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Abstract The field of quantized compressed sensing investigates how to jointly
design a measurement matrix, quantizer, and reconstruction algorithm in order to
accurately reconstruct low-complexity signals from a minimal number of measure-
ments that are quantized to a finite number of bits. In this short survey, we give
an overview of the state-of-the-art rigorous reconstruction results that have been
obtained for three popular quantization models: one-bit quantization, uniform scalar
quantization, and noise-shaping methods.

1 Introduction

In the last 15 years, compressed sensing [8, 9, 23, 29] has matured into a new
paradigm in signal processing. This theory predicts that high-dimensional signals
can be accurately reconstructed from a small number of measurements provided that
the signal has low complexity. Whereas compressed sensing initially focused on the
recovery of signals that can be approximately sparsely represented, many rigorous
reconstruction results have been obtained for other low-complexity models, such as
low-rank matrices and tensors, structured sparse signals, and signals located in a
low-dimensional manifold, see e.g., [2, 15, 17, 24, 29, 50, 56] and the references
therein.

In the standard compressed sensing model, one assumes that one has direct access
to noisy analog linear measurements of the unknown signal x of the form y = Ax +
ν. In reality, these analog measurements need to be quantized to a finite number
of bits before they can be transmitted, stored, and processed. This operation can be
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modeled by the application of a quantizer map Q : Rm → Qm , where Q is a finite
(or sometimes, countable) alphabet. Accordingly, one has access to

q = Q(Ax + ν). (1)

Early works on compressed sensing assumed implicitly that the impact of quan-
tization is negligible in the sense that the error due to the quantization step, i.e.,
η = Q(Ax + ν) − (Ax + ν), is small in �2-norm, say. With this perspective, recov-
ering x from (1) is simply a “usual” noisy compressed sensing problem and one
can use standard methods, e.g., basis pursuit denoising, to recover the signal. This
approach to recovery from quantized measurements, which we will call the agnos-
tic approach, has two downsides. To ensure that the error η is small, one needs to
use a very high-resolution quantizer, which may not be realistic or inefficient in
practice, and even if this is possible, the estimates on the reconstruction error are
pessimistic: the error will not decay beyond the noise floor, in particular not beyond
the quantization error.

The area of quantized compressed sensing has shown that one can substantially
improve over the agnostic approach by designing the triple (A, Q,A ) of measure-
ment matrix A, quantizer Q and reconstruction algorithm A in unison. In the last
few years, many fascinating results have been obtained in this area. The purpose of
this survey is to give an introduction to the main emerging ideas. We do not intend to
give an exhaustive overview of the area, but rather focus on rigorous reconstruction
guarantees that have been obtained for three popularmodels in quantized compressed
sensing: one-bit compressed sensing, uniform scalar quantization, and noise-shaping
methods.

1.1 Notation

Throughout we will use the following notation. We reserve m for the number of
measurements, n for the signal dimension, and ρ for the target reconstruction error.
For any N ∈ Nwe write [N ] = {1, . . . , N }. We let |S| denote the cardinality of a set
S. We use ‖x‖p to denote the �p-norm of a vector and Bn

p = {x ∈ R
n : ‖x‖p ≤ 1}.

We write ‖x‖0 = |{i ∈ [n] : xi �= 0}|. We use Sn−1 to denote the Euclidean unit
sphere. dH is the (unnormalized) Hamming distance on the discrete cube. For a
random variable ξ we let ‖ξ‖L p denote its L p-norm. We call ξ L-subgaussian if

sup
p≥1

‖ξ‖L p√
p‖ξ‖L2

≤ L .

is finite. For a given measurement matrix A ∈ R
m×n we let a1, . . . , am denote its

rows and refer to them as measurement vectors. We use A∗ ∈ R
n×m to denote the

transpose of A. For a given T ⊂ R
n and 1 ≤ p, q ≤ ∞, a matrix A ∈ R

m×n is said
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to satisfy RIPp,q(T, ε) if

(1 − ε)‖x‖q ≤ ‖Ax‖p ≤ (1 + ε)‖x‖q , for all x ∈ T . (2)

We call a matrix A ∈ R
m×n standard Gaussian if all its entries are i.i.d. standard

Gaussian, Bernoulli if its entries are i.i.d. symmetric Bernoulli, or (L-)subgaussian
if its entries are independent, mean-zero, unit variance, and (L-)subgaussian. For
any x ∈ R

n we let Γx ∈ R
n×n be the circulant matrix generated by x , i.e., (Γx )i, j =

x(i− j) mod n . A circulant matrix implements the discrete circular convolution with
x , i.e., Γx z = x ∗ z for all z ∈ R

n . If ξ is a vector with independent, mean-zero,
unit variance, (L-)subgaussian entries, then we call Γξ an (L-)subgaussian circulant
matrix. If the ξi are i.i.d. standard Gaussian or symmetric Bernoulli, then we call Γξ

a standard Gaussian or Bernoulli circulant matrix. A subsampled partial circulant
matrix is obtained by selectingm rows from a circulant matrix. In the literature three
different random selection models are considered, which we will give an explicit
name here in order to distinguish between them. In the row picking model, one
selectsm rows independently of each other. Each row is picked uniformly at random
from the set of [n] rows of Γξ . In the uniformly at random model, one selects a
subset I uniformly at random from the set of all subsets of [n] of cardinality m. One
then considers the measurement matrix RIΓξ , where RI : Rn → R

|I | is the operator
defined by RI z = (zi )i∈I . Finally, in the selector model one picks a vector θ ∈ R

n of
i.i.d. random selectors withmeanm/n, sets I = {i ∈ [n] : θi = 1} and considers the
measurement matrix RIΓξ . Note that E|I | = m, so m corresponds to the expected
number of measurements in this model.

If T is a closed set, then we let PT be the �2-projection operator, which assigns to
an element x ∈ R

n a certain solution of the optimization problem minz∈T ‖x − z‖2.
In general, there is not a unique solution unless T is convex. For instance, if T is
the set Σs = {x ∈ R

n : ‖x‖0 ≤ s} of all s-sparse vectors, then T = Hs is the hard
thresholding operator. Finally, c and C denote absolute constants and their value
many change from line to line. We use cα or c(α) to denote a constant that only
depends on the parameter α. We write a �α b if a ≤ cαb, and a �α b means that
both a �α b and a �α b hold.

2 Key Concepts

Before investigating the three different quantization models, we first introduce some
important general concepts in quantized compressed sensing. We start by specifying
the signals that we try to recover and the measurement matrices that we wish to
analyze.

• Low-complexity signal sets. Any compressed sensing-type scheme exploits the
fact that, even though the signal x that we would like to recover may be high-
dimensional, it is a priori known to belong to a set of low intrinsic dimension or
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complexity. For instance, it is known empirically that many signals are (approx-
imately) sparse in terms of a suitable basis, e.g., natural images can often be
approximately sparsely represented in terms of wavelets. Accordingly, the num-
ber of measurements that need to be collected to ensure accurate reconstruction is
governed by certain parameters that measure the complexity of the signal set. For
our purposes, a suitable complexity measure is the Gaussian width of a bounded
signal set T ⊂ R

n , which is defined by

w(T ) = E sup
x∈T

〈g, x〉,

where g ∈ R
n is standard Gaussian. Another measure that we will use is the ε-

covering number N (T, ε) of T , the minimal number of Euclidean balls of radius ε
needed to cover T . The Gaussian width and covering numbers are closely related
by Sudakov’s and Dudley’s inequality, which are the lower and upper bounds,
respectively, in

sup
ε>0

ε
√
log N (T, ε) � w(T ) �

∫ ∞

0

√
log N (T, ε) dε.

Neither of the two bounds is sharp in general, see e.g., [62] for more details.
Several of the results that we discuss below state rigorous reconstruction guar-
antees for a general signal set T and give a bound on the sufficient number of
measurements for recovery in terms of the Gaussian width and covering numbers.
Other results only concern sparse recovery. To allow for easy comparison, let us
recall the following. If Σs = {x ∈ R

n : ‖x‖0 ≤ s} is the set of sparse signals,
then w2(Σs ∩ Bn

2 ) � s log(en/s) and log N (Σs ∩ Bn
2 , ρ) � s log(en/(sρ)). As a

model for approximate sparsity, we also consider the larger set of s-effectively
sparse signals Σeff

s = {x ∈ R
n : ‖x‖1 ≤ √

s‖x‖2}. If x is s-effectively sparse
and ‖x‖2 ≤ 1, then x belongs to the set of s-compressible signals

√
sBn

1 ∩ Bn
2 .

The latter set is essentially the convex hull of the set of s-sparse vectors in the unit
ball (see [53, Lemma 3.1]):

conv(Σs ∩ Bn
2 ) ⊂ √

sBn
1 ∩ Bn

2 ⊂ 2 conv(Σs ∩ Bn
2 ). (3)

Since the Gaussian width is invariant under taking convex hulls, one finds
w2(

√
sBn

1∩ Bn
2 ) � s log(en/s).

• Random matrices. Similarly to the situation in “unquantized” compressed sens-
ing, the best-known recovery guarantees in quantized compressed sensing have
been obtained for randommeasurement matrices. In particular, in quantized com-
pressed sensing, optimal results have been obtained for standard Gaussian mea-
surement matrices, i.e., matrices with independent standard Gaussian entries.
These results are mostly of theoretical interest, as these matrices are difficult
to realize in a practical measurement setup. On the other hand, it has proven
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very challenging to establish recovery guarantees for deterministic measurement
matrices involving a number of measurements that is close to optimal. As a com-
promise between completely random matrices and deterministic ones, it is of
interest to study structured random matrices, which arise when introducing ran-
domness in (more) realisticmeasurementmodels. Two particularly popular classes
of matrices, which can be considered as the “fruitflies” of compressed sensingwith
structured matrices, are partial random circulant matrices and randomly subsam-
pled bounded orthonormal systems. The former model is connected to SAR radar
imaging, Fourier optical imaging, and channel estimation (see e.g., [58] and the
references therein). The latter model is relevant to many applications, for instance,
models in compressive magnetic resonance imaging [47]. In standard compressed
sensing it has been shown that stable and robust sparse recovery can be achieved
with a near-optimal (i.e., up to logarithmic factors) number of measurements, see
[7, 35, 44, 49, 59] for the best known bounds for the two respective classes of
matrices. Recently, substantial progress has been made on quantized compressed
sensing with structured randommatrices. We will mostly restrict our discussion to
(sub)gaussian matrices and circulant matrices, as results for these matrices have
been obtained for all three quantization models that we consider in this survey.

Let us now discuss some terminology regarding quantization.

• Memoryless versus adaptive schemes. The quantizer Q : Rm → Qm is called
memoryless if it quantizes each entry of its input vector independently of the others.
In contrast, an adaptive quantizer quantizes the i-thmeasurement using knowledge
of previous analog measurements, their quantizations, and in some cases, even
reconstructions of the signal based on the previous i − 1 quantized measurements.
As we will discuss below, adaptive methods can achieve a fundamentally better
error decay rate. Whereas the reconstruction error cannot decay faster than linear
(i.e., as O(1/m)) in terms of the number of measurements if a memoryless scalar
quantization scheme is used, adaptive schemes can achieve a polynomial or even
an optimal exponential error decay rate. This improved rate comes at a price:
the implementation of adaptive schemes generally requires hardware that is more
complicated and consumes more energy in operation. In addition, since by their
very nature adaptive methods require measurements to be acquired sequentially,
their implementation may be difficult or impossible in some sensing scenarios,
e.g., in distributed sensing with a sensor network.

• Dithering. In the engineering literature on quantization, it has been known for a
long time (at least since thework [57], see also [31, 32]) that it is potentially helpful
to add random noise to the analogmeasurements before quantizing. This operation
is called dithering. Note that the term “random noise” is somewhat misleading,
since at least we have the freedom to design the distribution of the dithering vector.
Indeed, as we will see below, it was recently shown rigorously that dithering with
well-chosen distributions can substantially improve reconstruction guarantees in
quantized compressed sensing.

Finally, we formalize some concepts regarding recovery methods.
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• Uniform versus non-uniform recovery. The reconstruction results in quantized
compressed sensing involving random matrices or dithering are guarantees to
reconstruct a signal x or a class of signals with “high probability”, which typically
means that recovery will only fail with a probability that decays exponentially
in terms of the number of measurements. These results can either be uniform,
meaning that a high probability event exists upon which one can reconstruct any
signal x ∈ T (e.g., the set of all sparse vectors with unit norm), or non-uniform,
meaning that the high probability event depends on the specific signal x which is to
be recovered. Accordingly, a uniform guarantee is sometimes informally called a
“for all” guarantee, whereas a non-uniform one is called a “for one” guarantee. To
understand the difference between the two from a practical point of view, suppose
that A = RIU is a randomly subsampled unitary matrix and suppose that T is the
set of all s-sparse vectors on the unit sphere. A uniform recovery guarantee means
that when we draw a random sample of the rows ofU then, with high probability,
we can recover any unit norm s-sparse vector from Q(Ax + ν). Thus, with high
probability, a single random draw of the rows will yield a matrix that can be used
for compressed sensing of any signal from the set T . A non-uniform guarantee is
muchweaker: only for a fixed signal x one shows that with high probability one can
draw a random subset of the rows so that x can be recovered from itsmeasurements.
Hence, in this setting, we only guarantee good reconstruction performance with
high probability if we draw a new random subset of the rows of U each time that
we measure a new signal.

• Quantization consistency. A vector x# is called quantization consistent with the
true signal x if, whenwewere tomeasure and quantize x#, wewould reproduce the
observed quantized measurements. For instance, if we observe q = Q(Ax), then
x# is quantization consistent if q = Q(Ax#). Several successful reconstruction
methods that will be introduced below search for a quantization consistent vector.

• Stability and robustness. A triple (A, Q,A ) can only be expected to perform
satisfactorily if it is stable and robust. We say that it is stable if the reconstruction
performance does not deteriorate sharply if the signal lies “slightly outside of”
the low-complexity set T . For instance, in the context of sparse recovery it is
desirable to be able to accurately recover vectors that are not exactly sparse, but
only effectively sparse or compressible. In addition, we would like to ensure that
(A, Q,A ) is robust with respect to both pre-quantization noise, i.e., the noise ν on
the analog measurements, as well as post-quantization noise, i.e., bit corruptions
occurring during the quantization process.

3 Two Fundamental Limits

To set benchmarks for the reconstruction results for the three different quantization
models, let us first formulate two fundamental lower bounds for the recovery error.
The first concerns a lower bound for (uniform) recovery of signals from a set T in
terms of its covering numbers. Suppose that we wish to quantify how many bits we
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need to collect to ensure that theworst case �2-reconstruction error of a reconstruction
map A over the set T , i.e.,

sup
x∈T

‖x − A (Q(Ax + ν))‖2,

is at most ρ. If this is fulfilled, then the set of Euclidean balls with radii ρ and centers
in the image setA (Q(Ax + ν)) form a covering of T . If our quantization scheme Q
encodes any analog measurement vector Ax + ν into at most B bits, then this cover
has at most 2B elements. Thus, the minimal total number of bits required to attain
worst case error ρ over T satisfies

B ≥ log2 N (T, ρ).

In particular, if we collect L bits per measurement, then at leastm � log2 N (T, ρ)/L
measurements are necessary. As an example, log2 N (T, ρ) � s log2(1/ρ) if T is the
intersection of the Euclidean unit sphere with an s-dimensional subspace, so the
worst case reconstruction error cannot decay faster than exponential in terms of the
number of measurements in this case. In particular, one cannot obtain a better worst
case error decay rate for the set of s-sparse vectors on the sphere.

The second fundamental lower bound concerns non-uniform recovery of sparse
vectors.

Theorem 1 ([21, Theorem 1.3]) Suppose that ν contains i.i.d. centered Gaussian
random variables with variance σ2. Let A be a (random) measurement matrix that
satisfies, with probability at least 0.95,

‖Ax‖2 ≤ κ
√
m‖x‖2, for all x ∈ Σs ∩ Bn

2 . (4)

Let Ψ be any recovery procedure such that, for every fixed x ∈ Σs ∩ Bn
2 , when

receiving as data the measurement matrix A and the noisy linear measurements
Ax + ν, Ψ returns x� that satisfies ‖x� − x‖2 ≤ ρ with probability 0.9. Then

m ≥ cκ−2σ2 s log(en/s)

ρ2
.

Note that the condition (4) is satisfiedbymanypopular randommeasurementmatrices
ifm � s logα(n), in particular by subgaussian matrices, partial subgaussian circulant
matrices and randomly subsampledboundedorthonormal systems. For thesematrices
the sample size required for recovery with accuracy ρ is at least σ2s log(en/s)/ρ2,
even if one receives the noisy analog linear measurements prior to quantization, and
is then free to use those measurements as one sees fit. In particular, in a high noise
setting one cannot hope to achieve a better error decay rate than O(1/

√
m).



74 S. Dirksen

4 One-Bit Compressed Sensing

We start by discussing one-bit compressed sensing, which studies the extreme case
where each measurement is quantized to a single bit. Specifically, we consider
the map Qτ : Rm → {−1, 1}m defined by Qτ (z) = sign(z + τ ), where sign is the
signum function applied element-wise and τ ∈ R

m is a vector of quantization thresh-
olds. This quantizer is memoryless if τ is a fixed or a randomly generated vector. In
this case, the one-bit quantizer can be easily implemented by voltage comparison to
fixed thresholds (τ deterministic) combined with dithering (τ random). Due to the
efficiency of the memoryless one-bit quantizer, one-bit compressed sensing is one of
the most popular quantized compressed sensing models. For a memoryless one-bit
quantizer we cannot expect better than linear decay of the reconstruction error [6,
30, 42]. However, as we will see in Sect. 4.4, optimal error decay can be achieved
by choosing the thresholds adaptively.

In the context of one-bit compressed sensing, post-quantization noise takes the
form of “bit flips”: the quantizer erroneously produces the bit −qi rather than qi =
sign(〈ai , x〉 + τi ). One can either assume that bit corruptions occur in a random
fashion, i.e., one observes a vector qc ∈ {−1, 1}m satisfying (qc)i = fi qi , where
the fi are independent random variables satisfying P( fi = −1) = 1 − P( fi = 1) =
p, i.e., a bit is corrupted with probability p. Alternatively, one can assume that
a small fraction β of the bits are arbitrarily corrupted, i.e., one observes a vector
qc ∈ {−1, 1}m satisfying dH (q, qc) ≤ βm. Clearly, the second noise model is more
challenging to analyze, as bit corruptions can in principle occur in an adversarial
fashion.

4.1 Memoryless One-Bit Compressed Sensing: Zero
Thresholds

One-bit compressed sensing was first considered by Boufounos and Baraniuk [5] in
the completely noiseless case (i.e., neither pre- nor post-quantization noise) and τ =
0. In this case, one simply observes q = sign(Ax). Since the sign function is invariant
under positive scaling, the energy ‖x‖2 of the signal x is lost during quantization
and one can only hope to recover its direction x/‖x‖2. For this reason, it is standard
in this original one-bit compressed sensing model to assume that ‖x‖2 = 1. From
a geometric perspective, the vector q is a rough encoding of the position of x on
Sn−1. To see this, note that each measurement vector ai (i.e., the i-th row of A)
determines a hyperplane Hai = {z ∈ R

n : 〈ai , z〉 = 0} passing through the origin.
The corresponding quantized measurement sign(〈ai , x〉) indicates on which side of
the hyperplane x is located. By taking m measurements, the space Rn is tessellated
into (at most) 2m cells, and the bit sequence q = sign(Ax) = (sign(〈ai , x〉))mi=1 ∈
{−1, 1}m encodes in which cell x is located.
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The original paper [5] considered recovery of a sparse vector from its one-bit
measurements and proposed to reconstruct the signal via

min
z∈Rn

‖z‖0 s.t. q = sign(Az), ‖z‖2 = 1. (5)

The linear constraint q = sign(Az) forces any solution x# to (5) to be quantization
consistent. Geometrically, a vector z is quantization consistent with x precisely when
it is located in the same cell of the hyperplane tessellation induced by the quantized
measurements. To show that one can recover any x ∈ Σs ∩ Sn−1 via (5) up to error
ρ, one therefore needs to ensure that the measurement vectors tessellate Σs ∩ Sn−1

into cells with diameter at most ρ. It was shown in [42, Theorem 2] that standard
Gaussian vectors have this property: if A ∈ R

m×n is standard Gaussian and m �
ρ−1s log(n/ρ) then, with high probability, any s-sparse x, x ′ with ‖x‖2 = ‖x ′‖2 = 1
and sign(Ax) = sign(Ax ′) satisfy ‖x − x ′‖2 ≤ ρ. In particular, any solution x# to (5)
satisfies ‖x# − x‖2 ≤ ρ. The number ofmeasurements needed for this reconstruction
is essentially optimal: in fact, the reconstruction x# of an s-sparse vector produced
by any method using sign(Ax) as its input must satisfy the lower bound ‖x# −
x‖2 � s/(m + s3/2) [42, Theorem 1]. Hence, the reconstruction error cannot decay
faster than linear (i.e., than O(1/m)). This linear decay bottleneck is common to all
memoryless scalar quantization methods, see Sect. 5.

Even though the error of the reconstruction produced by (5) decays essentially
optimally if A is standard Gaussian, this program is hard to solve. Although one can
convexify the objective of (5) by replacing ‖z‖0 by ‖z‖1, the constraint ‖z‖2 = 1 is
problematic (note that the relaxation ‖z‖2 ≤ 1 leads to a trivial program). A solution
to this problem was proposed by Plan and Vershynin [53]: the simple, yet effective,
idea is to observe that if A is standard Gaussian, then for any z ∈ R

n ,

1

m
E‖Az‖1 =

√
2

π
‖z‖2.

This suggests to use the reconstruction program

min
z∈Rn

‖z‖1 s.t. q = sign(Az), ‖Az‖1 = m

√
2

π
, (6)

which is a linear program. Plan andVershynin showed that usingm � ρ−5s log2(n/s)
standard Gaussian measurements one can, with high probability, recover every x ∈
R

n with ‖x‖1 ≤ √
s and ‖x‖2 = 1 via (6) up to reconstruction error ρ. This was the

first uniform reconstruction result for stable recovery of sparse vectors from their
one-bit measurements via a tractable program. Still, the program (6) has a weakness,
which is common to any recovery program that enforces quantization consistency:
the program can easily fail in the presence of post-quantization noise. Indeed, already
a single bit corruption can cause (6) to be infeasible: there will simply be no vector
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z which is consistent with the observed corrupted quantized measurements (see [20]
for a detailed discussion).

In order to handle post-quantization noise, Plan and Vershynin introduced a dif-
ferent program in [54], which can be used to robustly reconstruct signals from an
arbitrary set T ⊂ Sn−1, namely

max
z∈Rn

〈qc, Az〉 s.t. z ∈ T . (7)

That is, we search for a vector that maximizes the correlation between the linear and
observed corrupted quantized measurements. This program is convex if T is convex
and therefore [54] suggested to use this program with T = conv(Σs ∩ Bn

2 ) for stable
sparse recovery. By (3), this leads to the tractable program

max
z∈Rn

〈qc, Az〉 s.t. ‖z‖1 ≤ √
s, ‖z‖2 ≤ 1.

In a non-uniform recovery setting, Plan and Vershynin showed that m � ρ−4w2(T )

measurements suffice to reconstruct a fixed signal in T with high probability up to
error ρ, even if pre-quantization noise is present and quantization bits are randomly
flipped with a probability that is allowed to be arbitrarily close to 1/2. Amuch deeper
result is the following uniform recovery theorem, which proves robustness of (7) to
adversarial post-quantization noise.

Theorem 2 ([54, Theorem 1.3]) Fix 0 < ρ,β ≤ 1, let T ⊂ Bn
2 and let A ∈ R

m×n

be standard Gaussian. Suppose that

m ≥ c2
log3(e/ρ)

ρ12
w2(T ), β

√
log(e/β) = c3ρ

2.

Then with probability at least 1 − e−c1mρ4/ log(e/ρ) the following holds for any x ∈ T
with ‖x‖2 = 1. If we observe qc ∈ {−1, 1}m with dH (qc, sign(Ax)) ≤ βm, then any
solution x# to (7) satisfies ‖x# − x‖2 ≤ ρ.

The results mentioned so far all concern standard Gaussian measurement matrices.
For othermeasurementmatrices, signal recovery from the one-bit measurements q =
sign(Ax) can very easily fail, even if themeasurementmatrix enjoys optimal recovery
guarantees in “unquantized” compressed sensing. For instance, it was pointed out in
[1] that if A ∈ R

m×n is a matrix with entries in {−1, 1} (e.g., a Bernoulli matrix),
then there are already two-sparse vectors that cannot be accurately recovered. For
instance, for any 0 < λ < 1, the vectors

x+λ = (1 + λ2)−1/2(1,λ, 0, . . . , 0), x−λ = (1 + λ2)−1/2(1,−λ, 0, . . . , 0) (8)

produce identical one-bit measurements sign(Ax+λ) = sign(Ax−λ), irrespective of
the draw of A and the number of measurements. Hence, there is no hope to accu-
rately recover these vectors. Nevertheless, in [1] some non-uniform recovery results
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from [54] were generalized to subgaussian matrices by imposing additional restric-
tions. For a fixed x ∈ T ⊂ Sn−1 they showed that m � ρ−4w2(T ) suffice to recon-
struct x up to error ρ via (7) with high probability provided that either ‖x‖∞ ≤ ρ4

(since ‖x‖2 = 1, this means that the energy of the signal must be sufficiently spread
out over its coordinates) or the total variation distance between the subgaussian
distribution of the entries of A and the standard Gaussian distribution is at most ρ16.

Even though one-bit compressed sensing generally fails for subgaussian matrices,
Foucart [27] identified a different class of matrices for which accurate one-bit com-
pressed sensing is possible. He showed that one can accurately recover signals from
one-bit measurements if the measurement matrix satisfies an appropriate RIP-type
property of the form (2).

Theorem 3 ([27, Theorem 8]) If A satisfies RIP1,2(Σ2s, ε), then for every x ∈ R
n

with ‖x‖0 ≤ s and ‖x‖2 = 1, the hard thresholding reconstruction x#HT = Hs(A∗q)

satisfies ‖x − x#HT‖2 ≤ 2
√
5ε.

Let ε ≤ 1/5. If A satisfies RIP1,2(Σ
eff
9s , ε), then for every x ∈ R

n with ‖x‖1 ≤ √
s

and ‖x‖2 = 1, any solution x#LP to (6) satisfies ‖x − x#LP‖2 ≤ 2
√
5ε.

A special case of a result of Schechtman [61] shows that if B is standardGaussian and
A = 1

m

√
π
2 B, then A satisfies RIP1,2(T, ε) with probability at least 1 − 2e−mε2/2 if

m � ε−2w2(Tn), where Tn = {x/‖x‖2 : x ∈ T } (see also [55, Lemma2.1] for a short
proof of this special case). In particular, for T = Σ2s or T = Σeff

9s this is satisfied if
m � ε−2s log(en/s). Hence, the first statement of Theorem 3 shows that in this case
the hard thresholding reconstruction x#HT achieves error ρ if m � ρ−4s log(en/s),
which is slightly better than [41, Propositions 1 and 2]. The second statement shows
that any solution to the linear program (6) achieves reconstruction error ρ if m �
ρ−4s log(en/s), which is a small improvement of the condition originally obtained
in [53].

Theorem 3 can be made robust to a small amount of pre-quantization noise:
if we observe q = sign(Ax + ν), then the first statement holds with error bound
‖x − x#HT‖2 �

√
ε + ‖ν‖1. A similar error bound can be obtained for solutions to

an augmented version of the linear program (6), which accounts for the noise. In
addition, one can prove a result analogous to Theorem 3 for recovery of low-rank
matrices via hard thresholding or a semidefinite program (in the noiseless case, the
latter arises by replacing the objective ‖z‖1 in (6) by the nuclear norm). We refer to
[28] for these extensions and resulting recovery results of low-rank matrices from
one-bit standard Gaussian measurements.

In [18], Theorem 3 was used to derive uniform recovery guarantees for randomly
subsampled standard Gaussian circulant matrices under a small sparsity assumption.
For a target reconstruction accuracy 0 < ρ ≤ 1, it is assumed that the sparsity s is
small enough, i.e.,

s � ρ2
√
n/ log(n). (9)

If 0 < ρ ≤ (log2(s) log(n))−1/4 and

m � ρ−4s log(en/(sρ4))
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then, with high probability, for any x ∈ R
n with ‖x‖0 ≤ s and ‖x‖2 = 1 the hard

thresholding reconstruction x#HT satisfies ‖x − x#HT‖2 ≤ ρ. Under slightly stronger
conditions a similar uniform reconstruction result can be obtained for effectively
sparse vectors on the unit sphere via (6). It is conjectured that a small sparsity
assumption is not necessary for these results.

4.2 Memoryless One-Bit Compressed Sensing With Dithering

Memoryless one-bit quantization with zero thresholds suffers from two downsides.
First, one can only recover signals located on the unit sphere or, viewed differently,
only the direction of signals. Second, it is easy to findmeasurement matrices that per-
form optimally in “unquantized” compressed sensing for which one-bit compressed
sensing fails. These two issues can be resolved by introducing dithering in the quanti-
zation process. Let Qτ : Rm → {−1, 1}m again denote themap Qτ (z) = sign(z + τ )

and consider the measurements q = Qτ (Ax). We can interpret this measurement
vector geometrically in a similar way as before, except that each measurement now
determines a hyperplane Hai ,τi = {z ∈ R

n : 〈ai , z〉 + τi = 0}, which is a parallel
shift of the hyperplane Hai . This immediately explains why dithering can be help-
ful to recover signals outside of the unit sphere: whereas two signals lying on a
straight line cannot be separated by a hyperplane through the origin (and are there-
fore located in the same cell of the tessellation if τ = 0), they can be separated by
shifted hyperplanes. Later we will see that dithering can also greatly extend the class
of measurement matrices for which accurate recovery from one-bit measurements
can be achieved.

In the setting of Gaussian measurement matrices, recovery results for sparse vec-
tors in the unit ball were first obtained in [4, 43]. In particular, [43] used Gaussian
thresholds τi and used a slight modification of the linear program (6) for recovery.
We will discuss a similar result that was obtained in [4] for the second- order cone
program

min
z∈Rn

‖z‖1 s.t. q = sign(Az + τ ), ‖z‖2 ≤ R, (10)

with q = sign(Ax + τ ). The rough idea behind the results in [4, 43] is a reduction to
the ‘standard’ one-bit compressed sensing model of Sect. 4.1: we view the dithered
measurements sign(Ax + τ ) as zero-threshold one-bit measurements sign([A τ

R ]x̄)
of the unit norm vector x̄ = [x, R]/‖[x, R]‖2 ∈ Sn+1, where the vector [x, R] ∈
R

n+1 is obtained from x by appending the scalar R as an extra entry. To find an
approximant of x , it suffices to find an approximant of x̄ of the form z̄: by the
argument in the proof of [4, Corollary 9] one finds ‖x − z‖2 ≤ 2R‖x̄ − z̄‖2 for any
twovectors x, z ∈ RB�n2

. If A is standardGaussian, then a small amount of adversarial
pre-quantization noise can be handled in a similar fashion by using that A satisfies
a simultaneous (�2, �1)-quotient property: with probability at least 1 − e−cm any
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ν ∈ R
m can be written as ν = Au for some u ∈ R

n with ‖u‖2 ≤ c1‖ν‖2/√m and
‖u‖1 ≤ c1‖ν‖2/

√
log(n/m).

Based on the above reasoning and the binary embedding result (16) stated below,
the following was shown.

Theorem 4 ([4, Theorem 2]) There exist absolute constants c0, c1, c2 such that
the following holds. Suppose that A ∈ R

m×n is standard Gaussian, τ1, . . . , τm are
independent N (0, 4R2)-distributed. If

m ≥ c0ρ
−4s log(n/s),

then the following holds with probability at least 1 − 3e−c1mρ4 : for any x ∈ R
n with

‖x‖0 ≤ s and ‖x‖2 ≤ R and q = sign(Ax + ν + τ ) with ‖ν‖∞ ≤ c2Rρ3, any solu-
tion x# to (10) satisfies ‖x − x#‖2 ≤ Rρ.

The linear programming result of [43] and Theorem 4 were extended further to
recovery of (effectively) dictionary sparse signals in [3].

Similarly to Theorem 3, uniform recovery via (10) can be ensured via an appro-
priate RIP1,2-property. Suppose that ν = 0 and consider

min
z∈Rn

‖z‖1 s.t. sign(C[z, R]) = sign(C[x, R]), ‖z‖2 ≤ R, (11)

then (10) is obtained by taking C = [A τ
R ]. It was shown in [18] that if ε < 1/5 and

C satisfies RIP1,2(Σeff
36(

√
s+1)2 , ε), then for any x ∈ R

n satisfying ‖x‖1 ≤ √
s‖x‖2 and

‖x‖2 ≤ R, any solution x# to (11) satisfies ‖x − x#‖2 ≤ 2R
√

ε. To connect this to
Theorem 4, note that if τ contains i.i.d.N (0, R)-distributed entries, then C = [A τ

R ]
is standard Gaussian. By Schechtman’s result, 1

m

√
π
2C satisfies RIP1,2(Σeff

36(
√
s+1)2 , ε)

if m � ε−2s log(en/s) and this immediately implies Theorem 4 (in the case ν =
0). In [18] it was shown that if A is a random partial standard Gaussian circulant
matrix, then 1

m

√
π
2C with high probability satisfies the same RIP property if m �

ε−4s log(en/s) + s log2 s log2 n and a certain small sparsity assumption (similar to
(9)) is satisfied. Thus, the conclusion of Theorem 4 (for ν = 0) remains valid in this
case if m � ρ−8s log(en/s) + s log2 s log2 n.

The program (10) (as well as the linear program in [43]) reconstruct by enforcing
quantization consistency. For this reason, this program can easily fail in the case
of post-quantization noise, as has been discussed in Sect. 4.1. In addition, since
the approaches in [4, 18, 43] essentially reduce to the standard one-bit compressed
sensingmodel, the type of measurement matrices for which results can be obtained is
relatively limited: so far only reconstruction results are known for standard Gaussian
and, under additional restrictions, randomly subsampled standard Gaussian circulant
matrices and subgaussian matrices. These limitations were overcome in [20, 21] by
using uniform dithering, as we will now discuss.

In [20], recovery results were obtained for matrices with i.i.d. subgaussian or
heavy-tailed rows, which are stable and robust with respect to both pre- and post-
quantization noise. Suppose that we observe a vector qc ∈ {−1, 1}m satisfying
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dH (qc, sign(Ax + ν + τ )) ≤ βm,

i.e., at most a fraction β of the bits are arbitrarily corrupted during quantization.
Consider

min
z∈Rn

dH (qc, sign(Az + τ )) s.t. z ∈ T . (12)

This (non-convex) program selects an x# whose noiseless one-bit measurements
minimize the Hamming distance to the corrupted vector of quantized noisy measure-
ments. The following recovery theorem applies to subgaussian random matrices.
A more general version of this result can be proved for heavy-tailed measurement
vectors, see [20].

Theorem 5 ([20, Theorem 1.5]) There exist constants c0, . . . , c4 > 0 depending
only on L such that the following holds. Suppose that A ∈ R

m×n has i.i.d. symmetric,
isotropic, L-subgaussian rows, ν has i.i.d. L-subgaussianentries with variance σ2,
and τ has i.i.d. entries which are uniformly distributed on [−λ,λ]. Let T ⊂ RBn

2 , set
λ ≥ c0(R + σ) + ρ, put r = c1ρ/

√
log(eλ/ρ), and let Tr = (T − T ) ∩ r Bn

2 . Assume
that

m ≥ c2λ

(
w2(Tr )

ρ3
+ logN (T, r)

ρ

)
, (13)

and that |Eν1| ≤ c3ρ, σ ≤ c3ρ/
√
log(eλ/ρ) and β ≤ c3ρ/λ. Then, with probability

at least 1 − 10 exp(−c4mρ/λ), for every x ∈ T , any solution x# of (12) satisfies
‖x# − x‖2 ≤ ρ.

If T ⊂ Bn
2 and σ ≤ 1 then λ is a constant that depends only on L . In this case (see

[20] for details) (13) holds if

m = c(L)
log(e/ρ)

ρ3
w2(T ).

In the special case T = Σs ∩ Bn
2 , a much better estimate is possible:

m = c′(L)ρ−1s log

(
en

sρ

)
.

The latter is optimal in terms of s and n and optimal up to the log-factor in terms
of ρ.

The result in Theorem 5 is still rather sensitive to pre-quantization noise: the mean
and variance of the noise should be of the order of ρ. In addition to this sensitivity to
pre-quantization noise, the program (12) is computationally hard to solve. To resolve
these two issues a different program, which is essentially obtained by convexifying
the objective of (12), was introduced in [20]: for λ > 0 consider

max
z∈Rn

1

m
〈qc, Az〉 − 1

2λ
‖z‖22 s.t. z ∈ U, (14)
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where either U = T or U = conv(T ). In the first case, we can view (14) as a regu-
larized version of (7). As is pointed out in [21], (14) is equivalent to

min
∥∥∥z − λ

m
A∗qc

∥∥∥
2

s.t. z ∈ U, (15)

i.e., it computes an �2-projection PU ( λ
m A∗qc) of λ

m A∗qc onto U . If U = conv(T ),
then (14) is convex, has a unique solution and can be expected to be stable. On
the other hand, if T is “simple”, then it may be advantageous to take U = T . For
instance, if U = T = Σs ∩ Bn

2 , then (14) has a closed-form solution

x# = min
{ λ

m
,

1

‖Hs(A∗qc)‖2
}
Hs(A

∗qc),

where Hs is the hard thresholding operator. The following result is stated for U =
conv(T ) in [20, Theorem 1.7], the case U = T is immediate from the proof.

Theorem 6 ([20, Theorem1.7])There exist constants c0, . . . , c4 that depend only on
L forwhich the following holds. Suppose that eitherU = T and T − T is star-shaped
orU = conv(T ). Suppose that A has i.i.d. symmetric, isotropic, L-subgaussian rows,
ν has i.i.d. mean-zero, L-subgaussian entries with variance σ, and τ has i.i.d. entries
which are uniformly distributed on [−λ,λ]. Let T ⊂ RBn

2 , fix ρ > 0, set Uρ = (U −
U ) ∩ ρBn

2 ,
λ ≥ c0(σ + R)

√
log(c0(σ + R)/ρ)

and let r = c1ρ/ log(eλ/ρ). If m and β satisfy

m ≥ c2

((
λw(Uρ)

ρ2

)2

+ λ2 logN (T, r)

ρ2

)

, β
√
log(e/β) = c3

ρ

λ
,

then, with probability at least 1 − 8 exp(−c4mρ2/λ2), for any x ∈ T any solution
x# of (14) satisfies ‖x# − x‖2 ≤ ρ.

If T is the set of sparse or compressible vectors in RBn
2 , then Theorem 6 can be

extended to randomly subsampled subgaussian circulantmatrices (with rows selected
according to the selector model). The only difference is that some additional loga-
rithmic factors appear in the result. We refer to [21, Theorem 1.1] for details.

If T = Σs ∩ Bn
2 and σ ≥ 1, then we can take λ = c(L)σ

√
log(c(L)σ/ρ) and

m = c′(L)
σ2

ρ2
s log

(σ

ρ

)(
log

(en
sρ

)
+ log log

(eσ
ρ

))
,

which is optimal up to logarithmic factors by Theorem 1.
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4.3 Relation to Binary Embeddings

The robust recovery result in Theorem 2 relies on a beautiful geometric result due
to Plan and Vershynin [55]. They showed that if T ⊂ Sn−1, m � ρ−6w2(T ), and
A ∈ R

m×n is a standard Gaussian matrix then, with probability at least 1 − 2e−cmρ2 ,
for all x, y ∈ T ,

dSn−1(x, y) − ρ ≤ 1

m
dH (sign(Ax), sign(Ay)) ≤ dSn−1(x, y) + ρ. (16)

In other words, if x and y are “separated enough”, then the fraction of the random
Gaussian hyperplanes Hai = {z ∈ R

n : 〈
ai , z

〉 = 0} that separate x and y approxi-
mates their geodesic distance in a very sharp way. It was later shown in [52] that
(16) remains true if m � ρ−4w2(T ). Moreover, for certain “simple” sets (e.g., if T
is the set of unit norm sparse vectors) it is known that m � ρ−2w2(T ) suffices for
(16) (see [42, 52, 55] for examples).

In a similar way, the reconstruction results in Theorems 5 and 6 are connected to
“isomorphic” versions of (16). To give a concrete example from [20], suppose that
A has i.i.d. symmetric, isotropic, L-subgaussian rows and that the entries of τ are
i.i.d. uniformly distributed on [−λ,λ]. If T ⊂ RBn

2 , λ = c0R and

m ≥ c1
R log(eR/ρ)

ρ3
w2(T ),

then with probability at least 1 − 8 exp(−c2mρ/R), for any x, y ∈ conv(T ) such that
‖x − y‖2 ≥ ρ, one has

c3
‖x − y‖2

R
≤ 1

m
dH (sign(Ax + τ ), sign(Ay + τ )) ≤ c4

√
log(eR/ρ) · ‖x − y‖2

R
,

(17)
where c0, . . . , c4 depend only on L . Hence, if x and y are separated enough, then the
fraction of the hyperplanes Hai ,τi = {v ∈ R

n : 〈ai , v〉 + τi = 0} that separate x and
y accurately approximates their Euclidean distance.

4.4 Exponential Error Decay Via Adaptive Thresholds

Let us now briefly discuss how one can achieve optimal, exponential error decay in
terms of the number of measurements by using adaptive thresholds, following the
idea put forward in [4]. Interestingly, this scheme completely integrates the analog
measurement, quantization, and reconstruction procedures. Our presentation follows
[22].

To sketch the high-level idea, recall that in memoryless one-bit compressed sens-
ing, by taking measurements we geometrically produce hyperplanes through the
origin (if τ = 0) or shifted versions thereof (τ �= 0). In both cases, the origin is our
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“reference point” for producing hyperplanes. Intuitively, this is a good strategy to
locate x if x happens to lie close to the origin, but relatively ineffective if x is far
away. This is reflected by the appearance of the radius R of the signal set in the recon-
struction results discussed in Sect. 4.2. To improve the error decay, we can proceed
as follows: we first take a small batch of memoryless quantized measurements and
run a reconstruction algorithm to obtain a rough estimate x̂ of the location of x . In the
next round, we use x̂ as a new reference point to produce hyperplanes. Continuing
in this fashion, we “move in” on the target signal x and are able to produce more
informative measurements in each round.

Formally, fix a closed signal set K ⊂ R
n with 0 ∈ K and let PK be the �2-

projection onto this set. We set Ii = {(i − 1)m/B + 1, . . . , im/B} and divide the
measurement matrix A into the submatrices A(i) = RIi A, 1 ≤ i ≤ B, each contain-
ing m/B consecutive rows of A. We let ν(i) = RIi ν, τ(i) = RIi τ and Ri = 2−i R.
Suppose that we have an algorithm Ai which, with probability at least 1 − η, sat-
isfies the following for any w ∈ K − K with ‖w‖2 ≤ Ri−1: based on the input
(A(i), τ(i), (qc)(i), Ri−1), with (qc)(i) ∈ {−1, 1}m/B satisfying for a certain τ̄(i) =
τ̄(i)(A(i), τ(i), Ri−1) ∈ R

m/B

dH ((qc)(i), sign(A(i)w + ν(i) + τ̄(i))) ≤ βm/B, (18)

Ai produces a w# ∈ R
n so that ‖w − w#‖2 ≤ Ri−1/4. We can then produce partial

reconstructions (x̄(i))
B
i=1 of x iteratively as follows. Suppose that we produced an

x̄(i−1) ∈ K satisfying ‖x − x̄(i−1)‖2 ≤ Ri−1. We acquire corrupted measurements
(qc)(i) satisfying (18) for w = x − x̄(i−1). Since

sign(A(i)w + ν(i) + τ̄(i)) = sign(A(i)x + ν(i) + μ(i) + τ̄(i)),

with μ(i) = −A(i) x̄(i−1), the desired (qc)(i) can be acquired by measuring x with A(i)

and using Q(μ(i)+τ̄(i)) as a quantizer.
We now input (A(i), τ(i), (qc)(i), Ri−1) into the algorithm Ai and let x#(i) be its

output. Define x̄(i) = PK (x̄(i−1) + x#(i)). Clearly, since x ∈ K ,

‖x − x̄(i)‖2 ≤ ‖x − x̄(i−1) − x#(i)‖2 + ‖x̄(i−1) + x#(i) − PK (x̄(i−1) + x#(i))‖2
≤ 2‖x − x̄(i−1) − x#(i)‖2 ≤ 2

Ri−1

4
= Ri .

Hence, if ‖x‖2 ≤ R and we set x̄(0) = 0, then by induction we find ‖x − x̄(i)‖2 ≤
R2−i for all 1 ≤ i ≤ B. In summary, if we set B = log2(R/ρ) then, with probability
at least 1 − Bη, ‖x − x̄(B)‖2 ≤ ρ for any x ∈ K .

In the original paper [4], recovery results with exponential error decay were
obtained via the above scheme for s-sparse vectors and standard Gaussian measure-
ment matrices using either hard thresholding operations or Gaussian dithering and
the second-order cone program (10) to produce partial reconstructions. In [28], these
results were extended to recovery of low-rank matrices, using either hard threshold-
ing or a semidefinite program. In [21, 22], an exponential decay scheme was derived
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for sparse vectors and randomly subsampled subgaussian circulant matrices using
uniform dithering and hard thresholding for partial reconstruction.

As a variation of the result in [21, 22], we will derive a general result valid for any
signal set K which is a closed cone, any A ∈ R

m×n with i.i.d. symmetric, isotropic,
L-subgaussian rows, and uniform dithering. We only need to specify the “base algo-
rithms”Ai .We consider aw ∈ (K − K ) ∩ Ri−1Bn

2 and acquiremeasurements (qc)(i)
satisfying

dH ((qc)(i), sign(A(i)w + ν(i) + τ̄(i))) ≤ βm/B

with A(i) = RIi A, ν(i) = RIi ν, τ(i) = RIi τ , and τ̄(i) = Ri−1τ(i), where τ has i.i.d.
entries which are uniformly distributed on [−λ,λ]. Clearly,

dH ((qc)(i), sign(A(i)w + ν(i) + τ̄(i)))

= dH ((qc)(i), sign(A(i)(w/Ri−1) + ν(i)/Ri−1 + τ(i))).

Define w̃ = P(K−K )∩Bn
2
( λ
m A∗

(i)(qc)(i)). Since K is a cone, w/Ri−1 ∈ (K − K ) ∩ Bn
2 .

Hence, Theorem 6 (applied with T = (K − K ) ∩ Bn
2 , ρ = 1/4, and R = 1) shows

that ifwe assume thatν contains i.i.d.mean-zero, L-subgaussian entrieswith variance
σ2 ≤ ρ2 ≤ R2

i−1 and set

m/B ≥ c1w
2((K − K ) ∩ Bn

2 ), λ = c2, β
√
log(e/β) = c3,

then, with probability at least 1 − 8 exp(−c4m/B), for all w ∈ (K − K ) ∩ Ri−1Bn
2

the vector w̃ satisfies ‖ w
Ri−1

− w̃‖2 ≤ 1/4. Hence, the vector w# = Ri−1w̃ has the
desired properties.

Our considerations lead to the following algorithm and result.

Algorithm 1: exponentially decaying scheme

Input: A ∈ R
m×n , B ∈ N, τ ∈ R

m , R > 0
Initialization: x̄(0) = 0.
for i=1,…,B do

A(i) = RIi A
μ(i) = −A(i) x̄(i−1)

ν(i) = RIi ν
τ(i) = μ(i) + R2−(i−1)RIi τ
Produce corrupted quantized measurements (qc)(i) ∈ {−1, 1}m/B with

dH ((qc)(i), sign(A(i)x + ν(i) + τ(i))) ≤ βm/B

x#(i) = R2−(i−1)P(K−K )∩Bn
2

(
λ
m A∗

(i)(qc)(i)
)

x̄(i) = PK (x̄(i−1) + x#(i))
end
Output: x# = x̄(B)
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Theorem 7 There exist constants c1, c2, c3, c4 depending only on L such that the
following holds. Let K ⊂ R

n be a closed cone, fix 0 < ρ ≤ 1 and R > 0, set B =
log2(R/ρ), λ = c1, m ≥ c2Bw2((K − K ) ∩ Bn

2 ), β = c3. Suppose that A has i.i.d.
symmetric, isotropic, L-subgaussian rows, ν has i.i.d. mean-zero, L-subgaussian
entries with variance σ ≤ ρ, τ has i.i.d. entries which are uniformly distributed on
[−λ,λ], and A, ν, τ are independent. Then with probability at least 1 − Be−c4m/B

the following holds: for any x ∈ K with ‖x‖2 ≤ R, the output x# of Algorithm 1
satisfies ‖x − x#‖2 ≤ ρ.

The decay of the reconstruction error in Theorem 7 is clearly superior to the error
decay in Theorem 6. The total number of measurements generated in Algorithm 1 is

m ∼ log(R/ρ)w2((K − K ) ∩ Bn
2 ),

so the reconstruction error decays exponentially in terms of the number of measure-
ments, which is optimal (see the discussion in Sect. 2). In addition, the total number
of adversarial bit corruptions is βm, a constant fraction of m.

The price to pay for this superior scheme ismore complicated hardware and higher
energy consumption in operation. The quantizer needs to be equipped with memory
and the capability to compute and set new thresholds in each round.

5 Memoryless Multi-bit Compressed Sensing

Let us now consider memoryless multi-bit quantization schemes. A memoryless
scalar quantizer is defined by fixing a quantization alphabetQ ⊂ R and setting, for
a given z ∈ R

m and i ∈ [m],

QMSC(z)i = min{argmint∈Q |zi − t |}.

For example, by taking the alphabetQ = {−1, 1} we find the one-bit quantizer with
zero thresholds studied in Sect. 4.1. Before discussing specific recovery algorithms,
let us first point out that the best reconstruction error decay in terms of the number of
measurements that any reconstruction algorithm can achieve when receiving mem-
oryless scalar quantized measurements as input is, in general, linear. Specifically, it
was shown in [6, 30] that if A ∈ R

m×n and E ⊂ R
n is a k-dimensional subspace, then

supx∈E ‖x − A (QMSC(Ax))‖2 ≥ c k
m for any reconstruction map A : Rm → R

n .
The most studied memoryless multi-bit compressed sensing model involves the

memoryless scalar quantizer with alphabet Q = δZ, i.e., the quantizer Qδ : Rm →
(δZ)m defined by

Qδ(z) = (
δ�zi/δ�

)m
i=1.

For brevity, we will call this map the uniform scalar quantizer. Geometrically, Qδ

divides Rm into half-open cubes with side lengths equal to δ and maps any vector
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z ∈ R
m to the corner of the cube in which it is located. From a practical point of view,

this quantizer is somewhat idealized: in a realistic implementation the range of the
quantizer is limited and measurements 〈ai , x〉 which exceed the quantizer’s range
incur a potentially unbounded quantization error. One calls such measurements satu-
rated. The work [46] analyzes some strategies to deal with saturated measurements.
We will restrict ourselves to the idealized uniform scalar quantizer.

Let us first consider the “agnostic” approach to reconstruct x from uniformly
scalar quantized measurements q = Qδ(Ax), i.e., we simply treat the error due to
quantization as additive noise. Note that the �∞-distance of Ax to the center of its
quantization cell, i.e., q + (δ/2)1 where 1 ∈ R

m is the vector which has all entries
equal to 1, is at most δ/2. Hence, we can reconstruct the signal x via the linear
program

min
z∈Rn

‖z‖1 s. t. ‖Az − (q + (δ/2)1)‖∞ ≤ δ/2. (19)

Note that thismethod is very close tominimizing the �1-norm under a quantization
consistency constraint, i.e., to solving

min ‖z‖1 s. t. y = Qδ(Az). (20)

Indeed, whereas z is feasible for (20) if and only if Az lies in the same quantization
cell as Ax , z is feasible for (19) precisely when it lies in the closure of that cell.

From the standard theory of compressed sensing, it is easy to extract (see [18, The-
orem A.1]) that if A ∈ R

m×n is such that 1√
m
A satisfies RIP2,2(Σs, c) with constant

c < 4/
√
41, then for any x ∈ R

n and y = Qδ(Ax) any solution x# to (19) satisfies

‖x − x#‖2 � δ + s−1/2 inf
z∈Σs

‖x − z‖1. (21)

In particular, this applies to partial subgaussian circulant matrices (with determinis-
tically selected rows) if m � s log2 s log2 n [44] and randomly subsampled discrete
bounded orthonormal systems ifm � s log2 s log n [35]. A different argument, which
relies onMendelson’s small ballmethod [48] instead of anRIP-based analysis, shows
that even for a variety of heavy-tailed random matrices the reconstruction guarantee
(21) holds in the optimal regime m � s log(en/s) (see [19, Section V] for several
results).

Although these results exhibit the same dependence ofm on s and n as in “unquan-
tized” compressed sensing, they have a clear downside: by treating the quantization
error as noise, the reconstruction error does not decay beyond the resolution δ of
the quantizer, which corresponds to the noise floor. Intuitively, one could hope to be
able to decrease the reconstruction error even beyond the resolution δ by taking more
measurements. In a series of works by L. Jacques and co-authors [37, 39, 40, 63], this
is shown to be possible if one introduces appropriate dithering at the quantizer. Let
us denote by Qδ,τ = Qδ(· + τ ) the uniform scalar quantizer with dithering vector
τ ∈ R

m . It was first observed in [37] (see also [63, Appendix A]) that if the entries
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τi of τ are i.i.d. uniformly distributed on [0, δ], then for any y ∈ R
m , EQδ,τ (y) = y.

Hence, at least in expectation, dithering that matches the resolution can “cancel out”
the error caused by the uniform scalar quantizer. This fact can be exploited to prove
recovery results for general signals sets and a large class of measurement matrices.
We start by describing a result from [63]. Let T ⊂ R

n be a closed set of signals. For
x ∈ T consider its quantized measurements q = Qδ,τ (Ax) and define

x#PBP = PT
( 1

m
A∗q

)
.

Since A∗q is usually called the back projection of q, this reconstruction is coined the
projected back projection in [63]. If T = Σs , then the projected back projection is
up to scaling the same as the hard thresholding map in Theorem 3. To give the flavor
of the recovery results in [63], we state a recovery result if T is a union of subspaces.
Further results are obtained for low-rank matrices and star-shaped convex sets.

Theorem 8 ([63]) Let T = ∪N
i=1Ti ⊂ R

n be a union of subspaces. Suppose that the
entries of τ are i.i.d. uniformly distributed on [0, δ]. Let A ∈ R

m×n be a random
matrix that, for any fixed 0 < ε < 1, satisfies

∣∣∣
1

m
‖Az‖22 − ‖z‖22

∣∣∣ ≤ ε, for all z ∈ T ∩ Bn
2

with probability at least 1 − η if

m � ε−2w2(T ∩ Bn
2 ) polylog(m, n, 1/η).

Let T (4) = ∑4
i=1 T . If m � ρ−2(1 + δ)2w2(T (4) ∩ Bn

2 ) polylog(m, n, δ, 1/ρ, 1/η),
thenwith probability at least 1 − η, for any x ∈ T ∩ Bn

2 the projected back projection
x#PBP satisfies ‖x − x#‖2 ≤ ρ.

In the special case T = Σs , the assumption of Theorem 8 is e.g. satisfied if
A is subgaussian, a partial subgaussian circulant matrix or a randomly subsam-
pled discrete bounded orthonormal system. Hence, for these matrices, one can
uniformly recover all s-sparse vectors from their projected back projections if
m � ρ−2(1 + δ)2s log(en/s) polylog(m, n, δ, 1/ρ, 1/η).

The reconstruction error in Theorem 8 does not decrease to zero as the bin width
δ goes to zero, as e.g. in (21). In fact, this cannot be expected as x#PBP will, loosely
speaking, start behaving as Hs(

1
m A∗Ax) as δ → 0, i.e., as the first step of the iter-

ative hard thresholding algorithm in “unquantized” compressed sensing. Therefore,
it is of interest to derive a “best of both worlds” result that exhibits both a decaying
reconstruction error in terms of the number of measurements and, at the same time,
a reconstruction error decaying to zero if δ → 0 once m exceeds the threshold of
Cs log(en/s) measurements, which are needed for uniform recovery from unquan-
tized measurements. One can get very close to such a result by using a relation
between uniform scalar quantization and so-called quantized Johnson-Lindenstrauss
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embeddings. This relation is analogous to the connectionbetweenone-bit compressed
sensing and binary embeddings sketched in Sect. 4.3. For concreteness, we consider
the following embedding result.

Theorem 9 ([40, Proposition 1]) If m � ε−2 log N (T, δε2) and 1
m A ∈ R

m×n satis-
fies RIP1,2(T − T, θ), then for certain absolute constants c,C > 0, with probability
at least 1 − Ce−cmε2 the map f (x) = Qδ,τ (Ax) satisfies

(1 − θ)‖x − y‖2 − cδε ≤ 1

m
‖ f (x) − f (y)‖1 ≤ (1 + θ)‖x − y‖2 + cδε (22)

for all x, y ∈ T .

By the lower bound in (22), for anygiven signal x ∈ T , any x# ∈ T that is quantization
consistent with x satisfies ‖x − x#‖2 ≤ cδε/(1 − θ). Thus, under the conditions of
Theorem 9 we can recover x via a program that finds a quantization consistent vector
in T . In particular, if T = Σs ∩ Bn

2 then we can use the non-convex program

min ‖z‖0 s.t. q = Qδ,τ (Az), ‖z‖2 ≤ 1. (23)

If B is standard Gaussian and A = √
π
2 B, then

1
m A satisfies RIP1,2(Σ2s, θ) with

probability at least 1 − 2e−cmθ2 if m � θ−2s log(en/s). Combining this fact with
Theorem 9 and the estimate log N (Σs ∩ Bn

2 , δε
2) � s log(en/(sδε2)), we find that

if m � ε−2s log(en/(sδε2)), then with probability at least 1 − Ce−cmε2 , for any x ∈
Σs ∩ Bn

2 , any solution x# to (23) satisfies ‖x − x#‖2 ≤ δε.
This result can still be improved, since to derive a recovery result it suffices to

prove a much weaker property than (22). In [38, 39] a direct analysis was made of
the required property

Qδ,τ (Az) = Qδ,τ (Ax) ⇒ ‖x − z‖2 ≤ θ, for all x, z ∈ T . (24)

If (24) holds for T = Σs ∩ Bn
2 and θ = δε, then for any x ∈ Σs ∩ Bn

2 any solu-
tion x# to (23) satisfies ‖x# − x‖2 ≤ δε. It was shown in [38, Theorem 2] that a
standard Gaussian matrix A ∈ R

m×n satisfies this property with high probability if
m � ε−1s log(en/(

√
sδε)). Since for a fixed δ the reconstruction error cannot decay

faster than linear in m, the dependence of m on ε is near-optimal in this result.
We refer to [39, 40] for further results onquantized Johnson-Lindenstrauss embed-

dings, in particular versions involving RIP2,2-matrices and subgaussianmatrices, and
to [38, 39] for further results concerning the property (24). The latter results are used
in [51] to derive reconstruction guarantees for generalizations of (23) in which ‖z‖0
is replaced by an atomic norm.

In [18], Theorem 9 was used to prove a uniform recovery result for effectively
s-sparse vectors in the unit ball from randomly subsampled Gaussian circulant mea-
surements (with rows selected according to the selector model) via a convex program
that enforces quantization consistency. Loosely speaking, [18, Theorem 6.2] shows
that with high probability one can achieve a reconstruction error εδ2/3 using roughly
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m ∼ ε−6s log(en/s) measurements, provided that a small sparsity condition is satis-
fied. Interestingly, this result uses a combination of Gaussian and uniform dithering
in the quantizer.

6 Noise-Shaping Methods

Finally, we discuss quantized compressed sensing with a family of adaptive quanti-
zation methods called noise-shaping methods. The most prominent example in this
family are ΣΔ-quantization methods, which are very popular in practice. Noise-
shaping quantizers were first studied mathematically in the context of analog-to-
digital conversion of bandlimited functions (see e.g., [14, 33]) and afterwards have
been successfully extended to the frameworks of finite frames and compressed sens-
ing (see e.g., the survey [13] and the references therein). In the setting of compressed
sensing, the first reconstruction results for exactly sparse signals were obtained via a
two-stage approach [25, 34, 45]. First, one estimates only the support of the original
sparse signal via a traditional compressed sensing method for noisy measurements.
Once the support is known, one can use reconstruction methods developed in the
framework of finite frames to fully reconstruct the signal, e.g., by using an appropri-
ate Sobolev dual frame. For the sake of brevity, we will not discuss this approach and
refer to the survey [13] for details. We will only discuss a recent one-stage recov-
ery approach via a convex program, which was developed in [10, 13, 26, 36, 60].
In contrast to the two-stage approach sketched above, this method is proven to be
stable with respect to approximate sparsity, robust with respect to (a small amount
of) pre-quantization noise and has been successfully applied to structured random
measurement matrices [26, 36].

A noise-shaping quantizer Q : Rm → Qm associated with a noise transfer oper-
ator H , is defined so that for each y ∈ R

m the quantization q = Q(y) satisfies the
noise-shaping relation

y − q = Hu (25)

where u = u(y, Q) ∈ R
m is an auxiliary vector called the internal state vector. The

matrix H ∈ R
m×m is chosen to be a lower triangular Toeplitz matrix with unit diago-

nal, so that the quantization scheme can be implemented via a recursion. The noise-
shaping quantizer is called stable if, for all y ∈ R

m with ‖y‖∞ ≤ μ, ‖u‖∞ ≤ CQ,μ,
where CQ,μ is a constant independent of m called the stability constant. The most
important examples of noise-shaping quantizers are ΣΔ-quantizers, which com-
pute a solution to the noise-shaping relation (25) for H = Dr , where D ∈ R

m is the
first-order difference matrix defined by

Di j =

⎧
⎪⎨

⎪⎩

1 if i = j

−1 if i = j + 1

0 else.
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We call r the order of the scheme. The construction of a stable r -th orderΣΔ-scheme
is non-trivial. It was shown in [16] that for any L ∈ N and δ > 0 there exists a stable
r -th order ΣΔ-scheme with a fixed alphabet Qδ,L = {±(2� − 1)δ : 1 ≤ � ≤ L}
and constant

CQ,μ ≤ Cδ

(
er

π

⌈
π2

(cosh−1(2L − μ
δ
))2

⌉)r

.

In particular, taking L = 1, δ = 1, we find an r -th order scheme with the one-bit
alphabet Q = {−1, 1} which is stable in the sense that ‖u‖∞ ≤ Ccrμr

r whenever
‖y‖∞ ≤ μ < 1.

Let us now turn to the compressed sensing scenario, where y = Ax and the noise-
shaping relation is

Ax − q = Hu.

To see how we could recover x , multiply both sides by a designed preconditioning
matrix V ∈ R

p×m to obtain

V Ax − Vq = V Hu.

Sincewe observe Vq, we can interpret this equation as a linearmeasurement equation
Vq = V Ax + e, where V A is the measurement matrix and e = −V Hu is the noise
on the measurements. To recover x , we can then use methods for recovery from
“unquantized” noisy measurements. For instance, we can use basis pursuit denoising

min
z∈Rn

‖z‖1 s.t. ‖V Az − Vq‖2 ≤ η. (26)

By a standard result in compressed sensing, one can recover any s-sparse x via (26)
if V A satisfies RIP2,2(Σs, c) for c a small enough absolute constant and ‖e‖2 ≤ η
(see e.g., [29, Chapter 9]). To satisfy the latter condition, if we assume that the
quantization scheme is stable and ‖Ax‖∞ ≤ μ, it suffices to ensure that ‖V H‖�∞→�2

is small.
In the presence of pre-quantization noise, the noise-shaping relation changes to

V (Ax + ν) − Vq = V Hu.

It was suggested in [60] to replace the program (26) by

min
(z,w)∈Rn+m

‖z‖1 s.t. ‖V (Az + w) − Vq‖2 ≤ η, ‖w‖2 ≤ κ. (27)

The following result summarizes two reconstruction results for subgaussian [60] and
randomly subsampled subgaussian circulant matrices [26].
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Theorem 10 ([60, Theorem 9]) and [26, Theorem 5]) Let Q be the stable r-th order
ΣΔ-scheme with the one-bit alphabet Q = {−1, 1} as above and let CQ,μ be its
stability constant. Let A ∈ R

m×n be a subgaussian matrix. Suppose that

m ≥ p ≥ Cs log(en/s).

Then the following holds with probability at least 1 − e−cp. For any x ∈ R
n satisfying

‖Ax‖∞ ≤ μ < 1 and q = Q(Ax + ν) with ‖ν‖∞ ≤ ε < 1 − μ, any solution x# to
(26) with V = D−r , η = CQ,μ

√
m, κ = ε

√
m satisfies

‖x# − x‖2 �μ,r

( p

m

)r− 1
2 + σs(x)1√

s
+

√
m

p
ε, (28)

where σs(x)1 = minz∈Σs ‖x − z‖1.
If A is a randomly subsampled subgaussian circulant matrix (with rows selected

according to the uniformly at random model), then the same result holds with prob-
ability at least 1 − e−t provided that, for some 0 ≤ α < 1/2,

m � t1/(1−2α)s log2/(1−2α)(s) log2/(1−2α)(n)

and p = m( s
m )α.

The result in Theorem 10 essentially relies on proving that the matrix D−r A satis-
fies RIP2,2(Σs, c), which has proven to be difficult for structured random matrices.
To overcome this problem, [36] constructed a different preconditioner V for ΣΔ-
schemes as follows. For p < m let λ = m/p. For simplicity, we assume that λ ∈ N

and that there is a λ̃ ∈ N such that λ = r λ̃ − r + 1. Suppose that u ∈ R
λ contains

the coefficients of the polynomial (1 + z + . . . + zλ̃−1)r . Define V ∈ R
p×m by

VΣΔ = 1√
p‖u‖2 Ip ⊗ uT = 1√

p‖u‖2

⎡

⎢⎢⎢
⎣

uT 0 · · · 0
0 uT · · · 0
...

...
. . .

...

0 0 · · · uT

⎤

⎥⎥⎥
⎦

. (29)

Using this construction, [36] obtained the following result for partial Bernoulli cir-
culant matrices with randomized row signs. It can be easily modified in the case
of pre-quantization noise to produce an error bound similar to (28). In addition, a
similar result was obtained for randomly subsampled discrete bounded orthonormal
systems (again with randomized row signs).

Theorem 11 ([36, Theorem 6.1]) Let Q be the stable r-th order ΣΔ-scheme with
the one-bit alphabet Q = {−1, 1} as above. Let B be a partial Bernoulli circulant
matrix (with rows selected according to the row picking model), let Dξ be a diagonal
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matrix with i.i.d. symmetric Bernoulli random variables on its diagonal which are
independent of B and let A = DξB. Fix θ > 0, s ∈ [n] and suppose that

m ≥ p ≥ Cs log4 n.

Then the following holds with probability at least 1 − e−cp2/(sm). For any x ∈ R
n

satisfying ‖Ax‖∞ ≤ μ < 1 and q = Q(Ax), any solution to (26) with V = VΣΔ

satisfies

‖x# − x‖2 �μ,r

( p

m

)r− 1
2 + σs(x)1√

s
.

The reconstruction error in Theorems 10 and 11 decays polynomially in terms of
the number of measurements. If x is s-sparse (σs(x)1 = 0) and there is no pre-
quantization noise (ε = 0), then one can optimize the bound (28) (including the
implicit constant depending on r ) in terms of r . This yields an r depending on s
andm for which the reconstructions error decays root-exponentially, i.e., as e−√

m , in
terms of the number ofmeasurements (see e.g., [60, Corollary 11]). Exponential error
decay can be achieved by using a different noise-shaping method, called distributed
noise-shaping quantization [11, 12]. For such recovery results with partial Bernoulli
circulant matrices and randomly subsampled discrete bounded orthonormal systems
(both with randomized row signs), see [36].
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