of DAAs  is highly unlikely and we  therefore assume that all DAA BI  is used  for 
treatment of hepatitis C. 

The BI estimates used to inform the reimbursement decisions of hepatitis C therapy in the 
Netherlands were collected from the published and publicly available ZIN reimbursement 
dossiers  [12,13,24–27,38].  These  dossiers  typically  project  the  BI  for  the  3  years  after 
publication of the dossier. The ZIN BI estimation format and methodology are based on the 
most  recent  ISPOR  guidelines  for  conducting  BI  analysis  [39,40].  BI  is  based  on market 
potential:  it  accounts  for  expected  patient  populations  and  one  or  more  treatment 
regimens and associated costs [39,40]. Correction should be performed for 1st  in class vs 
subsequent introductions by making assumptions regarding the market penetration [39]. It 
is also recommended to include the effects of restrictions in indication due to the eventual 
reimbursement decision [39].    

The  treatment  regimens  or  subpopulations  that  are  mentioned  in  the  reimbursement 
dossiers  are  based  on  (combinations  of) METAVIR  score,  genotype,  IFN  or  ribavirin  co‐
medication and prior  treatment experience. From the dossiers, estimated BI, population 
size and average  treatment costs were  recorded, as well  as  the  subpopulations and  the 
aforementioned  characteristics  these  estimations  were  based  on.  The  BI  prediction 
accuracy was then assessed by comparing the ZIN BI estimates with the real world actual BI 
data for all included products.   

 

Treatment indication and resulting access 

As there was a potential for significant budget impact, the Sovaldi reimbursement decision 
stated  treatment  was  to  be  restricted  to  more  severely  ill  patients  [28].  In  order  to 
investigate the effect and extent of this reimbursement restriction and the development of 
access when DAAs without restrictions were introduced, we aimed to quantify the amount 
of DAA access by translating actual BI to a number of patients treated.   

Number of patients treated was calculated as follows:  

�𝐵𝐵𝐵𝐵�𝐵𝐵𝐴𝐴𝐵𝐴𝐴�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐵𝐵𝐵𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 � 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
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•	 Prior treatment: Treatment experienced patients in some cases require longer treatment 
[31,32]. 

Chronic hepatitis C disease severity is frequently categorised using the well-validated METAVIR 
scoring system [43,44]. This 5-point scale distinguishes between various stages of liver fibrosis 
where F0 = no fibrosis, F1 = portal fibrosis without septa, F2 = portal fibrosis with rare septa, 
F3 = numerous septa without cirrhosis, F4 = cirrhosis [43,44]. For clarity, we do not consider 
extrahepatic complications of hepatitis C and thus solely reflect disease severity by means of 
METAVIR score. 

EASL guidelines on treatment of particular METAVIR scores changed particularly:   
•	 EASL 2014 & 2015: All patients with chronic liver disease related to HCV should be 

considered for therapy. Treatment should be prioritised in patients with METAVIR score F3 
and F4. Treatment is justified in patients with METAVIR score F2. The timing and nature of 
therapy for patients with METAVIR score F0 + F1 debatable, and informed deferral can be 
considered. [29,30]. 

•	 EASL 2016: All patients with chronic liver disease related to HCV must be considered 
for therapy. Treatment must be considered without delay in patients with METAVIR  
score F2 – F4 [31]. 

•	 EASL 2018: All patients with HCV infection should be treated. Treatment must be considered 
without delay in patients with METAVIR score F2 – F4 [32]. 

The influence of these factors on treatment duration changed over time as the leading European 
Association for the study of the Liver (EASL) hepatitis C guidelines changed and new DAAs 
were introduced [29–32]. Appendix 1 summarises the major exceptions regarding treatment 
duration for various subpopulations.  

Mean treatment costs per product
As, in for example the case of Harvoni, METAVIR stage F4 indicates a longer treatment duration, 
a larger proportion of patients with stage F4 would increase average treatment costs. This is of 
particular interest as the Harvoni and Viekirax + Exviera, dossiers specifically address 3 national 
BI scenarios based on only treating patients with F4 + F3 (scenario A), F4 – F2 (scenario B) and 
F4 – F0 (scenario C) [12,26]. Average treatment costs thus differ per scenario. In order to be 
able to adjust average treatment costs to different scenarios, the ZIN BI calculations had to be 
recreated so that the influence of different populations could be assessed. Average treatment 
costs per patient were solely recreated using the assumptions and data from the respective 
reimbursement dossiers. 

In the reimbursement dossiers, the following assumptions for the Dutch setting were made: 
The genotype distribution is 49% GT1, 10% GT2, 29% GT3 and 11% GT4, GT5 and GT6 are 
very rare in the Netherlands [13,41,45]. Sovaldi treatment regimens for GT2 and GT3 are IFN 
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free whilst for GT1, GT4 – 6 30% of patient will be treated with an IFN free regimen [13]. 
The METAVIR distribution is assumed to be 24.9% F0, 26% F1, 16.1% F2, 16.8% F3, 16.2% F4 
[12]. ZIN states that the total number of chronic HCV patients, thus from F0 – F4 and GT1 – 4, 
in The Netherlands is between 2000 and 3000 (29). With a population of 16.9 million at the time 
of publication, this implies a prevalence of 0.012% – 0.018% [46].

The reimbursement dossiers of Sovaldi, Harvoni and Viekirax + Exviera provided detailed 
insights into the types of patients receiving specific treatment durations, costs and various 
calculations [12,13,26]. For these products we were therefore able to calculate scenario/
population dependent average treatment costs. 

For Epclusa, Zepatier and Maviret, only a short reimbursement report with rudimentary budget 
impact prediction was published [24,25,27]. These BI estimations lacked detailed assessments 
of treatment duration per subpopulation. In our analysis, we therefore assumed the following:  
•	 Maviret: We assume that all patients are treatment naïve as we have no valid data regarding 

the distribution of treatment experienced vs treatment naïve patients. That implies that, 
according to the ZIN reimbursement dossier, all F0-F3 patients receive 8 weeks of treatment 
and F4 patients are treated for 12 weeks [25]. 

•	 Zepatier: The only exceptions to the standard 12-week treatment are in cases where 
HCZ RNA >800,000 IU/ML [27,31]. As we have no clear data on the number of patients 
in the Dutch setting, we disregard this exception and assume all patients are treated for  
12 weeks. 

•	 Epclusa: There are no exceptions to the standard 12-week treatment duration so we assume 
that all patients are treated for 12 weeks [24,31].

For our base-case analysis, we take the average of the estimated patient population size at 2500 
(range 2000 – 3000). We furthermore use treatment costs of the F4 – F2 (B) scenario. Changes in 
list-price over time were corrected using the G-standard, a database that contains the monthly 
list-prices of all Dutch prescription drugs so that the correct amount of patients are calculated 
[35]. We did not incorporate EASL guideline changes in our analyses. 

Sensitivity analyses
By means of sensitivity analysis, we investigate the scenarios proposed in the reimbursement 
dossier that we did not use as base-case scenario. We thus investigate the influence of a different 
population size and treatment cost. For population size, we take the minimum (2000) and 
maximum (3000) values of the range that was estimated in the reimbursement dossiers. 
Furthermore, we investigate the influence of average treatment cost per patient by using the F4 
+ F3 (A) and F4 – F0 (C) scenarios. Additionally, we perform an analysis with the absolute 
minimum treatment cost where we assume that no patients get extended treatment regimens 
for any of the included products. Finally, we assess the influence of GT3 prevalence on average 
treatment costs as this genotype generally warrants a longer and thus a more costly treatment. 
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We therefore increase GT3 prevalence from 30% to 50%, which is higher than the reported GT3 
prevalence in any European country, decrease GT1 prevalence from 50% to 30% and recalculate 
the average treatment costs [42].

RESULTS

Accuracy of BI estimates
We compared the estimated BI from reimbursement reports with the actual BI. The estimated 
BI timeline starts at the date at which national reimbursement was granted except when an 
explicit period was mentioned. As mentioned before, the Sovaldi reimbursement decision 
restricted treatment to F4 + F3. The eventual reimbursement decisions for Harvoni and 
Viekirax + Exviera were without restrictions, meaning that scenario C (F4 – F0) had been 
adopted. Maviret, Epclusa and Zepatier were also reimbursed without restriction but for these 
products, no a priori scenarios were made. Figure 1 displays the actual BI and estimated BI 
for the only four products with a reported estimated BI. BI overestimation is apparent for all 
products with respect to their eventual reimbursement decision. For Harvoni and Viekirax + 
Exviera, the lower F4 + F3 scenario is closer to the actual BI than the adopted scenario. 

Figure 2 combines the monthly BI of the individual products and shows the total BI of these four 
products. BI initially peaks with the introduction of Sovaldi to a monthly BI of about €8 million 
in the first quarter of 2015. Then, with the introduction of Viekirax + Exviera and Harvoni, 
a monthly BI of €14 million is reached and sustained for 4 months. In figure 3 we display 
the relative market share of the four products with an estimated BI, including the cumulative 
BI. The cumulative BI shows that in about 4 years, €250 million was spent on the four DAAs. 
The assumed market share of Harvoni (35%) and Viekirax + Exviera (35%) was, in reality, 
between 40-60% and <10%, respectively. 

Figure 1a. Sovaldi estimated BI vs Actual BI. Values are in € millions and per month
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Figure 1b. Harvoni estimated BI vs Actual BI. Values are in € millions and per month

Figure 1c. Viekirax + Exviera estimated BI vs Actual BI. Values are in € millions and per month

Figure 1d. Epclusa estimated BI vs Actual BI. Values are in € millions and per month
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The total actual BI, estimated BI and total absolute deviation per individual product and for 
the total cohort are denoted in table 1. Table 2 displays the standard treatment duration per 
product, the eventual average treatment costs per product and, if applicable, per scenario. Even 
with the most modest treatment scenario (F4 + F3), treatment costs were overestimated at €153 
million. When extending to the adopted and most inclusive treatment regimen (F4 – F0), total 
overestimation increases to €275 million. As the time between introduction of Sovaldi (1 Jan. 
2014) until the last data-point (1 Mar. 2018) is slightly over four years, the annual overestimation 
of hepatitis C treatment costs are around €38 – €69 million. 

Analysis of market dynamics
The actual number of patients treated per month is visualised in figure 4. The theoretical 
number of patients in different METAVIR categories indicate the extent of treatment availability 
to various degrees of disease severity where we assume that treatment is prioritised according 
to METAVIR score. On the x-axis, date of granting European Medicines Agency (EMA) 
Marketing Authorisation (MA) and the date of the formal initiation of national reimbursement 
are displayed. Note that a formal reimbursement status decision comes from the Minister of 
Health following an advice from ZIN. 

It is evident that Sovaldi and Harvoni, at least until 2017, were most frequently used. Interestingly, 
for almost entire 2014, access was very limited due to absent reimbursement whilst EMA MA 
was granted in January. It seems that at least patients with METAVIR F4 and F3 were treated from 
2015 onwards. For 2015 and 2016, treatment appears to have been extended to F2. The increase 
to F0 at the start of (unrestricted) reimbursement of Harvoni could be explained by the fact that 
treatment then became available for F2 – F0 patients. 

Figure 2. Total monthly BI. Total BI and Sovaldi BI overlap until 1 Sep 2015 as Sovaldi is then  
the only product 
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Figure 3. share of BI per product on the left vertical axis. Cumulative BI (in millions) of all four products 
is shown in the right vertical axis

Table 1. Overview of Actual BI, Estimated BI and the difference between actual- and estimated BI. A negative 
difference implies an overestimation of BI

Product (METAVIR score) Actual BI (€) Estimated BI (€) Difference (€)

Sovaldi 128,692,991 281,166,336  -165,151,871
Harvoni (F4 + F3) 91,461,345 54,495,833 36,796,849
Harvoni (F4 - F2) 91,461,345 76,004,167 15,457,178
Harvoni (F4 - F0) a 91,461,345 143,550,000 -52,257,318
Viekirax + Exviera (F4 + F3) 10,557,104 24,166,667 -13,609,563
Viekirax + Exviera (F4 - F2) 10,557,104 32,020,833 -21,463,730
Viekirax + Exviera (F4 - F0) a 10,557,104 57,033,333 -46,476,230
Epclusa 17,632,950 29,000,000 -11,413,049

Total (F4 - F3) 248,344,389 388,828,836 -153,377,635
Total (F4 – F2) 248,344,389 418,191,336 -182,571,472
Total (F4 - F0) 248,344,389 510,749,669 -275,298,468

a The eventual reimbursement decision.

Apart from the initial peak of Harvoni and Sovaldi, broadening of the treatment population 
over time, as is recommended by the EASL guidelines and as is permitted by the reimbursement 
decisions of all products but Sovaldi, seems to be absent. This is apparent as from 2017 
onwards, treated patient numbers remain stable at a level only encompassing the F3 and F4 
patients. The rise in treated patients around the reimbursement date clearly confirm that in 
the Netherlands, access is governed by national coverage decisions and not by EMA MA. 
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We compared our patient estimates with the publicly available national GIP drug information 
system to ensure validity of our approach [33]. In appendix 2 we extracted the annual number of 
users per product and they are reasonably comparable with our monthly estimates as displayed 
in figure 4. 

Sensitivity analyses
The different treatment costs used are displayed in table 2. The sensitivity analyses, shown in 
appendices 3 – 8, show that the estimated size of the patient population has some influence with 
larger total populations yielding less access for more favourable METAVIR scores as a smaller 

Table 2. Average treatment cost per patient per reimbursement scenario

Product
Treatment costs 
(F3+F4) (€)

Treatment costs 
(F2-F4) (€)

Treatment costs 
(F0-F4) (€)

Standard 
treatment 
duration costs

Standard 
treatment 
duration (weeks)

Sovaldi 73,153 73,153 73,153 48,000 12
Harvoni 85,936 80,383 74,589 a 51,750 12
Viekirax + Exviera 57,959 51,444 45,172 a 39,400 12
Epclusa 45,999 45,999 45,999 45,999 12
Zepatier 41,397 41,397 41,397 41,397 12
Maviret 30,666 30,666 30,666 30,666 8

a The eventual reimbursement decision. 

Figure 4. Treated patients over time, with monthly data. Dotted lines indicate the assumed number 
of patients with a specific METAVIR score. Circles indicate the date of EMA Marketing Authorisation, 
diamonds indicate the date of positive reimbursement decision  
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fraction of the population appears to be treated. Appendix 8 (treatment scenario C and base-case 
population size) shows the data based on the eventual reimbursement decisions for Harvoni and 
Viekirax & Exviera. Treatment scenarios A and C vary little compared to scenario B that was 
used as base-case. The minimum treatment cost scenario disregards any possibility for extended 
treatment durations for various subpopulations. This scenario thus results in a higher number of 
patients treated as treatment costs per patient were lower.  

We explored the influence of GT3 prevalence on average treatment costs. For Harvoni and 
the various scenarios, average treatment costs increased with 7.5% - 13% whereas average 
Sovaldi treatment costs increased with 12-15%. Viekirax and Exviera are not recommended for 
GT3 and the reported treatment costs of Epclusa, Zepatier and Maviret are not influenced by 
genotype. Given that the GT3 prevalence increase from 30% to 50% is a 67% increase, we can 
conclude that average treatment costs are relatively insensitive to GT3 prevalence.  

DISCUSSION

In a Dutch setting, we showed that BI estimates reported in ZIN reimbursement dossiers largely 
overestimated the actual BI for hepatitis C DAAs. Although the most severely ill patients did get 
access to the innovative hepatitis C therapies, access was initially not granted to the extent of 
the recommendations in the then prevailing EASL guidelines. 

In the EU, the crude hepatitis C incidence is estimated to be 7.4 per 100,000 persons but with 
a very large spread (0.1 – 73.3) between countries, at least partly driven by varying quality of 
surveillance systems and data completeness [47–49]. ZIN dossiers as well as studies by Iyengar 
et al., Cornberg et al., and Saraswat et al. report larger potential eligible populations (22,000 
– 28,000, 0.14% - 0.17%) than those that ZIN actually used for the BI calculations (2000 – 
3000, 0.012% - 0.018%) [12,48–50]. The former population, all those with chronic hepatitis C, 
should be treated according to the most recent EASL guideline. Interestingly, the estimates of 
28,000 stated in the reimbursement dossiers are denoted as a scenario where the ‘indication is 
broadened’ to all hepatitis C patients. No further notion is given as to whether the presumable 
non-symptomatic patients are actually F0 patients. We can safely conclude that 1) current 
patient volumes have not been near this level and 2) the estimates of 2000 – 3000 are likely to 
be a conservative estimate.    

In 2015, when Sovaldi was reimbursed, the BI and estimates of number of patients appear to 
be rather accurate as we see that, according to the reimbursed indication, treated patients are 
within the F4 – F3/F2 range. Then, with the unrestricted reimbursement of Harvoni and Viekirax 
+ Exviera, treated patients plateau to the predicted F4 – F0 population for approximately 4 
months. These observations would suggest that the ZIN estimate of 2000 – 3000 patients per 
year is quite accurate. From June 2016 onwards however, patient numbers decline to an F4 + 
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F3 level that is below the expected F4 – F0 range. If we, for now, assume that the estimate of 
number of patients was indeed reasonably accurate, other factors must have been responsible 
for the large deviations between estimated and actual BI.

A first reason for this deviation could be the inadequate implementation of timing of regulatory 
decisions. The Sovaldi reimbursement dossier was published on 20 May 2014 based on which 
ZIN formally advised the minister of health on 23 May 2014. The final reimbursement status 
was granted per 1 Nov 2014. The delay between advice and reimbursement could have been 
unforeseen. The manufacturer and/or ZIN could however have assumed that reimbursement 
of Sovaldi during entire 2014 (MA was 16 Jan 2014) was highly unlikely. Still, the BI estimate 
assumed access during the entire year. This alone contributed to a €46 million overestimation 
which could have been prevented.  Of course, the relevancy of this overestimation can be 
questioned as it is common-practice to start the period of estimation from the initiation of 
reimbursement. Applying this logic would shift the Sovaldi ‘Estimated BI’ line in figure 1 to 
the right and would cause a nearly equal overestimation from 1-1-2017 onwards due to declined 
market share. 

In line with the overestimation due to a declined market share, inadequate correction for 
the introduction of new products could be a second reason. The Sovaldi BI estimations did not at 
all account for the introduction of new products in the same class whilst this was nearly inevitable 
as various manufacturers were in advanced stages of clinical development or regulatory approval 
[30,51,52]. The ISPOR BI guideline, to which ZIN refers in their own guidance on BI, states that 
an attempt should be made to forecast introduction of new interventions for the chosen time 
horizon [39]. Harvoni and Viekirax + Exviera were introduced nearly simultaneously and both 
were estimated to reach a market share of 35%. As our results show, the latter product only 
reached a small fraction of the estimated 35% whilst the former outperformed the expectations. 

Of course, the patient estimates or the distribution over METAVIR scores could have been 
inaccurate. Also, as DAA BI was in general overestimated and patient estimates are on the low 
side of estimations, we should consider the possibility that other forms of access restrictions were 
present. Stringent reimbursement criteria or volume caps issued to hospitals by payers might have 
been a factor in this regard as payers in the Netherlands have gained influence [53]. 

Transitioning towards the role BI played in governing access for this specific case study, we like to 
reiterate that actual BI stayed well below the BI estimations ZIN deemed realistic. Consequently, 
the actual BI was also considerably lower than alternative scenarios postulated by ZIN where 
a ‘broader DAA indication’ would be adopted. This, according to the reimbursement dossiers, 
could theoretically lead to a BI of €1.78 billion [12]. Such a wide call for treating all viraemic 
hepatitis C patients, culminating in the EASL’s 2018 guideline recommendation, has not been 
apparent in our data. Our data did however show that access is strictly governed by a positive 
reimbursement decision as a products’ BI is very low before it is reimbursed. 
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The reimbursement decision was, on average, taken 258 days after MA whilst the reimbursement 
dossier was published after on average 117 days. Price negotiations were conducted for all 
products for which the HTA report was used as guidance. There is however no report on the role 
that BI played in this process and whether BI estimations, which are known and proven to 
be uncertain, are necessary for either the reimbursement decision or the price negotiation. 
Additionally, one can extend this way of thinking with a debate on whether the 258 days of 
access restriction is worthwhile. This especially in light of the fact that DAAs are generally 
considered cost-effective [12–16]. 

The implications of over- and underestimations differ for various stakeholders. Patients and 
manufacturers of the specified products, would probably incur no real loss due to an initial 
underestimation. It could potentially even facilitate the reimbursement process whereas 
the contrary could be true for an initial overestimation. For payers however, an underestimation 
could be more troublesome than an overestimation as the former could cause direct and 
measurable budgetary deficits. We have no evidence to support or quantify these statements, 
but it is known that payers and manufacturers have confidential price negotiations where their 
BI estimates together with other parameters serve some purpose for bargaining [54]. 

If there is a more aligned and agreed estimate of patient numbers, as the basis of a BIA, we believe 
that more accurate BI estimates are achievable. As is stated in the most recent BIA guideline, 
it is important to include treatment dynamics including new introductions and displacement 
effects as well as pricing dynamics to provide more accurate and meaningful BI estimates. This 
would allow for a more prominent role and value of BI in the decision-making process for 
reimbursement of different types of treatments (e.g. chronic and one-off).

Our study has various strengths. First, we used real world data to assess access using validated 
and monthly updated data. Our data covers in- and outpatient dispensing data, is irrespective 
of the healthcare provider or insurance company and therefore captures the entire Dutch DAA 
access data. 

Second, we made an accurate representation of average treatment cost per patient 
using the distribution of several subpopulations. As our sensitivity analysis shows, not 
including patients with longer than typical treatment durations have a profound influence  
on outcomes. 

Our study also has some limitations. First, several assumptions underlie population size 
estimates and the distribution of subgroup characteristics. We therefore crosschecked our 
estimates with the GIP-database which reports comparable figures [33]. We furthermore aimed 
to illustrate the influence of population size and treatment costs on outcomes by means of 
sensitivity analysis.  
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Second, our Dutch scenario induces limitations regarding generalisability. Of course, the Dutch 
healthcare and reimbursement system is not directly comparable to others but the, albeit 
imperfect, method of BI estimation is rather similar [21–23,39,39].  

Third, confidential discounts or rebates are not included in this analysis. In the Netherlands, 
the general outcome of price negotiations is published but the actual discount remains 
confidential. A study by Morgan et al. indicated that, in ten high-income countries (including 
the Netherlands), discounts are common and confidential discounts are most frequently in the 20 
-29% range but can also be substantially higher (>60%) [55]. We thus know that the actual BI, as 
costs to society, are lower than presented here. Yet, we based our analyses on BI estimations that 
disregard potential discounts and rebates. Lack of inclusion of pricing agreements is therefore 
not a concern.

CONCLUSION

The BI estimates published by ZIN provide a substantial overestimation of the actual BI with 
a deviation of between €153 - €275 million. The number of treated patients remains low, 
especially in light of the much higher incidence of viraemic hepatitis C and the most recent 
EASL guideline recommending treatment for this entire population. Underlying patient number 
that were used for BI estimates seem to be at least somewhat overestimated but are probably 
not the sole cause of BI overestimations. Differences could potentially be caused by inadequate 
correction for (timing of) regulatory decisions, reimbursement for a limited indication and 
insufficient incorporation of the introduction of new products. These market dynamics are, 
to varying extent, unanticipated but could and should at least partly be corrected for. When 
BIA is performed according to existing guidelines, the resulting more accurate BI estimates can 
lead to better informed reimbursement decisions. Currently, it is unclear how the BI estimates 
informed the reimbursement decision and if different decisions would have been if more 
accurate BI estimates been had available. In light of increasing debate on prices, the (uncertain) 
role of the reimbursement dossier in confidential price negotiations and an increasing pressure 
on healthcare budgets in general, it is important to further develop an approach to use BI as 
a more integrated part of healthcare decision-making processes. 
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APPENDICES

Appendix 1. Overview of extended treatment durations for specific subpopulations according to various 
EASL guidelines

Product Subpopulation Treatment duration (weeks)

EASL 2014 
Sovaldi GT1, GT4, IFN intolerant or ineligible 24 vs 12. 
Sovaldi + Daklinza GT1, Tx experienced 24 vs 12.
Sovaldi GT2, F4, especially in Tx experienced 16 – 20 vs 12.
Sovaldi GT3, IFN-free 24 vs 12.
Sovaldi + Daklinza GT3, GT4, IFN-free in Tx experienced 24 vs 12.
EASL 2015
Sovaldi GT3, IFN-free, F0-F3 24 vs 12.
Harvoni GT1, F0-F3 8-12 vs 12
Sovaldi GT2, IFN-free, F4 16 – 20 vs 12.
Viekirax + Exviera GT1a, F4 24 vs 12
Harvoni GT1, GT4, F4, without RBV or with RBV if 

negative predictors of response
24 vs 12

Sovaldi + Olysio GT1, GT4, F4, RBV-free 24 vs 12
Sovaldi + Daklinza GT1 and GT4 RBV-free or GT3 with RBV, F4, 24 vs 12

EASL 2016
Harvoni GT1, Tx naïve, F0-F3 8-12 vs 12
Harvoni GT1a, GT4, Tx experienced, F0-F3, RBV free 24 vs 12 
Epclusa GT3, Tx experienced, F0-F3, RBV free 24 vs 12
Viekirax + Exviera GT1b, Tx naive, F0-F3 8 -12 vs 12
Zepatier GT1, HCV RNA >800,000 16 vs 12
Zepatier GT4, Tx experienced, HCV RNA >800,000 16 vs 12
Sovaldi + Daklinza GT1a, GT4, Tx experienced, RBV free 24 vs 12
Harvoni GT1a, GT4, F4, Tx experienced, RBV-free 24 vs 12
Epclusa GT3, F4, RBV-free 24 vs 12
Viekirax + Exviera Gt1a, F4 24 vs 12
Sovaldi + Daklinza GT3, F4 24 vs 12

EASL 2018
Maviret GT3, F0-F3, Tx experienced 12 vs 8
Harvoni GT1, F0-F3, Tx naive 8-12 vs 12
Zepatier GT1b, F0-F2, Tx naive 8 vs 12
Viekirax + Exviera GT1b, F0-F2, Tx naive 8 vs 12
Maviret GT1, GT2, GT4, F4 12 vs 8
Maviret GT3, Tx naive, F4 12 vs 8
Maviret GT3, Tx experienced, F4 16 vs 8
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Appendix 2. The Drug Information System of the National Health Care Institute data on Direct-Acting 
Antivirals in the Netherlands [33]. Numbers denote number of users (DDDs) 

Product 2013 2014 2015 2016 2017

Sovaldi 0 77 (3826) 1359 (128,560) 1102 (90,269) 292 (22,895)
Exviera 0 0 84 (5584) 149 (11,397) 23 (1598)
Harvoni 0 0 323 (18,813) 1397 (104,540) 524 (35,338)
Viekirax 0 0 102 (6899) 176 (13,240) 28 (1906)
Zepatier 0 0 0 0 61 (4532)
Epclusa 0 0 0 0 274 (20,634)

Appendix 3. Base-case (treatment costs & population size of 2500) as reference
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Appendix 4. Base-case treatment costs, maximum population size of 3000 

Appendix 5. Base-case treatment costs, minimum population size of 2000
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Appendix 6. Minimum treatment costs, base-case population 

Appendix 7. Scenario A treatment costs, base-case population
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Appendix 8. Scenario C treatment costs, base-case population
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ABSTRACT

Objectives
In many countries, Budget Impact (BI) plays a role in assessing affordability and in informing 
reimbursement decisions. Various cases have shown that decision-makers have restricted access 
to new drugs based on high BI estimates. Evidence shows that BI estimates are often inaccurate. 
This is especially relevant in oncology, where high BI has led to access restrictions to potentially 
life-saving drugs. We aim to assess the accuracy of BI estimations used for informing access 
decisions on oncology drugs in the Netherlands. 

Methods
Oncology products for which European Medicines Agency (EMA) Marketing Authorisation 
was granted between 1-1-2000 and 1-10-2017 and with a ‘New Active Substance’ designation, 
were selected. Observed BI data was provided by FarmInform. BI estimates were extracted from 
the reimbursement dossiers of the Dutch Healthcare Institute. Products without an estimated 
BI in the reimbursement dossier were excluded. We compared observed BI with BI estimates of 
the third (and final) year of the Dutch BI estimation period. Products with ≤6 months between 
publication of the reimbursement dossier and first BI record were included in the base-case 
analyses. Accuracy is defined as the ratio observed BI / estimated BI. 

Results
Ten products were included in the base case analysis. Mean accuracy was 0.64 and observed BI 
deviated by more than 40% and 100% from the estimated BI for 4 and 5 products, respectively. 
For all products together, €141 million BI was estimated and €82 million BI was observed, 
resulting in a €59 million difference. 

Conclusions
The findings indicate that BI estimates for oncology drugs in the Netherlands are inaccurate. They 
are thus an inevitable source of uncertainty to the decision-maker impacting reimbursement 
decisions and therefore potentially leading to restricted access for patients. The role and use 
of BI in reimbursement decisions for these potentially life-saving drugs should therefore be 
considered carefully, as well as BI estimation methodology. 
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INTRODUCTION

Increased spending on oncology drugs is a global problem of major concern [1,2]. The global 
annual spending on oncology drugs was around US$ 35 billion (€28.5 billion) in 2006, compared 
to around US $100 billion (€81.5 billion) in 2017. This figure is expected to rise to $150 billion 
(€122 billion) in 2020 [3]. The increasing number of oncology approvals for new and existing 
drugs, higher prices for personalised medicine and potential off-label use causes an increasing 
burden to health care budgets and therefore results in growing affordability [4–6]. 

Budget impact analyses (BIA) are performed and submitted as part of reimbursement 
applications in many countries to quantify the potential budget-impact (BI) [6–8]. Next to 
clinical evidence and cost-effectiveness, BI has an implicit – in some countries explicit – role 
in assessing affordability and therefore a role in informing reimbursement decisions (e.g. 
for orphan and specialty drugs). Various recent cases have shown that decision-makers have 
restricted the access to new drugs based on high BI estimates [3,7,9–12]. 

BI estimates used by decision-makers for informing these reimbursement decisions are however 
often inaccurate [10,13]. Keeping et al described that BI estimates used by the All Wales 
Medicines Strategy Group (AWMSG), the Welsh Health Technology Assessment (HTA) agency, 
deviated from observed BI with more than 40% in 80% of the cases [13]. Similar or even higher 
deviations were reported by others [14,15].  

In the Netherlands, the estimated BI of hepatitis C drugs was nearly twice as high as the observed 
BI [10]. Also, among other types of information (e.g. cost-effectiveness ratios) BI estimates 
have contributed to decisions for initial access restrictions as well as price negotiations [10,16]. 
For oncology drugs, similar access restrictions are currently imposed [12,17]. The accuracy 
of BI estimates for oncology is however unknown, potentially hampering decision-makers in 
considering the uncertainty in BI outcomes. Especially in the oncology field, various schemes 
have been implemented by decision-makers to manage affordability and BI, such as the Cancer 
Drug Fund in the UK, and various managed entry schemes frequently used for oncology drugs in 
for example Sweden, Belgium and Italy [18–20]. In order to provide more insight in this source 
of uncertainty and to allow for better appraisal of BI, this study aims to quantify the accuracy 
of BI estimations using Dutch reimbursement decisions on oncology products as an example.   

METHODS

Data source for Observed and Estimated BI
The observed BI data was provided by FarmInform [21]. This Dutch population-level data 
source contains the monthly volume of all in- and outpatient prescription drugs. BI is calculated 
by multiplying the volume by the Dutch list price including monthly price updates [22]. This 
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BI data is available from 1 Jan 2000 to 1 March 2018. Validity of the data was assessed by 
crosschecking with a patient-level data source that is representative of the Netherlands [23].

BI estimates were extracted from the publicly available reimbursement dossiers of the Dutch 
Healthcare Institute (ZIN) [24]. The Dutch Healthcare Institute (ZIN) is the Dutch HTA 
agency. ZIN conducts BIA for the first three years after product introduction based on assuming 
the number of eligible patients as well as volume uptake figures. The BI in the third year is 
typically regarded as the maximum BI. The date of publication of the dossier is denoted as index 
date. The estimated BI in the entire third year after the index date is thus used as estimated BI.

Product inclusion
Products were selected that obtained a European Medicines Agency (EMA) Marketing 
Authorization (MA) between 1-1-2000 and 1-10-2017. To select oncology products, only 
products were included that belonged to the L01 (antineoplastic agents) ATC category and had 
an initial oncology indication as specified by the European Public Assessment Report (EPAR) 
[25]. Biosimilars, generics and products that were not designated as a ‘New Active Substance’ by 
the EMA, were excluded. Furthermore, a ZIN BIA should be available. Finally, products without 
the full market data of the third year available were also excluded. 

Assessment of BI estimates from reimbursement dossiers
In some cases, a BI range is given in the reimbursement dossiers. In these instances, the average 
of the minimum and maximum BI estimate was included. In our analysis, BI is defined as 
the drug cost of the new treatment so that it can be compared to the observed BI, which also 
solely consists of drug costs. Therefore, costs of co-medication and substitution costs were 
subtracted from the ZIN reimbursement dossiers to distil the BI of a specific product.

Oncology products can have multiple indications and Dutch reimbursement decisions are 
typically on indication level instead of on product level. Therefore, a BIA is typically tailored to 
a specific indication. To properly assess BI estimation accuracy, the observed BI should be solely 
generated by the indication for which BI is estimated. 

BI can be generated (and recorded) some time before the index date as a form of early access 
or compassionate use scheme. Similarly, actual availability of a product (and consequent BI) 
can lag behind the index date. It was therefore assumed that if the first BI record in the dataset 
for a specific product is at most 6 months from the index date, all observed BI is attributed 
to the indication for which BI was estimated. Only the products that meet this criterium are 
included in the primary analysis. The products that did not meet this criterium were included 
in a secondary analysis. 

When an additional reimbursement dossier (including BIA) is published within the 3-years after 
the index date, estimated BI is adapted to reflect this. From the date of publication of additional 
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indication’s dossier, estimated BI (in the third year after the publication of the additional 
indication) is added to the estimated BI reported in the initial dossier. 

Accuracy Definition
Estimation accuracy is calculated as:

We use this description of accuracy as primary outcome as it is frequently used and easy to 
interpret. When however using equation 1, under-estimations yield ratios from 1 to infinity 
whilst over-estimations yield ratios from 0 - 1 so averaging these ratios gives biased results 
[26,27]. To overcome this, a symmetric accuracy in the form of equation 2 is used as secondary 
outcome [26,27]. 

In order to allow for a comparison with other literature, estimation accuracy is also calculated 
as percentage difference, defined in equation 3. 

To illustrate the uptake and estimation accuracy over time, we plot accuracy against the index 
date. For improved interpretability, loess smoothing is applied and is performed using R version 
3.5.2 and ggplot2 version 3.1.1 [28,29]. 

RESULTS

Nineteen products were included of which 10 are included in the primary analysis and 9 in 
the secondary analysis. Table 1 displays the characteristics and outcomes of all included 
products. In table 2, the aggregated outcomes are presented. 

Primary Analysis
Table 1 shows that the BI estimate for Nexavar was least accurate with an accuracy of 0.14 
and a €24 million net over-estimation. As can be seen in table 2, the mean accuracy is 0.64, 
the mean percentage difference is 142% and the mean symmetric accuracy is 2,50. These results 
illustrate that, on average, for each €1 estimated €0.64 is observed. For each individual product, 

Oncology products can have multiple indications and Dutch reimbursement decisions are 
typically on indication level instead of on product level. Therefore, a BIA is typically tailored 
to a specific indication. To properly assess BI estimation accuracy, the observed BI should 
be solely generated by the indication for which BI is estimated.  
 
BI can be generated  (and recorded) some time before the  index date as a  form of early 
access  or  compassionate  use  scheme.  Similarly,  actual  availability  of  a  product  (and 
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record  in the dataset for a specific product  is at most 6 months  from the  index date, all 
observed BI  is attributed to the  indication for which BI was estimated. Only the products 
that meet this criterium are included in the primary analysis. The products that did not meet 
this criterium were included in a secondary analysis.  
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additional indication’s dossier, estimated BI (in the third year after the publication of the 
additional indication) is added to the estimated BI reported in the initial dossier.  
 
 
Accuracy Definition 
 
Estimation accuracy is calculated as: 

1. �𝑆𝑆𝑆𝑆�𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 � �������� ��
��������� �� 

 
We use this description of accuracy as primary outcome as it is frequently used and easy to 
interpret. When however using equation 1, under‐estimations yield ratios from 1 to infinity 
whilst over‐estimations yield ratios from 0 ‐ 1 so averaging these ratios gives biased results 
[26,27].  To  overcome  this,  a  symmetric  accuracy  in  the  form  of  equation  2  is  used  as 
secondary outcome [26,27].  

2. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑆𝑆𝑆𝑆�𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 � 𝑆𝑆��� �������� ��
��������� ��� 

 
In  order  to  allow  for  a  comparison  with  other  literature,  estimation  accuracy  is  also 
calculated as percentage difference, defined in equation 3.  

3. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑆𝑆��𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 �  ��������� ����������� �� 
�������� �� ∗ 100 

 
To  illustrate the uptake and estimation accuracy over time, we plot accuracy against the 
index date. For improved interpretability, loess smoothing is applied and is performed using 
R version 3.5.2 and ggplot2 version 3.1.1 [28,29].  

Oncology products can have multiple indications and Dutch reimbursement decisions are 
typically on indication level instead of on product level. Therefore, a BIA is typically tailored 
to a specific indication. To properly assess BI estimation accuracy, the observed BI should 
be solely generated by the indication for which BI is estimated.  
 
BI can be generated  (and recorded) some time before the  index date as a  form of early 
access  or  compassionate  use  scheme.  Similarly,  actual  availability  of  a  product  (and 
consequent BI) can lag behind the index date. It was therefore assumed that if the first BI 
record  in the dataset for a specific product  is at most 6 months  from the  index date, all 
observed BI  is attributed to the  indication for which BI was estimated. Only the products 
that meet this criterium are included in the primary analysis. The products that did not meet 
this criterium were included in a secondary analysis.  
 
When an additional reimbursement dossier (including BIA) is published within the 3‐years 
after the index date, estimated BI is adapted to reflect this. From the date of publication of 
additional indication’s dossier, estimated BI (in the third year after the publication of the 
additional indication) is added to the estimated BI reported in the initial dossier.  
 
 
Accuracy Definition 
 
Estimation accuracy is calculated as: 

1. �𝑆𝑆𝑆𝑆�𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 � �������� ��
��������� �� 

 
We use this description of accuracy as primary outcome as it is frequently used and easy to 
interpret. When however using equation 1, under‐estimations yield ratios from 1 to infinity 
whilst over‐estimations yield ratios from 0 ‐ 1 so averaging these ratios gives biased results 
[26,27].  To  overcome  this,  a  symmetric  accuracy  in  the  form  of  equation  2  is  used  as 
secondary outcome [26,27].  

2. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑆𝑆𝑆𝑆�𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 � 𝑆𝑆��� �������� ��
��������� ��� 

 
In  order  to  allow  for  a  comparison  with  other  literature,  estimation  accuracy  is  also 
calculated as percentage difference, defined in equation 3.  

3. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑆𝑆��𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 �  ��������� ����������� �� 
�������� �� ∗ 100 

 
To  illustrate the uptake and estimation accuracy over time, we plot accuracy against the 
index date. For improved interpretability, loess smoothing is applied and is performed using 
R version 3.5.2 and ggplot2 version 3.1.1 [28,29].  

Oncology products can have multiple indications and Dutch reimbursement decisions are 
typically on indication level instead of on product level. Therefore, a BIA is typically tailored 
to a specific indication. To properly assess BI estimation accuracy, the observed BI should 
be solely generated by the indication for which BI is estimated.  
 
BI can be generated  (and recorded) some time before the  index date as a  form of early 
access  or  compassionate  use  scheme.  Similarly,  actual  availability  of  a  product  (and 
consequent BI) can lag behind the index date. It was therefore assumed that if the first BI 
record  in the dataset for a specific product  is at most 6 months  from the  index date, all 
observed BI  is attributed to the  indication for which BI was estimated. Only the products 
that meet this criterium are included in the primary analysis. The products that did not meet 
this criterium were included in a secondary analysis.  
 
When an additional reimbursement dossier (including BIA) is published within the 3‐years 
after the index date, estimated BI is adapted to reflect this. From the date of publication of 
additional indication’s dossier, estimated BI (in the third year after the publication of the 
additional indication) is added to the estimated BI reported in the initial dossier.  
 
 
Accuracy Definition 
 
Estimation accuracy is calculated as: 

1. �𝑆𝑆𝑆𝑆�𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 � �������� ��
��������� �� 

 
We use this description of accuracy as primary outcome as it is frequently used and easy to 
interpret. When however using equation 1, under‐estimations yield ratios from 1 to infinity 
whilst over‐estimations yield ratios from 0 ‐ 1 so averaging these ratios gives biased results 
[26,27].  To  overcome  this,  a  symmetric  accuracy  in  the  form  of  equation  2  is  used  as 
secondary outcome [26,27].  

2. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑆𝑆𝑆𝑆�𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 � 𝑆𝑆��� �������� ��
��������� ��� 

 
In  order  to  allow  for  a  comparison  with  other  literature,  estimation  accuracy  is  also 
calculated as percentage difference, defined in equation 3.  

3. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑆𝑆��𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 �  ��������� ����������� �� 
�������� �� ∗ 100 

 
To  illustrate the uptake and estimation accuracy over time, we plot accuracy against the 
index date. For improved interpretability, loess smoothing is applied and is performed using 
R version 3.5.2 and ggplot2 version 3.1.1 [28,29].  



108

an estimated €1 compared to a mean observed BI of €0.40 or €2.50, dependent on whether BI is 
over- or underestimated, respectively. The total observed BI of €82 million was over-estimated 
by €58.5 million. 

In figure 1, the development of accuracy over time is presented. Time is defined as the months 
from the index date. Accuracy of 1 implies that observed BI exactly matches estimated BI. As 
the ZIN BI estimates are for the whole third year, the average ratio in months 24 – 36 should 
ideally be 1. Figure 1 shows that BI uptake is rather gradual and that products that are over-
estimated at around 12 months, generally do not reach their estimated BI. 

Secondary analysis
In the secondary analysis, individual accuracy (see table 1) is lower than for the products 
included in the primary analysis. This is however at least partly due to previously described 
difference in indication. For Herceptin for example, no reimbursement dossier was available 
for the initial (and very large) indication of HER2-positive breast cancer [30]. The Herceptin 
BIA, based on which the product was included in this study, only included the potential of out-
patient Herceptin use [30]. The relative BI of this subgroup was relatively small and therefore 
impacts the results. For Avastin, high off-label use likely caused a very high observed BI relative 
to the indication on which the BI estimate was based. 

Figure 1. Estimation accuracy of the primary analysis. Primary analysis indicates that a product’s first BI 
record was within 6 months of the index date. 
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Five products (Erbitux, Tyverb, Zelboraf, Torisel, Mabcampath) display a very low ratio. Of 
these products, Mabcampath, Zelboraf and Erbitux had early market exposure relative to 
their index date. Despite this potential availability of market data, their BI estimates were still  
rather inaccurate. 

Table 2. Aggregated budget impact accuracy. Primary analysis set indicates that a product’s first BI record 
occurred within 6 months of the index date.

Analysis (n) 
(First BI record 
<6 months from 
index date)

Estimated BI 
(€)

Observed BI 
(€)

Mean 
Accuracy 

Mean 
Symmetric 
Accuracy 

Mean 
Percentage 
Difference 
(%) 

Total net 
difference (€)

Primary (10) 140,660,163 82,112,205 0.64 2.50 142.2 -58,547,958
Secondary (9) 111,883,185 161,740,105 1.57 10.10 784.00 49,856,920
Combined (19) 252,543,348 243,852,310 1.08 6.10 446.25 -8,691,038

Figure 2. Estimation accuracy of budget impact in the secondary analysis. Secondary analysis indicates 
that a product’s first BI record was separated from the index date by more than 6 months. 
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DISCUSSION

This study aimed to quantify the accuracy of BI estimates reported in reimbursement dossiers, 
using oncology products available in the Netherlands as an example. Of the 10 products 
included in the primary analysis, estimated BI was €140.7 million whilst only €82.1 million was 
observed. This difference would imply an aggregated accuracy of 0.58 whilst the mean accuracy 
of the individual products is 0.64. The mean symmetric accuracy and the mean percentage 
difference were 2.50 and 142%, respectively. 

Keeping et al. assessed the accuracy of BIAs conducted by the AWMSG [13]. They reported that 
only 18% of estimations were within 40% of observed BI as defined by percentage difference. In 
the third year after introduction, Keeping et al., reported that 7 (14%) and 13 (27%) products of 
a total of 49 were within 40% and 100% of estimated BI. In our (primary) analysis, these figures 
were 4 (40%) and 5 (50%). The results are not directly comparable as Keeping and colleagues 
only included 2 oncology products. 

Cha et al. and Broder et al. also investigated BIA accuracy but their relevance in this regard 
is limited as they did not target BIAs for informing reimbursement decisions [14,15]. They 
did however report considerable estimation inaccuracy (5.5-fold overestimation by Broder et 
al. and 60% of products deviated by > 40% by Cha), strengthening the evidence base that BI 
estimates are often inaccurate and thus pose a source of uncertainty to decision-makers that 
need to take BI into account. 

The secondary analysis shows some interesting findings, with for example Mabcampath and 
Zelboraf, that show BI records preceding the index date by more than 6 months. For these 
products, observed BI remained well below the BI estimations reported in the eventual BIA. If 
the initial BI was generated by a different indication than covered in the BIA, the over-estimation 
relative to the indication in the BIA would be even greater. In other words, an indication that 
generated BI but is not covered in the BIA contributes to the observed BI, thereby increasing 
the value of the accuracy outcome (see equation 1). Therefore, for products with over-estimated 
BI (accuracy < 1; Mebcampath, Zelboraf, Tyverb, Torisel, Erbitux), it could be assumed that 
the reported accuracy is a best-case scenario. These five products incurred BI that deviated 
by >100% from estimated BI. We can therefore conclude that at least 10 of 19 (53%) products 
deviated by > 100%, and potentially even 14 of 19 (74%) products. 

Our findings thus show that BI estimates are generally inaccurate. It is known that BI estimates 
are often used for confidential price negotiations between manufacturers and payers [31]. In 
that regard, a higher BI estimate could be an incentive and argument for a payer to attempt 
to negotiate a discount, although we have no evidence to support this suggestion. Our 
findings regarding BI estimation inaccuracy should however warrant careful consideration of 
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the role of BI in access decisions. Given the inaccuracy and large deviation in accuracy between 
products, uncertainty in BI is evident and should definitely be considered when BI informs  
decision-making.

Furthermore, as indicated by a review by Vooren et al., limitations in current BIA methodology 
and / or lack of adherence to the ISPOR budget impact guidelines might be a cause for relative 
lack of accuracy [32,33]. We believe that, given the importance of BI in decision making, efforts 
should be undertaken to improve BIA methodology and, for example, to properly address 
uncertainty in BI estimates. 

We have some limitations to address. First, our sample size with regard to the number of 
products is quite small. We however chose to impose limitations on the deviation of the first 
BI record from the index date to assure that the comparison of the estimated BI is accurate. 
Our secondary analysis shows that for at least 5 more products, we can conclude that their BI 
assessment deviated by > 100%. 

Second, we were unable to account for (off-label) indication extensions for which ZIN did not 
publish a BIA. As BIAs typically are conducted for expected BI over €2.5 million, we assume that 
indication extensions without BIA would have generated a relatively low BI and thus had little 
influence on our results [34,35]. 

CONCLUSION

The 10 products included in the primary analysis resulted in total BI estimates of €140.7 million 
whilst only €82.1 million was observed. For at least 53% of the included products, the observed 
BI differed from the estimated BI by more than 100%. These findings, combined with the large 
deviation in accuracy between different products, lead us to conclude that Dutch BI estimates 
for oncology drugs are often inaccurate. They are thus an inevitable source of uncertainty to 
the decision-maker impacting reimbursement decisions and therefore potentially leading to 
restricted access for patients. The role and use of BI in reimbursement decisions for these 
potentially life-saving drugs should therefore be considered carefully, as well as the need for 
improvements in BI estimation methodology. 
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ABSTRACT

Objectives
High budget impact (BI) estimations of new drugs have led to decision-making challenges 
potentially resulting in negative impact on patient access. However, current BI predictions are 
rather inaccurate and short-term. We therefore developed a new approach for BI prediction. 
Here, we describe the validation of our BI prediction approach using oncology drugs as  
a case study

Methods
We used Dutch population-level data to estimate BI, containing the products of list price 
multiplied by volume of all drugs from 2000 onwards. We included drugs in the antineoplastic 
agents ATC category which the European Medicines Agency (EMA) considered a New Active 
Substance and received EMA Marketing Authorisation (MA) between 2000 and 2017. A mixed-
effects model was used for prediction and included tumour site, orphan-, first in class- or 
conditional approval designation as covariates. Data from 2000 – 2012 was the training set. 
BI was predicted monthly from 0-45 months after MA. Cross-validation was performed using 
a rolling forecasting origin with e^|Ln(observed BI/predicted BI)| as outcome.

Results
The training set and validation set included 25 and 44 products, respectively. Mean error, 
composed of all validation outcomes, was 2.94 (median 1.57). Errors are higher with less 
available data and at more future predictions. Highest errors occur without any prior data. From 
10 months onwards, error remains constant.

Conclusions
We believe that, based on our validation, we have developed a valid method to predict BI. For 
payers or policymakers, our approach can yield a valuable addition to current BI predictions 
due to its ease of use, independence of indications and ability to update predictions to the most 
recent data.
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4.1

INTRODUCTION

In recent years, the prices of new drugs, for example in oncology, increased considerably [1]. 
Combined with the increasing number of annual oncology approvals and expanding indications, 
drug treatment costs in this field have increased sharply. This has resulted in significant macro 
level budget impact (BI) discussions [1]. High BI estimations and the potential of a negative 
impact on affordability and patient access have, unsurprisingly, led to decision-making 
challenges and debate [2–5].

In many jurisdictions, patient access is governed by institutional payers or national 
reimbursement agencies [6]. When facing budgetary constraints, as is the case in for example 
England, (additional) spending on one drug must be covered by disinvesting in other 
interventions or services [7,8]. Budgetary limitations and budgeting policies cause payers or 
reimbursement agencies to limit access to high priced pharmaceuticals and/or products with 
a high BI and therefore burden to health care budgets and society [9]. 

It is a trend that more new drugs gain marketing approval with limited evidence packages 
[10]. The orphan designation and conditional approval legislation might have been successful 
in increasing the therapeutic options in some disease areas but it does have adverse effects 
on payers: much more uncertainty regarding clinical- and cost-effectiveness and BI [11–15]. 
The combination of high price and high uncertainty in (cost-) effectiveness as well as the potential 
population size and therefore budget impact, poses the greatest risk to payers or budget holders. 
In this study we will focus on the budget impact as source of uncertainty in reimbursement 
decision making. According to a review by Van de Vooren et al., many published budget impact 
analyses (BIA) still fail to reach an acceptable quality [16]. Many BIAs are short term (one year), 
quite subjective or based on expert opinion and determined by estimations of population size 
and eventual treatment regimen [17,18]. If the general methodological quality of BI analyses is 
indeed low, one would expect the predictive accuracy of these analyses to also be low. 

Broder et al., who evaluated BI forecasts of US drug launches between 1 Sep 2010 and 1 Sep 2015, 
concluded that the average predicted BI was 5.5 times the observed BI. Cha et al. concluded 
that 60% of the drug forecasts were off by more than 40%. Keeping et al. recently wrote that 
BI estimates used by Welsh payers that were specifically produced to inform access decisions 
were off by more than 40% in 80% of the cases [19]. We believe that these findings illustrate that 
the methodological quality as well as the predictive accuracy of current BIAs can be considered 
as low. 

Not only are these estimations insufficient in providing adequate clarity on the costs of a new 
drug, they also fail to quantify the uncertainty that is associated with these predictions. In other 
words, the current point estimates or ranges given are not based on an underlying probability 
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distribution and thus provide insufficient insight in the possible range of financial outcomes. 
Especially given the concerns regarding accuracy and methodological quality mentioned 
previously, insights into uncertainty surrounding BI estimates could prove to be a crucial step 
in increasing the use and validity of BIA. Consequently, noting that conducting (probabilistic) 
sensitivity analysis is now standard practice is cost-effectiveness analysis (CEA), allowing for 
proper sensitivity analysis in BIA could increase its validity. 

Proper incorporation of (accurate) budget impact predictions in reimbursement decisions is 
essential for ensuring patient access and affordability [1–4]. Therefore, we developed a new 
approach for BI predictions using population-based drug volume data and a mixed-effects model 
aiming to improve prediction of future BI and quantification of uncertainty of the predicted BI. 
In this paper, we describe this BI prediction approach and the validation of this method using 
a Dutch perspective and using oncology drugs as a case study. 

METHODS

We used population-level data provided by FarmInform to estimate and validate BI [20]. 
This data contains the monthly BI as list price multiplied by volume (generated in the in- and 
outpatient setting) of all prescription drugs in the Netherlands from 1 January 2000 to 1 October 
2017. We denote these monthly products as BI data records. FarmInform crosschecks the data 
with Dutch patient-level PHARMO data to ensure generalisability [21,22].

We selected products based on being in the ATC antineoplastic agents (L01) category, having 
European Medicines Agency (EMA) Market Approval (MA) between 1 January 2000 and 1 
October 2017 and having an initial oncology indication as specified in the EPAR [23]. We 
excluded biosimilars, generics and products that were not designated as a ‘New Active Substance’ 
by the EMA [23].  

Data on EMA orphan designation at MA, EMA conditional approval or EMA MA under 
exceptional circumstances, EMA ‘New Active Substance’ classification and indication(s) at 
EMA MA were derived from the initial EMA European public assessment reports (EPAR) and 
European Commission Decision documents [23,24]. MA under exceptional circumstances 
and conditional approval were combined into one covariate denoted as ‘CE’. Indications were 
subsequently categorised into cancer sites (e.g. breast, lung). Data on molecule type (e.g. small 
molecule, monoclonal antibody) were derived from EPARs. Food and Drug Administration 
(FDA) First in Class designation (FiC) was based on Eder et al. and FDA Novel Drug Approvals 
summaries [25,26]. As we chose the perspective of individual drug products and not drug-
classes or patient populations, indication extensions or label changes of products were  
not included. 
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We used a mixed-effects model for prediction. Model building and validation were performed 
in R for Windows using the nlme package [27,28]. The dataset was split in a training set and 
a validation set based on the date of the monthly BI data record. The training set was used for 
constructing the mixed-effects model. The splitting point of the dataset for modelbuilding was 
set at 149 months, indicating that products with a BI data record prior to 1 May 2012 were 
selected as training set and products with a first BI data record after this date as validation set. 
Only the first 45 months of BI records per drug were included as this is the period we aim to 
predict, denoted as t_max. The duration of the period for the training set was based on a proper 
balance between number of products in the training set (n = 25) and an adequate number of 
months in the validation set to ensure capturing enough of the 45 months of data for a sufficient 
amount of validation set products (n = 44). 

On the training set, model building was performed using forward stepwise selection (lowest 
Akaike Information Criterion (AIC), p < 0.10). Interactions with the square root of time and 
time to the power 1 - 6 were included as a possible step to model time dependence. Only a single 
time interaction per covariate was allowed.

As Shmueli stated, overfitting to training data is the biggest danger to generalisability of predictive 
models [29]. Moreover, it is explained that it is not required to explore the causal structure 
of variables as, in prediction models, predictor selection should be solely based on quality of 
the association between the predictor and response [29]. In order to limit risk of overfitting, 
we therefore did not force main effects of interactions to be included in the model. Due to 
right-skewed BI data, log transformed monthly BI (per lowest AIC) was selected as dependent 
variable. Random effects were composed of a random intercept and a random slope for time per 
product, based on lowest AIC. The correlation structure was defined as autoregressive with an 
order of 1 for time. 

We then performed cross validation. Let A be the validation set products, k be a single product 
selected from A and B is the resulting list of products in the training set which does not include 
k. A is constructed by selecting all products with a first BI record after 1 May 2012. Figures 1a – 
1c provide a schematic overview of the validation procedure. 

We simulated the effect of the monthly addition of new data, thereby modelling the passing of 
time and the influence this has on prediction by using a rolling forecasting origin. Hence, we 
adapt the training set to include all BI records on B just one month prior to the date of the first 
BI record of k. t_data represents the number of months of data available to modelbuilding and 
prediction while t_pred indicates the month which is predicted. t_split governed the rolling 
forecast and indicates the date at which the dataset is split into training- and validation set. 

The rolling forecasting origin, simulating passing time, used the following procedure: We set 
the initial cycle to start with zero BI records (t_data = 0) on k; t_split is set to the date of the first 
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BI record of k. The training set is constructed to include all data until t_max (45 months) and 
t_split on B. The first 45 months (or less if k has a shorter MA period) of BI are then predicted 
for k (t_pred[1, t_max]) and compared with the observed BI data of k. In the next cycle, the first 
month of BI data will become available to the prediction model, so t_data = 1 and t_split is 
increased by one month. This implies that the first month of k’s records is added to the training 
set with B, governed by t_split, also advancing one month. Prediction and comparison with 
observed data is then performed for k for t_pred [2, t_max]. The sequence is repeated for t_
data[2, t_max - 1] and all products in A. This yields a total of 45 + 44 + … = 1035 timepoints.  

To improve robustness, a validation is also performed on a training set with t_max = 42 which 
includes separate model building on this second training set. Subsequently, BI prediction 
validation is performed with 42 months of BI prediction. The mean of the absolute individual 
predictions are then calculated for all k with t_data[0, t_max - 1] and t_pred[1, t_max] by taking 
the average of these data points for the 42- and 45 t_max runs. This produces the final prediction 
results for each k with a specific t_data and t_pred, denoted as the prediction samples. 

The previous paragraphs have outlined the role of the training set (selection of model structure) 
and the validation set (accuracy of predictions, given the chosen model structure). Coefficients 
are, unlike the traditional notion of a training set, not governed by the initial training set but 
are estimated for each prediction cycle, based on the available data (governed by t_split). We 
thus aim to validate a BI prediction approach which uses a fixed model structure and where 
the model is continuously retrained on future data. This validation approach is adopted as it 
represents the envisioned implementation that can adopt to patient and market dynamics. 

We capped predicted BI to a minimum or maximum value in order to limit the effect of potential 
outliers. The maximum predicted monthly BI was determined as two times the maximum 
monthly BI in the total dataset. The minimum monthly BI was set at an arbitrary €5000. 
The influence of limiting these values is explored by means of scenario analysis.   

Equation 1 describes the calculation of the prediction error.  

The resulting ratio is symmetric for over- and underprediction [30,31]. The purpose of this 
transformation is to yield ratios that have a positive sign for over- as well as underprediction 
so that overpredictions do not cancel out underpredictions. An error of 2 should therefore be 
interpreted as, in case of observed BI of €10,000, a predicted BI of €5000 or €20,000. This error 
was calculated for each prediction sample, yielding error samples.  

 
Figures  1:  Schematic  presentation  of  the  role  and  construction  of  the  training‐  and  validation  set, model 
development and the validation using a rolling forecast origin. 1a: Training set selection for model development 
and resulting selection of validation products. 1b: Validation of the product depicted in green with t_data = 0. The 
t_split = 1 Nov 2013, similar to the first date of recorded BI for this particular product. 1c: Validation of the product 
depicted in green with t_data = 6. The t_split = 1 May 2014.  

Arrows = BI record availability of a specific product; dashed  line = trimmed data; solid  line = data  included  in a 
training set; blue = training set products; orange = products that will be validated; green = product that, in this 
example, is validated; * = data cut‐off based on t_max;  # = data cut‐off based on t_split; ¤ = the maximum value 
of t_pred which is identical to t_max.  

 
We capped predicted BI to a minimum or maximum value  in order to  limit the effect of 
potential outliers. The maximum predicted monthly BI was determined as two times the 
maximum monthly BI in the total dataset. The minimum monthly BI was set at an arbitrary 
€5000. The influence of limiting these values is explored by means of scenario analysis.    

Equation 1 describes the calculation of the prediction error.   

1. 𝑝𝑝𝑝𝑝𝑝𝑝�𝑝𝑝 � 𝑝𝑝����������� ��
��������� ��� 

 

The resulting ratio is symmetric for over‐ and underprediction [30,31]. The purpose of this 
transformation is to yield ratios that have a positive sign for over‐ as well as underprediction 
so that overpredictions do not cancel out underpredictions. An error of 2 should therefore 
be  interpreted as,  in case of observed BI of €10,000, a predicted BI of €5000 or €20,000. 
This error was calculated for each prediction sample, yielding error samples.   

Results were compiled in three ways:  

1  ‐ Aggregated  per  t_pred  and  t_data:  Error  samples  are  aggregated  for  each  point  in 
(t_pred, t_data).  

2 ‐ Aggregated per t_data: Error samples are aggregated for each t_data. 

3 ‐ Not aggregated: Outcomes on all individual error samples. 

In  order  to  compare  our  results  to  previously  published  literature,  we  calculated  the 
percentage of predictions that are between 40% to ‐40% and between 100% to ‐ 100% of 
the observed BI. Per prediction, this percentage is calculated using equation 2: 

2. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ����𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �  ��������� ����������� �� 
�������� �� ∗ 100 
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4.1

Figure 1. Schematic presentation of the role and construction of the training- and validation set, model 
development and the validation using a rolling forecast origin. 1a: Training set selection for model 
development and resulting selection of validation products. 1b: Validation of the product depicted in green 
with t_data = 0. The t_split = 1 Nov 2013, similar to the first date of recorded BI for this particular product. 
1c: Validation of the product depicted in green with t_data = 6. The t_split = 1 May 2014. Arrows = BI 
record availability of a specific product; dashed line = trimmed data; solid line = data included in a training 
set; blue = training set products; orange = products that will be validated; green = product that, in this 
example, is validated; * = data cut-off based on t_max;  # = data cut-off based on t_split; ¤ = the maximum 
value of t_pred which is identical to t_max. 
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Results were compiled in three ways: 

1.	 Aggregated per t_pred and t_data: Error samples are aggregated for each point in (t_pred, 
t_data). 

2.	 Aggregated per t_data: Error samples are aggregated for each t_data.

3.	 Not aggregated: Outcomes on all individual error samples.

In order to compare our results to previously published literature, we calculated the percentage 
of predictions that are between 40% to -40% and between 100% to - 100% of the observed BI. 
Per prediction, this percentage is calculated using equation 2:

For all products, we investigated whether a reimbursement dossier was published by the Dutch 
Healthcare Institute (ZIN), the authority that performs Health Technology Assessment (HTA) 
and advises the Dutch Minister of Health on reimbursement of new drugs. For the products 
with a reimbursement dossier, the amount of t_data on the date of publication of the report was 
recorded. Products can have t_data prior to publication of the dossier when it has been available 
for another indication or through an alternative reimbursement scheme. In our envisioned 
implementation, the available t_data just prior to publication of the dossier would be used to 
make an up-to date BI prediction for the product in question.

RESULTS

The training set used for modelbuilding contained 25 products with a mean of 33 months of 
data, 15 and 16 products had data until t_max of 45 and 42 months, respectively. The validation 
set included 44 products with an average of 27 months of data and 11 and 14 products having 
data until t_max of 45 and 42 months, respectively. This resulted in a total of 19,681 prediction- 
and error samples. The products included in the datasets are displayed in appendix 1. 

Fixed effect selection for the 42- and 45 t_max models yielded the same fixed effects being 
time + time * CE, √(time) * Tumour site, molecule type, √(time) * FiC and √(time) * orphan 
designation. As random effects were not varied both model structures are identical. The final 
model syntax was:

 
Figures  1:  Schematic  presentation  of  the  role  and  construction  of  the  training‐  and  validation  set, model 
development and the validation using a rolling forecast origin. 1a: Training set selection for model development 
and resulting selection of validation products. 1b: Validation of the product depicted in green with t_data = 0. The 
t_split = 1 Nov 2013, similar to the first date of recorded BI for this particular product. 1c: Validation of the product 
depicted in green with t_data = 6. The t_split = 1 May 2014.  

Arrows = BI record availability of a specific product; dashed  line = trimmed data; solid  line = data  included  in a 
training set; blue = training set products; orange = products that will be validated; green = product that, in this 
example, is validated; * = data cut‐off based on t_max;  # = data cut‐off based on t_split; ¤ = the maximum value 
of t_pred which is identical to t_max.  

 
We capped predicted BI to a minimum or maximum value  in order to  limit the effect of 
potential outliers. The maximum predicted monthly BI was determined as two times the 
maximum monthly BI in the total dataset. The minimum monthly BI was set at an arbitrary 
€5000. The influence of limiting these values is explored by means of scenario analysis.    

Equation 1 describes the calculation of the prediction error.   

1. 𝑝𝑝𝑝𝑝𝑝𝑝�𝑝𝑝 � 𝑝𝑝����������� ��
��������� ��� 

 

The resulting ratio is symmetric for over‐ and underprediction [30,31]. The purpose of this 
transformation is to yield ratios that have a positive sign for over‐ as well as underprediction 
so that overpredictions do not cancel out underpredictions. An error of 2 should therefore 
be  interpreted as,  in case of observed BI of €10,000, a predicted BI of €5000 or €20,000. 
This error was calculated for each prediction sample, yielding error samples.   

Results were compiled in three ways:  

1  ‐ Aggregated  per  t_pred  and  t_data:  Error  samples  are  aggregated  for  each  point  in 
(t_pred, t_data).  

2 ‐ Aggregated per t_data: Error samples are aggregated for each t_data. 

3 ‐ Not aggregated: Outcomes on all individual error samples. 

In  order  to  compare  our  results  to  previously  published  literature,  we  calculated  the 
percentage of predictions that are between 40% to ‐40% and between 100% to ‐ 100% of 
the observed BI. Per prediction, this percentage is calculated using equation 2: 

2. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ����𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �  ��������� ����������� �� 
�������� �� ∗ 100 
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Figure 3. Median error aggregated per t_pred and t_data. t_pred indicates the future month that is 
predicted and t_data indicates the amount of months of prior data which is available to the model.

Figure 2. Mean error aggregated per t_pred and t_data. t_pred indicates the future month that is predicted 
and t_data indicates the amount of months of prior data which is available to the model.

[lme(fixed = log(observed BI) ~ Time + Time:CE + Molecule_type + sqrt(Time):(Orphan_status 
+ FiC_status + Tumour site), random = ~ Time | Product, correlation = corARMA(p = 1, q = 0, 
form = ~ Time | Product)]



128

The results that are aggregated per t_pred and t_data are shown in figures 2 (mean) and 3 
(median). These figures illustrate that the errors are higher in models with less available data 
(low t_data) and at predictions further in the future (a higher t_pred). The highest errors occur 
in the models without any prior data (t_data = 0) with a mean error ratio of 6.37. From t_data 
> 10, the error seems to remain constant. 

In figure 4, we present the results that are aggregated per t_data. The errors are clearly left-
skewed and significantly reduce with increasing t_data as established using a linear regression 
on the individual samples (coefficient = -0.117, se = 0.0039, p < 0.0001). The interquartile range 
(IQR) decreases with increasing t_data. Prediction performance increases substantially from 
increasing t_data from 0 to 5, from t_data > 10 model accuracy does not improve by adding 
more data. 

The unaggregated mean and median error for all samples are 2.94 (Standard deviation  
(SD) = 5.64) and 1.57 (Interquartile range (IQR) = 1.42), respectively. The mean of Ln(observed 
BI/predicted BI), so without converting to absolute values, of all samples, depicted in figure 
5, did significantly differ from 0 (t-test: mean = 0.057, n = 19,681, 95% CI = 0.043 ;0.070, p < 
0.0001). In absolute terms, underprediction was significantly more likely than overprediction 
(exact binomial test, prob. underprediction = 0.515, 95% CI = 0.508 ; 0.522, p < 0.0001). Using 
equation 2, we calculated the percentage difference that can be compared with other literature. 
Of the 19,681 samples, 9,503 (48.3%) had a maximum percentage difference between 40% 

Figure 4. Median error aggregated per t_pred. Median error (orange) aggregated per t_pred, including 
error bars indicating the interquartile range and the regression line (blue). Coefficient = -0.096,  
se = 0.0035, p<0.0001
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and -40%. For the 100% to -100% range, this number was 15,915 (80.9%). Table 1 summarises 
the main outcomes.

In the training set, 3 products did not have a reimbursement dossier and 9 products did not 
have t_data at the time of publication of the dossier. For the 13 training set products with t_
data, the median and mean months of t_data were 22 and 29.8 (sd = 32.1), respectively. In 
the validation set, 28 products did not have a dossier and 10 products (with a dossier) had 
0 t_data. The 6 products with a dossier and t_data > 0, had a median and mean t_data of 12.5 
and 16.5 (sd = 11.8), respectively. 

Scenario analyses
We explored the influence on limiting predictions to a minimum (< €5000) and maximum (> 2 
times maximum recorded BI) on the outcomes by adopting scenarios where 1) only minimum 
values were adjusted, 2) only maximum values were adjusted and 3) where no predictions 

Figure 5. Histogram of the individual outcomes. Outcomes calculated as Ln(observed BI/predicted BI) 
(blue) and the theoretical normal distribution (orange).

Table 1. Main outcomes. 

Outcome Value

Mean error, aggregated per t_data and t_pred (SD) 3.01 (2.24)
Mean error, not aggregated (SD) 2.94 (5.63)
Median error, not aggregated (5th, 25th,75th and 95th percentile) 1.57 (1.04, 1.21, 2.63, 8.59)
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were adjusted. In the base-case analysis, on a total of 19,681 samples, 930 minimum- and 44 
maximum values were adjusted. The outcomes are presented in appendices 2 – 4.

These results indicate that not limiting minimum values has a profound negative influence on 
model performance as, presented in supplementary table 3, mean unaggregated error increases 
to 8.00 with a very large sd of 358.74. On the contrary, not limiting maximum only has a minor 
impact, as table 1 and supplementary table 2 yield nearly identical results. As only the more 
extreme values are concerned, it is logical that the median figures (appendices 2 - 4) are very 
similar to the median base case results.

DISCUSSION

Our prediction model was constructed using a mixed effects approach with a training set of 25 
oncology products. The validation of this prediction model using a training set of 44 products 
yielded 19,681 samples and resulted in an overall mean error of 2.94. This error is higher when 
available data is more limited and when predicting further into the future. The decline in error 
with increasing available data seems to halt, at a median error of ± 1.5, around 5 – 10 months 
of data. This indicates that relatively accurate predictions can be generated with 5 – 10 months 
of data. There is a slight but significant higher probability of underprediction vs overprediction. 
The percentage of predictions that were within 40% to -40% and within 100% to -100% of 
observed BI were 48.3% and 80.9%, respectively.   

We envision the following implementation: Initially, a model structure would be selected 
and validated using the procedures herein described. Then, with an estimate of the model 
performance, BI predictions, using up-to-date data of all other products based on which 
the model is trained, can then easily be generated for a new product (with or without prior BI 
data of that product). The validation results can yield insights into the expected accuracy for this 
new drug for a specific future month (t_pred) and a specific amount of available BI data (t_data). 
At some future moment, of which the specifics are beyond the scope of this paper, continuous 
model retraining on new data will probably not suffice as the validation set at that time will not 
be representative of the training set on which the model structure was developed. In that case, 
model selection and validation would have to be redone. This would also be applicable to using 
our methodology in other jurisdictions or geographic areas, for predicting different or entirely 
new drug classes or when adapting to changes in regulatory systems.

Our BI predictions are quite constant and rather accurate from 10 months of available data as 
the median aggregated error from 10 months onwards ranges from 1.20 to 1.42. As the error is 
highest with little available data, one could say that our approach is not useful for BI predictions 
when these predictions are part of a reimbursement dossier in a ‘closed’ reimbursement system, 
indicating reimbursement for new drugs is only available after an HTA decision. However, 
various countries have (partly) open systems (e.g. Germany, the Netherlands) wherein HTA 
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dossiers become available after the drug is already available and in use. In our dataset, we 
have shown that 50% of the products have a substantial amount of data available at the date 
of publication of the reimbursement dossier. It is therefore very probable that, at least for 
open reimbursement systems, a sufficient amount of BI data will in many cases be available 
to overcome the high errors associated with having less than 5 – 10 months of available data  
for prediction. 

When extending the use of BIA beyond the initial reimbursement decision to a more dynamic 
drug life-cycle approach, for example as part of managed entry agreements, available BI data 
will keep increasing and will therefore rapidly be sufficient for achieving our reported maximum 
predictive accuracy [32].   

Cha et al. analysed the accuracy of peak sales forecasts produced by so called sell-side analysts 
[17]. They categorised the forecasts in categories of percentage difference between forecasts 
and observed peak sales. Their highest deviation categories were < -80% (n=7/260) and >160% 
(n=57/260) and found a median error of 4%. They do state that most forecasts are poor and 
that the variance is high, but the 4% median error does not give clear insight in forecast error 
as overestimations can cancel out underestimations (i.e., their error is not symmetric) and as 
the maximum error is limited (-80% and 160%). We have partly applied the methodology used 
by Cha et al. to our dataset by also limiting the maximum error and by not making the error 
symmetric. Using this method, our median error is -3%; a major difference between our 
unaggregated and symmetric median error of 1.54 (154%). Cha and colleagues furthermore 
state that more than 60% of the forecasts were off by more than 40%, whereas in our analysis 
51.7% of estimations had a higher deviation than 40%. 

Broder et al. published a review of the bias in BI predictions of new drugs [18]. They used 
a US perspective and included formal, more scientific, BI predictions as well as informal 
predictions that are aimed at projecting share prices. All estimates were made less than 12 
months before launch and nearly all estimates were for just the first year. Mean predicted BI in 
the sample was 5.5 times the observed BI. When excluding the informal predictions, the average 
overestimation is 5.6 times the observed BI. These values are asymmetric representations of 
under- and overprediction (i.e., the value is attenuated towards 1 due to underpredictions that 
have a value between 0 and 1) and are still higher than our (symmetric) mean error. Only 20% of 
the predictions were within 40% of the observed usage, compared to 48,3% for our model [18]. 
If we then relate to the differing lengths of forecast period (i.e., t_pred) of one year for Broder 
et al. and 45 months for our study, we could argue that our predictions seem to have better 
accuracy whilst providing more future predictions.  

Keeping et al. investigated BI estimates that were part of pharmaceutical company submissions 
and compared them to the observed expenditure [19]. These company submissions were issued 
to the All Wales Medicines Strategy Group (AWMSG) for reimbursement decision making. 
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The AWMSG is the institution that appraises clinical and cost-effectiveness of new medicines 
being considered for National Health Service prescribing in Wales (United Kingdom). A total 
of 49 medicines were included and the percentage of predictions in the 40% and 100% range 
were 20.4% and 53.1%, respectively. Our model achieved 48.3% and 80.9% on these respective 
accuracy markers. Of the 49 products Keeping and colleagues included, only 3 - 6 (depending 
on the definition) had an oncological indication which is therefore quite different from our 
oncology cohort. Still, as the BI estimates investigated by Keeping et al. are those used by payers 
to inform decision making, the work of Keeping et al. is very relevant. Even though our results 
are not directly comparable, we still argue that our superior performance in the 40% and 100% 
range metric is a rather clear indicator that our method has the potential to be superior to 
current BI estimates used by payers and decision makers.   

Our BI prediction approach potentially has several advantages over current BI estimation 
procedures. Firstly, our methodology is independent of indication extensions. Of course, 
additional indications do have an influence on BI and possibly on the accuracy of 
the predictions. We however chose to not include indication expansions as a predictor variable 
as this would be rather laborious to perform in practice for a large group of products. Unlike 
current Dutch Reimbursement authority (‘National Health Care Institute’) BI predictions, our 
model intrinsically adjusts for possible changes in indications as we apply a drug perspective 
irrespective of indication. 

Another potential advantage of our BI prediction approach is the ease and speed with which BI 
predictions can be constructed. Updating the data, possibly performing a separate validation 
and then performing the prediction for a new drug would be a matter of hours whereas 
the current guidelines call for a much more time-consuming endeavour [33,34]. This advantage 
is especially profound if you include the option of semi-automatically updating the predictions 
as time passes and more data becomes available. 

Finally, our model results yield predictions with a potentially quantifiable amount of uncertainty 
as the distribution of error is known and can be adjusted for the amount of data already available 
(t_data) and the number of future months (t_pred). This is hardly possible with current BI 
predictions that produce point estimates. Our approach could therefore serve as a basis for more 
profound modelling of uncertainty around BI predictions. 

Our study has various limitations. First, we have only validated our model for a rather specific 
set of products and characteristics. Future products, for example novel advanced therapy 
medicinal products, are not validated and are therefore probably not accurately predictable by 
our current model. As is however described above, the dataset can be updated to future states 
and a new validation can then be done rather easily in order to accommodate new drug classes 
and/or characteristics.
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Second, we have no direct comparison of our results to the current BI estimations used in 
practice. As our model is based on Dutch data it would be very insightful to compare our results 
with observed BI predictions published by the Dutch Reimbursement authority. In light of 
the Broder et al., Cha et al. and Keeping et al. findings, our prediction accuracy appears to  
be superior. 

Third, we have capped minimum and maximum BI predictions which to an extent impacted 
the results. Our explicit assumption of a predicted maximum of two times the maximum 
monthly BI in the total dataset has no evidentiary basis. Potentially worse, there were records 
in the dataset with monthly BI below the minimum monthly amount of €5000. In other words, 
it is quite probable that we overestimate certain products with monthly BI below €5000. We 
however believe that these caps are justified as one of our main aims is to provide payers with 
better BI predictions. A difference between €5000 and €50 yields 4.6 log units of deviation but 
this difference, in absolute terms, is probably not very relevant to payers. 

We have explored the influence of these value restrictions through scenario analyses. These 
have clearly indicated that only limiting the lower values to €5000 and not restricting maximum 
values delivers a nearly identical predictive performance. We thus believe that these limits 
improve the relevance of our outcomes as prediction errors that are irrelevant on a macro 
level, e.g. €5 vs €5000 per month, are omitted. The high-level caps are implemented as some 
modelling scenarios yielded predictions that were irrationally high (for example, higher than 
the entire Dutch healthcare budget) and can therefore be identified by potential users of this 
method. In order to limit these scenarios to realistic figures, the factor two limit was imposed.  

Fourth, we understand that alternative potentially more advanced validation techniques have 
been developed. In order to construct a methodology that is suitable for informing decision 
making, the method has to be interpretable and transparent. We therefore abstain from adding 
more complexity to the current model in order to also keep it as practical as possible.

CONCLUSIONS

We believe that, based on our validation, we have developed a valid method to predict BI. We 
were able to compare our results with three independent studies using a metric that describes 
the number of predictions that are within 40% to -40% and 100% to -100% of the observed BI. 
Our model was superior to all these three studies and especially the study of Keeping et al. is 
important in this regard as they investigated the accuracy of BI predictions used by payers for 
reimbursement decision making. We can therefore conclude that our approach can be used 
to develop models that can provide improved predictive accuracy compared to the current 
practice of conducting BIA. Additionally, our data-driven approach would allow for a more 
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dynamic, life-cycle approach to predicting and managing BI of drugs. To conclude, we think 
that our approach can be a valuable addition to BI predictions due to its potential for increased 
accuracy, independence of indications and ability to keep updating the predictions to the most  
recent data. 
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APPENDICES

Appendix 1. Included products

Supplemental table 1. list of included products in the training set and validation set.

Training set  
product name

Training set active 
substance name

Validation set  
product name

Validation set active 
substance name

Xeloda capecitabine Adcetris Brentuximab
Avastin bevacizumab Zaltrap aflibercept
Vectibix panitumumab Tagrisso osimertinib
Erbitux cetuximab Inlyta axitinib
Tyverb lapatinib Perjeta pertuzumab
Glivec imatinib Venclyxto venetoclax
Halaven eribulin Zykadia ceritinib
Iressa gefitinib Erivedge vismodegib
Votrient pazopanib Ibrance palbociclib
MabCampath alemtuzumab Lartruvo olaratumab
Nexavar sorafenib Pixuvri pixantrone
Jevtana cabazitaxel Imbruvica ibrutinib
Arzerra ofatumumab Teysuno tegafur / gimeracil / oteracil
Tarceva erlotinib Jakavi ruxolitinib
Sutent sunitinib Portrazza necitumumab
Tasigna nilotinib Kadcyla trastuzumab
Torisel temsirolimus Alecensa alectinib
Alimta pemetrexed Lynparza olaparib
Sprycel dasatinib Imlygic talimogene laherparepvec
Velcade bortezomib Caprelsa vandetanib
Vidaza azacitidine Mekinist trametinib
Yervoy ipilimumab Keytruda pembrolizumab
Zelboraf vemurafenib Yondelis trabectedin
Herceptin trastuzumab Zydelig idelalisib
Targretin bexarotene Opdivo nivolumab

Kyprolis carfilzomib
Cyramza ramucirumab
Darzalex daratumumab
Dacogen decitabine
Cotellic cobimetinib
Vargatef nintedanib
Ninlaro ixazomib citrate
Xalkori crizotinib
Atriance nelarabine
Gazyvaro obinutuzumab
Blincyto blinatumomab
Lonsurf trifluridine / tipiracil
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Supplemental table 1. (continued)

Training set  
product name

Training set active 
substance name

Validation set  
product name

Validation set active 
substance name

Giotrif afatinib
Stivarga regorafenib
Tafinlar dabrafenib
Bosulif bosutinib
Lenvima lenvatinib
Farydak panobinostat
Evoltra clofarabine

Appendix 2: Main outcomes, scenario where only minimum outliers were 
capped

Results of scenario analysis where only minimum outliers were capped.

Outcome Value

Mean error, aggregated per t_data and t_pred (SD) 3.14 (2.87)
Mean error, not aggregated (SD) 3.03 (7.40)
Median error, not aggregated (5th, 25th,75th and 95th percentile) 1.57 (1.04, 1.21, 2.63, 8.61) 	

Appendix 3: Main outcomes, scenario where only maximum outliers were 
capped

Results of scenario analysis where only maximum outliers were capped.

Outcome Value

Mean error, aggregated per t_data and t_pred (SD) 6.02 (42.79)
Mean error, not aggregated (SD) 8.00 (358.74)
Median error, not aggregated (5th, 25th,75th and 95th percentile) 1.58 (1.04, 1.22, 2.67, 9.09)
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Appendix 4: Main outcomes, scenario where no outliers were capped. 

Results of scenario analysis where no outliers were capped.

Outcome Value

Mean error, aggregated per t_data and t_pred (SD) 6.15 (42.82)
Mean error, not aggregated (SD) 8.09 (358.77)
Median error, not aggregated (5th, 25th,75th and 95th percentile) 1.58 (1.04, 1.22, 2.67, 9.13)
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ABSTRACT

Background
Results of probabilistic sensitivity analyses (PSA) are typically visualised as a scatter plot. 
Although useful, such scatter plots have two major limitations. First, high density areas cannot 
be correctly interpreted due to overlap of individual estimates (overdrawing). Second, relative 
density cannot be interpreted which may cause decision-makers to give too much weight to 
relatively infrequent scenarios. To overcome these limitations, we developed a novel visualisation 
of PSA results: The Relative Density plot (PSA-ReD). Here, we demonstrate PSA-ReD using one 
theoretical and two real-world case studies. 

Methods
The PSA-ReD combines a density plot and a contour plot to visualise PSA results. Density is 
calculated using kernel density estimation. Relative density, depicted using a colour gradient, 
is transformed to cumulative probability. Contours are then plotted over regions with a specific 
cumulative probability. We use one theoretical case study (normal distribution) and two 
real-world case studies (published health-economic models) to demonstrate the PSA-ReD 
plot. The PSA-ReD plot was created using R. The R-script and manual are publicly available  
on GitHub.

Results
In the case studies, the PSA-ReD provided additional visual information that could not be 
understood from the traditional scatter plot. High density areas were identified by colour-
coding and the contour plot allowed for quantification of PSA iterations within areas of the cost-
effectiveness plane, diminishing overdrawing and putting infrequent iterations in perspective. 

Conclusions
The PSA-ReD plot is easy to implement, presents more of the information enclosed in PSA 
data, and prevents inappropriate interpretation of PSA results. Thus, this new PSA presentation 
provides modellers with additional information about model behaviour and can help decision-
makers to more appropriately interpret probabilistic model results. 



METHODS FOR MANAGING UNCERTAINTY 143

4.2

INTRODUCTION

Health economic models have become an integral part of healthcare decision making [1]. These 
models rely on input parameters associated with uncertainty which must be taken into account 
when calculating and presenting model results [2]. Deterministic and probabilistic sensitivity 
analyses (DSA & PSA) are systematic approaches that quantify the impact of uncertainties related 
to model inputs on the outcomes of the model [3]. Providing results of sensitivity analyses is 
advised by modelling and reporting guidelines and is often mandatory for the submission of 
health technology assessment dossiers [4–6]. The PSA has been the most prominent method 
to quantify the impact of combined uncertainty of all model input parameters [7]. In a PSA 
all input parameters are simultaneously varied along predefined ranges according to their 
specific distribution, with the outputs presented as a scatter plot in the cost-effectiveness  
plane (CE-plane) [8]. 

The traditional PSA scatter plot is useful to quickly visualise the distribution of PSA results 
as well as the correlation between the cost and the effect measure of interest [9]. A critical 
aspect of the scatter plot is its ability to illustrate the distribution of PSA samples over 
the quadrants of the cost-effectiveness plane (i.e., increased Quality Adjusted Life Years 
[QALY] and increased costs or decreased QALYs and increased costs). The scatter plot itself 
is not the sole measure to quantify and interpret parameter uncertainty as, for example, 
the likelihood of cost-effectiveness is typically illustrated with a cost-effectiveness acceptability 
curve (CEAC). Still, the aforementioned properties make the PSA scatter plot an intuitive, 
useful and usually mandatory figure in communication towards stakeholders, who might be less 
familiar with uncertainty analyses. Despite these advantages, the traditional scatter plot has two  
major limitations. 

The first limitation is that in the traditional scatter plot, individual point estimates are 
overlapping in high density areas. This so-called overdrawing makes it hard to assess the relative 
density of point estimates in various areas of the plot [10]. Second, due to difficulty in estimating 
this relative density, infrequent scenarios appear very prominent in the traditional figure. This 
may cause overestimation of the occurrence of these scenarios and may incorrectly inform  
decision making. 

To overcome these two limitations a novel presentation of the PSA scatter plot is desired. 
Increased computational power combined with increased popularity of open source software, 
such as R, provide the tools to improve the traditional PSA presentation [11]. Two R-packages 
have been developed to display PSA scatter plot results. The heemod package uses coloured 
hexagons to display relative density which gives some information on overdrawing [12]. 
The BCEA package by Baio et al. provides the tools to draw a contour plot using ellipses in 
discrete intervals. However, the BCEA package requires purchase of a costly manual [13]. Both 
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packages have the same major drawback; they require the use of package specific syntax to be 
able to use and apply the package features. This requires extensive R-skills which can put-off 
users less familiar with programming language. Additionally, the features available within these 
packages provide either a plot showing relative density (heemod) or a contour plot (BCEA). 
Neither provides a combination of both these plot elements. 

We therefore developed a novel open source graphical presentation of PSA results, 
incorporating relative density and probability contours, overcoming both overdrawing and 
outlier overestimation. The method is independent from modelling software and relies only on 
an import of PSA results in .csv format. We call this new PSA presentation the Relative Density 
plot (PSA-ReD). 

The aim of this paper is to illustrate the concept and functionalities of the PSA-ReD plot. We do 
so using one theoretical and two real-world case studies. We also provide the R code designed 
for direct application to any user’s own research outputs together with a user manual on  
GitHub [14]. 

METHODS

Relation to traditional cost-effectiveness plane
A traditional PSA output is a two-dimensional black and white scatter plot presented on 
a CE-plane (Figure 1a). The PSA-ReD plot (Figure 1b) combines a multi-coloured density 
plot (appendix 1, figure a) and a contour plot (appendix 1, figure b). The combination of these 
two plots allows the reader to identify and distinguish high density areas using a colour scale, 
as well as a quantification of the point estimate density within the CE-plane, thus visualising 
the information that remains hidden in the traditional scatter plot. This increases the information 
that can be understood from the scatter plot and improves understanding of the parameter 
uncertainty which a PSA is aimed to address. 

The two features of the PSA-ReD plot can be constructed separately. The density plot (Appendix 
1, figure b) could be interpreted as a two-dimensional histogram. Like a traditional one-
dimensional histogram, the two axes are divided in sections. These sections on both axes divide 
the two-dimensional space in distinct rectangular regions. Then, as in a one-dimensional 
histogram, the number of data points per region is counted and transformed to present 
the relative frequency using a colour scale. Low density is presented by a green to blue scale and 
high density is presented by a yellow to red scale.

When using a histogram, the choice of the anchor point of the plot area (i.e., the range and 
starting points of the axes) has influence on the graphical outcome [15]. This effect would 
be most pronounced in a one-dimensional histogram with relatively few datapoints: Shifting 
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Figure 1a. Traditional scatterplot displaying PSA results. Displaying a bivariate normal distribution with 
mean = 0, sd = 1, 10,000 iterations 

Figure 1b. New graphical presentation of PSA using the Relative Density plot (PSA-ReD). Displaying 
a bivariate normal distribution with mean = 0, sd = 1, 10,000 iterations and 1000 bins. PSA-Probabilistic 
Sensitivity Analysis.

the x-axis would change the histogram as, by chance, the number of datapoints falling within 
each bin would differ with each x-axis shift. Crucially, the underlying data remains the same 
and this bias would also be present in two-dimensional histograms [15]. To overcome this, 
bivariate kernel density estimation (kde) is used as it provides a more accurate representation 
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of the probability density [15]. Instead of counting the number of data points per rectangular 
section, each data point is surrounded by a kernel which are summed to yield the kernel density 
estimate. Each data point is thereby smoothened over a small surrounding area (data kernel) 
instead of being a single data point [15]. The size of this area is determined by the data as 
explained in the ‘technical aspects’ paragraph.

The PSA-ReD plot combines the density plot with a contour plot (appendix 1, figure B). 
The contours indicate the boundaries of regions with a specific cumulative probability. This 
cumulative probability is calculated by converting the density estimates to cumulative densities 
per area. These cumulative area densities are then mapped to represent the cumulative probability 
range of 0 to 1. A contour line is then drawn joining areas with specific pre-specified values of 
cumulative probability (e.g. 0.1, 0.5, 0.95).

Hardware and software
The script to realise the PSA-ReD plot was developed and tested using R version 3.5.1 and 
Rstudio version 1.1.453 [11,16]. For our analyses, we used a standard consumer grade personal 
computer (Dell Optiplex 9020). In appendix 2, we provide detailed information on the hardware 
and software used.

The R script that we used is available in a GitHub repository as well as in appendix 6 [14]. We 
adhered to Google’s R Style guide and provide step-by-step guidance using comments embedded 
in the script [17]. The R script is licensed under the GNU General Public License v3.0. In short, 
this means that users are free to run, study, share and modify the software. The license dictates, 
among other things, that the software (or derivative work) must be open source and that 
derivative work must be published using the same license [18]. This guarantees that our project 
can be used and optimised by anyone whilst ensuring that it remains open to all.   

Technical aspects of plot generation in R
In R, we use the kde2d function from the MASS package to perform the aforementioned 
kernel density estimation [19]. In essence, the outcome of kde is a density value per area of 
a prespecified size, comparable to the number of data points within each bin in histograms. 
Detailed information is provided in the work by Silverman and in the documentation of 
the MASS package [19,20]. As these density values are very small and hard to interpret, we 
normalise these values by taking the reciprocal of the maximum density value to yield values 
ranging from 0.0 to 1.0. With these, we generate an easy to interpret plot with a scale from 1.0 
(highest density) to 0.0 (lowest density). 

The kde2d function has, besides the x and y values, two arguments that influence the kde. These 
are n (the number of bins in each dimension) and h (the bandwidth that determines the level of 
smoothing). The number of bins defines the number of sections on each axis. The total number 
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of areas within the resulting plots is therefore horizontal bins * vertical bins (e.g. 100*100 = 
10000). An easy analogy of these areas would be to regard them as pixels, the bins then determine 
the resolution in both directions. This pixel-analogy only reflects to the number of underlying 
bins. As we outline in the appendix 2 regarding the saving of plots, the actual resolution of 
the figures can be specified and is irrespective of the number of bins used. As the number of 
bins can be interpreted as the resolution of the figure, a larger number of bins produces a more 
precise figure. However, increasing the number of bins also increases computation time which 
means a balance must be struck.

In appendix 3, we present the influence of different bin sizes. Using 50-500 bins (appendix 3, 
figures a and b), yields a density gradient that is not smooth and may appear like the image 
is pixelated. With 1000 bins (appendix 3, figure c), the image is smooth, no pixilation can be 
identified, and all the computation is performed within one minute on the aforementioned 
consumer grade computer. With more bins (2000, appendix 3, figure d), the image does not 
get smoother but it does lead to increased RAM usage and computation time. We therefore 
recommend using 1000 bins and have used this number of bins in all figures throughout 
the manuscript, unless otherwise stated. 

The h argument of the kde2d function determines the bandwidth of the kernel areas. It can be 
interpreted as the size of the kernels that is applied when converting each data point to a data 
kernel. We have chosen to leave this at the default setting where the bandwidth is automatically 
selected based on the data by the well-established MASS package (specifically, the bandwidth.
nrd function) [19]. This guarantees generalisability of results.

Number of PSA iterations
As in any PSA, it is preferred to run as many iterations as necessary to reach model convergence 
[3]. We explored the influence of the number of iterations used by varying this between 1000 – 
100,000 iterations, as presented in appendix 4. As RAM usage and computation time increases 
when more iterations are used, we recommend using a maximum of 10,000 iterations. Running 
the script with 10,000 iterations takes a maximum of 1 minute. In all figures throughout this 
manuscript, we have used 10,000 iterations unless otherwise stated.

User modifications
Other parameters that can be altered by the user are contour levels, axis-, legend- and plot titles, 
font sizes and font types. In the supplied script, it is explained how and where this can be done. 
Apart from these cosmetic changes, we provide means to zoom on a particular area of the plot 
and generate a new plot from that specific area, as well as two rendering options to avoid clipping 
of contour labels in these zoomed images. Appendix 5 displays this zooming capability. We also 
provide a feature that allows users to plot willingness to pay (WTP) thresholds in the PSA-ReD 
plot, as well as plotting the base case scenario and the average of the PSA. Appendix 2 provides 
in-depth explanations on the use of the various features described above.
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Case study demonstration
To demonstrate the novel graphical presentation, the concept was applied to three exemplary 
case studies. The first case study is a theoretical example which assumes a model with only two 
standard normally distributed parameters (mean = 0 and standard deviation = 1) that define 
the incremental costs and incremental QALYs.

The two real-world case studies were selected as a convenience sample as we needed access to 
the raw PSA results and because the case studies should have been published. The two selected 
cases each show a different pattern within the PSA results. Both patterns are commonly seen in 
economic evaluations. The first real-world case study assesses the influence of three characteristics 
(cost, specificity and sensitivity) on cost-effectiveness of a hypothetical pharmacogenomic test 
for prevention of angiotensin-converting enzyme inhibitor induced angioedema (denoted as 
‘eHTA study’) [21]. The second real-world case study used a three-state partitioned survival 
model to investigate cost-effectiveness of periodic therapeutic drug monitoring of endoxifen 
levels in breast cancer patients (denoted as ‘TDM study’) [22]. 

RESULTS

Normal distribution case study
The traditional CE-plane of the bivariate normal model would look like figure 1a. The base 
case would be at zero incremental costs and zero incremental QALYs. Though we can see that 
the borders of the area are less densely populated, it is unclear how the density of iterations is 
spread over the populated area. If instead we look at the PSA-ReD plot in figure 1b, it becomes 
clear that the density is evenly spread around the base case, as would be expected for this 
normally distributed data. Additionally, the contours give insight into the spread of the iterations. 
In this case study, the area containing 95% of the iterations will approximate that of a 95% 
confidence interval because we used normal distributions. A bivariate normal distribution is 
distributed according to the χ2-distribution with two degrees of freedom [23]. Taking the square 
root of the critical value for the 95% confidence interval (5.99), results in the area borders of 
the confidence interval (2.45). This is clearly shown by the contours in the PSA-ReD plot. In 
general, the probability that the values for two variables within a joint distribution together fall 
in any area of their two dimensions is given by the volume (or cumulative probability) under 
the density function above that area. This is exactly what the PSA-ReD method calculates when 
providing the contours. 

eHTA case study
The results of the PSA of the eHTA study are presented in figure 2. This figure shows the PSA 
results both in traditional presentation (2a) as well as via the PSA-ReD plot (2b). The figures are 
both based on 5000 PSA iterations, as this reflects the number of iterations in the published paper 
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[21]. The classic CE-plane implies more spread due to a small number of iterations that generate 
relatively high incremental QALYs. However, the PSA-ReD plot shows these are extremely 
infrequent and fall outside the contour area that includes 95% of the iterations. Additionally, 
apparently 10% of all iterations appear within an area of approximately 0.05 incremental QALYs 
(0.0 – 0.05) and 1000 incremental euros (4000 – 5000). Particularly interesting is that the base 
case falls well outside this most dense area. This is contrary to what would be expected in a PSA 
as generally, the most likely outcome for the incremental cost-effectiveness ratio (ICER) based 
on the individual distributions of parameters is close to the base case. Thus, one would expect 
the highest density area to be surrounding the base case. 

However, when one of the model parameter distributions is skewed (i.e. a beta or gamma 
distribution), the resulting average of all PSA samples will, by definition, not lie on the point 
of highest density as the average will lean towards the tail of the specific distribution. In 
certain parameterisations of the beta and gamma distributions (e.g. when α < 1 and β > α), 
the base case value will not be the value with the highest probability density of that specific 
distribution. Instead, the value of 0 will have the highest probability density. In the eventual 
PSA-ReD plot, this effect attenuates the area of highest density away from the base case towards 
0 as is especially apparent in this case study. This information cannot be interpreted from 
the traditional CE-plane. Therefore the PSA-ReD plot can provide modellers with information 
regarding model behaviour. 

A .csv datafile with the incremental QALYs (x-values) and incremental costs (y-values) of 
the eHTA PSA results is provided in the GitHub repository to allow the reader to recreate 
the PSA-ReD [14].

TDM case study
Figure 3 shows the PSA results from the TDM case study both in traditional presentation (3A) 
as well as via the PSA-ReD plot (3B). Both figures are based on 10,000 PSA iterations. Density 
in the classic CE-plane is not interpretable but suggests a relatively high density around the base 
case and in the upper left corner of the plane. Additionally, there seems to be accumulation of 
iterations along the Y-axis. The PSA-ReD plot more precisely clarifies the high density that is 
found within the small area near the origin. Additionally, the relatively high density suggested 
by the CE-plane around the Y-axis is put into perspective by the PSA-ReD plot, clarifying that 
these scenarios are relatively infrequent. 



150

Figure 2a. Probabilistic sensitivity analysis results of eHTA-study using the traditional scatter plot 
presentation. Generated using 5000 PSA iterations. 

Figure 2b. Probabilistic sensitivity analysis output of eHTA-study using the PSA-ReD presentation. 
Generated using 5000 PSA iterations and 1000 bins. 
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Figure 3a. Probabilistic sensitivity analysis results of TDM study using the traditional scatter plot 
presentation. Generated using 10,000 PSA iterations.

Figure 3b. Probabilistic sensitivity analysis results of TDM study using the PSA-ReD presentation. 
Generated using 10,000 PSA iterations and 1000 bins.  
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DISCUSSION

In the theoretical case study we demonstrated the application and interpretation of the relative 
density estimation function and the applied normalisation of the values on which the PSA-ReD 
plot is based. In the real-world case studies we demonstrated how the PSA-ReD plot provides 
more insight into the relative density and cumulative area probabilities. Thus, the PSA-ReD 
plot provides visual information that is not provided by the traditional PSA scatter plot within 
the CE-plane nor by solely a density plot or a contour plot.

The benefits of the PSA-ReD plot over the traditional scatter plot are evident. The accumulation 
of PSA results within certain areas of the cost-effectiveness plane cannot be interpreted by 
the traditional scatter plot. The PSA-ReD plot not only clearly visualises the location of these 
high-density areas, it also provides a quantification of the proportion of PSA iterations within 
these areas. Additionally, inappropriate significance could be attributed to relatively infrequent 
PSA iterations in the traditional scatter plot. The PSA-ReD plot diminishes this effect.

The PSA-ReD plot provides modellers with increased insight into the relation between all input 
parameter distributions and the subsequent distribution of model outcomes. This can serve as 
an additional validation to confirm the model works as intended. Besides additional information 
for modellers, the PSA-ReD plot provides additional insights for decision-makers. Decision-
makers are often the end user of models but are generally not as familiar with health economic 
modelling practices. To assist decision-making by end users it is crucial to provide intuitive 
and informative presentations of the outcomes of health economic models. The PSA-ReD plot 
informs decision-makers about the relative and cumulative likelihood of areas of incremental 
costs and incremental outcomes in an intuitive figure. 

Currently, R packages exist that provide the option for plotting density figures. However, 
the corresponding documentation is typically hard to decipher and interpret for inexperienced 
users, the packages lack abilities for user adjustments and the packages typically require the user 
to perform all model syntax according to the construct of these packages. The heemod package 
for example, is a package specifically designed for cost-effectiveness analysis [12]. Though it 
does provide the option of generating a density plot, this does not generate contours nor does 
it provide user options such as the plotting of WTP-thresholds. To display results in a density 
plot using the heemod package, users need to understand and use the heemod package syntax. 
Another example is the BCEA package which has a variety of graphical capabilities but also 
requires users to use the specific syntax [13]. An alternative previously described approach to 
illustrate areas with a specific cumulative probability is the ellipse, for example implemented as 
a 95% confidence ellipse by Pradelli et al. and as an option in the software suite TreeAge [24,25]. 
This approach has several weaknesses. First, it assumes the underlying distribution is circular. 
This would be correct for our normally distributed example but is clearly not suitable for the two 
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real-world case studies. Our non-parametric density estimation does not rely on this assumption. 
Second, there is no single or clear method on how to generate the ellipse which potentially 
limits generalisability. Indeed, the example of Pradelli et al. does not describe the methodology 
used to generate their ellipse. Third, there is no readily available and generic implementation of 
the ellipse methodology in for example Excel or R, so this functionality could only be available 
if the health-economic model is built within a specific proprietary software package. 

Our approach to the PSA-ReD plot is specifically designed to combine a density plot with 
a contour plot in one figure and to be used with any model and any software, as long as the user 
is able to extract the PSA x- and y-values and save them as an .RData, Microsoft Excel or .csv file 
which thereafter can be imported into R using our script.

To facilitate the use of our method we provided a step-by-step tutorial on GitHub to generate 
the PSA-ReD plot based on PSA results from any user’s own research This tutorial is designed 
to also accommodate users with very basic R knowledge. Additionally, generating a variety of 
PSA-ReD plots is easier and quicker than generating multiple attractive plots in Excel. 

For modelers who do not wish to use or explore R, It is possible to generate a 2D histogram 
with colours within Excel. This approximates the density part of the PSA-ReD plot but lacks 
the kernel density estimation and contours. It also does not provide the option for adding WTP 
thresholds nor any of the user options to adjust the figure to make it more visually attractive. An 
Excel file including the Visual Basics Application syntax can be requested from the authors by 
any interested reader. We however highly recommend to use R for PSA-ReD generation. 

The PSA-ReD script bases the size of the plot exactly on the minimum and maximum values of 
the PSA iterations in the dataset. This means that four PSA points (or less if they define a corner) 
lie exactly on the borders of the PSA-ReD figure. As plots usually have some space around 
the minimum and maximum values, this may make the initial interpretation of the total range 
slightly harder, but we believe that this yields the best insight into the (distribution of) high 
density areas as the plot size is kept as small as possible. 

The provided R script provides a selection of user options to modify the generated plot. These 
options and settings are aimed at providing all the functionalities that users of the current 
scatter plots require. Though experienced R users may be able to further customise the script, 
novel users are encouraged to apply the options provided in this paper to ensure generalisability 
of the PSA-ReD plot generated by different users. 
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CONCLUSION

The proposed PSA-ReD plot facilitates intuitive visual interpretation of information included in 
PSA results that cannot be interpreted from the traditional scatter plot. Specifically, the PSA-ReD 
plot provides quantitative information on the relative density of PSA iterations throughout 
the cost-effectiveness plane and the cumulative probability of PSA iterations within predefined 
areas of the cost-effectiveness plane. The PSA-ReD plot is particularly useful to identify 
the location of the highest-density areas, quantify their cumulative density, and to reduce over-
emphasis of infrequent PSA iterations. We suggest using the PSA-ReD plot to visualise PSA 
results in order to benefit interpretation of PSA results of health-economic models.
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Figure A. Figure with only the density rendered, generated using 1000 bins and 10,000 PSA iterations.

Figure B. Figure with only the contours rendered, generated using 1000 bins and 10,000 PSA iterations. 

APPENDICES

Appendix 1: Figures of Components of PSA-ReD



METHODS FOR MANAGING UNCERTAINTY 157

4.2

Appendix 2: Detailed information on user modifications and the hard- and 
software used for PSA-ReD development

Hardware and software used
Various packages exist for rendering plots and figures. We have selected ggplot2 as renderer 
as it is free, open source, very versatile, easy to interpret and very well supported [26]. Besides 
ggplot2 version 3.0.0, the following R packages were used: MASS version 7.3-50 to perform kde, 
directlabels version 2018.05.22 to add contour labels, grid version 3.5.1 and gridExtra version 
2.3 for conveniently displaying and zooming the figures and reshape2 version 1.4.3 for data 
preparation [19,27-29]. The supplied script handles installing and/or loading of these packages. 
For our analyses, we used a standard consumer grade personal computer (Dell Optiplex 9020, 
Intel® Core™ i5-4590 CPU @ 3.30 GHz, 8.00 GB Random Access Memory (RAM), 500GB 
7200RPM Hard Disk Drive, Windows 10 Enterprise © 2017 Microsoft Corporation). 

Zooming
As the initial plot range is chosen on the maximum and minimum x and y values, this implies 
that some data points are removed when zooming in. We do however think that adding this 
option is justified as, when using a very large PSA sample (i.e. 100,000). This is because a few 
extreme values will increase the plot size and may limit they interpretability of the area of 
interest. The implementation of zooming is chosen so that the plot itself is trimmed instead of 
trimming the underlying data. This conserves the underlying data structure and is analogous to 
simply selecting a small part of an existing larger figure. Users can use the zoom functionality 
by specifying a specific x and y range. 

When zooming, users have to pay attention to whether the contour labels are clipped from 
the plot area. We have supplied a setting that can deal with this issue but it does require the user 
to evaluate their zoomed figure and choose the most appropriate figure. In the scenario analyses, 
we have shown the influence of this setting. 

Saving
Figures can be saved using functions that are supplied in the script. The path and filename can 
be set by the user. Besides these settings, one can choose the resolution (as dpi) with which 
the figure is saved. We specifically chose the dpi as setting to alter the eventual figure size, as it 
does not influence the relative sizes of the various figure elements.

When saving the figure, one can choose the figure to be saved exactly like it appears in 
the Rstudio “Plots” panel. As different users and computers could have differently sized “Plots” 
panels, we supply a means to specify the required width and height of the figures. This ensures 
that different users can easily generate the same PDP when using the same data and settings. 
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Plotting Willingness To Pay threshold
Willingness to pay (WTP) thresholds are regularly plotted in the traditional PSA scatter plot. 
We have built a feature that allows users to specify one or more WTP thresholds. If one wishes 
to plot these thresholds, the WTP thresholds should be stored in the vector “WTP.thresholds” 
which is present in the script.

Appendix 3: Influence of bin size on PSA-ReD plots

Figure a. Bin size = 50, 10,000 PSA iterations

Figure b. Bin size = 500, 10,000 PSA iterations
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Figure c. Bin size = 1000, 10,000 PSA iterations

Figure d. Bin size = 2000, 10,000 PSA iterations 
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Appendix 4: Influence of number of PSA iterations on PSA-ReD plots

Figure a. Bin size = 1000, 1000 PSA iterations

Figure b. Bin size = 1000, 5000 PSA iterations
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Figure c. Bin size = 1000, 10,000 PSA iterations

Figure d. Bin size = 1000, 100,000 PSA iterations
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Appendix 5: Zoom functionality and influence of clip argument

Figure a. zoomed PSA-ReD plot, clip = FALSE. Bin size = 1000, 10,000 PSA iterations

Figure b. zoomed PSA-ReD plot, clip = TRUE. Bin size = 1000, 10,000 PSA iterations
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Appendix 6: Script for generated PSA-ReD plots
# PSA-ReD Plot Generator v1.0.1. Use this script to make your own PSA-ReD plots.   

# Copyright (C) 2019, Joost Geenen 

# This program is free software: you can redistribute it and/or modify it under 

# the terms of the GNU General Public License as published by the 

# Free Software Foundation, either version 3 of the License,  

# or (at your option) any later version. 

 

# This program is distributed in the hope that it will be useful,  

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  

# See the GNU General Public License for more details. 

 

# You should have received a copy of the GNU General Public License along with 

# this program. If not, see <https://www.gnu.org/licenses/>. 

 

### -------------- Do not change the part in between / below -------------- ### 

### ----------------------------------------------------------------------- ### 

 

# The code below installs and/or loads the required packages.  

 

if (!require(‘ggplot2’)) { 

  install.packages(“ggplot2”, dependencies = TRUE) 

} 

library(‘ggplot2’) 

 

if (!require(‘MASS’)) { 

  install.packages(“MASS”, dependencies = TRUE) 

} 

library(‘MASS’) 

 

if (!require(‘directlabels’)) { 

  install.packages(“directlabels”, dependencies = TRUE) 

} 

library(‘directlabels’) 

 

if (!require(‘grid’)) { 

  install.packages(“grid”, dependencies = TRUE) 

} 

library(‘grid’) 
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if (!require(‘gridExtra’)) { 

  install.packages(“gridExtra”, dependencies = TRUE) 

} 

library(‘gridExtra’) 

 

if (!require(‘reshape2’)) { 

  install.packages(“reshape2”, dependencies = TRUE) 

} 

library(‘reshape2’) 

 

# The code below loades custom functions 

 

ProcessContourData <- function(kde.data) { 

  # Processess kde data for plotting the contours.   

  #  

  # Args: 

  #  kde.data: a list containing the kernel density data, 

  #  which is generated using the ‘data’ which the user loaded.  

  # 

  # Returns:  

  #  A dataframe containing the cumulative density per x and y. 

   

  kde.dx <- diff(kde.data$x[1:2]) # Width of 1 bin (x-axis) 

  kde.dy <- diff(kde.data$y[1:2]) # Height of 1 bin (y-axis)  

  kde.sz <- sort(kde.data$z)      # Sorted density per bin       

  kde_c1 <- cumsum(kde.sz) * kde.dx * kde.dy # Sorted density per bin area 

   

  dimnames(kde.data$z) <- list(kde.data$x, kde.data$y) # Density per x and y  

  kde_dc <- melt(kde.data$z)      # Melt list  

   

  # Interpolate the density values to a range of [1,0] 

  # This yields cumulative probability as density is sorted from high to low 

  kde_dc$contour.levels <- approx(kde.sz, 1 - kde_c1, kde_dc$value)$y  

   

  # Convert to data.frame 

  plot.data.contour <- data.frame(x = kde_dc[, 1], 

                                  y = kde_dc[, 2], 

                                  contour.levels = kde_dc[, 4]) 

  return(plot.data.contour) 

} 
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GenerateNormalisedDensity <- function(kde.data) { 

  # Normalises the density to 1 and generates a matrix for plotting the density 

  #  

  # Args: 

  #  kde.data: a list containing the kernel density data, 

  #  which is generated using the ‘data’ which the user loaded.  

  #  

  # Returns:  

  #  A dataframe containing the relative density per x and y. 

  x <- kde.data$x 

  y <- kde.data$y 

   

  df.density   <- expand.grid(X = x, Y = y) 

  df.density$Z <- as.numeric(unlist(kde.data$z)) 

   

  df.density.normalised   <- df.density 

  df.density.normalised$Z <- df.density.normalised$Z *  

    (1 / max(df.density.normalised$Z)) 

   

  return(df.density.normalised) 

} 

 

GeneratePlot <- function(df.density.normalised,  

                         legend.title, 

                         plot.data.contour, 

                         contour.levels, 

                         font.size, 

                         font.face, 

                         font.family, 

                         x.axis.title, 

                         y.axis.title, 

                         x.range, 

                         y.range, 

                         clipping, 

                         extend.panel,  

                         WTP.thresholds, 

                         basecase, 

                         average.PSA) { 

  # Generates the ggplot object that can be plotted.  

  # 
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  # Args: 

  #   df.density.normalised: A dataframe consisting of the normalised relative  

  #                          density per x and y.     

  #   legend.title:          The title of the legend.  

  #   plot.data.contour:     A dataframe containing the cumulative density  

  #                          per x and y.  

  #   contour.levels:        A vector containing the specified contour levels.  

  #   font.size:             The font size of characters in the plot 

  #   font.face:             The font face (ie, bold, italic) of the characters 

  #                          in the plot 

  #   font.family:           The font family (ie, sans) of the characters 

  #                          in the plot 

  #   x.axis.title:          The x-axis title.  

  #   y.axis.title:          The y-axis title. 

  #   x.range:               The range of values on the x-axis,  

  #                          as a vector (min, max) 

  #   y.range:               The range of values on the y-axis, 

  #                          as a vector (min, max) 

  #   clipping:              A Boolean specifying whether contour labels 

  #                          may be clipped from the plot area. 

  #   extend.panel:          A Boolean specifying whether the grid panel  

  #                          may be extended.  

  #   WTP.thresholds:        A vector containing WTP thresholds to draw.  

  #   basecase:              A vector as: (incremental QALYs, incremental costs)                        

  #   average.PSA:           A vector as: (incremental QALYs, incremental costs) 

  # 

  # Returns: 

  #   A gtable object with the plot data.   

   

  if (missing(x.range)) { 

    x.range <- c(min(df.density.normalised$X), max(df.density.normalised$X)) 

  } 

   

  if (missing(y.range)) { 

    y.range <- c(min(df.density.normalised$Y), max(df.density.normalised$Y)) 

  } 

   

  if (!is.null(average.PSA) | !is.null(basecase) | !is.null(WTP.thresholds)) { 

    density.barheight <- NULL 

  } else { 

    density.barheight <- 15 
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  } 

   

  element.list <- list() 

  label.list1  <- list(“far.from.others.borders”,  

                       “calc.boxes”,  

                       “enlarge.box”, 

                       rot = 0, 

                       hjust = 0,  

                       vjust = 0,  

                       box.color = NA, 

                       fill = “transparent”,  

                       “draw.rects”) 

   

  if (!is.null(WTP.thresholds)) { 

    # Initialise segment dataframe 

    segment.df <- as.data.frame(matrix(0, ncol = 6,  

                                       nrow = length(WTP.thresholds))) 

    min.x <- min(df.density.normalised$X) 

    min.y <- min(df.density.normalised$Y) 

    max.x <- max(df.density.normalised$X) 

    max.y <- max(df.density.normalised$Y) 

    colnames(segment.df) <- c(“segment,start.x”, “segment.end.x”, 

                              “min.y”, “max.y”, “WTP Threshold”, “i”) 

    # Calculate the coordinates of each WTP segment  

    for(i in 1:length(WTP.thresholds)) { 

      segment.start.x <- min.y / WTP.thresholds[i] 

      segment.end.x <- max.y / WTP.thresholds[i] 

       

      if (segment.end.x > max.x){ 

        segment.end.x <- max.x  

        max.y <- WTP.thresholds[i] * max.x 

      } 

      if(segment.start.x < min.x) { 

        segment.start.x <- min.x 

        min.y <- WTP.thresholds[i] * min.x 

      } 

       

      # For when a segment is entirely out of the plot window 

      if( segment.start.x > max.x){ 

        segment.start.x <- min.x 

        segment.end.x <- min.x 



168

        min.y <- min(df.density.normalised$Y) 

        max.y <- min(df.density.normalised$Y) 

      } 

      segment.df[i,] <- c(segment.start.x, segment.end.x, min.y, max.y,  

                          WTP.thresholds[i], i) 

    }   

    WTP <- factor(segment.df[, 6], labels = as.character(segment.df[, 5])) 

  }  

   

  # Generate plot using ggplot() call 

  plot.contour <- ggplot(data = df.density.normalised,  

                         aes(x = X, y = Y, z = Z)) +  

    geom_tile(aes(fill = Z), alpha = 1) +  

    scale_fill_distiller(name      = legend.title, 

                         palette   = “Spectral”,  

                         direction = -1, 

                         guide     = “colourbar”) +  

    theme_minimal()  + 

    geom_contour(aes(z  = plot.data.contour$contour.levels), 

                 breaks = rev(contour.levels), 

                 size   = 0.5, 

                 colour = “black”) + 

    theme(panel.grid.major = element_line(colour = “gray30”, size = 0.25), 

          panel.grid.minor = element_line(colour = “gray30”, size = 0.25), 

          panel.ontop      = TRUE, 

          text             = element_text(size = font.size,  

                                          family = font.family,  

                                          face   = font.face), 

          legend.spacing.y = unit(0.15, “cm”)) + 

    labs(x = x.axis.title,  

         y = y.axis.title) + 

    guides(fill = guide_colourbar(barheight = density.barheight)) 

   

  if (!is.null(WTP.thresholds)) { 

    element.list <- append(element.list,  

                           geom_segment(data = segment.df,  

                                        aes(x    = segment.df[, 1], 

                                            xend = segment.df[, 2], 

                                            y    = segment.df[, 3], 

                                            yend = segment.df[, 4],  

                                            linetype = WTP), 
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                                        color = “black”, 

                                        size  = 0.5, 

                                        inherit.aes = F))  

  }  

   

  if (!is.null(average.PSA) & !is.null(basecase)) { 

    point.df <- rbind.data.frame(average.PSA, basecase) 

    point.df <- cbind(point.df, c(“Average”, “Base case”)) 

    colnames(point.df) <- c(“x”, “y”, “Type”) 

    points.data <- factor(c(1, 2), labels = as.character(point.df$Type)) 

     

    element.list <- append(element.list, geom_point(inherit.aes = F, 

                                                    data = point.df, 

                                                    aes(x = x, 

                                                        y = y, 

                                                        group = “Type”, 

                                                        shape = points.data), 

                                                    color = “black”, 

                                                    fill  = “red”, 

                                                    size  = 3))  

    element.list <- append(element.list, 

                           scale_shape_manual(name = “Points”,  

                                              values = c(23, 21),  

                                              labels = c(“Average”, 

                                                         “Base case”))) 

  } else if (!is.null(average.PSA) & is.null(basecase)) { 

    point.df <- rbind.data.frame(average.PSA) 

    point.df <- cbind(point.df, c(“Average”)) 

    colnames(point.df) <- c(“x”, “y”, “Type”) 

    points.data <- factor(c(1), labels = as.character(point.df$Type)) 

     

    element.list <- append(element.list, geom_point(inherit.aes = F, 

                                                    data = point.df, 

                                                    aes(x = x, 

                                                        y = y, 

                                                        group = “Type”, 

                                                        shape = points.data), 

                                                    color = “black”, 

                                                    fill  = “red”, 

                                                    size  = 3))  

    element.list <- append(element.list, 
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                           scale_shape_manual(name = “Points”,  

                                              values = c(23),  

                                              labels = c(“Average”))) 

  } else if (is.null(average.PSA) & !is.null(basecase)) { 

    point.df <- rbind.data.frame(basecase) 

    point.df <- cbind(point.df, c(“Base case”)) 

    colnames(point.df) <- c(“x”, “y”, “Type”) 

    points.data <- factor(c(1), labels = as.character(point.df$Type)) 

     

    element.list <- append(element.list, geom_point(inherit.aes = F, 

                                                    data = point.df, 

                                                    aes(x = x, 

                                                        y = y, 

                                                        group = “Type”, 

                                                        shape = points.data), 

                                                    color = “black”, 

                                                    fill  = “red”, 

                                                    size  = 3))  

    element.list <- append(element.list, 

                           scale_shape_manual(name = “Points”,  

                                              values = c(21),  

                                              labels = c(“Base case”))) 

  } 

   

  element.list <- append(element.list,  

                         geom_dl(aes(label = ..level..,  

                                     x = plot.data.contour$x, 

                                     y = plot.data.contour$y,  

                                     z = plot.data.contour$contour.levels,  

                                     fontface = “bold”), 

                                 inherit.aes = F, 

                                 color = “gray15”, 

                                 cex = 0.75, 

                                 method = label.list1, 

                                 stat = “contour”,  

                                 breaks = rev(contour.levels))) 

   

  if (clipping == FALSE) { 

    # Limits rendering to given coordinates,  

    # does not exclude (clip) data during plot generation 

    element.list <- append(element.list, coord_cartesian(xlim = x.range, 
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                                                         ylim = y.range, 

                                                         expand = FALSE)) 

  } else { 

    # Clip datapoints to fall within a range 

    element.list <- append(element.list, xlim(x.range)) 

    element.list <- append(element.list, ylim(y.range))                            

  } 

   

  # Add elements stored in element.list 

  plot.contour <- plot.contour + element.list 

   

  if (extend.panel == TRUE) { 

    # Extend the plot panel outside of the density area 

    # so that contour labels are not partially cropped.  

    plot.contour <- ggplot_gtable(ggplot_build(plot.contour)) 

    plot.contour$layout$clip[plot.contour$layout$name == “panel”] <- “off” 

  } 

  return(plot.contour) 

} 

 

message(“Copyright (C) 2019, Joost Geenen\n”, 

        “This program comes with ABSOLUTELY NO WARRANTY.\n”, 

        “This is free software, and you are welcome to redistribute it”, 

        “ under certain conditions.\n”, 

        “You should have received a copy of the GNU”, 

        “ General Public License along with this program.\n”, 

        “If not, see <https://www.gnu.org/licenses/>.”) 

### ----------------------------------------------------------------------- ### 

### -------------- Do not change the part in between / above -------------- ### 

 

### ----------------------------------------------------------------------- ### 

### ------------------ Setup your data and plot settings ------------------ ### 

 

# Your raw data should have the following characteristics: 

 

# - Saved as a .csv file 

# - The first column should be incremental effects (QALYs / LYs / etc) 

# - The second column should be incremental costs 

 

# Then, prepare to load your data: 
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# - set the filename of your raw datafile, do not forget the .csv 

# - set whether your data has a header (ie, column names) 

# - set the type of decimal seperator (, or . within “ “) 

# - set the column separator used for your .csv file (within “ “).  

# You can see the seperator when opening your csv file with, for example, Excel.  

filename   <- “YourData.csv” 

has.header <- FALSE 

decimal.separator <- “,” 

column.separator  <- “;” 

 

# We recommend 10.000 rows, although somewhere between  

# 1.000 and 100.000 will produce proper figures.  

# More than 10.000 will slow various computations whilst  

# it does not add information to your plots.  

# We therefore recommend a maximum number of rows of 10.000  

# If you would like to limit your rows to this number,  

# set the ‘limit_rows’ variable to TRUE and specify  

# the number of rows in number_rows:  

# If your data has less than 10.000 rows, leave this setting at FALSE.  

limit.rows <- TRUE 

number.rows <- 10000 

 

# The number of bins determines the granularity of the plot.  

# Warning: Larger bin numbers require more RAM.  

# 1000 bins typically produces images without pixelation.  

# More bins does not provide better images whilst it increases computation time. 

# Less bins (eg, 100, 500), provide decent figure with limited RAM usage and  

# reduced computation time.  

# We therefore recommend using 1000 bins.  

 

# set bin.number here 

bin.number <- 1000 

 

# You can specify the following plot characteristics:  

# - specify desired contour levels.  

# - set as, for example: contour.levels <- c(0.9, 0.5, 0.1) 

contour.levels <- c(0.9, 0.5, 0.1) 

 

# - Specify WTP thresholds to add to the plot.  

#   Example: WTP.thresholds <- c(30000, 80000) 

#   If you don’t want to add these, run “WTP.thresholds <- c()” 
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WTP.thresholds <- c(20000, 50000, 80000) 

 

# - If you want to add the base-case results to your plot,  

#   set as: “basecase <- c(<basecase incr. QALYs>, <basecase incr. costs>) 

#   Example: basecase <- c(0.5, 2000) 

#   If you don’t want to add this, set: “basecase <- c()” 

basecase <- c() 

 

# - If you want to add a marker with the average of the PSA iterations,  

#   set add.average.PSA <- TRUE 

add.average.PSA <- TRUE 

 

# - Set Font Title for the Plot 

x.axis.title <- “Incremental QALYs” 

y.axis.title <- “Incremental Costs” 

font.size    <- 14 

 

# - Set font characteristics for the plot 

font.face    <- “bold”         ## choose bold or plain or italix 

font.family  <- “sans”         ##  

legend.title <- “Density”      ## Set your desired legend title 

 

# Now, proceed running the following parts,  

# parts within a ‘do not change the part in between / below (or above) 

# should just be run but do not require input from the user.  

 

### -------------------- End of data and plot settings -------------------- ### 

### ----------------------------------------------------------------------- ### 

 

### -------------- Do not change the part in between / below -------------- ### 

### ----------------------------------------------------------------------- ### 

 

# Load data 

data <- read.csv(file   = filename,  

                 header = has.header,  

                 dec    = decimal.separator,  

                 sep    = column.separator) 

 

print(paste(“your data has”, as.character(nrow(data)), “rows”)) 

if (limit.rows == TRUE & nrow(data) > number.rows){ 

  data <- data[1:number.rows, ] 
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} 

 

# Perform kernel density estimation 

kde.data <- kde2d(data[, 1], data[, 2], n = bin.number) 

plot.data.contour     <- ProcessContourData(kde.data) 

df.density.normalised <- GenerateNormalisedDensity(kde.data) 

 

# Calculate average PSA results 

if (add.average.PSA == TRUE) { 

  average.PSA <- c(mean(data[, 1]), mean(data[, 2])) 

} else { 

  average.PSA <- NULL 

} 

 

# Generate the ggplot plot object 

contour.plot <- GeneratePlot(df.density.normalised,  

                             legend.title, 

                             plot.data.contour, 

                             contour.levels, 

                             font.size, 

                             font.face, 

                             font.family, 

                             x.axis.title, 

                             y.axis.title, 

                             clipping = FALSE, 

                             extend.panel = TRUE, 

                             WTP.thresholds = WTP.thresholds, 

                             basecase = basecase, 

                             average.PSA = average.PSA) 

 

# Display the plot 

grid.newpage() 

grid.draw(contour.plot) 

### ----------------------------------------------------------------------- ### 

### -------------- Do not change the part in between / above -------------- ### 

 

### -------------------- Options for Saving your plot --------------------- ### 

### ----------------------------------------------------------------------- ### 

 

# If you wish to save this plot, enter the required filename and settings here 
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# Set the file name of the new plot.  

# WARNING: It will overwrite files / plots with the same name! 

filename <- “Figurename.PNG” 

 

# Set plot dpi (resolution) 

dpi <- 600 

 

# Use size of the “Plots” Panel in Rstudio? 

# “TRUE” will guarantee that your figure is saved exactly like you see it now.  

# Another user, with a differently sized “Plots” panel,  

# will then however get a different plot using the same data 

# Selecting “FALSE” allows you to specifiy your own, fixed figure size. 

# This figure will be different from the one you see in your “Plots” panel 

# But you will then reproduce this exact figure using the size values values.  

use.my.panel.size <- FALSE 

 

# If you have set use.my.panel.size to FALSE, set the plot size in inches: 

plot.width  <- 8.47 

plot.height <- 4.25 

 

# Saving is now set-up, run the part below.  

 

### -------------- Do not change the part in between / below -------------- ### 

### ----------------------------------------------------------------------- ### 

if (use.my.panel.size == TRUE) { 

  ggsave(contour.plot, filename = filename, dpi = dpi) 

} else { 

  ggsave(contour.plot, filename = filename, dpi = dpi, 

         width = plot.width, height = plot.height, units = “in”) 

} 

### ----------------------------------------------------------------------- ### 

### -------------- Do not change the part in between / above -------------- ### 

 

### -------------- Options for zooming in on a specific area -------------- ### 

### ----------------------------------------------------------------------- ### 

 

# If you wish, you can zoom in on a particular area of the plot.  

# Set x- and y range as c(min, max) 

x.range <- c(0, 0.5) 

y.range <- c(1500, 8000) 
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# To prevent the contour labels from clipping of the sides,  

# the drawing panel is extended.  

# This however, has some consequences when zooming.  

 

# Select ONE the following and then go to “Now, run the part below”: 

 

# 1 If your contour labels all lie within the plot, set:  

clip <- FALSE 

 

# If your contour labels (partly) fall outside the plot, you have 2 choices: 

# 1: Clip them off, which may yield a pretier plot. set: 

clip <- FALSE 

 

# 2: Extend panel and clip data to fit the panel, this may yield a pretier plot.  

# Set: 

clip <- TRUE 

 

# Now, run the part below.  

 

### -------------- Do not change the part in between / below -------------- ### 

### ----------------------------------------------------------------------- ### 

if (clip == FALSE) { 

  extend.panel <- FALSE 

  clipping     <- FALSE 

} else{ 

  extend.panel <- TRUE 

  clipping     <- TRUE 

} 

 

zoomed.plot <- GeneratePlot(df.density.normalised,  

                            legend.title, 

                            plot.data.contour, 

                            contour.levels, 

                            font.size, 

                            font.face, 

                            font.family, 

                            x.axis.title, 

                            y.axis.title, 

                            x.range, 

                            y.range, 

                            clipping, 
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                            extend.panel, 

                            WTP.thresholds, 

                            basecase, 

                            average.PSA) 

grid.newpage() 

grid.draw(zoomed.plot) 

### ----------------------------------------------------------------------- ### 

### ---------- Do not change the part in between / above ------------------ ### 

 

### -------------- Options for zooming in on a specific area -------------- ### 

### ----------------------------------------------------------------------- ### 

 

# If you wish to save this plot, enter the required filename and settings here 

 

# Set the file name of the new plot.  

# WARNING: It will overwrite files / plots with the same name! 

filename <- “Figurename.PNG” 

 

# Set plot dpi (resolution) 

dpi <- 600 

 

# Use size of the “Plots” Panel in Rstudio? 

# “TRUE” will guarantee that your figure is saved exactly like you see it now.  

# Another user, with a differently sized “Plots” panel, will then however  

# get a different plot using the same data 

# Selecting “FALSE” allows you to specifiy your own, fixed figure size. 

# This figure will be different from the one you see in your “Plots” panel 

# But you will then reproduce this exact figure using the size values values. 

use.my.panel.size <- FALSE 

 

# If you have set use.my.panel.size to FALSE, set the plot size in inches: 

plot.width  <- 8.47 

plot.height <- 4.25 

 

# Saving is now set-up, run the part below.  

 

### -------------- Do not change the part in between / below -------------- ### 

### ----------------------------------------------------------------------- ### 

 

if (use.my.panel.size == TRUE) { 

  ggsave(zoomed.plot, filename = filename, dpi = dpi) 
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} else { 

  ggsave(zoomed.plot, filename = filename, dpi = dpi, 

         width = plot.width, height = plot.height, units = “in”) 

} 

### ----------------------------------------------------------------------- ### 

### -------------- Do not change the part in between / above -------------- ###
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ABSTRACT

Objectives
Cost-effectiveness and affordability, typically quantified as Incremental Cost-Effectiveness Ratio 
(ICER) and Budget Impact (BI), are usually appraised separately to inform reimbursement 
decisions. Generally, uncertainty in ICER and BI are also assessed separately. Furthermore, 
evidence suggests that Willingness to Pay thresholds, which currently are usually static, should 
be more dynamic to properly include opportunity costs. We aim to provide a conceptual 
framework for united appraisal of BI, WTP and ICERs and their associated uncertainty where 
WTP is dynamic and influenced by BI. 

Methods
We selected the lung cancer drug nivolumab as a case study. We use three methods to quantify 
a potential relationship between WTP and BI, 1) a method based on a historical real-world 
reimbursement decision, an arbitrary method and a method based on a paper describing 
healthcare displacement in the Netherlands. We adapt Net monetary benefit (NMB) to 
a societal NMB (pNMB) and use this as outcome. pNMB can be calculated from WTP, ICER, 
BI and average treatment cost per patient. ICER, BI and treatment cost per patient, including 
uncertainty distribution, are adopted from the Dutch nivolumab reimbursement dossier. 

Results
A fixed WTP and the dynamic WTP method based on a study on displacement in Dutch 
healthcare yielded results where only the ICER determines whether pNMB is positive or 
negative. In this case, only the ICER determines the reimbursement decision and yielded 
a reimbursement likelihood of 63% and 54%, respectively. When using a method with a stronger 
relationship between BI and WTP, the sign of pNMB and therefore the reimbursement decision 
was simultaneously influenced by BI and the ICER. 

Conclusions
We have shown that pNMB can combine affordability and cost-effectiveness into a single metric 
and thus a single decision. The existence of an explicit relationship between BI and WTP is 
a prerequisite. This pNMB approach enables decision-makers to identify (combinations of) 
threshold values for the ICER and BI that are required, thereby potentially leading to improved 
decision-making. 
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5.1

INTRODUCTION

Cost-effectiveness and affordability, typically quantified as Incremental Cost-Effectiveness Ratio 
(ICER) and Budget Impact (BI), are two distinct aspects that are typically appraised separately 
to inform a reimbursement decision [1,2]. Crucially, uncertainty exists in the quantification 
of the ICER as well as BI and many different types of Managed Entry Agreements (MEA) 
have been designed to limit uncertainty (and related risk to a payer) in either affordability, 
cost-effectiveness or both [3–5]. Work has been undertaken to integrate the two concepts of 
affordability and cost-effectiveness but so far, none of these approaches have explicitly included 
a joint appraisal of uncertainty in both ICER and BI [1,6].

Budget Impact Analysis (BIA) is required for reimbursement applications in many jurisdictions 
[7–9]. Whilst submitting a BIA is often mandatory, the role of BI estimates in decision-making 
is less clear or less formal than, for example, the role of cost-effectiveness [10–13]. Many recent 
cases, (e.g. new drug introductions for hepatitis C), have however shown that BI can be a crucial 
and even a decisive factor in reimbursement decisions [7,11,14–19]. 

In a healthcare system with fixed budgets, new innovations can only be funded by savings or 
disinvesting in other care and thus cause displacement [1,8,20]. In healthcare systems with less 
restricted budgets, resources are still not unlimited so at least some opportunity costs will exist 
and decision-makers are still likely to prefer lower BI over higher BI [8,11]. Research shows that 
a high and / or highly uncertain BI is a potential risk to decision makers and that they are then 
more likely to limit reimbursement or to issue a type of MEA [9,14,19,21].

These displacement effects and opportunity costs should, at least to some degree, be reflected 
in The Willingness to Pay (WTP) threshold [1,8,9,17,20]. The WTP is typically used to reflect 
the maximum amount a decision-maker is willing pay for one additional Quality Adjusted Life 
Year (QALY). WTP could however also be regarded as the marginal cost per additional QALY 
[20]. If we assume that decision-makers have a preference for displacing high ICER care vs 
low ICER care and are able to implement this preference, we could state the following: A high 
BI would displace more care than a low BI would. So, when care is displaced from high to low 
ICER, the higher the BI, the lower the total ICERs that are displaced. As WTP should include 
displacement, a higher BI yields a lower WTP [20].

Currently, the WTP is primarily used to assess whether an intervention is cost-effective (i.e., 
WTP > ICER) and various jurisdictions employ a formal WTP threshold, which has explicit 
influence on decision-making [10,11]. The height of this WTP threshold is widely debated 
with recent evidence suggesting values of, for example, £12,946, €24,226, €74,000, and other 
more extreme values per QALY [20,22–25]. For example England and the Netherlands apply 
respective WTP ranges of £20,000 - £30,000 and €20,000 – €80,000 in practice [22,26]. WTP 
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ranges are for example based on a jurisdictions’ gross domestic product or on disease severity 
but they do not include BI as a factor [22,27].

Literature suggests that, given the implicit relation between BI, available budgets, displacement 
and WTP, achieving a single threshold is impossible and should never be used in practice but 
that the threshold should instead be related to BI and available budgets [1,17,28,29]. 

Recent work on this topic that aims to link affordability with cost-effectiveness using a more 
dynamic, BI based WTP still assesses affordability and cost-effectiveness as separate components 
[1]. Pearson describes that stakeholders struggle with assessing these separate components and 
their relation to a dynamic WTP [1].

Net Monetary Benefit (NMB) is a metric that has the potential to unify cost-effectiveness and 
affordability to provide healthcare gains and losses in monetary terms. It is typically defined  
as [30]:

Where NMB is calculated per person with ΔE being the difference in effectiveness (as QALYs) 
and ΔC being the difference in costs [30,31]. The ICER is calculated as ΔC / ΔE. It is possible 
to include the ICER in the per patient NMB calculation through dividing equation 1 by ΔE, 
resulting in:

In equation 2, WTP - ICER indicates the incremental monetary benefits or losses procured 
per gained QALY and ΔE indicates the number of QALYs gained per individual. The NMB 
on a population level could be derived by multiplying this per patient NMB by the number 
of patients treated with the new intervention. The number of patients treated can be derived 
from the BIAs as this is one of the underlying parameters on which BI is based [8,27,32,33]. 
Population NMB (pNMB) is thus calculated as:

Crucially, this formula retains the nonlinear characteristics of the initial NMB implementation 
as defined by equation 1.
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3.       
 

Crucially,  this  formula  retains  the  nonlinear  characteristics  of  the  initial  NMB 
implementation as defined by equation 1. 

The first part of equation 3 (WTP ‐ ICER) specifies whether the intervention is cost‐effective 
per unit of the intervention whilst the second part (BI / treatment cost per patient) can be 
interpreted as the number of units of the intervention that will be acquired. 

With a fixed WTP, BI has no influence on the sign of pNMB. As a decision rule, a positive 
pNMB (or Net Present Value, its general economic counterpart), would warrant a decision 
to invest whilst a negative pNMB would reject an investment [34]. Thus, based on equation 
3, BI would never have  a  role  in deciding whether  to  invest or not. When WTP would 
however be more dynamic, as literature has suggested it should be, pNMB could be a tool 
to assess reimbursement decisions that incorporates both cost‐effectiveness and BI. 

We  aim  to  provide  a  conceptual  framework  for  uniting  BI, WTP  and  ICERs  and  their 
associated uncertainty where WTP is dynamic and influenced by BI. We use nivolumab as a 
case study and employ three methods to describe and to quantify the influence of BI and 
WTP  and  provide  insight  into  the  impact  of  such  assumptions  on  decision‐making. We 
furthermore aim to show that pNMB, a metric based on the proven NMB, combined with a 
dynamic WTP could be the missing link in appraising and deciding on affordability vs cost‐
effectiveness with full incorporation of their individual uncertainty.  

 

METHODS 

Case study selection 

We selected nivolumab as a case study example from the Netherlands as its introduction 
was met with debate regarding its relatively high price and its high base‐case BI combined 
with  a  large  off‐label  potential  posing  a  substantial  risk  for  even  greater  BI  [35,36]. 
Additionally, the reimbursement dossier included a scenario (the scenario presented by the 
manufacturer) with an  ICER  (€62,277) below  the Dutch non‐binding WTP of €80,000  for 
diseases with highest disease severity [37]. With our aim of presenting a new conceptual 
framework for decision‐making, using a cost‐effective scenario is more informative than a 
non‐cost‐effective  scenario  as  the  latter  might  be  a  reason  to  reject  reimbursement 
irrespective of BI. Furthermore, the Probabilistic Sensitivity Analysis  (PSA) yielded results 
that resemble a normal distribution, improving interpretability.  
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5.1

The first part of equation 3 (WTP - ICER) specifies whether the intervention is cost-effective 
per unit of the intervention whilst the second part (BI / treatment cost per patient) can be 
interpreted as the number of units of the intervention that will be acquired.

With a fixed WTP, BI has no influence on the sign of pNMB. As a decision rule, a positive pNMB 
(or Net Present Value, its general economic counterpart), would warrant a decision to invest 
whilst a negative pNMB would reject an investment [34]. Thus, based on equation 3, BI would 
never have a role in deciding whether to invest or not. When WTP would however be more 
dynamic, as literature has suggested it should be, pNMB could be a tool to assess reimbursement 
decisions that incorporates both cost-effectiveness and BI.

We aim to provide a conceptual framework for uniting BI, WTP and ICERs and their associated 
uncertainty where WTP is dynamic and influenced by BI. We use nivolumab as a case study and 
employ three methods to describe and to quantify the influence of BI and WTP and provide 
insight into the impact of such assumptions on decision-making. We furthermore aim to 
show that pNMB, a metric based on the proven NMB, combined with a dynamic WTP could 
be the missing link in appraising and deciding on affordability vs cost-effectiveness with full 
incorporation of their individual uncertainty. 

METHODS

Case study selection
We selected nivolumab as a case study example from the Netherlands as its introduction was 
met with debate regarding its relatively high price and its high base-case BI combined with 
a large off-label potential posing a substantial risk for even greater BI [35,36]. Additionally, 
the reimbursement dossier included a scenario (the scenario presented by the manufacturer) 
with an ICER (€62,277) below the Dutch non-binding WTP of €80,000 for diseases with highest 
disease severity [37]. With our aim of presenting a new conceptual framework for decision-
making, using a cost-effective scenario is more informative than a non-cost-effective scenario 
as the latter might be a reason to reject reimbursement irrespective of BI. Furthermore, 
the Probabilistic Sensitivity Analysis (PSA) yielded results that resemble a normal distribution, 
improving interpretability. 

The average treatment cost per patient (stratified per gender) was stated in the reimbursement 
dossier. We converted treatment cost in cost per patient (irrespective of gender) of €41,201, thereby 
having subtracted the €3222 of docetaxel substitution that was noted in the reimbursement 
dossier [36]. 
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Willingness to Pay
As stated in equation 3, BI has no role in determining the sign of pNMB and should 
therefore have no role in the investment decision although recent literature shows that BI 
has definitely had influence on reimbursement decisions and that it should have influence on  
WTP [14,16,17,19,29]. 

We use three methods to illustrate and quantify a potential relationship between WTP and BI 
(henceforth referred to as WTP = f(BI)), being a historical real-world Dutch reimbursement 
decision, a completely arbitrary method and a recent paper describing displacement in Dutch 
healthcare (POINT tool). These methods are solely used for WTP = f(BI) and have no further 
role in our nivolumab case study. 

Method 1: Reimbursement decision in Hepatitis C
We aim to derive a possible relationship between BI and WTP using the introduction of 
sofosbuvir, a hepatitis C Direct-Acting Antiviral drug, as example. We acknowledge that this is 
a simplification of the real world and is associated with some assumptions, however the apparent 
simplicity makes for a rather clear and illustrative example of a WTP that is influenced by BI. 
The underlying assumptions are presented in box 1.  

The derived coefficient from the assumptions in box 1, calculated as (€80,000 – €47,481)) / 
((€2.5 million – €38.79 million), equals -0.000896. This means that for each €1 and €1116 of BI 
above €2.5 million, WTP is lowered by €0.000896 and €1, respectively. 

Method 2: Arbitrary relationship
As method 1 is based on hepatitis C and therefore potentially not representative for our 
nivolumab case study, we also include an arbitrary coefficient of -0.0004. This value was chosen 
so that an annual BI of 100 million, considered very high in the Netherlands, would lead to 
a €40,000 lower WTP. 

Method 3: POINT tool
The relationship between BI and WTP has been explored and modelled by Adang et al [20]. 
The goal of their study, performed from a Dutch hospital perspective, was to investigate 
the influence of introducing innovations on budget allocation and the resulting change in 
wellbeing of the Dutch population. As part of this research, a tool (POINT 1.0) was developed 
which needs BI as input and yields a marginal WTP. The POINT tool was available as 
a Microsoft Excel workbook. As the function describing WTP was not linear and could not 
easily be replicated, we developed a macro that inputs all simulated BI values and records  
the resulting WTP.
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5.1

In 2014, the Dutch reimbursement dossier for sofosbuvir was published [38]. Sofosbuvir was 
deemed cost-effective but carried a risk of very high BI. Therefore, the Dutch Minister of Health, 
Welfare and Sport (MoH) decided that reimbursement was limited to the most severe patients [39]. 
This case is described by Geenen et al. in detail [14].

The hepatitis C population consists of a variety of subpopulations with different ICERs [38]. 
The highest reported ICER for any of the HIV-negative subpopulations was €47,481. Based 
on BI, reimbursement was limited to patients with most severe disease, denoted as F4 – F3 on 
the METAVIR scale [38,39]. We therefore conclude that BI for F4 – F3 was still acceptable but 
unacceptable for F4 – F2. The ICER was not differentiated per METAVIR score.

The reimbursement dossier assumed that 49.1% of the patients belonged to F4 – F2 so we assume 
that F4 – F2 accounted for 49.1% of total BI. The highest BI estimate in the reimbursement dossier 
was €79 million per year, resulting in €38.79 million for F4 – F2. We assume that, as the MoH 
did not reimburse an intervention with a BI of €38.79 and an ICER of €47,481, BI had resulted in 
a WTP below the ICER.

At the time, the estimated BI below €2.5 million did not warrant conducting a cost-effectiveness 
analysis so we assume that a BI < €2.5 million had no influence on WTP [27]. We thus derive that 
a change in BI from €2.5 million to €38.79 million changed the WTP from €80,000 to €47,481.

For simplicity, we assume that the relationship between BI and WTP is linear. We also assume that 
the WTP will never be lower than €20,000, regardless of BI. This value is arbitrary, but it is equal to 
the current Dutch WTP for interventions with a low burden of disease [27]. 
To conclude, we assume:

•	 BI = €38.79 million: WTP = ICER
•	 BI > €38.79 million: €20,000 < WTP < ICER 
•	 BI < €38.79 million: €80,000 > WTP > ICER
•	 BI < €2.5 million: WTP = €80,000

Box 1. Assumptions regarding Hepatitis C reimbursement decision and its use in describing a potential 
relationship between WTP and BI. 

ICER & effectiveness
As ICER data source, we use the nivolumab PSA results from the manufacturer’s base-case as 
published in the reimbursement dossier [36]. The Dutch Healthcare Institute (ZIN) provided 
us with the raw data. All ICER samples are located in the upper-right quadrant of the cost-
effectiveness plane. We sorted these ICERs, distributed them amongst 100 groups of the same 
size and then calculated the mean ICER per group. Each ICER group (hereafter scenarios) 
thus represents a scenario with a given ICER and a 1% probability of being the true ICER. 
The difference in effectiveness (ΔE) within an ICER scenario was aggregated to yield a mean 
ΔE per scenario. 
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BI
Quantification of BI uncertainty remains limited to scenario analyses where BI is typically 
presented as a point estimate accompanied by a range [33]. BI estimates are however inaccurate 
[14,40–42]. Keeping et al. recently described that BI estimates used by payers deviated from 
actual BI with more than 40% in 80% of the cases [40].

The nivolumab reimbursement dossier presents an estimated BI of €46 – 74 million per year 
[36]. To simulate the BI estimation uncertainty, we assume that the point estimate is the mean of 
this range at €60 million per year. The standard deviation (sd) could then be interpreted as €14 
million. To better reflect the reported BI uncertainty reported by, for example, Keeping et al. we 
multiply the sd by 1.5 to yield 21 million. Assuming BI estimation error is normally distributed, 
these parameters still only yield a 25% chance on a BI deviation > 40%. We generate 50,000 
samples and, like the ICER, sort these samples, distribute them among 100 groups of equal size 
and then calculate the mean BI estimate.

RESULTS

Distribution of WTP for different WTP = f(BI) methods
The distribution of WTP per BI with different WTP = f(BI) methods is shown in figure 1. 
The data of the main figure are the grouped BI estimates (100) and the corresponding WTPs 
(100 per method). The density plot for the BI estimates, shown above the main plot, is identical 
for all WTP = f(BI) methods. At the right of the main plot, density WTP plots for each method 
are presented.

The POINT method and Fixed WTP yield very narrow density plots, indicating that these 
WTP are insensitive to BI [20,43]. The base WTP of these two methods are however different. 
The -0.000896 coefficient generates a normally distributed spread of WTP that nearly spans 
the entire WTP range. The mean WTP is ± €58,000. There is also some condensing of the tails 
of the distribution in the first and last BI groups. The -0.000896 coefficient, based on method 
1, leads to a WTP that is more sensitive to BI. This results in lower WTP and significant 
accumulation of WTP at the minimum of €20,000.  

Presentation of pNMB results
The pNMB results are displayed graphically in figures 2 – 4. To improve interpretability, we 
provide a numerical example in the form of table 1. In the example of table 1, the results of 
a fixed WTP are shown. The only difference between the results of table 1 and figure 2 is that 5 
BI and ICER scenarios were used for the table compared to 100 for the figure.
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BI and ICER scenario 1 are the lowest BI and ICER estimates, scenario 5 corresponds to 
the highest estimates. The area defined by the dotted line presents the pNMB (in million €) per 
BI and ICER scenario and is presented as a heatmap (panel B) in figures 2 – 4. This shows that 
higher ICER estimates lower the pNMB, a higher BI estimate increases the minimum as well as 
maximum pNMB.

The row “% Positive ICER Scenarios (A)” describes the percentage of ICER scenarios with 
a positive pNMB, per single BI scenario. In the figures, this is displayed in panel A. The column 
“% Positive BI scenarios (D)” describes the percentage of BI scenarios with a positive pNMB, 
per single ICER scenario and is presented in panel D. As the sign of the pNMB determines 
the investment decision, the % positive per ICER or BI scenario provides information on 
the influence of ICER or BI on the investment decision. For example, if the percentage of 
positive ICER scenarios does not change per BI scenario (as is the case in table 1), reducing 
uncertainty in BI does not help to determine the right decision as the probability of a wrong 
decision remains 40%.

Figure 2. pNMB results generated with a Fixed WTP. 2a: The percentage of positive ICER scenario given 
a single BI scenario. 2b: heatmap of pNMB per BI and ICER scenario. The dashed line defines the boundary 
between positive and negative pNMB. The dashed contours define the boundary of specific pNMB values. 
2c: mean pNMB per BI and ICER scenario. 2d: Ratio of positive BI scenarios per ICER quantile. 
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The top row and righthand column denote the average pNMB (in million €) per BI and ICER 
scenario, respectively. These average results are combined in panel C. This provides information 
on the influence of uncertainty in BI and ICER on average pNMB. Relating this to decision-
making, it represents the spread in absolute pNMB given the uncertainty in the ICER and 
BI. If, for example, the average pNMB per ICER scenario ranges from deeply negative to 
deeply positive, it informs the decision-maker that reducing ICER uncertainty could prevent  
significant losses.

Panels A and D thus describe which parameters determine the probability whether the decision 
results in potential profits. Figure C then informs on the potential losses or profits of a decision. 
The heatmap (panel C) is a visualisation of the bivariate pNMB distribution. 

pNMB results of fixed WTP (€80,000)
In figure 2, the results for a selected fixed WTP of €80,000 are presented. A lower quantile reflects 
a lower ICER and BI estimate. Figure 2a indicates that for each BI scenario, the percentage of 
positive BI scenarios stays the same. BI does however influence the magnitude of the pNMB as 
the orange line in figure 2b, indicating mean pNMB per scenario, is not constant and as there 
is a colour gradient in the direction of the x-axis in figure 2c, indicating difference in pNMB.

Figure 2d shows that the ICER does influence the sign of pNMB and that the 63 scenarios 
with the lowest ICER yield a positive pNMB and the resulting 37 higher ICER scenarios 
result in a negative pNMB. Figure 2b shows that, logically, ICER has a great influence on  
the mean pNMB. 

pNMB Results of Method 1 (real-world reimbursement decision)
Figure 3 presents the results using the WTP = f(BI) based on method 1. Figure 3a shows that 
BI now influences the sign of the pNMB and could thus influence the investment decision. 
Furthermore, 3c shows that the influence of BI on mean pNMB increased compared to 2c. 
The overall pNMB of method 1, as shown in 3b and 3c, is lower than in figure 2 due to lower 
mean WTP of this assumption. 

Interestingly, mean pNMB as depicted in 3c is negative for all ICER and BI scenarios whilst 
the heatmap (3b) does show a positive region. There are thus BI and ICER combinations that 
yield positive pNMB but no single BI or ICER delivers an pNMB that is, on average, positive. 
For a decision-maker, this would imply that lowering uncertainty in only BI or ICER is probably 
insufficient but that a joint reduction in uncertainty would be needed. Furthermore, a decision-
maker could use the information that a BI beyond scenario 51 never yields a positive pNMB, as 
a basis for a price / volume arrangement or volume cap so that BI is guaranteed to stay within 
scenarios 0 – 51. Similarly, the ICER should in any case be within scenario 0 – 62, potentially 
inspiring the use of pay-for performance schemes. 
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The ICER, shown in 3d, still has influence on the sign of pNMB although now in a less binary 
and more gradual manner than in the fixed WTP setting. In 3b, the dashed contour defining an 
pNMB of 0 shows the shared or bivariate influence on pNMB. 

pNMB Results of Method 2 (arbitrary coefficient)
The implications of the arbitrary coefficient of -0.0004 are shown in figure 4. As in figure 3, BI 
clearly has influence on pNMB and the theoretical investment decision by means of the sign 
of the pNMB per ICER scenario. Compared to figure 3, the lower coefficient of -0.0004 results 
in higher NMB caused by less reduction in WTP. All BI scenarios in figure 4 have a potential 
for positive pNMB whereas in figure 3 only a low BI combined with a low ICER would yield 
a positive pNMB.

From a decision-making perspective, ICER scenarios 100 – 62 never yield a positive pNMB, 
regardless of BI. So, if efforts were to be undertaken to manage the ICER risk (i.e., prevent 

Figure 3. pNMB results of method 2 (WTP = f(BI) coefficient of -0.000896). 3a: The percentage of positive 
ICER scenario given a single BI scenario. 3b: heatmap of pNMB per BI and ICER scenario. The dashed line 
defines the boundary between positive and negative pNMB. The dashed contours define the boundary of 
specific pNMB values. 2c: mean pNMB per BI and ICER scenario. 2d: Ratio of positive BI scenarios per 
ICER quantile.



196

scenarios 62 – 100 from happening) like pay-for performance schemes, management of BI 
would not be necessary. 

pNMB results of Method 3 (POINT) 
As can be seen in figure 1, the POINT method is rather insensitive to BI in the simulated range 
and yields a WTP of ± €72,500 for all our BI values. The results are therefore nearly identical to 
those of a fixed WTP of €72,500. The results are shown in Appendix 1 and show that the influence 
of ICER and BI is (nearly) identical to those shown in figure 2. 

DISCUSSION

We demonstrated that pNMB, a monetary value of health gained or lost to a system, has 
the potential to integrate ICER, WTP, and BI. Furthermore, we showed that without a role for 
displacement effects, defined by a fixed WTP, BI has no role in influencing an pNMB-based 
reimbursement decision. 

Figure 4. pNMB results of method 2 (WTP = f(BI) coefficient of -0.0004). 4a: The percentage of positive 
ICER scenario given a single BI scenario. 4b: heatmap of pNMB per BI and ICER scenario. The dashed line 
defines the boundary between positive and negative pNMB. The dashed contours define the boundary of 
specific pNMB values. 4c: mean pNMB per BI and ICER scenario. 4d: Ratio of positive BI scenarios per 
ICER quantile.
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As our results show, a WTP that is dependent on BI does enable BI to influence an pNMB 
guided investment decision [1,17,28,29]. Using nivolumab as case study and using three 
different methods for a dynamic WTP, we have shown that this approach could indeed lead 
to an pNMB that is influenced by the ICER as well as BI. This allows for a decision-making 
framework where affordability and cost-effectiveness are integrated into a single metric and 
enables a joint appraisal of these two entities.

Claxton et al. have evaluated the opportunity costs, reflected as WTP, of marginal (i.e., ‘small’) 
expenses in a healthcare system and determined this to be £12,936 per QALY in the UK [24]. 
Lomas et al. then used a similar approach to determine the opportunity cost (thresholds) for 
non-marginal (i.e., ‘large’) BI [44]. The definition of nonmarginal BI is discussed by Paulden 
et al [45]. Lomas and colleagues specifically addressed the influence of different BI values on 
the threshold and used a hepatitis C case-study to illustrate the implications of their research 
[44]. They derive an approximated linear relationship between expenditure (BI) and marginal 
productivity (WTP), resulting in a WTP of £12,542 and £12,166 for (UK) BI of £250 million and 
£2500 million, respectively. As UK thresholds as well as UK BI differs greatly from the herein 
adopted Dutch perspective, we decided not to explicitly incorporate the WTP = f(BI) influence 
as described by Lomas et al. 

Their approach is however included more implicitly by means of the POINT WTP = f(BI) 
method. This method, described by Adang et al. used a technique similar to the work of Claxton 
et al. (and in that respect, also comparable to Lomas et al.) as they aimed to assess the Dutch 
opportunity costs of marginal expenditure using claims data on expenditure and mortality and 
quality of life data to assess QALYs, as well various demographic characteristics [20]. The results 
of Adang and colleagues, made accessible by means of an Excel workbook, however, show a very 
low sensitivity of WTP for BI values below approximately €2 billion. The relationship being 
non-linear, arbitrary annual BI values of €1 million, €100 million, €1 billion, €2 billion and €5 
billion yield respective WTP values of €72,473, €72,189, €69,536, €66,341 and €20,066. 

In 2017, total Dutch expenditure on ‘specialist pharmaceutical care’, reflecting mainly expensive 
specialty drugs for inpatient use, was €2 billion [46]. The previously mentioned Dutch hepatitis 
C case study noted a maximum annual BI of €79 million and, based on this estimate, drastic 
patient access restrictions were advised and implemented [14,38,39]. These two observations 
highlight a potential mismatch between solid empirical work by, for example, Adang et al., 
Claxton et al. and Lomas et al. and actual decision-making practice where BI appears to play 
a much more prominent role [20,24,44].

Some argue whether BI should actually play a role in reimbursement decision or if it is merely 
a budgetary practicality [8]. This theoretical discussion is however superseded by the fact 
that current decision-making practice is definitely being influenced by BI and that there is 
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no indication that this is likely to change [7,14–19]. To the contrary, a potential treatment for 
Alzheimer’s disease (or any other severe and highly prevalent disease) would present healthcare 
systems with even greater financial pressure and consequent BI guided access decisions. In light 
of this reality, we believe that BI should then at least be properly integrated in decision-making 
instead of the current plethora of rather inconsistent, one-off decisions.

This proper or better integration of BI could be extended to the domain of uncertainty. 
Methodology on quantifying and managing ICER uncertainty is widely adopted and ICER 
sensitivity analysis is mandatory in many reimbursement files [27,47]. For BI, the exploration of 
uncertainty is limited to scenario analysis and lacks the advanced characterisation of its ICER 
counterpart [33]. Although we do not provide tools or methods for improved management of BI 
uncertainty, the combined influence of BI and ICER on pNMB and its graphical representation 
that we presented could provide means to give more insight in the combined uncertainty of 
ICER and BI on an intervention’s potential value.

Using our approach, decision-makers could identify specific ranges or thresholds for the ICER 
and / or BI that are required to yield a positive pNMB. If, for example, a specific BI threshold 
may not be exceeded, it could provide the decision maker with an incentive to opt for price-
volume arrangements. With our pNMB approach, uncertainty in the ICER can be combined 
with these BI thresholds: a certain ICER threshold could warrant a certain BI threshold and 
vice-versa. In practice, this could lead to access-schemes where aspects of pay-for-performance 
or coverage with evidence development (ICER-related risk and uncertainty) and price/volume 
arrangements (BI-related risk / uncertainty) could be combined. This will be work for follow-up 
research. Next to that, we believe that the true novelty of this paper, being the combination of 
BI, WTP and ICER and their uncertainty into one metric (pNMB), could serve as a tool to aid 
decision-makers with (combined) appraisal of cost-effectiveness and affordability.  

Our study has a number of limitations. First, a WTP that is directly influenced by BI might 
be unrealistic. It is described in Claxton et al. that decision-making should be driven by 
a WTP that is based by the marginal opportunity cost of new investment within the system 
[30]. This new investment, as Adang has for example described, has influence on the marginal 
opportunity cost [20]. Besides the Adang, Claxton and Lomas studies, more evidence in favour 
of a potential of BI influencing WTP is present. This evidence is not only theoretical but also  
empirical [8,9,14,19,21,44].

Second, the methods used to quantify the relationship between BI and WTP are derived from 
practice (method 1 + 3) or even arbitrary (method 2) and the validity of these quantifications 
can be questioned. We do however believe that the methods used are based on realistic examples. 
Besides this, the coefficients are specific for the Netherlands, but the methods used to calculate 
these coefficients are not likely to be completely different between countries. Our method could 
thus be used in different settings or jurisdictions, as long as there are decision-making examples 
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on which to base a WTP = f(BI) quantification. We furthermore believe that our assumptions 
and methods, crude as they may be, perfectly illustrate the idea and potential merits of a WTP 
that is driven by BI.

Third, by dividing treatment cost per patient by annual BI to calculate pNMB, we assume that 
a full treatment (including its potentially life-time horizon ICER) happens in exactly one year. 
A treatment can however last for multiple years and would thus incur BI in multiple years. For 
example, for a 2-year treatment with a total cost of €100,000 and annual BI of €1,000,000 in 
the first year, we would assume that 10 patients would be treated and would have started to incur 
their ICER which would be translated to pNMB. In reality however, 20 patients would have 
started treatment. In the second year, if we for simplicity assume that no more patients started 
treatment and annual BI of €1,000,000 is again incurred, we would again find that 10 patients 
have completed treatment which brings the total number of treated patients to the true value of 
20. We thus conclude that if treatments span multiple years, we underestimate pNMB in the first 
year(s). In the reimbursement dossier of our nivolumab case study, nivolumab was assumed to 
be used until disease progression, resulting in a median treatment duration of 3.5 months [36]. 
We do not believe that the annualisation of the ICER (composing a life-time horizon of costs 
and effects) into an annual pNMB is an issue as these ICER components are typically discounted 
to reflect their present-day value [48,49]. 

CONCLUSION

A WTP threshold that reflects displacement and opportunity costs is widely cited to be 
needed in reimbursement decision-making. Besides, cost-effectiveness and affordability (and 
their associated uncertainty) are currently appraised as separate entities and decision-makers 
are known to struggle with this separate appraisal. We have shown that a decision-making 
framework using societal NMB can combine affordability and cost-effectiveness into a single 
metric and thus a single decision. A prerequisite of this framework is the existence of an explicit 
relationship between BI and WTP. Using various methods, we have provided examples and 
implications of such relationships on pNMB. BI has an explicit influence on WTP and when 
integrated into pNMB, it could lead to better assessment of the impact of uncertainty of BI 
and ICER on an innovation’s value. This pNMB approach enables decision-makers to identify 
(combinations of) threshold values for the ICER and BI that are required for an intervention to 
add value to the health care system, thereby informing on suitable managed entry agreements or 
pricing arrangements. To conclude, we believe that the decision-making concept presented here 
could lead to a truly combined and united consideration of cost-effectiveness and affordability. 
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5.1

APPENDICES

Appendix 1

Appendix 1. Data generated with the POINT WTP = f(BI) assumption. 1a: The percentage of positive 
ICER scenario given a single BI scenario. 1b: heatmap of NMB per BI and ICER scenario. The dashed 
line defines the boundary between positive and negative NMB. The dashed contours define the boundary 
of specific NMB values. 1c: mean NMB per BI and ICER scenario. 1d: Ratio of positive BI scenarios per  
ICER quantile.
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ABSTRACT

Objectives
Informing reimbursement decisions based on economic evaluations is associated with two 
important challenges related to: i. the value of separate versus united assessment of cost-
effectiveness and budget impact (BI); and ii. the importance of incorporation of timing of 
decisions based on the level of uncertainty. We aim to develop a real options analysis (ROA) 
based method that addresses these challenges in order to allow for more optimal reimbursement 
decision-making. To achieve this, we use an oncology case study from a Dutch perspective. 

Methods
Net Monetary Benefit (NMB) is the main outcome and is calculated as: NMB = ((WTP – 
ICER) * incremental effectiveness) * (BI/treatment cost). Opdivo (nivolumab) was selected as 
case-study. Data on the ICER was derived from the reimbursement dossier whilst BI data was 
generated using a validated BI prediction model. For WTP, three methods for the influence of BI 
on WTP were used. For ROA implementation, we assumed that the true BI could be observed 
after one month. 

Results
We compared traditional ‘now or never’ decisions to the option of waiting for more data. For 
some scenarios, waiting for 10 months of data was the optimal decision as risk due to uncertainty 
in the first 10 months outweighed immediate benefit (NMB). The different methods describing 
the relationship between WTP and BI had great influence on NMB (- €42 million for a fixed 
WTP vs €69 million for a WTP method based on a real-world Dutch reimbursement decision).  

Conclusion
Based on a unified assessment of cost-effectiveness and BI by means of NMB and then 
incorporated timing using ROA and demonstrated that our ROA based method can be used 
to inform on the timing of reimbursement decisions. ROA could therefore be a suitable 
methodological tool for providing early guidance on flexible and adaptive reimbursement 
decisions, deemed essential in the current landscape of ever higher uncertainty at market access 
of new costly drugs. 
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5.2

INTRODUCTION

Current reimbursement decision-making is driven by the clinical or therapeutic value and at 
least to some extent by the Incremental Cost-Effectiveness Ratio (ICER) and Budget Impact (BI) 
[1–3]. The influence of the outcomes of the economic analysis on decision-making is at least 
partly driven by whether a formal Willingness to Pay Threshold (WTP) exists [1–3]. The relative 
importance of BI and cost-effectiveness in decision making differs and is not clearly defined 
[1,3]. Also, the exact role and relative importance of economic outcomes varies between various 
jurisdictions [1,3]. Inevitably, quantification of these outcomes involves uncertainty and this 
uncertainty is currently a crucial aspect in decision making [1]. The methods for quantification, 
visualising and accommodating for the uncertainty in ICER and BI are also different. 

For the ICER, probabilistic sensitivity analysis (PSA) and the resulting Value of Information 
(VOI) analysis have been developed and are now widely used [4]. It has been shown that decision 
makers are less likely to reimburse drugs with a highly uncertain ICER [1].  

The WTP, or ICER threshold, has different fixed values or fixed ranges in various jurisdictions 
[5,6]. In England, an upper limit of £20,000 - £30,000 per QALY is deemed cost-effective 
whilst an informal threshold varies between €20,000 - €50,000 - €80,000 in the Netherlands. 
The threshold value has however been a topic of scientific debate as for example Shiroiwa et al. 
and Claxton et al. have described [6,7]. WTP values of, for example, £12,936 and €74,000 been 
proposed as more accurate ICER thresholds [8,9]. A recent literature review reported an even 
wider range of WTP estimates and found a mean of €24,226 per QALY [10].  

For BI, the availability- and type of guidance or legislation on the role of BI in reimbursement 
making varies per jurisdiction, although in general it could be stated that role of BI on access 
decisions is less clear than the role of the ICER [2,11–13]. Besides this, the scientific rigor 
of Budget Impact Analysis (BIA) is less developed than is the case for the ICER [14]. Recent 
examples have however clearly shown that in cases of a very high (expected) BI, rigorous access 
restrictions have been imposed [15–17]. 

As BIA are generally constructed using point estimates of various uncertain parameters and 
time-horizons, uncertainty in BI estimations is inevitable [18,19]. Mainly due to limited data, 
quantification of BI uncertainty remains limited to scenario analyses [18]. Therefore, BI is 
typically presented (for one or more scenarios) as a point estimate accompanied by a minimum 
and maximum value. A highly uncertain BI could lead to less or deferred access by means of, for 
example, managed entry agreements (MEA) [13,20,21]. 

Interestingly, ICER and BI (and their uncertainty) are typically appraised separately whilst 
they both inform on the same decision: does the investment deliver a health gain? This is 
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especially relevant as recent studies have shown that a relationship between WTP and BI exists, 
and that this relationship can be quantified [8,22–24]. This would mean that BI could have 
influence on the question whether an innovation is deemed cost-effective (i.e., ICER < WTP). 
A joint assessment of these three components could thus be crucial for solid reimbursement  
decision making.  

Another limitation in current decision-making practice can be found in the lack of incorporating 
timing of decisions, evolution in dynamic health care practices and development of evidence 
and uncertainty over time. MEAs, Conditional Reimbursement (CR) or Coverage with 
Evidence Development (CED) are examples of tools designed to allow for granting rapid access 
whilst evidence on outcomes or BI, is still developing [25–30]. Besides, active management 
of innovations or label changes (e.g., changes in indication) do happen and influence cost-
effectiveness and should thus be included in economic analyses [31,32]. Currently tools as MEA, 
CR and CED are quite widely used and they should be accompanied by reimbursement decision 
making methodology that is, at its core, suitable for implementing the factor of time [28]. 

Current cost-effectiveness analyses (CEA) and BIA however employ the Net Present Value 
(NPV) paradigm; future benefits and costs are discounted towards a present-day value and 
the investment or reimbursement decision is to be taken now or never. Flexibility can of course 
be added by means of scenario analyses or reperforming a CEA or BIA after some time, but 
in the essence of these analyses, delaying the decision is not an available option. Therefore, 
current CEA or BIA methodology is unable to fully incorporate the role of active management 
of healthcare related projects or the development of uncertainty over time.

Real Options Analysis (ROA) is a technique used in economics for valuing investment 
decisions [33]. The NPV, a classic approach for assessing investment opportunities, only allows 
for the decision to invest or to not invest [33]. ROA on the other hand specifically recognises 
the postponement of the investment (decision) as an option [33]. ROA is thus inherently designed 
for coping with timing of an investment and could, as for example Grutters et al., Attema et al. 
and Favato et al. have shown, be used to inform healthcare related decisions [31,34,35]. 

To summarise, current reimbursement decision making methodology has two major issues: 
It lacks a united assessment of CE and BI and it lacks incorporation of timing of decisions 
and development of evidence and uncertainty over time. In this study, we aim to develop and 
demonstrate a ROA-based method that amends these issues and therefore allows for better 
reimbursement decision-making. To achieve this, we use an Opdivo (nivolumab, oncology) case 
study from a Dutch perspective. 
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5.2

METHODS

Net Monetary Benefit
The main outcome measure used in our analyses is based on Net Monetary Benefit (NMB). 
NMB is typically defined as [36]:

Where WTP is the amount the decision-maker is willing to pay for one unit of increased 
effectiveness, ΔE is the difference in effectiveness and ΔC the difference in costs [36]. When ΔE 
and ΔC are per patient, the resulting NMB is also per patient. It is possible to rewrite equation 
1 so that the ICER is included, yielding equation 2: 

Again, if ΔE is per patient, the resulting NMB is per patient. In equation 2, WTP – ICER 
determines whether the innovation is cost-effective per (theoretical) unit, ΔE can then be 
interpreted as the number of units that are procured. The NMB to the entire healthcare system 
or society can be calculated by multiplying the pNMB by the number of patients receiving 
the new intervention. This population NMB (pNMB) is calculated as:

This equation retains the characteristics of the traditional NMB, like the linearity regarding 
change in ΔC and ΔE and insensitivity to different CE quadrants. 

Equation 3 states that, if ΔE, BI and treatment cost per patient are positive numbers, only WTP 
and the ICER determine whether pNMB is positive. As a decision rule, a positive pNMB (or 
NPV, its general economic counterpart) warrants investment whilst a negative pNMB does not 
[37]. Thus, with equation 3, only WTP and ICER can determine the investment decision and, 
crucially, BI would never have a role in deciding whether to invest. 

Data on input parameters
ICER and ΔE
The ICER and the associated uncertainty are quantified using the results of PSA as this usually 
is the best estimate of the influence of combined parameter uncertainty on the ICER. The Dutch 
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Health Care Institute (ZIN) provided us with the Opdivo PSA results. As the ICER is not 
necessarily normally distributed, we sort the ICERs (as they are in the same CE quadrant), 
distribute them amongst groups of the same size and then calculate the mean ICER per group. 
Each ICER group (hereafter scenarios) thus represents a scenario with a given ICER and 
a certain probability of being the true ICER. We used 100 groups for the ICERs so that each 
resulting scenario has a 1% probability of being the true ICER. The difference in effectiveness 
(ΔE) within an ICER scenario was aggregated to yield a mean ΔE per scenario.

BI
Current BI estimates provide very little insight into the actual uncertainty or probability 
distribution of BI, aspects that are crucial for ROA. We therefore used a validated BI prediction 
model that is described in detail elsewhere [38].

In short, this data-driven regression-based prediction model is trained and validated using 
monthly Dutch BI data, where BI is defined as volume * list price per drug. This population-
level BI data source covers inpatient as well as outpatient prescriptions and is validated to 
be representative of the Netherlands [38]. The prediction model was validated using a of set 
oncology products, included various product characteristics (i.e., orphan status, cancer site, 
First in Class designation) and was limited to predicting the first 45 months of BI. Crucially, 
the model was validated using a rolling forecasting origin. This approach allows for the monthly 
addition of new BI data and thus retrains the model with each addition of monthly data and 
therefore mimics the envisioned real-world use of such a model. 

We demonstrate this rolling forecasting origin and its implementation using the nivolumab case 
study. We denote the months of data that is available for predicting the BI of a specific product as 
t_data. In our dataset, the first BI record of nivolumab was 1 August 2015. The reimbursement 
dossier was published on 8 Dec 2015. So, at this time, 4 months of BI data (t_data) were available 
to the prediction model. As the observed BI data cut-off is 1 March 2018, a total of 31 months 
of predictions can be compared to the observed data. As the prediction model is validated for 
a maximum of 45 months, the last 14 predicted months cannot be compared to the observed 
data and we are unable to extend t_data beyond 31 for Opdivo (as this data is unavailable). 
The validation indicated a reduction in prediction error with increasing availability of  
data (t_data).

We aggregate all prediction errors per t_data, sort them and distribute them amongst groups 
of the same size and then calculate the mean prediction error per group. Each BI error group 
(hereafter scenarios) thus represents a scenario with a given prediction error and a certain 
probability of being the true error. As with the ICER, we used 100 groups, so each resulting 
scenario has a 1% probability of being the true scenario. For each predicted month, we multiply 
the predicted BI (for that month) with all error scenarios (for that t_data) and thus yield 100 
possible BI estimates that are distributed based on the prediction error of a specific t_data.
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5.2

Average treatment cost
The Opdivo reimbursement dossier specified average treatment cost per gender (€46,200 for 
males, €42,646 for females) and €3222 of docetaxel substitution [39]. For simplicity, we assume 
50% of Opdivo users is female and thus average the treatment cost per gender. After subtracting 
the noted substitution cost, we yield an average treatment cost of €41,201 per patient. 

Willingness to Pay
As base-case, we use the Dutch €80,000 threshold that is designated for indications with 
a high burden of disease [40]. As stated in equation 3, BI has no role in determining the sign 
of pNMB and should therefore have no role in the investment decision. Various studies, 
for example by Lomas et al., Claxton et al, Adang et al., and Geenen et al., have however 
described that a relationship exists between BI and WTP and have therefore quantified this  
relationship [8,22–24]. 

In this study, we consider three potential relationships between WTP and BI (henceforth 
referred to as WTP = f(BI)) that are described in detail elsewhere [24]. The first method, denoted 
as POINT, is based on empirical research by Adang et al. who quantified the marginal WTP 
with increases in marginal BI in Dutch inpatient care and could therefore be seen as a Dutch 
application of the earlier work by Claxton et al [8,23]. 

The second method, described by Geenen et al., used the Dutch reimbursement decision on 
sofosbuvir (Hepatitis C drug) to derive an influence of WTP on BI [24]. This hepatitis C case is 
informative as reimbursement was explicitly limited due to high BI estimations whilst the ICER 
was below the Dutch WTP threshold of €80,000 [17]. A linear function with a coefficient of –  
0.000896 was derived, meaning that for each €1 and €1116 of BI, WTP would reduce with 
€0.000896 and €1, respectively. For methods 2 and 3, only BI above €2.5 million per year is 
influenced by the coefficient as ZIN disregards BI below 2.5 million [24,40,41].

The third method is an arbitrary coefficient of -0.0004 which results in a €1 reduction in WTP 
for an annual BI of €2500 [24]. This coefficient results in a WTP that is lowered to €40,000 by 
an annual BI of €102.5 million (which would be considered very high in the Netherlands). 
The resulting WTP would still be higher than the lowest Dutch WTP threshold (€20,000) which 
is designated for innovations treating disease of low severity [40]. 

We acknowledge that methods 2 and 3 have less empirical foundation than method 1. Still, 
the fact that they are derived from real-world access decisions and their apparent simplicity 
makes for a clear and illustrative example of a WTP that is influenced by BI and its influence on 
ROA-guided decision-making.   
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Case study selection
We selected Opdivo as a case study based on various characteristics, mainly imposed by 
the use of the BI prediction model that is only validated for oncology products: The case study 
should therefore be an oncology product and should have a first BI record after 1 May 2012 
[38]. Furthermore, the reimbursement dossier should be published within 6 months of the first 
BI record to ensure that the dossier was covering the same indication as the indication that 
generated the BI. As the data cut-off of observed BI data was 1 March 2018 and a minimum of 
24 months of observed BI data is deemed to be required for performing ROA, the first BI record 
should be generated 1 March 2016 the latest. 

The availability of a PSA (including scatterplot results) in a Dutch Reimbursement dossier was 
another inclusion criterion. The aforementioned criteria resulted in Keytruda (pembrolizumab) 
and Opdivo as potential case studies. The Keytruda base case ICER was however €113,000 and 
thus higher than the assumed or informal WTP of €80,000 [42]. For Opdivo, a scenario was 
available with an ICER below the WTP of €80,000. As our methodology bases the investment 
rule on pNMB (equation 2), a case study with an ICER > WTP is not very informative. Hence, 
Opdivo was selected. 

Expansion of NMB
As we implement ICER and BI as multiple scenarios, aim to incorporate a relationship of BI 
and WTP and as we use a prediction model that provides predictions for different months 
and is trained on different amounts of data (t_data), we have to expand the initial pNMB 
formula (equation 3). Besides, figure 1 presents a schematic overview of all the aforementioned 
components and their role in assessing pNMB.  

Expanding equation 3 with predicted months and ICER and BI scenarios yields equation 4:

Where td is number of months of t_data, n and i denote the predicted month, nn and ii denote 
a single BI, ICER and ΔE scenario, pICER and pBI imply the probability of each ICER and BI 
scenario, respectively. As ΔE is part of a specific ICER (i.e., they are not independent), each 
ICER scenario corresponds to a single ΔE scenario. When then expanding equation 4 with 
a relationship between BI and WTP, we get:
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An example of equation 5 using mock data is presented in equation 6: 
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5.2

Crucially, BI now has influence on the sign of the pNMB through its influence on the WTP. An 
example of equation 5 using mock data is presented in equation 6:

From equation 6, one could derive that the monthly BI estimates range from €100,000 to 
€1,000,000 and the ICER from €30,000 to €100,000. In this example, a monthly BI of €100,000 
results in a WTP of €80,000 whilst a BI of €1,000,000 yields a lower WTP of €70,000. Furthermore, 
as pICER and pBI are 0.01, a total of 10,000 (100 * 100) BI:ICER combinations are generated per 
predicted month per t_data.  

Implementation of Real Options Analysis
As mentioned in the introduction, ROA aims to quantify the value of waiting with investing 
compared to investing now or never. In box 1, we discuss key assumptions underlying ROA and 
whether those are met. In this study, we implement ROA as follows:

Equation 4 or 5 can be used to calculate pNMB. This pNMB consists of multiple BI and ICER 
scenarios of which some might be positive and some negative. It is however impossible to know 
which scenario is correct. As during implementation, new information on the ICER is not 
observed, the true ICER scenario will never be known. Information on BI however does become 
available and, after one month, the true BI scenario could be observed.    

The pNMB where ROA is not used is the pNMB where waiting for more data is not an option. 
This pNMB, denoted as pNMBstandard, is thus the outcome of equation 4 or 5. The pNMB using 
ROA, called pNMBoption, does allow for observation of BI data. The starting point for pNMBoption 
is always pNMBstandard. However, pNMBoption assumes that pNMBstandard is not executed but that 
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instead, the true BI scenario of the next month is observed. Inevitably, the pNMB that is generated 
by pNMBstandard in this month cannot be generated by pNMBoption and is thus lost in pNMBoption. 
In return, pNMBoption gets to observe the true BI scenario that constitutes the underlying pNMB. 

If the observed BI scenario has a negative pNMB, there will be no investment. So, these negative 
BI scenarios would yield an pNMB of €0 (equal to not investing) instead of their negative 
counterpart in pNMBstandard. If the observed BI scenario has a positive pNMB, it will be invested 
in. These BI scenarios will thus yield the same pNMB as they would in pNMBstandard. The ability 
to observe negative BI scenarios and avert investment in these negative scenarios, at the expense 
of the pNMB proceeds of a single month, is thus what drives pNMBoption.

Box 1. Assumptions underlying Real Options Analysis

As Palmer and Smith described in 2000, ROA can be used for informing investment decisions if 
the following characteristics have to be present [43]:

1.	 Uncertainty regarding the future

2.	 Irreversibility (as sunk cost) of a decision

3.	 Timing of the investment matters

The relevance of assumption one is clear as uncertainty in the ICER, BI and post marketing changes 
is clearly important in current decision making [1,11,20,32]. Assumption two would imply that 
once a reimbursement decision is taken, the decision is not reversed. This is especially relevant as, 
in order for ROA to function properly, irreversibility should imply a certain amount of sunk cost. 
Therefore, this assumption is only met when the decision to reimburse cannot be revoked later.  

In practice, halting of a reimbursed drug that still has clinical value (so is not obsolete) is complex 
and difficult due to political and societal sensitivities [25,26,44]. Makady and colleagues have, for 
example, shown that in the Netherlands the timely (ie, before having incurred large sunk costs) 
withdrawal of reimbursement is scarce [26]. We therefore believe that this assumption at least 
partly holds. 

Assumption three holds as timing, in the sense that MEAs or CED (coverage with evidence 
development) are aimed at providing quick access where evidence or uncertainty develops over 
time. To conclude, the three assumptions postulated by Palmer and Smith still hold and ROA could 
therefore in theory be used to inform reimbursement decision making.

For further reading, Palmer and smith provide an excellent numerical example of option value [43].  
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5.2

The option value (OV) calculated as: 

A positive OV thus means pNMBoption > pNMBstandard which implies that waiting one month is 
more valuable than immediate investment. A negative OV implies that waiting is less valuable 
than immediate investment. If pNMBstandard is positive and OV is negative, investment should  
be initiated. 

When using this methodology, observed BI is necessary to allow for ROA-based decision 
making which may sound counter-intuitive given that BI is typically only generated when 
reimbursement has been granted. In various healthcare systems, there is indeed no access prior 
to the reimbursement decision so postponing the decision would be a useless endeavour as no 
data would be observed [38]. In the Netherlands however, BI data is frequently available prior 
to a final reimbursement decision because of conditional reimbursement schemes or temporary 
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Figure 1. A schematic overview of model components. BI = Budget Impact, NMB = population Net 
Monetary Benefit, ROA = Real Options Analysis, PSA = probabilistic sensitivity analysis, WTP = 
Willingness to Pay. 
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schemes where the manufacturer supplies a product for free. In the case of Opdivo, 4 months 
of BI data were available prior to publication of the reimbursement dossier. A recent study has 
shown that this is the case for many more oncology drugs in the Netherlands, therefore enabling 
the described ROA implementation [38].

RESULTS

Relationship between WTP and BI
The outcomes of the three WTP = f(BI) methods are displayed in figure 2. Each dot is a single 
estimate from the BI prediction model generated for the case-study using t_data = 0. As this 
included 45 predicted months, 100 BI and 100 ICER (and related ΔE) scenarios, the total BI 
estimations per assumption was 45 * 100 * 100 = 450,000. 

The BI estimates were identical for the three displayed assumptions. The density plot of the BI 
estimates, shown in grey, is thus the same for each assumption. This density plot shows that 
the majority of BI estimates is in the range of €0 – €2.5 million per month. The main plot area 
shows that estimates up to €35 million per month are present (although the density plot shows 
that their relative frequency is small). 

The main plot as well as the density plot indicate that, for the POINT method, WTP is very 
insensitive to a change in BI. The main difference between a fixed WTP of €80,000 (which 
would appear as a line in the main plot with a density spike at €80,000) and the POINT method 
appears to be that the latter has a (nearly fixed) WTP around €72,500.  

Figure 2. WTP distribution using the three WTP = f(BI) methods. Including density plots for both axes. 
The BI density plot is for the same for the 3 methods. Each method consists of 450.000 datapoints.
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Method 2, with a coefficient of -0.000986, creates a rather large spread in WTP as is indicated 
in the main plot as well as the density plot. This coefficient even leads to some accumulation 
at the minimum WTP threshold of €20,000. The density plot of method 3 (coefficient of 
-0.0004) shows less sensitivity of WTP to BI and results in only very minor accumulation at  
the minimum WTP.  

In figure 3, we display the observed and estimated BI as well as the observed pNMB per WTP 
= f(BI) method. The observed pNMB is based on the observed BI and uses the manufacturer’s 
base case ICER (€62,277) to keep results as interpretable as possible. All data is cumulative, 
meaning that it includes the BI or pNMB of the remaining (i.e., future) months. The predictions 
of the estimated cumulative BI are updated monthly to reflect an increase in t_data, where t_data 
equals x – 1 for month x. The final observed Opdivo BI is in month 32 but the final estimated 
month is extended to 45. Therefore, not all BI predictions can be compared to observed data. For 
the option value calculations, we use the extended BI estimations. To compare the BI prediction 
model accuracy with observed BI, the non-extended estimated BI is most informative. 

Figure 3. Observed pNMB and observed and estimated BI.  
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The BI estimations using 0 t_data was €36 million and thus overestimated observed BI (€116 
million). From t_data 1 to 14, BI prediction could be considered as quite accurate. The pNMB, 
based on 0 t_data, was €44 million, €25 million, -€72 and -€8 million for a fixed WTP, method 
1, method 2 and method 3, respectively.

Option Value Results
Figure 4 displays the results for the OV for a fixed WTP (4a) as well as the results for the 3 WTP 
= f(BI) methods (4b – 4d). As in figure 3, pNMB, pNMBstandard and pNMBoption are cumulative 
as they include pNMB to be gained in future months. pNMBstandard is updated monthly when 
new data arrives to provide the value of a ‘now or never’ investment decision, given an amount 
of t_data. pNMBoption is therefore also updated each month. The final observed Opdivo BI is in 
month 32 so pNMBoption cannot be calculated from month 33 onwards. 

Figure 4a. Base case option value using fixed WTP (€80,000)

Figure 4b. Base case option value using method 1 (POINT) for WTP = f(BI)
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In figures 4a and 4b, NMBstandard is positive for all months of data. The general shape of the positive 
NMB curve is caused by the prediction model results and by the number of months remaining. 
in these 2 figures, WTP is not (for fixed WTP) or hardly (for method 1) influenced by BI. 
Therefore, the sign of the pNMB is solely determined by the unobserved ICER distribution. BI 
scenarios are then either all negative or all positive (as in the case of 4a and 4b, given the positive 
pNMBstandard and pNMBoption). So, the dip at 10 months (being t_data = 9) is caused by lower 
by BI estimate for months 10 – 45. From 17 months onwards, a downward trend is visible as 
the number of months in which pNMB can be generated declines. 

Based on the same reasoning regarding the role of the ICER and BI on the sign of the pNMB, 
it is logical that figures 4a and 4b display a slightly negative OV. For pNMBoption, observing 
the true BI scenario does not lead to the exclusion of negative scenarios as there are no negative 
BI scenarios. Therefore, it does not provide any benefit, but it does cost 1 month of (certain) 
positive pNMB, hence the negative OV. Figures 4a and 4b are further proof that the POINT tool 

Figure 4c. Base case option value using method 2 (-0.000896 coefficient) for WTP = f(BI)

Figure 4d. Base case option value using method 3 (-0.0004 coefficient) for WTP = f(BI)
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could be regarded as a fixed WTP with a value of €72,500 as, if WTP had been more sensitive to 
BI, it would have generated OV.

Both figure 4c and 4d display negative pNMBstandard for all timepoints, indicating that investment 
should never be carried out. The difference between 4a + 4b (fixed WTP) and 4c + 4d (dynamic 
WTP) is profound, so a dynamic WTP has great influence on pNMB. pNMB is more negative 
in 4c compared to 4d, indicating that the stronger influence of BI on WTP from method 2  
(figure 4c) compared to method 3 (4d), leads to a greater loss. In 4c and 4d, pNMBoption is close 
to 0, indicating that very few positive BI scenarios remain. 

Figure 5a. Option value using method 3 for WTP = f(BI), base WTP = €150,000, minimum  
WTP = €20,000 

Figure 5b. Option value using method 3 for WTP = f(BI), base WTP = 80,000, minimum WTP = 50,000
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5.2
Option Value Results with alternative WTP = f(BI) parameters
Method 2 and 3 use, beside the aforementioned coefficient, base case WTP and minimum WTP 
to calculate WTP per BI. To investigate the influence of these 2 latter parameters, we generated 
results using various values for minimum WTP and base WTP. In figure 5, the results of these 
analyses are presented. All results presented in figure 5 are generated using the coefficient of 
method 3 (-0.0004). 

In figure 5a, the base WTP is increased to €150,000. pNMBstandard is positive and OV is very high, 
indicating that uncertainty (by means of negative BI scenarios) has quite a profound effect on 
pNMBstandard. On the other hand, high pNMBoption indicates that the investment decision has a lot 
of potential value. According to the decision rule, one should wait for investing until month 
10 as OV becomes negative with a positive pNMBstandard. When comparing this €150,000 base 
WTP to the €80,000 base WTP shown in figure 4d, it becomes evident that the base WTP has 
profound influence on pNMBstandard, pNMBoption and resulting OV. 

The influence of a higher (€50,000) minimum WTP is shown in figures 5b and 5c. When comparing 
5b to 4d and 5c to 5a, it is apparent that a higher minimum WTP increases pNMBstandard and that 
it lowers OV. Both these observations are expected as a higher minimum WTP effectively lowers 
the potential for a loss of pNMBstandard. Based on 5c, like in 5a, reimbursement should be initiated 
after waiting and observing until month 10. 

Figure 5c. Option value using method 3 for WTP = f(BI), base WTP = €150,000, minimum  
WTP = €50,000
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DISCUSSION

We aimed to address two aspects that limit the use of CEA for decision-making purposes, being 
incorporation of timing and a unified assessment of BI and ICER as well as the role of WTP. Using 
Opdivo as case study, we unified BI, ICER and WTP by means of pNMB and then incorporated 
timing using ROA. A BI prediction model that was able to adapt to the monthly addition of data. 
In figures 4 and 5, we used pNMB to compare traditional ‘now or never’ decisions to having 
the option to wait more data and demonstrated that waiting can indeed provide more value and 
therefore potentially lead to better decision making. 

pNMB was based on distributions of three main parameters. The WTP proved to be critical 
for determining the pNMBstandard and therefore pNMBoption and OV. For example, using POINT 
WTP (€72,500) instead of the base WTP (80,000) approximately halved the NMBstandard. In figure 
5, a WTP increase from 80,000 to €150,000 changed the pNMBstandard from deeply negative to 
very positive. This would not be a problem if the true value of the WTP would be known with 
certainty and if decision making would then be based on this WTP. Literature has however led 
to a wide variety of possible WTP thresholds [8–10,22]. 

Evidence furthermore suggests that achieving a single threshold is impossible and that a single 
threshold should never be used in practice, thereby suggesting that it should be related to 
the budget available and/or the BI of the respective innovation [45–47]. Therefore, it is not 
illogical that in practice, the ICER and WTP have not been the sole deciding factors for 
reimbursement and innovations with an ICER above the WTP have still received positive 
recommendations [1,3,45]. For our analyses, it is thus probably impossible and unwanted to 
use a single fixed WTP threshold. Instead, we should use a more dynamic approach, such as 
we have demonstrated with WTP = f(BI) method 2 and 3 that are derived from real-world  
decision-making. 

A second parameter used for NMB calculation was BI. The traditional BI point estimates 
provide insufficient data on the underlying probability distribution and they cannot easily be 
updated based on observed BI so a previously developed BI prediction model was used. In 
figure 3, we showed that predictions were rather accurate. Still, as this prediction model was 
only validated for the Netherlands and for oncology drugs, widespread use of this data source 
for ROA is limited. We have however demonstrated that such a method for BI estimation could 
serve as valid input data for ROA. 

The third and final pNMB parameter was the ICER. As PSA typically is used to depict 
(parameter) uncertainty and as we were able to use the raw PSA data from the reimbursement 
file, we believe we have used a valid and representative data source for the ICER. We did however 
use model-outcomes that were based on the manufacturers’ assumptions and parameters, 
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yielding a base-case ICER of €62,277. ZIN however used alternative assumptions which they 
deemed more representative of the Netherlands, resulting in a base-case ICER of €133,848. If 
we had used the latter ICER, all scenarios given current Dutch WTP thresholds would have had 
a profoundly negative pNMB. We believe that it would be less insightful and less informative 
to demonstrate ROA with an investment decision that would always be negative and therefore 
resorted to the manufacturers’ scenario.  

When using ROA, waiting for the arrival of data is a crucial aspect. This waiting should however 
be sensible in the sense that one should expect to achieve more accurate data in the future and 
that this increased accuracy should deliver value. When relating this to the case study, the BI 
prediction model validation showed that the prediction error decreases with increasing t_data 
(see Appendix 1). A high prediction error means that the point estimate of the BI prediction 
is distributed over 100 BI scenarios with a greater range of BI values than a low BI error would 
generate. If we then assume some form of WTP = f(BI), a higher prediction error would result 
in lower WTPs amongst various BI scenarios (given they exceed 2.5 million annually). A lower 
WTP results in a lower pNMB (given the same ICER). So, a high prediction error with WTP = 
f(BI) results in a lower pNMB. Given the statements above, waiting for more data is a sensible 
option as a lower error should yield a higher (and more accurate) pNMB.  

Our study has the following limitations. First, the presented case study is, given all 
the assumptions, still more a theoretical and technical example of an implementation of 
ROA than it is guidance for real-world decision-making. We furthermore acknowledge that 
real-world decision-making is driven by many other factors than BI, ICER, WTP and their 
evidence levels such as disease severity, incidence, medical need and various socio-political 
aspects. ROA is however a proven technique for informing investment decisions in corporate 
environments and ROA has previously also been used in academic settings [31,33,34,43]. We 
have demonstrated that ROA can be used to implement the value of waiting for the gradual 
arrival of more data in a reimbursement decision making setting. This ROA approach would 
of course be more informative if additional data on the ICER would become available over 
time, from for example a registry or trial, and would be incorporated in the option valuation. 
Although including development of the ICER uncertainty is beyond the scope of this study, we 
believe the herein presented ROA implementation could serve as a foundation for future work 
and could currently serve as a tool to identify and manage BI uncertainty and its development 
during the period in which a reimbursement decision is to be taken.    

Second, aggregating ICER and BI samples in 100 scenarios inevitably causes some loss of data 
and potentially reduces the influence extreme values. In other words, the tails of the distributions 
are condensed into the first and last scenarios. We do not believe that this is a major concern as 
these extreme values typically play a limited role in decision making and as 100 scenarios are 
able to represent a wide variety of ICER and BI values.    
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Third, BI data recorded prior to a reimbursement decision might not be representative of 
post-decision BI. The BI prediction model was however trained using pre- as well as post-
decision data and the published validation showed that the resulting accuracy was adequate 
[38]. Although the factors driving pre- and post-reimbursement BI are different, we believe that 
pre-decision BI provides sufficient information on (potential) post-decision BI and is therefore 
adequate for informing access decisions.  

Fourth, our time horizon is limited to 45 months. This causes pNMBstandard to attenuate to 0 
over time as less time remains in which pNMB can be generated. This leads to some bias as 
it encourages waiting as risk as well as potential benefits are now artificially reduced as time 
passes. ZIN however uses a time horizon of 3 years when predicting BI and also disregards BI 
past this 3-year timeframe [40]. In that regard, our 45-month time horizon is still imperfect but 
better than what is currently used in practice. 

CONCLUSION

We showed that our ROA based conceptual method can be used to inform the timing of 
reimbursement decisions. A relationship between WTP and BI is however required to generate 
option value and thus for ROA to be useful. The parameters describing this WTP and BI 
relationship also have great influence on the outcomes. Accurate data on these parameters is 
therefore a prerequisite for implementation of ROA but the Dutch healthcare system currently 
does not provide this data. Recent literature however acknowledges the need for a more 
dynamic approach to WTP that includes available budget and BI. We indeed believe that 
BI and its influence on WTP should first be clearly defined as it is clear that in practice, BI 
definitely has had influence on access decisions. When the relationship between BI and WTP 
would eventually be defined as suggested, we have shown that our method could be suitable 
for providing guidance on flexible and adaptive reimbursement decisions, deemed essential in 
the current landscape of ever higher uncertainty at market access of new costly drugs. 
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APPENDICES

Appendix 1. Median error aggregated per t_pred. Median error aggregated per t_pred, including error 
bars indicating the interquartile range and the regression line. Coefficient = -0.096, se = 0.0035, p<0.0001
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This thesis sought to integrate affordability, cost-effectiveness and uncertainty in a single 
decision-making framework. Decision-makers typically appraise affordability and cost-
effectiveness separately whilst these two aspects both drive the risk as well as potential benefit of 
innovations in healthcare. Especially the uncertainty in these two aspects needs to be interlinked 
and assessed as a single entity because the extent of uncertainty in ICER and BI synergistically 
influences the value or risk of innovations to society.    

In this thesis further evidence has been provided that BI estimates are inaccurate and are 
therefore an important source of uncertainty to decision-makers. This uncertainty should 
explicitly be accommodated for, since it was demonstrated in this thesis that a relationship 
between BI and WTP is pivotal with potential impact on healthcare decision-making. The result 
of this potential relationship is that BI, as opportunity costs, influences the WTP. This link 
to WTP implicitly links affordability (BI) with cost-effectiveness (ICER and WTP) and was 
quantified as population Net Monetary Benefit (pNMB). This pNMB thereby provides a major 
step towards integration of affordability, cost-effectiveness and uncertainty in a single decision-
making framework. 

The uncertainty in BI could potentially be managed or reduced by the proposed prediction 
modelling approach which paved the way for integrating the aspect of time on evidence 
and uncertainty, culminating in the Real Options Analysis driven approach where timing of 
uncertainty is explicitly integrated in decision-making. By means of ROA it was demonstrated 
that temporality can be integrated in the unified pNMB approach, thereby providing the final 
step towards a unified appraisal of affordability, cost-effectiveness and the associated uncertainty 
and timeliness of these aspects. 

Hereafter, various aspects of this thesis will be discussed in more detail, before implications and 
possibilities for future research will be conveyed. 

sNMB TO INTEGRATE COST-EFFECTIVENESS, 
AFFORDABILITY & UNCERTAINTY

The balancing of cost-effectiveness & affordability, set out in chapter 5.1, is a longstanding 
challenge to decision-makers. Although, many publications address this topic, none have so 
far explicitly incorporated the joint influence of uncertainty in both cost-effectiveness and 
affordability [1–3]. This approach faces challenges before it can be implemented but can yield 
great advantages to the healthcare system. 

Especially when BI has a great influence on marginal cost-effectiveness, then even a small 
probability on a very high BI poses a great risk to a healthcare system. Indeed, risk could be 
defined as probability * impact, described by for example Klinke & Renn [4]. As previously 
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described, the ‘probability’ aspect of affordability is currently omitted in BI analyses by the lack 
of BI probability distributions. For this, chapter 4.1 provides a first step towards a potential 
solution. The ‘impact’ aspect of BI is as of yet unclear as there is a mismatch between empirical 
evidence on the influence of BI on marginal cost-effectiveness and the influence of BI on real-
world decision-making. So, current decision-making practice is partly aimed at preventing 
budgetary risk, but is ignorant of the underlying probabilities and types of impact. 

For cost-effectiveness, adequate methods exist to quantify cost-effectiveness and the associated 
uncertainty and we believe that these methods are properly employed in the Netherlands to 
yield scientifically valid reimbursement dossiers. 

When assessing the risk associated with a reimbursement decision, it is clear that having 
reimbursed a medicine with an ex-post unfavourable ICER and an ex-post high BI has resulted 
in greater losses than a medicine with a low ex-post BI. Loss in this sense can pertain to net 
expenditure as well as opportunity costs. This logic also holds for potential gains in the event 
of a favourable ICER, again indicating the intertwined nature of affordability, cost-effectiveness 
and uncertainty. The only way then for proper decision-making, managing risks as well as 
potential benefits, is a combined appraisal. In chapter 5, the pNMB approach is portrayed which 
aims to solve this issue. 

Potential & Pitfalls of pNMB
The presentation of the pNMB approach in chapter 5.1 is somewhat synthetic as simulated BI 
data was used. Besides, the ICER estimate that was used was supplied by the manufacturer but 
was rejected by the Dutch Health Care Institute (ZIN). As this chapter is critical to answering 
this thesis’ main objective, we wish to elaborate on some of the aspects of this study that are 
especially relevant to potential implementation by decision-makers.

BI data and the BI distribution were simulated but in reality, especially the latter is unknown. 
Efforts to fill this knowledge gap are set out in chapter 4.1 but, as will be described later in this 
discussion, requires further work. The simulated approach, where the BI probability distribution 
is based on empirical evidence (e.g., Keeping et al), would still be superior to the current 
nondescript ranges surrounding BI estimates [5]. Therefore, the assumed BI distributions 
should not be a major hurdle for implementation. 

The current mismatch between empirical evidence on the relationship between WTP and BI 
and the influence of BI on decision-making is however a significant hurdle. When BI has as little 
influence on WTP as suggested by Adang and Lomas, affordability should not be considered for 
reimbursement decision-making and decisions should be solely based on ICER and WTP [6,7]. 
This is in stark contrast with decision-making practice. The relationship between WTP and BI 
has major influence on the outcomes of chapters 5.1 and 5.2 and requires elucidation before 
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these methods can be implemented. Given the resources that are devoted to health-care and 
the impact of reimbursement decisions, it is required to further research this relationship and 
attempt to realign the current mismatch.

The existence of any form of a dynamic WTP is however of paramount importance to chapter 5 
as if WTP would be completely static, BI would have no role in a pNMB guided reimbursement 
decision. This existence of a dynamic WTP can however be deduced convincingly: As was set 
out in the general introduction, the WTP can determined by a combination of striving for equity 
as well as efficiency. Affordability concerns, which in the Netherlands influence reimbursement 
decisions, must indeed be caused by maintaining or striving for some level of efficiency and 
therefore imply that opportunity cost must play a role and must therefore influence the WTP. 
Therefore, it was assumed that in any healthcare system, at least some efficiency is strived for so 
that for any system, opportunity costs and marginal benefits are relevant. These assumptions are 
in line with literature, and therefore the assumption that WTP is dynamic (in chapters 5.1 and 
5.2) is justified [6–9].   

In the presented pNMB approach, the number of treated patients is derived from the total 
treatment cost per patient. As is shown in chapter 5.1, this approach underestimates the number 
of patients treated in the first for treatments with a duration of multiple years. This problem is 
especially relevant for life-long treatments in for example cystic fibrosis or rheumatoid arthritis. 
This would be solved when BI data would be combined with data on the number of patients, 
data sources that are both available to ZIN. The approach for multi-year treatment should of 
course be validated and until then, the herein presented approach can only be used for treatment 
durations up to one year. Furthermore, pNMB should ideally be extended to include the first 
three years (as is the case for BI) instead of the current one-year timeframe [10]. 

Although these challenges are significant, the potential benefits are also major: an integrated 
approach could lead to improved decision-making, pave the way for more dynamic access and 
for new more transparent pharmaceutical pricing policies. In the final part of this discussion, 
these merits are discussed in detail.  

BUDGET IMPACT:  
ACCURACY AND VALIDITY IN DECISION-MAKING

In 2013, Cha et al. published the aptly named paper ‘Pharmaceutical forecasting: throwing 
darts?’ where they reported the low accuracy of drug turnover forecasts used by manufacturers 
or investors [11]. Further work, for example by Broder et al. in 2017, assessed the accuracy of 
US estimates of sales forecasts and also concluded that accuracy of such estimates is poor [12]. 
The 2018 publication by Keeping et al. is especially relevant in this regard as they specifically 
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assessed the accuracy of BI estimates that were used to inform Welsh reimbursement decision-
making [5]. Findings from this thesis confirm these conclusions (chapters 3.1 and 3.2). 

Therefore, current evidence suggests that BI estimates are generally inaccurate should at best 
be regarded as crude approximations or “guestimates”. This is not due to ignorance, negligence 
or lack of skill of the parties conducting these BI estimations. To the contrary, it is most likely 
due to the complexity of the real world that it is extremely difficult to make an accurate a-priori 
assessment of future BI. This does not exonerate the scientific community from efforts to improve 
BI estimation methodology but it does require decision-makers to accept that BI estimates are 
currently merely scientifically substantiated suppositions whose inaccuracy is usually shrouded 
by means of tables, calculations and (supposed) multiple-digit accuracy. 

Inaccuracy of these estimates is not an issue if they merely serve an explorative purpose. In 
many jurisdictions however (like England and the Netherlands), estimated BI has a formal role 
in reimbursement decision-making [5,13–19]. Although this role is not as strictly enforced in 
the Netherlands as it is in England, a multitude of examples (e.g. Sovaldi, chapter 3.1) show that 
BI does definitely have a role in Dutch reimbursement decision-making [13,20–26].   

In the Netherlands, high BI estimates can lead to (temporary) postponement of reimbursement 
by means of the “lock” (pakketsluis) policy [27]. This restrictive policy is only lifted if negotiations 
regarding price and/or volume lead to a (confidential) result that is deemed satisfactory to 
the Minister of Health, Welfare and Sport (MoH) [27]. From the perspective of the marketing 
authorisation holder (MAH), postponement of access and potential for lower price/volume is 
unfavourable. The payer however, receives a formal opportunity for price-negotiations, as long 
as BI is deemed high [16,18,19,28]. 

Of many products with high BI estimates, (e.g. Sovaldi, Harvoni, Opdivo) the reimbursement 
dossier states (e.g., Opdivo) or implies that this high BI causes displacement of current (or 
potential future) more cost-effective care [21,22,29]. 

Displacement effects have been widely described, for example by Claxton et al. and Lomas et 
al, who demonstrated and quantified displacement effects (materialised as opportunity costs) 
[6,7,30–32]. Given that displacement effects are very frequently mentioned as reasons to limit 
reimbursement and/or initiate negotiations, the evidential foundation for these effects should 
be solid. 

Surprisingly, Lomas & Adang both conclude that BI has very limited influence on marginal cost-
effectiveness (see chapter 5.1) [6,7]. In an assumed Dutch BI bandwidth of up to €250 million 
per year, marginal cost effectiveness is hardly influenced according to these empirical studies. 
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There thus appears to be no convincing evidentiary basis for the decisions that are based on 
these (inaccurate) BI estimates, warranting the question whether BI is currently used adequately. 
Given the high-prices and typically high ICER of newly introduced medicines, it is however 
understandable that policymakers use the available tools (e.g., price negotiation based on BI) 
to limit these prices. In the final section of this discussion, implications of these findings will 
be described. 

IMPROVEMENT OF BI ESTIMATION:  
POTENTIAL FOR DATA-DRIVEN METHODS

As mentioned in the previous paragraph: Revisiting BI estimation is required for BI to have 
a justified role in reimbursement decision. In chapter 4.1, a new method is presented to 
potentially secure the future legitimacy of BI, which however should mainly be regarded as 
fundamental step and not as a finalised method that can readily be implemented. 

Currently, the system allows for flexibility in the early HTA setting but the post-marketing 
authorisation reality is still deemed too rigid [33,34]. The adaptive and dynamic approach 
described here does therefore not fit in current decision-making practice. The requirement of, 
for example, approximately 6 – 12 months of BI data before prediction error stabilises results 
in the need for a system with prolonged temporary reimbursement before a decision would be 
taken. If such a system were to be devised, it would be worthwhile to include (data on) the ICER 
in a similar dynamic fashion. 

It therefore seems inevitable that HTA in general but also payers move to a system where real-
world but also near real-time data play a crucial role. Data-science has recently (disruptively) 
transformed many different sectors and there is no reason to believe that data won’t have influence 
on the regulation and access of new medicines. The proposed method is a small fundamental 
step towards integrating BI dynamics (or other real-world data) in decision-making and not 
a readily implementable solution. 

Measures of BI prediction accuracy
There is a wide variety of measures to define prediction accuracy, some of which are described 
in chapters 3.1, 3.2 and 4.1 and are visualised in chapter 3.2. 

When aggregating accuracy data, a practice that is bound to happen if more data-driven 
approaches are implemented, this is especially relevant. To illustrate this, the accuracy results 
from the primary analysis set from chapter 3.2, table 2 are used: Mean accuracy was 0.64 but 
the mean symmetric accuracy was 2.5. 
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Accuracy (e.g., defined as observed / estimated) is not symmetric which in itself causes bias and 
is especially troublesome if there are samples with very high and low accuracy. This asymmetry, 
caused by accuracy of overestimations ranging from 1 – 0 whilst underestimations range from 
1 – ∞, results in accuracy measures being predominantly influenced by underestimations. 
A second limitation of using such outcomes is that when processing accuracy estimates in 
an additive manner, similar and relatively small deviations (i.e., 100 observed and 90 vs 110 
estimated) yield an aggregated accuracy that is nearly 100%. 

The latter limitation might be acceptable if a decision-maker’s primary concern is to ensure that 
the total estimated BI is close to the total observed BI, thereby ignoring accuracy of individual 
products. Still, the former limitation will then introduce bias as over- and underestimations of 
individual products were significant (chapter 3.2).  

The log-transformed measure of accuracy in chapters 3.2 and 4.1 is derived from the formula 
that Törnqvist et al. postulated in 1985 [35]. They described that Ln (estimated / observed) 
should be used to relative change as it is symmetric and additive. The resulting outcomes on 
Ln scale are however hard to interpret. This was solved by exponentiating the absolute log 
value. Whilst still being additive and symmetric, the sign (i.e., under-or overprediction) is lost 
(denoted as directionality). This is of course critical information, especially when the ratio of 
over- vs underestimation is not 1. 

In the example from chapter 3.2, overestimations have clearly cancelled out underestimations 
as 0.64 (or its reciprocal 1.56) are clearly not equal to the symmetric error of 2.50. Clearly, only 
providing one of these outcomes is inadequate for providing insight in the underlying data. 

To describe an average, the mean as well as the median are typically presented. A similar approach 
for describing (aggregated) accuracy is proposed: provide an asymmetric and non-additive 
but directional measure (i.e., observed / predicted) as well as the proposed log-transformed 
unidirectional but fully symmetric and additive measure, potentially supplemented by the ratio 
of overprediction / underpredictions. This may appear complex but is probably unavoidable as 
was found that no single (interpretable) number is able to properly convey accuracy outcomes, 
similar to the fact that using only a mean or only a median is incapable of properly describing 
the average of a non-normally distributed sample.   
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TEMPORAL ASPECTS OF UNCERTAINTY AND 
DECISION-MAKING

In chapter 3, it is shown that timing of decisions respective to market conditions and market 
dynamics is a crucial factor in BI estimation. This supports the aforementioned need for 
temporal integration of uncertainty in an early-access setting (2.1, 2.2, 4.1) as well as during 
access (3.1, 3.2, 4.1).  

The distinction between early (pre-access) and standard HTA (peri/ post-access) might 
however be too large and the flexibility and incorporation of timing appears to be reduced 
once an initial access decision has been taken. Crucially, a post-decision loss of flexibility might 
not reflect continued temporal development of uncertainty. Decision-makers’ exigency to unite 
and homogenise uncertainty management as well as opportunities to ameliorate the current 
deficiencies will now be portrayed.  

Early HTA & Conditional access schemes
In early HTA, the existence of a relationship between time and uncertainty is explicitly recognised 
as early HTA is, at least partly, aimed at identifying main sources of uncertainty that are most 
valuable or most crucial to resolve within certain timeframes [36,37]. Furthermore, early HTA 
assumes a degree of flexibility regarding research, development and evidence generation plans 
as well as regulatory dialogue [36]. The examples presented in chapters 2.1 and 2.2. could, in 
this regard, be used for guiding research and development pathways as well as pricing strategies. 
Both examples implicitly incorporate the notion and understanding that time and uncertainty 
are inherently intertwined. 

The impact of time on evidence and uncertainty is also acknowledged by the existence of 
conditional access schemes. Conditional access, herein described as either a form of conditional 
marketing authorisation or conditional reimbursement, is aimed at providing flexibility 
regarding an initial access decision by granting early access whilst accepting higher uncertainty 
[38–40]. This uncertainty should then resolve over time and, at some point, a final decision 
should be taken. Although these schemes have not always lead to the timely delivery of 
adequate evidence, they do highlight the need (and demand) for flexibility regarding access  
decisions [41–45].  

Loss of flexibility once access is granted
Various reasons cause initial flexibility and timeliness to be lost once access is granted. First, in 
an early HTA setting, the price of an intervention is a variable or even an outcome (Chapters 2.1 
& 2.2). Once an initial price for an innovative medicine has been set, pricing generally remain 
quite stable until patent expiration. In other words, an intervention’s price currently changes 
from a variable to a constant peri-access. 
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Second, the implied flexibility and timeliness of conditional access schemes might be misleading. 
Various sources state that obligatory post marketing studies as part of conditional access schemes 
are frequently delayed or completely omitted [41–45]. Even if adequate evidence is collected, 
evidence has shown that policy-makers struggle with revoking (conditional) reimbursement 
once a product has been granted market access [41,46]. It is not surprising that policy-makers 
have less degrees of freedom for a product to which patients have access as decisions carry 
increased political and societal significance. Still, these observations lead to the conclusion that 
the seemingly dynamic and gradual transition from an early to post-authorisation setting is 
in reality a stark divide. Crucially, this foregoes the continued development of evidence and 
uncertainty over time.

Third, as mentioned in chapter 5.2, current decision-making lacks the possibility to postpone 
a decision. This limitation restricts the flexibility of the reimbursement decision itself, and this 
decision is typically final.

Potential for Real Options Analysis
Given the immense resources that companies invest and the fierce competition in many markets, 
active management of investments and including timing & uncertainty in investment decisions 
is an essential aspect of corporate management [47–49]. To manage this, numerous companies 
use the method of Real Options Analysis (ROA) [47,50]. If it is a proven tool that aids companies 
to manage investments and prevail amidst global competition, why don’t decision-makers use 
this to manage publicly funded investments such as new medicines?

The potential merits of ROA are described in chapter 5.2 and provide a first (but still imperfect) 
glimpse of a dynamic ROA driven reimbursement framework. Our proposed integration of 
affordability & cost-effectiveness requires ICER development over time also to be included but 
this lacks in our current ROA implementation due to lack of data. If this were to be implemented, 
we believe ROA could allow for the following: 

To make the optimal decision at the right time 
The right decision can only be taken when cost-effectiveness, affordability and uncertainty are 
integrated and jointly appraised for which we have devised our integrated pNMB approach. 
Timing the actual reimbursement decision, based on pNMB, is then informed using ROA. 

Earlier work, by for example Mohseninejad, mainly investigated the required duration of 
conditional access schemes before a final decision could be taken [51]. Makady et al. however, 
showed that this type of access scheme had various practical issues and that data was not timely 
delivered, thereby limiting the use of Mohseninejad’s work [41]. Furthermore, ROA has been 
used in various case-studies but none have used the semi-continuous approach were new data 
is added monthly [52–56]. Besides, none provide means to integrate cost-effectiveness and 
affordability like we have presented. 
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Provide better informed Managed Entry Agreements & more Dynamic Access
Managed entry agreements are discussed in chapter 5.1 and pertain to limiting of uncertainty 
and risk in affordability and / or cost-effectiveness whilst providing (early) access [41,57,58]. 
Also, when designing MEAs, the synergy between uncertainty in BI and uncertainty in ICER 
is what determines value to the payer. In that sense, value is a bivariate distribution of ICER 
and BI comparable to figures 2 and 3 from chapter 2.1. Therefore, it is very difficult to convey 
bounds or ranges of one parameter (e.g. BI) whilst not defining the other parameter. Without 
integrating these and their uncertainty, properly defining ranges or bounds on ICER and/or BI 
is thus nearly impossible. Informing on these critical but intertwined parameters is therefore 
crucial for designing and managing MEAs as they should safeguard value for society under risky 
or uncertain circumstances. 

Chapter 5 provides this information in a graphical way. The pNMB results based on a fixed 
WTP (Chapter 5.1, figure 2) indicated that the distinction between a positive and negative 
pNMB was defined by a horizontal line at ICER scenario 62, so ICER scenarios 1 – 62 yielded 
a positive pNMB whilst ICER scenarios 63 – 100 yielded negative pNMB and BI thus does not 
influence whether pNMB is positive or negative. A MEA with the goal of managing this scenario 
should therefore only have to focus on maintaining this specific ICER threshold. Affordability 
(so volume of the product) does not matter in this scenario. 

When using the example of the hepatitis-C derived dynamic WTP (specifically chapter 5.1, figure 
3), criteria for a positive pNMB are more stringent. Crucially, no single ICER or BI scenario 
yields a 100% probability for positive pNMB. Contrary to the previous example, a potential 
MEA should therefore be designed so that it can confer strict restrictions on the ICER but also 
on BI. This scenario would likely be risky for a payer. 

The pNMB results that were generated using an arbitrary relationship between BI and WTP 
(chapter 5.1, figure 4), would provide a payer with multiple choices regarding potential MEAs. 
ICER scenarios 0 – 5 yield a positive pNMB, regardless of BI and therefore reflect the MEA of 
the first (fixed WTP) example: if the manufacturer can guarantee this very specific ICER, there 
will be no restrictions on BI. Alternatively, a MEA restricting ICER and BI could be proposed. 

When this approach is extended over time by monitoring of BI and ICER, it paves the way for 
more dynamic access schemes. If, for example, observed BI appears to be lower than estimated, 
the pNMB approach from chapter 5.1 can inform on the ICER range that this allows for. 
If the lower BI indeed permits a higher ICER, it could allow for (an informed) decision on 
expanding indications. 

As is shown in chapter 3.1, 3.2 and 4.1, market dynamics cannot be predicted as it requires active 
management of costly interventions, like corporate investments would. So when, for example, 



242

pNMB would turn negative over time, our method could inform on which actions should be 
taken in terms of BI and ICER. 

The need and ability to more closely manage and monitor the value of interventions during their 
life-cycles will only increase in the future where data is bound to become ever more available. 
As such, the presented pNMB & ROA methods provide foundations to allow for more dynamic 
access in the future.  

Provide means to guide dynamic pricing
Affordability and cost-effectiveness are intrinsically linked with the price of the intervention. 
In the aforementioned pNMB & ROA based reimbursement model, the price of the medicines 
could of course be a considered a variable and the model could thus inform on pricing. 
Specifically, the pNMB guided ROA approach could pave the way for dynamic and transparent 
pricing schemes. 

pNMB varies based on BI and ICER estimates, including associated uncertainty. The decision-
rule states that only a positive pNMB leads to reimbursement. It would also be possible to use 
this approach to set the price required (or warranted) for the innovation to yield a positive 
pNMB as outcome, similar to the approach presented in chapter 2.1. Evidence development, 
where it is assumed that it only lowers uncertainty and ICER and BI estimates stay the same, 
will then automatically lead to a higher price. This could provide an incentive for manufacturers 
to indeed undertake additional evidence generation activities and could be more practical and 
transparent than Value of Information (VOI) analyses. 

For the public or for a payer, such a pricing model could also bring opportunities: As the input 
data for the pNMB calculation & ROA methodology, as well as the underlying formulas are all 
public (or published after the initial decision), it could pave the way for transparent pricing 
policies. Especially the public (or tax-payers), who are currently excluded from the confidential 
status-quo between manufacturers and the MoH, could benefit from a model that is fully 
transparent. 

From the perspective of a payer (or the institution tasked with undertaking price negotiations), 
such a model could also help to convey drug pricing or (managed) reimbursement policies 
to the public: The graphical presentation of pNMB results (chapter 5.1) clearly indicate 
the combinations of ICER and BI that are required for a product to beneficial to a health system. 
This information can then inform on the actions (e.g. on price, volume, cost-effectiveness or 
uncertainty) needed to ensure that a product is indeed beneficial. 
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LIMITATIONS

For the presented studies, several limitations and challenges for implementation are to be addressed. 

In chapter 2, the primary limitations are due to parameter uncertainty. For chapter 2.1, 
the deterministic sensitivity analyses showed that especially the incidence of angiotensin 
converting enzyme inhibitor (ACEi) induced angioedema, the incidence of intensive care 
admission and mortality related to this adverse event and the price difference between ACEis 
and the alternative treatment had a relatively large influence on the ICER. Of these, the estimate 
of mortality was the most uncertain due to very little and low-quality evidence on lethal cases. 
Incidence of ACEi induced angioedema, which had the largest relative influence on the ICER, 
was based on a large meta-analysis and was therefore assumed to be relatively accurate. 

In chapter 2.2, the presence of parameter uncertainty is evident given the phase I / II setting of this 
study. Main limitations are related to resource use estimated by expert opinion, the suboptimal 
nature of reconstructing individual patient data from published survival curves and uncertainty 
regarding the relative efficacy of acalabrutinib (modelled as a hazard ratio). Furthermore, an 
inherent limitation of partitioned survival models is that underlying events are not modelled, 
thereby potentially leading to biased long-term survival estimates. 

The transformation of BI data, composed of volume multiplied by price, to the number of 
patients treated can be regarded as the main limitation of chapter 3.1. In chapter 5.1, a similar 
limitation is described which pertains to an underestimation of patients treated when treatment 
durations exceed one year. The hepatitis C treatments discussed in chapter 3.1, all have treatment 
durations shorter than one year. 

Chapter 3.2 is limited by a relatively small number of products that were included in the primary 
analysis. Second, off-label use and indication extensions for which no BI analysis was published 
were not incorporated in the analysis, thereby potentially influencing the results. Both these 
limitations were primarily caused by lacking information on the indications for which the BI of 
the included products was generated (i.e., the indication for which the products were prescribed), 
thereby necessitating the assumptions made in this study.

Methodologically, various issues would need to be resolved before the BI prediction modelling 
approach set out in chapter 4.1 would suitable to use in practice. As the approach was completely 
data-driven and did not consider the influence of specific covariates, the influence of specific 
drug characteristics is unknown. Besides, there is no information on the magnitude of the fixed 
effects compared to the magnitude of the random effects. Furthermore, a full leave-one-out 
cross validation should be performed to quantify the influence of individual products on 
the estimation error, thereby increasing the chance that the results were not due to overfitting. 
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Lastly, it is described that at some point in time, the model structure itself should be updated but 
guidance currently lacks as to when this should be done. Of these issues, the last two (overfitting 
and time to model-structure update) are probably the most prudent and definitely require  
more insight. 

The main limitation of chapter 4.2 is associated with bridging the gap between the presented 
methodology and implementation in practice. Familiarising decision-makers with the underlying 
technology (R and Rstudio) as well as the PSA-ReD plots (e.g., definition of the axes, interpreting 
the colours) will be critical for adoption. The supplied script, GitHub repository with a readme 
and an example datafile as well as the technical appendix are all aimed at supplementing 
the presented study in order to facilitate implementation. 

As was covered earlier in this discussion, the main limitations pertaining to chapter 5.1 are 
uncertainty regarding the role of BI on WTP, use of simulated BI data and underestimation 
for number of treated patients for treatments that span multiple years. Similarly, the main 
limitations of chapter 5.2 have partly been set out in the previous sections. In short, these refer 
to the use of the BI prediction model, dependency on the BI and WTP relation discussed in 
chapter 5.1 and the lacking implementation of development of the evidence and uncertainty of 
the ICER.  

Major challenges for the herein presented pNMB and ROA approach (i.e., chapter 5), and 
therefore targets for future research, are: 

1.	 Further elucidating the previously discussed role of WTP in decision-making and 
the relationship between BI and WTP.

2.	 Incorporating the temporal development of evidence on the ICER in the ROA framework.
3.	 Familiarising decision-makers with the pNMB method as well as with ROA to identify 

further potential hurdles. 

CONCLUSIONS

In this thesis, the following was shown:
•	 The two early HTA case studies were able to highlight critical parameter values required for 

cost-effectiveness and highlight limitations of the current reimbursement frameworks. They 
also highlight the need for timeliness and flexibility of decision-making. 

•	 Dutch BI estimates, used for oncology and hepatitis C drugs, were inaccurate. The reported 
(in) accuracy was largely in line with evidence from other jurisdictions. 

•	 A new method for estimating BI was developed and the validation showed that this method 
is superior regarding insight in uncertainty, the ability to update predictions and the number 
of future months for which predictions were made, whilst providing predictive accuracy that 
appears to be superior to currently used BI estimations. The novel method for displaying 
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results from probabilistic sensitivity analysis provided more information than the traditional 
scatterplot, potentially improving model validity and interpretation.  

•	 The pNMB concept manages to integrate affordability, cost-effectiveness and uncertainty 
and was expanded to include timing and timeliness of uncertainty using Real  
Options Analysis. 

These findings can lead to the following implications:

1.	 Making the optimal decision at the right time
When policy-makers require affordability to be part of decision-making and not merely for 
price negotiations, affordability must be appraised in conjunction with cost-effectiveness and 
uncertainty. The pNMB approach is the only method that currently achieves this and can include 
time and flexibility using ROA. Not only can better decisions be taken by properly integrating 
probability-weighed risks and benefits, the right time to take a decision can also be established.  

2.	 Revisiting Budget Impact: take it or leave it
A revisited role of BI in decision-making is proposed: The current evidence-base on 
the inaccuracy of BI estimates, supplemented by the work presented in this thesis, unequivocally 
requires decision-makers to either accept that either BI in its current form can be no more 
than a tool for price-negotiations. However, BI by means of opportunity costs, definitely has 
a role in driving reimbursement decisions. In order to warrant such a role for BI, BI estimation 
techniques should be improved. This thesis provides the foundation of a new BI estimation 
paradigm that does justice to the opportunity costs associated with public funding of medicines.  

3.	 Moving towards a continuous access paradigm
The bivariate distribution of pNMB using BI and ICER can be a very beneficial tool for designing 
managed entry agreements for novel medicines. Combined with incorporation of timeliness by 
for example ROA, this approach could lead to an actively managed more flexible and continuous 
access paradigm here the distinction between early access and regular is finally seamless.  

4.	 Medicine Pricing
Medicine prices can be used as a variable in our presented pNMB approach. Then using 
a threshold approach, the maximum price given the current evidence on cost-effectiveness 
and BI, including uncertainty, could be generated. This fully transparent method can easily 
be updated over time and can thus deliver a new pricing model where effectiveness, quality of 
evidence and affordability transparently coalesce into a product’s maximum price. 

To conclude, an integrated approach of cost-effectiveness, affordability and the associated 
uncertainty has been developed: The herein presented pNMB-driven method that integrates 
these aspects allows decision-makers to conduct a single, integrated appraisal of all possible 
BI and ICER scenarios that are driven by the inevitable uncertainty that accompanies these 
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outcomes. This pNMB method is therefore able to provide decision-makers with information on 
the potential risk and value of medicines that was not possible before. By combining pNMB with 
ROA, the timing of decisions and the timeliness of evidence and uncertainty can be integrated 
within this framework, allowing for this integrated appraisal to be available during the entire 
product lifecycle. Combination of ROA and pNMB could therefore pave the way for a more 
continuous access paradigm, more transparent and dynamic medicine pricing and crucially, 
improved reimbursement decision-making.
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7.1

In chapter 1, the scene is set for the main goal of this thesis: To develop an integrated approach of 
cost-effectiveness, affordability and the associated uncertainty, where uncertainty also pertains 
to the temporal aspects of evidence and uncertainty. 

In chapter 2, the role of uncertainty in early HTA is assessed. Furthermore, it aims to investigate 
whether current assessments are suitable for various early HTA cases. In chapter 2.1, this is 
illustrated with a pharmacogenomic case study. This specific case regarded a potential single 
nucleotide polymorphism (SNP) that could be used to identify angiotensin converting enzyme 
inhibitor (ACEi) users who are at high risk for developing ACEi induced angioedema. This 
adverse drug reaction (ADR) is severe, very frightening and potentially lethal. As ACEi use is 
highly prevalent, preventing this ADR could provide significant benefit to society. A threshold 
analysis was conducted to characterise the required specifications of a potential diagnostic based 
on this SNP. The threshold is achieving cost-effectiveness and the specifications investigated 
were the price, specificity and sensitivity of the potential diagnostic. The decision-tree model 
shows that, when testing all or only high baseline risk patients and assuming 100% sensitivity and 
specificity, the price of this novel technology should be low (< €1.95 and < €7.55, respectively). 
When accounting for lower than perfect sensitivity and specificity, the required price is even 
lower and potentially less than €0. Clearly, such a low price is impossible given current prices of 
diagnostical procedures, potentially foregoing the clinical benefit of this technology to society. 
The advent of whole genome sequencing (WGS) and resulting reduction in WGS prices could 
however allow for conductance of WGS for each individual. If this were to happen, all current 
and future pharmacogenomic markers could deliver value for free (minus the initial WGS 
investment). The current paradigm of stand-alone cost-effectiveness assessments of these novel 
technologies does not do justice to their potential value to society. 

In chapter 2.2, an early HTA study on acalabrutinib is described. This medicine was still in 
clinical development at the time the study was performed. The indication of interest was 
relapsed chronic lymphocytic leukaemia (CLL) and the goal was to assist early reimbursement 
decision making, partly by assessing scenarios to find the impact of critical parameters on 
cost-effectiveness. A partitioned survival model was constructed for comparing acalabrutinib 
with ibrutinib and used a UK national health service perspective. Progression-free survival 
(PFS), post-progression survival (PPS) and death were the selected model states. PFS and 
overall survival (OS) were parametrically extrapolated from ibrutinib publications. To model 
acalabrutinib efficacy, a preliminary hazard ratio based on phase I/II data was applied. 
Deterministic sensitivity analysis (DSA) as well as probabilistic sensitivity analyses (PSA) 
were performed. Furthermore, 1296 scenarios (based on combinations of various parameter 
values) were assessed. The base case ICER is £58,899 / QALY, with 3.44 incremental QALYs 
and incremental costs of £202,861. DSA indicates that survival estimates, utilities and treatment 
costs of ibrutinib and acalabrutinib and resource use during PFS had the greatest influence on 
the ICER. PSA indicates that greater efficacy of acalabrutinib would decrease the likelihood of 
cost-effectiveness (from 69% at no effect to 2% at maximum efficacy). Scenario analyses shows 
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that a reduction in PFS does not lead to great QALY differences although it does greatly impact 
costs. For OS, the opposite is true. Acalabrutinib is therefore not likely to be cost-effective 
compared to ibrutinib under current development scenarios. The conflicting effects of OS, PFS, 
drug costs and utility during PFS shows that determining cost-effectiveness of acalabrutinib 
without insight into all parameters complicates decision-making. 

Chapter 3 is aimed at investigating the uncertainty of budget impact (BI) estimates by quantifying 
the accuracy of BI estimates and by identifying determinants for (in)accuracy. In chapter 3.1, 
this is addressed by studying the BI estimates of novel hepatitis C drugs in the Netherlands. This 
case of hepatitis C is especially relevant as access restrictions were imposed based on high BI 
estimates. Hepatitis C direct-acting antivirals (DAAs) that were introduced in the Netherlands 
between January 2014 and March 2018 were therefore selected. Of these products, the BI estimates 
as presented in the Dutch National Health Care Institute (ZIN) reimbursement dossiers were 
compared to the observed BI. Total observed BI in that period amounted to €248 million whilst 
BI estimates ranged from €388 - €510 million. The foreseeable introductions of new products 
were inadequately incorporated in BI estimations and timing of specific regulatory decisions 
were inadequately incorporated in estimates which both contributed to BI over-estimation. 
Furthermore, uncertainty regarding the patient population size and the impact of the final 
reimbursement decision limited BI estimation accuracy. To conclude, the findings show that BI 
for this novel drug class was largely overestimated. 

The accuracy and timing of BI estimates in oncology drugs is assessed in chapter 3.2. Given 
the potentially life-saving nature of oncology products, access decisions that are wrongly 
informed by inaccurate BI estimations could cause great harm. We selected oncology products 
that were granted with European Medicines Agency (EMA) Marketing Authorisation (MA) 
between 1-Jan-2000 and 1-Oct-2017 and which were designated as a ‘New Active Substance’ 
by the EMA. Products were consequently included if a BI estimation was present in a Dutch 
Health Care Institute (ZIN) reimbursement dossier. These BI estimates were compared with 
the observed BI in the third year after the publication of the respective reimbursement dossier as 
BI estimates in the dossiers were aimed to project BI in this third year. Products where the date 
of publication of the reimbursement dossier deviated from the date of the first BI record by 
a maximum of 6 months were included in the base-case analysis. The resulting 10 products 
resulted in BI estimation accuracy of 0.64, where accuracy is defined as observed BI / estimated 
BI. Accuracy differed dramatically between these products, ranging from 0.14 to 1.08. For these 
10 products, a total sum of €141 million BI was estimated whilst only €82 million was observed. 
Chapter 3.2 therefore shows that BI estimates for oncology products in the Netherlands were in 
general over-estimated and were associated with considerable inaccuracy. Chapter 3 thus shows 
that BI estimates in two different settings were quite inaccurate and that using these estimates 
for informing reimbursement decisions should therefore be carefully considered. 
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7.1

Chapter 4 describes new methodology for managing uncertainty in both affordability and cost-
effectiveness and their roles in decision-making. Chapter 4.1 addresses the deficiencies in BI 
estimation that were presented in chapter 3 by providing new methodology for BI estimation 
and by describing the results of the validation of this method, thereby using oncology products 
as a case study. Like in chapter 3.2, we included oncology products which received EMA MA 
between 1-Jan-2000 and 1-Oct-2017 and which were designated as ‘New Active Substance’ 
by the EMA. For these products, characteristics such as orphan, first-in-class or conditional 
approval designation were collected, as well as a classification regarding the target tumour site. 
Furthermore, the monthly observed BI data was collected where observed BI was composed of 
a product’s list price multiplied by monthly volume. This dataset was split in a training set and 
validation set based on a whether a product’s first BI record occurred before or after 1-May-
2012, respectively. 

Using the training set, a mixed-effects prediction model was constructed which was consequently 
cross-validated using a rolling forecasting origin. This approach mimics the monthly addition 
of new data by means of new observed BI but also the addition of newly products to the model. 
The model was constructed to predict the first 45 months of BI of each product. Error, used as 
validation outcome, was defined as e^|ln(Observed BI/Predicted BI)|. The mean and median 
errors were 2.94 and 1.57, respectively. Errors were higher with fewer months of observed BI 
data for a specific product and for more future predictions. Based on this validation, it was 
concluded that the developed model is valid for predicting BI. 

Chapter 4.2 targets uncertainty in cost-effectiveness by setting out a new approach for 
displaying the results of Probabilistic Sensitivity Analysis (PSA) with the aim of providing more 
information compared to the traditional scatterplot. This scatterplot visualisation has two major 
issues: i) overlap of individual estimates in high density areas and, partially extending on this 
issue ii) the general difficulty of estimating relative density from a scatterplot. To overcome these 
issues, the Relative Density Plot (PSA-ReD) was developed. In chapter 4.2, this development as 
well as a demonstration using three case studies is presented. The PSA-ReD combines a density 
plot and a contour plot to display the PSA results and created using R and the corresponding 
R was made available to other scholars by means of GitHub and an elaborative manual. To 
construct a PSA-ReD, density is calculated using two-dimensional kernel density estimation, 
transformed to cumulative probability, which is depicted using a colour gradient. Contours are 
then plotted over regions with a predefined cumulative probability. The case studies showed that 
PSA-ReD provides additional visual information such as a very dense area in one case study that 
was not visible in the original scatterplot. Such information could be used for additional model 
validation and potentially better-informed reimbursement decisions. 

Chapter 5 presents new concepts for managing uncertainty in decision-making. The first 
concept integrates affordability, cost-effectiveness and uncertainty and the second concept 
integrates the aspect of time and the timeliness of uncertainty into the first concept. This first 
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concept is discussed in chapter 5.1. The background of this study was the separate appraisal 
of cost-effectiveness and affordability and the resulting separate assessment of uncertainty of 
these outcomes, which incorrectly weighs the potential risks and benefits of new interventions. 
This is especially an issue if, as evidence has shown, Willingness to Pay (WTP) is a determinant 
of opportunity costs (being BI). Chapter 5.1 therefore presents a conceptual framework for 
united appraisal of BI, WTP and ICER and their associated uncertainty where WTP is dynamic 
and influenced by BI. The lung cancer drug Opdivo (nivolumab) was selected as case study 
and three different methods were used to quantify the relationship between WTP and BI. BI, 
ICER and WTP were integrated using population Net Monetary Benefit (pNMB), an outcome 
derived from Net Monetary Benefit. When WTP was not influenced by BI, only ICER influences 
whether pNMB is positive or negative and therefore influences the investment decision. These 
results were also produced by one of the dynamic WTP methods as this method yielded a WTP 
that was very insensitive to BI. When a stronger relationship is present, as was the case for 
the relationship that was derived from a real-world reimbursement decision, BI, ICER and their 
uncertainty have a synergistic influence on pNMB. This new concept allows for truly integrated 
appraisal of cost-effectiveness, affordability and uncertainty. 

Chapter 5.2 extends this concept by including the aspect of time in decision-making and 
uncertainty: Using Real Options Analysis (ROA), the option of postponing the decision 
is added as a potential outcome of a decision. ROA is incorporated using aspects from two 
previous chapters. First, the pNMB framework described in chapter 5.1 is used to integrate cost-
effectiveness (as ICER), affordability (as BI) and uncertainty, thereby also adopting the dynamic 
WTP approach described in this chapter. Second, the BI prediction model described in chapter 
4.1 is used to incorporate the temporality of evidence and uncertainty. The ROA implementation 
simulates the monthly arrival of observed BI data, which lead to more accurate BI prediction 
(as chapter 4.1 has shown). ROA then values the future reduction in uncertainty against 
the benefits of immediate reimbursement. It thus compares postponing (for more certainty, but 
losing some potential benefit) vs immediate access (thereby accepting more risk but benefitting 
from the intervention). The results indicate that, for the Opdivo (nivolumab) case study, waiting 
until month 10 before issuing reimbursement was the optimal balance between access and 
risk. The presented technique is however inflicted with the limitations of chapters 4.1 and 5.1, 
necessitating future research before this technique can be implemented. Still, ROA is a proven 
technique and could be a suitable methodological tool for providing early guidance on flexible 
and adaptive reimbursement decisions, deemed essential in the current landscape of ever higher 
uncertainty at market access of new costly drugs.

In chapter 6, the presented findings are discussed including the potential implications, limitations 
of the conducted studies and potential hurdles for implementation. The work presented herein 
has culminated in the potential solution to the main objective raised in the introduction of this 
thesis, as the proposed pNMB and ROA approach can be used to perform a unified appraisal of 
affordability, cost-effectiveness and the associated uncertainty and timeliness of these aspects.
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7.2

Hoofdstuk 1 introduceert het doel van dit proefschrift: Het ontwikkelen van een geïntegreerde 
benadering van kosteneffectiviteit, betaalbaarheid en de daarmee geassocieerde onzekerheid. 
Onzekerheid omvat hierbij ook de invloed van tijd op (de ontwikkeling van) wetenschappelijk 
bewijs en de bijbehorende onzekerheid. 

In hoofdstuk 2 is de rol van Health Technology Assessment (HTA) bij besluitvorming 
over geneesmiddelen uiteengezet. Daarnaast is in dit hoofdstuk onderzocht of de huidige 
beoordelingsmethodiek geschikt is voor verschillende typen van vroege HTA. Hoofdstuk 2.1 
illustreert dit aan de hand van een farmacogenetische casus. Deze casus behelst een potentiele 
single nucleotide polymorphism (SNP). Deze SNP kan worden ingezet om patiënten te identificeren 
die een hoog risico hebben op het ontwikkelen angio-oedeem bij gebruik van angiotensin 
converting enzyme inhibitors (ACE-remmers). Deze bijwerking kan zelfs tot mortaliteit 
leiden is daarom ernstig te noemen. Aangezien ACE-remmer gebruik zeer prevalent is kan het 
voorkómen van deze bijwerking een grote gezondheidswinst opleveren voor de maatschappij. 
Voor deze mogelijke screeningsmethode is een grenswaarde-analyse uitgevoerd om de voor 
kosteneffectiviteit vereiste karakteristieken te bepalen. De prijs, sensitiviteit en specificiteit van 
de screeningsmethode zijn de karakteristieken die zijn onderzocht. De resultaten zijn door middel 
van een beslisboom gegenereerd. Deze resultaten tonen aan dat wanneer alle ACE-remmer 
gebruikers worden getest, waarbij uit wordt gegaan van 100% sensitiviteit en specificiteit, de prijs 
van dit nieuwe diagnosticum zeer laag (< €1.95) moet zijn om als kosteneffectief te worden 
beschouwd. Wanneer testen wordt beperkt tot enkel patiënten met een verhoogd risico op 
de betreffende bijwerking is de maximale prijs €7.55. Wanneer uit wordt gegaan van lagere 
sensitiviteit en specificiteit is de vereiste prijs nog lager en in veel gevallen zelfs lager dan €0. Het 
is evident dat dermate lage prijzen onmogelijk zijn gezien de huidige prijzen voor diagnostiek. 
Hierdoor kan de potentiele gezondheidswinst van deze screeningsmethode verloren gaan. 
De recente ontwikkelingen van whole genome sequencing (WGS) en de recente prijsverlagingen 
van deze procedure kunnen het mogelijk maken om voor ieder individu WGS uit te voeren. 
Indien dit het geval zou zijn zouden alle huidige maar ook toekomstige farmacogenetische tests 
gratis (minus de initiële investering in WGS) waarde kunnen opleveren. Het huidige paradigma, 
waarbij losstaande kosteneffectiviteitsanalyses worden uitgevoerd op deze nieuwe technieken, 
lijkt in ieder geval geen recht te doen aan hun potentiele maatschappelijke waarde. 

In hoofdstuk 2.2 is een vroege kostenutiliteitsanalyse van acalabrutinib beschreven. Dit 
middel, dat nog in ontwikkeling was ten tijde van het uitvoeren van deze studie, is beoordeeld 
in het kader van gebruik voor de behandeling van chronisch lymfatische leukemie (CLL). 
Het doel van deze analyse was bepalen of- en in hoeverre vroege vergoedingsbeslissingen 
kunnen worden geïnformeerd, mede door het in kaart brengen van parameters die kritisch 
zijn voor de kosteneffectiviteit van dit geneesmiddel. Acalabrutinib werd vergeleken met 
ibrutinib waarbij gebruik werd gemaakt van een parametrisch overlevingsmodel en het 
perspectief van de Britse Nationale Gezondheidsdienst (NHS). Het model bestond uit drie 
stadia, namelijk progressievrije overleving (PFS), overleving na progressie (PPS) en algehele 
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overleving (OS). Voor het modelleren van de effectiviteit van acalabrutinib werd gebruik 
gemaakt van een voorlopige hazard ratio (HR) die was gebaseerd op fase I/II data. Zowel een 
deterministische sensitiviteitsanalyse (DSA) als een probabilistische sensitiviteitsanalyse (PSA) 
werden uitgevoerd. Verder werden 1296 scenario’s, gebaseerd op verschillende combinaties van 
parameterwaarden, geanalyseerd. De base case incrementele kosteneffectiviteitsratio (IKER) 
werd berekend op £58,899 / Quality Adjusted Life Year (QALY), bestaande uit 3.44 incrementele 
QALY’s en £202,861 aan incrementele kosten. De DSA laat zien dat parameters voor overleving, 
utiliteiten en kosten van behandeling met ibrutinib en acalabrutinib de grootste invloed 
hadden op de IKER. Uit de PSA blijkt dat een hogere effectiviteit van acalabrutinib de kans op 
kosteneffectiviteit verkleint (van 69% bij gelijke effectiviteit tot 2% bij maximale effectiviteit). 
De scenarioanalyses tonen aan dat een vermindering in PFS niet leidt tot grote verschillen 
in QALY’s terwijl dit wel een grote impact heeft op kosten. Voor OS is het tegendeel waar. 
Gezien deze bevindingen is het onwaarschijnlijk dat acalabrutinib, vergeleken met ibritunib, in 
dit stadium kosteneffectief is. De tegengestelde invloeden van OS, PFS en geneesmiddelkosten 
en utiliteiten gedurende PFS op de IKER maken het vaststellen van kosteneffectiviteit moeilijk 
wanneer er onvolledig inzicht is in alle parameters.  

Hoofdstuk 3 is gericht op het onderzoeken van de onzekerheid van budget impact (BI) 
schattingen door het kwantificeren van de nauwkeurigheid van deze schattingen en door 
het identificeren van determinanten voor de precisie van BI-schattingen. Hoofdstuk 3.1 
behandelt dit door het bestuderen van Nederlandse BI-schattingen van een nieuwe generatie 
geneesmiddelen voor hepatitis C. Deze hepatitis C casus is vooral interessant gezien de ingestelde 
vergoedingsrestricties voor deze geneesmiddelen als gevolg van hoge BI-schattingen. Hepatitis 
C direct-acting antivirals (DAA’s) die in Nederland zijn geïntroduceerd tussen januari 2014 
en maart 2018 zijn geselecteerd voor deze studie. Van deze geneesmiddelen zijn de door het 
Zorginstituut Nederland (ZIN) gepubliceerde BI-schattingen vergeleken met de daadwerkelijk 
waargenomen BI. De totaal waargenomen BI in die periode was €248 miljoen terwijl in totaal 
€388 - €510 miljoen aan BI was voorspeld. De nieuwe introducties van DAA’s, die voorzien 
hadden kunnen worden, werden niet of onvolledig meegenomen in BI-schattingen. Daarnaast 
werd de timing van regulatoire beslissingen niet juist ingebed in deze schattingen, welke 
samen met de hiervoor genoemde reden hebben bijgedragen aan de overschatting van BI. 
Verder zijn ook onzekerheid over de grootte van de hepatitis C populatie en de impact van 
de uiteindelijke vergoedingsbeslissing waarschijnlijk debet geweest aan de beperkte precisie 
van de BI-schattingen. De bevindingen in dit hoofdstuk tonen aan dat de BI van deze nieuwe 
geneesmiddelklasse grotendeels is overschat.

De precisie en timing van BI-schattingen voor oncologie geneesmiddelen is geëvalueerd in 
hoofdstuk 3.2. Omdat deze geneesmiddelen van levensbelang kunnen zijn voor patiënten 
kunnen vergoedingsbeslissingen die gebaseerd zijn op niet precieze BI-schattingen grote 
schade veroorzaken. Voor deze studie zijn oncologiemiddelen geselecteerd die tussen 1 januari 
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2000 en 1 oktober 2017 van het Europees Geneesmiddelen Agentschap (EMA) markttoelating 
verkregen en daarbij werden aangemerkt als een ‘New Active Substance’. De geneesmiddelen 
werden geïncludeerd als er voor een product een BI-schatting beschikbaar was in het door 
ZIN gepubliceerde vergoedingsdossier. Deze BI-schattingen zijn vervolgens vergeleken met 
daadwerkelijk waargenomen BI in het derde jaar na publicatie van het vergoedingsdossier. Deze 
termijn is gekozen omdat BI-schattingen doorgaans voor het derde jaar introductie worden 
opgesteld. Enkel de producten waarbij de datum van publicatie van het vergoedingsdossier 
maximaal 6 maanden afweek van de eerste maand waarin BI werd waargenomen zijn 
geïncludeerd in de base case analyse. Dit resulteerde in de inclusie van 10 producten waarbij 
de gemiddelde BI precisie (gedefinieerd als waargenomen BI / geschatte BI) werd berekend op 
0.64. De precisie van de BI-schatting voor individuele geneesmiddelen verschilde sterk (van 0.14 
tot 1.08). Voor de 10 base case producten werd een gezamenlijke BI van €141 miljoen geschat 
terwijl slechts €82 miljoen werd waargenomen. Hoofdstuk 3.2 toont daarmee aan dat BI voor 
deze oncologiemiddelen in Nederland in het algemeen wordt overschat en dat BI-schattingen 
aanzienlijke onzekerheid met zich meebrengen. Hoofdstuk 3 laat dus zien dat BI-schattingen 
in twee verschillende indicatiegebieden relatief weinig precies waren en dat het gebruik van 
deze schattingen voor het informeren van vergoedingsbeslissingen daarom zorgvuldig moet  
worden overwogen.

Hoofdstuk 4 beschrijft nieuwe methodologie voor het omgaan met onzekerheid rondom 
betaalbaarheid en kosteneffectiviteitsuitkomsten en de rol daarvan in de besluitvorming. 
Hoofdstuk 4.1 gaat in op de tekortkomingen in BI-schattingen die zijn gepresenteerd in hoofdstuk 
3, door nieuwe methodologie voor het schatten van BI te beschrijven. In hoofdstuk 4.1 wordt 
de ontwikkeling van deze nieuwe methode beschreven en wordt deze methode gevalideerd aan 
de hand van oncologieproducten. Net als in hoofdstuk 3.2 zijn oncologiemiddelen geselecteerd 
die tussen 1 januari 2000 en 1 oktober 2017 door de EMA zijn toegelaten tot de Europese 
markt en die door de EMA als ‘New Active Substance’ zijn aangemerkt. Van deze producten 
zijn verschillende kenmerken verzameld (bijvoorbeeld mogelijke weesgeneesmiddelstatus) 
evenals een classificatie met betrekking tot de fysieke locatie van de tumor. Vervolgens zijn 
de maandelijks waargenomen BI-gegevens verzameld, waarbij de waargenomen BI bestond uit 
de officiële lijstprijs van een geneesmiddel vermenigvuldigd met het maandelijkse volume. Deze 
dataset is opgesplitst in een trainingsset en validatieset op basis van de classificatie van de eerste 
waargenomen BI van een product respectievelijk vóór of na 1 mei 2012 plaatsvond.

Op basis van de trainingsset is een mixed effects model geconstrueerd waarmee de BI voorspeld 
kan worden. Vervolgens is dit model gevalideerd aan de hand van de validatieset waarbij gebruik 
is gemaakt van een rolling forecasting origin. Deze techniek bootst de maandelijkse toevoeging 
van nieuwe gegevens na door middel van het toevoegen van nieuw waargenomen BI, maar ook 
door de toevoeging van nieuwe producten aan het model. Het model is gebouwd om de BI 
in de eerste 45 maanden van elk product te voorspellen. Voorspellingsafwijking, gebruikt als 
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validatieresultaat, is gedefinieerd als e^|ln(waargenomen BI / voorspelde BI)|. De gemiddelde 
en mediane voorspellingsafwijking waren respectievelijk 2.94 en 1.57. Afwijkingen waren 
hoger wanneer er voor geneesmiddelen minder BI-data beschikbaar was in het model en voor 
voorspellingen verder in de toekomst. Op basis van deze validatie is geconcludeerd dat het 
ontwikkelde model valide is voor het voorspellen van BI. 

Hoofdstuk 4.2 richt zich op onzekerheid in kosteneffectiviteit door een nieuwe methode voor 
het weergeven van de resultaten van Probabilistic Sensitivity Analysis (PSA) te presenteren. 
Het doel hiervan is om meer informatie over te brengen dan mogelijk is met de traditionele 
scatter plot. Deze scatter plot heeft twee belangrijke gebreken: i) De overlap van individuele 
schattingen in gebieden met een hoge dichtheid en, gedeeltelijk voortbordurend op deze 
kwestie, ii) de moeilijkheid om (verschillen in) de relatieve dichtheid in een scatter plot juist 
te interpreteren. Om deze beperkingen op te lossen, is de Relative Density Plot (PSA-ReD) figuur 
ontwikkeld. In hoofdstuk 4.2 wordt deze ontwikkeling gepresenteerd, evenals een demonstratie 
met behulp van drie casussen. De PSA-ReD combineert een density plot en een contour plot om 
de PSA-resultaten weer te geven en wordt gegenereerd door middel van R. De methode en het 
bijbehorende R-script is publiekelijk beschikbaar gesteld middel van GitHub en een uitgebreide 
handleiding. Om een ​​PSA-ReD figuur te construeren, wordt de dichtheid berekend met behulp 
van tweedimensionale kernel density estimation, omgezet in cumulatieve waarschijnlijkheid, 
die wordt afgebeeld met een kleurgradiënt. Contouren worden vervolgens weergegeven over 
gebieden met een vooraf gedefinieerde cumulatieve waarschijnlijkheid. De gebruikte casussen 
toonden aan dat PSA-ReD figuren aanvullende visuele informatie bieden, zoals het bestaan 
van een klein gebied met zeer hoge relatieve dichtheid in één casus dat niet zichtbaar was in 
de oorspronkelijke scatter plot. Dergelijke informatie kan worden gebruikt voor aanvullende of 
verbeterde modelvalidatie en mogelijk beter geïnformeerde vergoedingsbeslissingen.

Hoofdstuk 5 presenteert nieuwe concepten voor het omgaan met onzekerheid in besluitvorming 
omtrent geneesmiddelvergoeding. Het eerste concept integreert betaalbaarheid, kosteneffectiviteit 
en onzekerheid en het tweede concept integreert het aspect van tijd en de relatie tussen tijd 
en onzekerheid in het eerste concept. Dit eerste concept wordt besproken in hoofdstuk 5.1. 
De achtergrond van deze studie is de afzonderlijke beoordeling van kosteneffectiviteit en 
betaalbaarheid en de resulterende afzonderlijke beoordeling van de onzekerheid van deze twee 
uitkomsten. Hierdoor worden de potentiële risico’s en voordelen van nieuwe geneesmiddelen 
onvolledig en onjuist beoordeeld. Dit is met name een probleem als, zoals uit meerdere studies is 
gebleken, Willingness to Pay (WTP) mede bepaald zou moeten worden door opportuniteitskosten 
(ofwel BI). Hoofdstuk 5.1 presenteert daarom een ​​conceptueel raamwerk voor een gezamenlijke 
beoordeling van BI, WTP en IKER en de bijbehorende onzekerheid waarbij WTP dynamisch 
is en wordt beïnvloed door BI. Het longkanker geneesmiddel Opdivo (nivolumab) is in deze 
studie geselecteerd als casus en drie verschillende methoden zijn gebruikt om de relatie tussen 
WTP en BI te kwantificeren. BI, IKER en WTP zijn geïntegreerd met behulp van population 
Net Monetary Benefit (pNMB), een resultaat afgeleid van Net Monetary Benefit. Wanneer WTP 
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niet wordt beïnvloed door BI, beïnvloedt alleen de IKER of pNMB positief of negatief is en 
beïnvloedt daarmee eenzijdig de vergoedingsbeslissing. Dit effect, waarbij BI geen rol heeft 
op de vergoedingsbeslissing, was ook aanwezig bij gebruik van één van de dynamische WTP-
methoden omdat deze methode een WTP opleverde die zeer ongevoelig was voor BI. Wanneer 
een sterkere relatie tussen BI en WTP aanwezig is, zoals het geval was voor de relatie die was 
afgeleid van een vergoedingsbeslissing uit de praktijk, hebben BI, IKER en hun onzekerheid 
een synergetische invloed op pNMB. Dit nieuwe conceptuele raamwerk maakt een volledig 
geïntegreerde beoordeling van kosteneffectiviteit, betaalbaarheid en onzekerheid mogelijk.

Hoofdstuk 5.2 breidt dit concept uit met het aspect van tijd in besluitvorming en onzekerheid: 
met behulp van Real Options Analysis (ROA) wordt de optie om de beslissing uit te stellen 
toegevoegd als een mogelijke uitkomst van een beslissing. ROA is geïmplementeerd met behulp 
van aspecten uit twee voorgaande hoofdstukken. Ten eerste wordt het pNMB-raamwerk zoals 
beschreven in hoofdstuk 5.1 gebruikt om kosteneffectiviteit (als IKER), betaalbaarheid (als BI) 
en onzekerheid te integreren, waarbij ook de dynamische WTP-aanpak wordt toegepast die in 
dit hoofdstuk wordt beschreven. Ten tweede wordt het BI-voorspellingsmodel uit hoofdstuk 4.1 
gebruikt om de tijdigheid van wetenschappelijk bewijs en onzekerheid te implementeren. Deze 
ROA-implementatie simuleert het maandelijks beschikbaar komen van nieuw waargenomen 
BI-gegevens, die leiden tot een accurate BI-voorspelling (zoals hoofdstuk 4.1 heeft aangetoond). 
ROA waardeert vervolgens de toekomstige vermindering van de onzekerheid ten opzichte 
van de voor- of nadelen van onmiddellijke vergoeding. Het vergelijkt dus het uitstellen (dit 
zorgt voor meer zekerheid, maar heeft als gevolg het verlies van een gedeelte van de potentiële 
waarde) met directe toegang (waardoor meer risico wordt aanvaard maar er meteen geprofiteerd 
kan worden van een nieuw geneesmiddel). Voor de Opdivo casus laten de resultaten zien dat 
het optimale evenwicht tussen toegang en risico na 10 maanden wordt bereikt. Aangezien 
hoofdstuk 5.2 is gebaseerd op hoofdstukken 4.1 en 5.1 hebben ook de beperkingen van deze 
twee hoofdstukken betrekking op de ROA-methode. Verder onderzoek is dus nodig voordat 
ROA geïmplementeerd kan worden. ROA is echter een wetenschappelijk beproefde techniek 
waardoor het een geschikte en valide methode kan zijn om vroegtijdig advies te geven over 
flexibele en dynamische vergoedingsbeslissingen. Dit kan als essentieel worden beschouwd in 
het huidige landschap van steeds grotere onzekerheid bij het verlenen van toegang tot nieuwe 
dure geneesmiddelen.

In hoofdstuk 6 worden de in dit proefschrift gepresenteerde bevindingen besproken, inclusief 
de mogelijke implicaties en beperkingen van de uitgevoerde onderzoeken alsmede mogelijke 
obstakels wat betreft implementatie. Verder wordt gesteld dat het gepresenteerde werk heeft 
geleid tot de mogelijke oplossing voor de probleemstelling die in de introductie van dit 
proefschrift naar voren is gebracht. In dit proefschrift is namelijk aangetoond dat de beschreven 
pNMB- en ROA-methodiek kan worden gebruikt om een ​​geïntegreerde beoordeling van 
betaalbaarheid, kosteneffectiviteit mogelijk te maken, inclusief de bijbehorende onzekerheid en 
tijdigheid van deze aspecten. 
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Het is af, wat een heerlijk gevoel! Met dit boek sluit ik niet alleen mijn promotieonderzoek af 
maar komt er ook een einde aan een tijd waar ik ontzettend van heb genoten en geen moment 
spijt van heb gehad. Ik ben er vrij zeker van dat de mensen met wie ik deze vier jaar heb 
doorgebracht hierin minstens een net zo belangrijke rol hebben gespeeld als het daadwerkelijke 
onderzoek. Het is dan ook heerlijk om al die mensen in dit stuk, vrij van author guidelines, 
rondes commentaar en andere wetenschappelijke mores, te bedanken. 

Alvorens hieraan te beginnen wil ik echter stilstaan bij een wat serieuzer aspect van mijn vier 
jaar in het David de Wiedgebouw. Pas als je terugkijkt besef je namelijk pas hoe snel de tijd gaat, 
hoe gelukkig je met bepaalde zaken moet zijn en de ontwikkelingen die je zelf maar ook anderen 
doormaken. Vooral ook vanuit het perspectief van mijn promotieteam is dit, zoals hieronder te 
lezen valt, een waardevolle invalshoek.

Beste Jan, helaas werd redelijk snel na de start van mijn onderzoek duidelijk dat jij dit voltooide 
werk waarschijnlijk nooit zou zien. Tóch bleef je ongelofelijk betrokken, enthousiast en altijd 
positief. Zelfs wanneer je niet naar het DDW kon komen gaf je via de mail feedback en wist je me 
te inspireren. Die inspiratie, die al begon bij jouw aanstekelijke colleges die ik als student volgde, 
heeft een erg belangrijke rol gespeeld in mijn keuze om bij jou en Anke een promotietraject te 
starten. Hiermee heeft jouw enthousiasme voor altijd een belangrijke impact op mijn leven.   

Beste Anke, wat heb ik ongelofelijk geluk gehad met jou als copromotor en dagelijkse begeleider! 
Onze samenwerking begon in 2013 toen ik mijn onderzoeksproject bij jou, Geert en Rob 
uit ging voeren in het Meander. Het onderzoek zelf vond ik erg leuk en interessant maar de 
persoonlijke klik was doorslaggevend toen jij, ergens in 2015, vroeg of ik bij jou en Jan wilde 
komen promoveren. Hier heb ik zoals gezegd geen enkel moment spijt van gehad en mede door 
jouw persoonlijke en altijd optimistische aanpak heb ik zo van deze vier jaar kunnen genieten. 
Jij stond altijd achter mijn ideeën en plannen, steunde me in mijn enthousiasme en had altijd 
het beste met me voor. Tel daarbij de lunches, diners en barbecues die jij en Daan bij je thuis 
organiseerde en natuurlijk de gezelligheid op de borrels en congressen en je begrijpt waarom ik 
zo’n fan van je ben. Ook voor jou is er een hoop veranderd afgelopen jaren en volgens mij heb 
je het nu perfect voor elkaar! Anke, ontzettend bedankt voor alles! Op een mooie toekomst!

Beste Cornelis, ik ben heel blij dat jij in 2016 aansloot bij het team. De combinatie van jouw 
scherpe en kritische blik, je brede perspectief en je internationale ervaring was namelijk zeer 
waardevol. Verder heb ik jouw openheid en rechtdoorzee mentaliteit heel erg gewaardeerd. Ik 
wil je echter niet alleen bedanken voor je bijdragen aan mijn proefschrift maar ook voor je hulp 
en tips over de carrièremogelijkheden na een PhD. 

Beste Olaf, toen ik in de zomer van 2015 begon was jij nog niet heel lang professor en ik herinner 
me jouw oratie dan ook nog goed. Destijds kon ik je wat lastig peilen en lag mijn onderwerp ook 
wat af van jouw expertisegebied. Sindsdien weet ik echter dat je ’s nachts ook poule-les geeft, 
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na een borrel in een draaimolen springt en er zeker van houdt om met promovendi wat biertjes 
te drinken maar dat je daarnaast ook een ongelofelijk aardige, meedenkende en no-nonsense 
promotor bent. Ik heb met jou heel veel geluk gehad als promotor en je bent voor mij echt een 
voorbeeld geworden voor wat een goede en prettige leidinggevende maakt. Naast dit alles waren 
jouw scherpe inhoudelijke commentaren cruciaal, heel erg bedankt voor alles!

Ook de Leescommissie, bestaande uit prof. dr. Lieven Annemans, prof. dr. Ton de Boer, prof.  dr. 
Bert Leufkens, prof. dr. Hans Severens en prof. dr Maarten Postma, wil ik bedanken voor de tijd 
en moeite die ze hebben genomen om mijn proefschrift te beoordelen.

Zonder de data van Farminform waren vele studies onmogelijk geweest. Ik wil Farminform, en 
in het bijzonder Léon Walenbergh en Martijn van Bloois, dan ook hartelijk danken voor hun tijd 
en voor het  beschikbaar stellen van de budget impact data.

Beste Saskia Knies & Joost Enzing, ik heb oprecht genoten van onze samenwerking. Zonder 
jullie inzet en ideeën waren de laatste twee studies van dit proefschrift zeker niet zo sterk 
geworden, heel erg bedankt! 

Toen ik mezelf vier jaar geleden met ietwat te lang haar op de vierde verdieping installeerde kwam 
ik terecht tussen vijf parels van collega’s. Joris en Corinne, jullie waren toen jullie proefschriften 
aan het afronden en waren daarom iets minder enthousiast voor zaken als bureaustoel-roeien 
of een klein wijntje na de lunch. Bij Richelle en Mariette ging dit er echter in als zoete koek, 
hetgeen dan met zowel lichte scepsis als plezier werd aanschouwd door Hedy. Lieve Corinne, 
Joris, Richelle, Hedy en Mariette: dankzij jullie voelde ik me meteen thuis en ging ik meteen 
met plezier naar de Uithof. Wat zijn er daarnaast een hoop prachtige verhalen en hilarische 
momenten ontstaan. Gelukkig zien we elkaar nog regelmatig om die te koesteren, ik hoop van 
harte dat we dat voortzetten.

Richelle, eindelijk mag ik een stuk over jou schrijven. Wat hebben wij in die 3.5 jaar een mooie 
tijd gehad! We hebben zoveel gelachen om de meest zinloze dingen, geroddeld, geborreld en 
gefeest. Onze verhalen over de promotiefeestjes van anderen zijn natuurlijk legendarisch, 
net als de UU-kerstborrels en ICPE in Praag. Verder moet ik nog steeds hardop lachen over 
onze discussies over zeevruchten, middagdutjes en de ogenschijnlijke multifunctionaliteit van 
bureaustoelen. Ik ben je echter niet alleen dankbaar voor deze leuke en gezellige dingen maar 
ook voor jouw vriendschap want ik kon (en kan) altijd bij jou terecht voor serieuze zaken. Lieve 
Richelle, zonder jou had ik absoluut niet zo positief kunnen terugkijken op mijn PhD. Bedankt 
voor alles en ik hoop dat ik jou en Michiel nog heel vaak blijf zien!

Rick, eerlijk gezegd moest ik eerst best een beetje aan je wennen. Het was echter al heel snel 
gezellig en man, wat ben ik jou gaan waarderen als collega maar zeker ook als vriend. Niet alleen 
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hadden we zowel heel serieuze als erg zinloze gesprekken maar hebben maar we hebben vooral 
ook op wetenschappelijk gebied veel samengewerkt. Voor mij was het echt super waardevol om 
een soort extra en informele copromotor binnen handbereik te hebben. Daarnaast waren de vele 
congressen met jou erg gezellig, alleen jammer dat ik altijd brakker was dan jij. Rick, bedankt 
voor dit alles ik hoop dat we elkaar nog vaak blijven zien!

Lotte, jouw gezelligheid onze gesprekken ga ik echt missen. Bij jou kon ik altijd terecht om PhD-
perikelen te bespreken maar natuurlijk ook voor een casual koffie of thee. Wat je hierna ook gaat 
doen, er is daar vast plek voor iemand zo lief, attent en optimistisch als jij! 

Lourens en Joris; de grote beren van beneden. Lou, we kennen elkaar natuurlijk al vanuit allerlei 
verbanden maar ook aan de UU was het weer erg gezellig! Joris, ik ben erg blij dat jij ook 
praktisch fulltime in de parel van de Uithof te vinden was. Mooi dat er met jullie ook goed 
geborreld kan worden, wintersport en Philadelphia waren mede daardoor zeer geslaagd!

Renske en Geert, hartelijk dank voor jullie gezelligheid en de memorabele borrels die we samen 
hebben gehad. Lola, ISPOR en Hollandse avonden waren anders absoluut niet zo leuk geweest. 

Rianne, wat ben jij een gezellige collega. Roddels, obscure YouTube filmpjes, Woerdense rituelen 
en natuurlijk je befaamde verhalen over de geneugten van het hebben van twee ovens; jij draait 
je hand er niet voor om.

Dear Armina, it’s great that I can now congratulate you on finishing your PhD! Thanks for 
your kindness and of course your culinary advice regarding food on Bali, I wish you and your 
husband all the best. 

Beste Svetlana, zonder jouw hulp had dit proefschrift er absoluut niet in de huidige vorm 
gelegen. Jouw statistische inzichten waren namelijk echt cruciaal bij de ontwikkeling van het 
predictiemodel. Daarnaast heb jij me essentiële R-skills bijgebracht en was het ook vaak gezellig 
op borrels. Bedankt! 

Marcel, naast een gezellige collega was jij ook mijn onafhankelijke begeleider, een rol die jij 
goed vervulde aan waarmee je me absoluut hebt geholpen. Bedankt! Patrick, bedankt voor de 
gezelligheid en de ICT-support! Aukje, jouw open manier van leiding- en invulling geven aan 
mijn onderwijsaanstelling heb ik enorm gewaardeerd. Daarnaast was jouw oratiefeest natuurlijk 
fantastisch. Ineke, Suzanne en Anja, bedankt voor al jullie hulp, tijd en de vele dingen die jullie 
voor de afdeling hebben georganiseerd! 
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Delphi, mooi dat ook jouw boek af is, gefeliciteerd! Milou, top dat jij verder werkt aan het HTA-
onderzoek aan de UU! Wim, bedankt voor de gezelligheid; we gaan elkaar vast nog regelmatig 
tegenkomen! Marle, jouw immer semi-vage maar altijd gezellige verhalen ga ik zeker missen! 
Lenneke, dank voor alle gezelligheid en hilarische gesprekken. Pieter, mannen met smaak voor 
koffie, muziek én een goede haarlijn zijn moeilijk te vinden maar gelukkig bracht jij hoop in 
deze immense duisternis. Rosanne, Mirjam, Rachel, Nicholas, Gert-Jan, Ard, Debbie, Sander, 
Doerine, Elise, Jeroen, Ali, Mohammad en alle andere FenF collega’s: Jullie ook ontzettend 
bedankt voor alle leuke momenten, jullie tijd en gezelligheid!

Mark Jut, Vince Sindhunata en Aljosja Karpenko: Als studenten hebben jullie een belangrijke 
bijdrage geleverd aan mijn proefschrift, dank voor jullie inzet.

Beste Ivo, wij kennen elkaar als sinds de middelbare school en, ondanks dat jij in Groningen 
farmacie ging studeren, zijn we elkaar regelmatig blijven zien. Naast deze gezamenlijke interesse 
delen we ook de voor velen onbegrijpelijke liefde voor gamen. Ook was jij tijdens carnaval de 
perfecte wingman tussen een niet nader te noemen soldaat en kangoeroe; een ingreep waar ik 
tot op de dag van vandaag erg gelukkig mee ben. Ivo, bedankt voor alle gezelligheid en dat er 
nog veel mooie momenten mogen komen!

Ingmar, Thijs, Ben, Dedmer, Teun, Frank, Jord, Guus, Patrick, Russel en Pasquale: Wat 
hebben wij een mooie jaarclub. Met de mooie, absurde en vooral bijzonder gezellige dingen 
die wij de afgelopen 8 (!) jaar hebben meegemaakt zou ik pagina’s kunnen vullen. Schaapcie, 
de clubweekenden, Van Plaggen, lustrumreis, wintersport, de Rue, het zakelijke succes van 
Constant Cars en natuurlijk het kleinigheidje met een aap en een telefoon: Een kleine greep uit 
de stuk voor stuk debiele en hilarische dingen die ik met andere clubs of vrienden nooit had 
meegemaakt, zonder dit soort zaken was mijn PhD-tijd écht minder leuk geweest. Op naar het 
volgende lustrum!

Heren van het P.H.B.G: bedankt voor alle fantastische borrels en activiteiten maar vooral ook, 
zoals het goede apothekers betaamt, voor de uitstekende gesprekken zowel tijdens als voor de 
borrels. In het bijzonder wil ik kort stilstaan bij de club met wie we de afgelopen jaren honderden 
gezinnen met een chronisch ziek kind een fantastische dag hebben bezorgd: De Vet Cool Man 
is ieder jaar weer iets om naar uit te kijken, ga vooral zo door!

Lieve familie, jullie spelen natuurlijk een cruciale rol in mijn leven en zonder jullie liefde, steun 
en support had ik hier nooit gestaan. Pa en ma, Bert en Irma: Jullie hebben altijd al mijn keuzes 
gesteund en op ontelbaar veel plekken proberen te helpen. Bedankt voor alles!

Lieve Laurie, op Pubmed heb je me absoluut verslagen maar gelukkig ben ik nog (net) eerder 
met de doctorstitel. Bedankt voor al je belletjes en de gezelligheid, ik ben super trots op je! 
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Lieve Koen, met Lotte en bij de Rabo heb jij het top voor elkaar. Nu je zowaar in Utrecht wil 
gaan wonen wordt het vast nóg gezelliger. Jullie beide bedankt voor alle leuke dingen die we de 
afgelopen jaren hebben gedaan!

Lieve Emma, van begin tot eind heb jij achter mij en mijn keuze voor deze PhD gestaan en heb je 
me proberen te helpen waar dat kon. Gelukkig is dit ook voor ons beide een leuke tijd gebleken, 
al heb ik jou af en toe wel wat stress bezorgd doordat ik me relatief weinig zorgen maakte. Zoals 
je weet heb ik niet alleen ontzettend veel zin in een nieuwe uitdaging na mijn PhD maar vooral 
ook in onze hopelijk hele lange toekomst samen. Liefste Em, ik had dit nooit zonder jou willen 
doen, op ons volgende hoofdstuk! 

Joost, oktober 2019
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