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If it’s on the Internet, then it must be true.

George Washington

Introduction

The turn of the new millennium saw the completion of the human genome characterization. One
of the major challenges of the next century is to map the human connectome—a map of the
intricate complexity of the white matter circuitry comprising the human brain. This would be
a central achievement to understand and study noninvasively the healthy white matter, but will
also open new doors to characterize neurodegenerative diseases such as Alzheimer or Parkinson.
In order to do so, diffusion weighted magnetic resonance imaging (MRI) is one of the powerful,
noninvasive tools at our disposal. However, diffusion MRI only offers an indirect way to probe
the white matter microstructure at the macroscopic scale, but allows one to infer on the micro-
scopic scale of the white matter. This is done by carefully influencing the random displacement
of water molecules (the Brownian motion) in an experimentally controlled way using magnetic
fields. The displacement of these molecules can then be used to infer information about the
microstructure they encountered during this controlled displacement. As diffusion MRI is only
a coarse and indirect view of the microstructure, it can be prone to overinterpretation of its
findings—designing diffusion MRI experiments, processing the collected data, analyzing the re-
sults and understanding their limitations is not always straightforward. The chapters contained
in this thesis present some recent advances in diffusion MRI to enhance data analysis and subse-

quent studies of the human brain.
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1.1. Magnetic resonance imaging

1.1 Magnetic resonance imaging

The everyday clinical MRI acquisition relies on T1-weighted (T1w) imaging (Brant-Zawadzki
et al., 1992), where the white matter will typically be white, the gray matter gray and the cere-
brospinal fluid (CSF) black as shown by Fig. 1.1. T1w images are a quick way to get an overview
of the brain—the sequence is relatively fast to acquire (around 5 minutes on a clinical scanner),
is easy to understand and provides a high spatial resolution of around 1 mm isotropic. How-
ever, understanding the underlying cause-to-effect phenomena affecting the contrast may be
less straightforward as multiple competing processes can cause a change in the T1 relaxation

time and therefore a different contrast.

White matter Gray matter

Figure 1.1: A structural Tlw image showing the white matter (in white), the gray matter (in gray) and
the CSF (in black). It is not possible to distinguish the organization of the underlying white matter on a
T1w image, but this is possible using diffusion MRI. The figure is adapted from St-Jean (2015).

On the other hand, diffusion MRI can yield quantitative information about both the rate of
diffusivity and direction of displacement of water molecules (Le Bihan et al., 1986; Le Bihan,
2014). These two complementary measures are affected by pathology through a different mecha-
nism than T1 relaxation, which makes it possible to disentangle the cause in some specific cases.
One of the earliest applications was in stroke imaging, where the apparent diffusion coeflicient
(ADC) is lower and the diffusion weighted image is hyperintense in the affected region, which
may be difficult to identify (or even invisible) in a classical T1w image (Baird and Warach, 1998).
This difference in the diffusion weighted images can even be identified minutes after the incident
(Birenbaum et al., 2011) as shown in Fig. 1.2.

While diffusion MRI can provide information about the tissue microstructure through the
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Figure 1.2: Example of a brain region affected by stroke 4 hours after the incident. In A), the T2w image
does not show any change in contrast while there is a higher signal in the affected region on the diffusion
weighted image in B). This is seen as a lower mean diffusivity in the ADC map as shown by the darkened
region in C). The figure is adapted from Shen et al. (2011), available under the CC BY 2.0 license.

change in contrast alone, it is also additionally possible to infer the directional information about
these changes. Under an oriented magnetic field, such as used in an MRI scanner with a diffusion
sensitizing gradient, the water molecules tend to diffuse parallel to the white matter fibers rather
than perpendicularly. This can be used to infer the underlying structure and organization of the
brain by changing the orientation of the diffusion gradient and taking multiple images subject to
various orientations. The same idea can even be applied to other tissues of interest, either in vivo
or ex vivo. Fig. 1.3 shows a schematic of a single neuron and a sagittal cut of an ex vivo brain, for
which the white matter pathways can be reconstructed in vivo and noninvasively using diffusion
MR, a process known as tractography (Basser, Pajevic, et al., 2000; Mori and Van Zijl, 2002).
An example of a whole brain reconstruction using tractography and with a virtual dissection of
some common fiber pathways are shown in Fig. 1.4.
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Figure 1.3: Left: Histological cut in a sagittal view of the brain. Diffusion MRI enables noninvasive imag-
ing of the white matter. Photograph courtesy of Maxime Chamberland. Right: Schematic representation
of a neuron. The axon is enveloped by a myelin sheath, which constitutes the white matter in the brain.
Image taken from Wikipedia.



1.2. Diffusion MRI: a brief introduction to theory and concepts
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Figure 1.4: Left: Tractography of the white matter reconstructed using diffusion MRI. This is an in vivo
reconstruction, allowing to visualize the major pathways and white matter structures of the brain. Image
courtesy of Maxime Chamberland. Right: Virtual anatomical dissection for some of the white matter
pathways as obtained from whole brain tractography. The figure is adapted from Thiebaut de Schotten
et al. (2015), available under the CC BY 4.0 license.

1.2 Diffusion MRI: a brief introduction to theory and concepts

As we have mentioned previously, one advantage of diffusion MRI is its ability to infer the direc-
tional organization of the imaged tissue. For a given diffusion weighting, different orientation
of the diffusion sensitizing gradients will give different contrasts as shown in Fig. 1.5. This
difference of angular contrast is one of the key experimental conditions which is used to infer
properties of the tissue. The other factor available is the amount of diffusion weighting ap-
plied, usually referred to as the b-value. For a given angular orientation, an increase in diffusion

weighting generally translates to a lower measured signal as shown in Fig. 1.6.

(a) Induced gradient field in X (b) Induced gradient field in Y  (c) Induced gradient field in Z

Figure 1.5: The signal measured in diffusion MRI is orientation-dependent. When the structure is aligned
with the applied gradient, the signal loss is accentuated due to the preference of water molecules to go
parallel to the structure, rather than perpendicularly. As the CSF is an isotropic medium with a high
diffusivity value, the signal loss is equal in all directions and generally speaking the region of highest
diffusion in the healthy human brain. The figure is adapted from St-Jean (2015).
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b-value

(a) b = 0s/mm? (b) b = 1000 s/mm? (c) b = 2000 s/mm? (d) b = 3000 s/mm?

Figure 1.6: Example of increasing diffusion weighting using datasets from the human connectome project
(HCP). For a fixed orientation of the diffusion gradient, an increase in b-value translates to a lower
measured signal due to longer diffusion time. The behavior of this signal loss is at the foundation of
diffusion MRI and is used to infer indirectly the white matter architecture. The figure is adapted from
St-Jean (2015).

To summarize the information from multiple diffusion weighted images, various mathemat-
ical models offer a compact representation of the diffusion process, allowing the extraction of
scalar values to simplify interpretation and visualization of the diffusion features. The most well-
known signal representation is the diffusion tensor imaging (DTI) model (Basser, Mattiello, et
al., 1994; Basser and Pierpaoli, 1996), which is valid in the case of free diffusion or in the pres-
ence of a single, coherently oriented fiber population. In DTI, the diffusion equation is written
as a 3D symmetric ellipsoid, whose largest eigenvalue and eigenvector indicate the main axis of

diffusion as shown by Eq. (1.1).
S(b,g) = Sye 8" De, (1.1)

where D is the diffusion tensor, b the b-value and g the diffusion sensitizing gradient orientation.
Solving the equations for D requires at least six diffusion weighted images as the diffusion process
is usually assumed to be symmetric as shown by Eq. (1.2), but collecting additional measurements

is generally encouraged to obtain a stable solution (Jones et al., 2013; Tournier, Mori, et al., 2011).

D
p-|p, D, - (1.2)
D

Once the diffusion tensor is known, scalar metrics such as the ADC (which is the mean of the
eigenvalues) and the fractional anisotropy (FA), a normalized measure of dispersion obtained by
the ratio of the standard deviation over the mean of the eigenvalues, can be computed from D.
These measures can be useful to visually identify abnormal diffusion as shown by Fig. 1.7.

However, DTT is inadequate for long diffusion times where the water molecules may hit
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1.2. Diffusion MRI: a brief introduction to theory and concepts

Figure 1.7: A tumor in a A) Tlw image and a B) diffusion weighted image. While the tumor can be
seen in the Tlw image, the affected microstructure, presence of edema and displacement of the normal
white matter is easily seen in the diffusion derived C) FA map and D) direction color coded FA map. The
figure is adapted from St-Jean (2015).

cell boundaries and become subject to different regimes of diffusion such as hindered and re-
stricted diffusion as shown in Fig. 1.8. DTI is also unable to resolve the presence of crossing
fibers, which are prevalent throughout the human brain (Jeurissen, Leemans, et al., 2013). Ad-
vanced models of diffusion, such as diffusion kurtosis imaging (DKI) (Jensen and Helpern, 2010;
Jensen, Helpern, et al., 2005) or spherical deconvolution techniques (Dell'Acqua et al., 2007;
Descoteaux, Deriche, et al., 2009; Jeurissen, Tournier, et al., 2014; Tournier, Calamante, et al.,
2007) amongst others, are valid for longer diffusion times or in the presence of crossing fiber
geometries respectively. This comes at the cost of increased mathematical complexity and longer
acquisition protocols than classical DTI, but offer complementary information to DTI. As the
diffusion MRI literature itself is quite vast, the reader who would like to broaden his knowl-
edge can find several reviews for each major topic in diffusion MRI, such as artifacts correction
(Tournier, Mori, et al., 2011), diffusion modeling (Descoteaux and Poupon, 2014) or tractogra-
phy (Jeurissen, Descoteaux, et al., 2017) to name but a few. Recent reviews and special issues to
the multiple topics in diffusion MRI include for example Leemans (2019) and Tournier (2019)
while books are also dedicated to the subject such as Johansen-Berg and Behrens (2009) and
Jones (2011).

Since diffusion MRI can be used to provide directional information not available to conven-
tional T1w imaging, one can wonder what might be its limitations besides longer scan times.
Unfortunately, the classical version of diffusion MRI uses a spin-echo sequence (Stejskal and
Tanner, 1965) and is based on T2 relaxation effects and relatively long echo times. This means
that in clinical practice the resolution, shorter scan time and signal-to-noise ratio (SNR) that
can be achieved is severely limited by the hardware available. A T1w image can be acquired in
approximately 5 minutes at a spatial resolution of 1 mm isotropic while an equivalent diffusion
MRI acquisition would be at a spatial resolution of 2 mm isotropic with 30 DWIs, which in-

cludes the use of parallel imaging acceleration (Griswold et al., 2002; Pruessmann et al., 1999)
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Figure 1.8: Macroscopic and microscopic views of water diffusion. Given sufficient time, the water
molecules hit the cell membranes, which may reduce their rate of diffusion (hindered diffusion, in blue) or
may even be trapped inside the cell (restricted diffusion, in green) as opposed to free diffusion happening
outside of the cellular environment. These different regimes of diffusion results in different contrasts as
observed on the diffusion weighted images, provided the acquisition protocol allows sufficient diffusion
time to explore these effects. Image adapted from Le Bihan (2014), available under the CC BY 4.0
license.

and echo planar imaging (EPI) (Mansfield, 1977; Rzedzian et al., 1983). In the research world,
this is not so much an issue as several techniques have been designed to minimize scanning time
(Lustig et al., 2007; Ning et al., 2016; Paquette et al., 2015; Scherrer et al., 2011) and may be
available as off-the-shelves sequences or upon request from the authors. However, the decrease
in SNR associated with a higher spatial resolution is oftentimes unavoidable.

An analogy to explain why this effect is hard to counterbalance can be to think of a 1 meter
squared sandbox filled with a fixed amount of sand. Say that we divide this sandbox by using
a grid of 100 boxes of size 10 cm by 10 cm. Now, if we were to subdivide it again by another
factor 10, there would be 10 000 boxes of size 1 cm by 1 cm. Each box would contain fewer
grains of sand than if we only used 100 boxes of size 10 cm by 10 cm, even though the total
number of sand in the whole sandbox is always the same no matter the subdivision. The same
idea applies when we use smaller voxels in diffusion MRI; the number of water molecules present
in each voxel contributing to the signal is less than if coarser voxels, which would each contain
more water molecules, would be instead imaged. As more slices also need to be acquired for an
equivalent coverage, this also lengthens the acquisition time due to an increase in echo time (TE)
and repetition time (TR). Fig. 1.9 shows the reduced signal in a DWT if only the voxel size is
increased at each subsequent step. This tradeoff between SNR, spatial resolution and acquisition

time is a careful balance that needs to be optimized for every diffusion experiment.

1.3 Outline of this thesis

As we have seen so far, diffusion MRI can help to identify (and even quantify) abnormalities in

the white matter by providing contrasts not available from classical MRI. This is however subject
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1.3. Outline of this thesis

Size of a voxel

(a) 1 mm (b) 1.25 mm (c) 1.5 mm (d) 1.9 mm

Figure 1.9: Datasets of the same subject at various spatial resolutions for a fixed b-value. At the top,
a set of b = 0 s/mm? images and at the bottom a diffusion weighting of b = 1000 s/mm?. As the
voxel resolution increases, the images contain less water molecules per volume and therefore less signal
is measured. This increase in spatial resolution is at the cost of a lower SNR and increased scan time
relative to their coarser counterpart, limiting the achievable resolution in vivo. The figure is adapted from
St-Jean (2015).

to limitations in terms of both acquisition time and SNR, which depends on the scanner and
gradient hardware available. Fortunately, theory and methods taking root in image and signal
processing, statistics and machine learning can be employed to enhance and facilitate the analysis
of diffusion MRI datasets as will be showcased in this thesis.

As shown in Fig. 1.9, the increase in spatial resolution in diffusion MRI comes at the cost of
a progressively lower SNR. The Non Local Spatial and Angular Matching (NLSAM) algorithm
for denoising diffusion MRI is presented in Chapter 2, which makes use of dictionary learning
to iteratively construct an adaptive basis to represent the data at hand. Important features of
the signal across diffusion weighted images are automatically identified and used for an efhicient
reconstruction, discarding artifacts associated with lower SNR datasets in the process. Synthetic
simulations and comparisons with three other algorithms show that the method improves the
estimation of diffusion metrics when compared to the original, unprocessed data. Experiments
on a 1.2 mm isotropic dataset show qualitative improvements in restoring coherence in crossing
fiber configurations and subsequent reconstruction of fiber bundles, showing more anatomical
details than a comparative 1.8 mm isotropic dataset of the same subject for matched acquisition
times.

Chapters 3 and 4 go hand in hand, allowing quantitative analysis based on tractography as
presented in the previous chapter. Since tractography is a virtual reconstruction of fiber bundles,
it is possible to study the change in diffusion metrics along those fiber pathways. This provides
an alternative analysis method to the classical region of interest and voxelwise analysis popular in

structural MRI by projecting metrics along-tract in a new 1D space following the 3D fiber bun-
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dles. Chapter 3 first shows an optimal assignment strategy to create this 1D representation of
the metric of interest. As tractography is different for every subject due to anatomical variations,
this results in potential differences in reconstructed pathways. Delineation of those pathways
therefore results in slightly different bundles of various length for each subject across spatial
coordinates. The projection from a 3D space to this new 1D space is not necessarily straight-
forward since matching points in 3D do not always correspond to the same anatomical locations
across subjects depending on the assignment strategy that is used.

Chapter 4 then expands upon Chapter 3 and presents the Diffusion Profile Realignment
(DPR) algorithm, which is designed to realign the extracted 1D profiles just before statistical
analysis. Using the Fourier transform, the 1D coordinates are realigned toward a common tem-
plate subject that is automatically chosen from the set of subjects currently analyzed. Only the
1D segments that are sufficiently overlapping are kept and realigned altogether, ensuring that
the pointwise coordinates are in fact matching across all spatial locations of every subject before
analysis. This is demonstrated on synthetic experiments and on in vivo data, where the coefhi-
cient of variation is lower after realignment for the studied diftusion metrics. Using 100 in vivo
subjects, additional experiments are performed by locally altering the shapes of the 1D profiles.
After realignment, the affected regions are easier to identify than before applying the realignment
algorithm while preserving the effect of interest.

Chapter 5 takes us back to the acquisition of diffusion datasets by proposing an automated
method to estimate noise distributions in diffusion MRI, but without requiring a priori knowl-
edge of the acquisition process itself. As the statistical distribution of the signal in MRI depends
on the reconstruction algorithm and the type of parallel acceleration used for the acquisition, an
automated method that can identify these characteristics without user interaction may help to
inform subsequent steps of the processing pipeline requiring such information. Using a trans-
formation to a gamma distribution, voxels are automatically identified as belonging to the noise
distribution or rejected as containing tissues or artifacts using equations based on the moments
and maximum likelihood equations of the gamma distribution. The proposed algorithms are
compared against three other methods using numerical simulations on phantoms, simulations
with parallel acceleration and acquired datasets of a water bottle. Two in vivo datasets from dif-
ferent hardware manufacturers are also analyzed in addition to a bias correction and a denoising
task. As the signal measured in MRI dictates the extracted scalar values from diffusion MRI
modeling, different statistical properties could be mistakenly interpreted as genuine biological
differences if not taken into account during analysis. This is even more important for multicenter
studies that pool data from various acquisition protocols and hardware manufacturers as datasets
exhibit small signal variations even between scans of the same subject.

Chapter 6 follows on these previous ideas by proposing a new method to harmonize diffu-
sion datasets acquired on different scanners. Based once again on dictionary learning just like

Chapter 2, the datasets from three different scanners are harmonized either towards a common
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1.4. Software implementations and datasets

space or from one scanner to the other in a fully automated manner. This can even be done if the
datasets are acquired at different spatial or angular resolutions through subsampling and match-
ing of the learned dictionaries, which do not require matched pairs of samples for the training
phase. Experiments on simulated alteration of the datasets show that the algorithm preserves
the induced eftects while reducing variability between scanners on the studied diffusion MRI
metrics.

Finally, Chapter 7 summarizes the results presented throughout this thesis and presents new

promising directions for diffusion MRI which could be combined with the ideas in this thesis.

1.4 Software implementations and datasets

The development of this thesis also lead to new algorithms, their implementation and to the ac-
quisition of diffusion MRI datasets to support the experiments and results presented. To make
the algorithms useful to the community in general, implementations are made available with
examples and easy to use installation instructions and accompanying documentation. Moreover,
most of the datasets specifically acquired for the work presented in these chapters are made
freely available so they may be of use to researchers doing similar experiments, expand upon
the presented methods or compare fairly their algorithms with the same datasets that we used
previously. The implementation of the NLSAM algorithm from Chapter 2 is available online
at https://github.com/samuelstjean/nlsam and the datasets used in the manuscript are also avail-
able at https://github.com/samuelstjean/nlsam_data. The diffusion profile realignment algorithm
from Chapter 4 is available online at https://github.com/samuelstjean/dpr. An archival copy of
each version of the code is also available on Zenodo (St-Jean, 2019) and the synthetic datasets
and extracted metrics for the in vivo datasets are also available on Zenodo (St-Jean, Chamberland,
et al., 2018). The algorithm for automatically estimating the noise distribution from Chapter 5,
which is an improved version of the implementation previously described in St-Jean, De Luca,
Viergever, et al. (2018), can be obtained at https://github.com/samuelstjean/autodmri. An online
archived version is also available on Zenodo (St-Jean, De Luca, Tax, et al., 2019) along with the
synthetic datasets and the phantom datasets acquired for the experiments (St-Jean, De Luca,
Tax, et al., 2018). Finally, the harmonization algorithm presented in Chapter 6 is available on-
line at https://github.com/samuelstjean/harmonization. The usual archived copy on Zenodo is

also available (St-Jean, Viergever, et al., 2019).
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Abstract

Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise
Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains rel-
evant information and is now of great interest for microstructural and connectomics
studies. High noise levels bias the measurements due to the non-Gaussian nature of
the noise, which in turn can lead to a false and biased estimation of the diffusion
parameters. Additionally, the usage of in-plane acceleration techniques during the
acquisition leads to a spatially varying noise distribution, which depends on the par-
allel acceleration method implemented on the scanner. This paper proposes a novel
diffusion MRI denoising technique that can be used on all existing data, without
adding to the scanning time. We first apply a statistical framework to convert both
stationary and non stationary Rician and non central Chi distributed noise to Gaus-
sian distributed noise, effectively removing the bias. We then introduce a spatially
and angular adaptive denoising technique, the Non Local Spatial and Angular Match-
ing (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping
patches, thus capturing the spatial and angular structure of the diffusion data, and
a dictionary of atoms is learned on those patches. A local sparse decomposition is
then found by bounding the reconstruction error with the local noise variance. We
compare against three other state-of-the-art denoising methods and show quantita-
tive local and connectivity results on a synthetic phantom and on an in vivo high
resolution dataset. Overall, our method restores perceptual information, removes the
noise bias in common diffusion metrics, restores the extracted peaks coherence and
improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm
high resolution in vivo dataset, our denoising improves the visual quality of the data
and reduces the number of spurious tracts when compared to the noisy acquisition.
Our work paves the way for higher spatial resolution acquisition of diffusion MRI
datasets, which could in turn reveal new anatomical details that are not discernible at
the spatial resolution currently used by the diffusion MRI community.

Keywords: Diffusion MRI, Denoising, Block Matching, Noise bias, Dictionary learning
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Chapter 2. Non Local Spatial and Angular Matching

2.1 Introduction

Diffusion magnetic resonance imaging (MRI) is an imaging technique that allows probing mi-
crostructural features of the white matter architecture of the brain. Due to the imaging sequence
used, the acquired images have an inherently low signal-to-noise ratio (SNR), especially at high
b-values. Acquiring data at high b-values contains relevant information and is now of great
interest for connectomics (Van Essen et al., 2013) and microstructure (Alexander et al., 2010)
studies. High noise levels bias the measurements because of the non-Gaussian nature of the
noise, which in turn prohibits high resolution acquisition if no further processing is done. This
can also lead to a false and biased estimation of the diffusion parameters, which impacts on the
scalar metrics (e.g. fractional anisotropy (FA)), or in the fitting of various diffusion models (e.g.
diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI) mod-
els). This can further impact subsequent tractography and connectivity analysis if the spatially
variable noise bias is not taken into account. Therefore, high SNR diffusion weighted images
(DWIs) are crucial to draw meaningful conclusions in subsequent data or group analyses (Jones
et al., 2013).

This paper focuses on denoising techniques since they can be used on all existing data, with-
out adding to the scanning time. They also can be readily applied to any already acquired dataset
just like motion and eddy current corrections that are commonly applied on acquired datasets.
One possible way to acquire higher quality data is to use better hardware, but this is costly and
not realistic in a clinical setting. One can also use a bigger voxel size to keep the relative SNR at
the same level, but at the expense of a lower spatial resolution or acquiring fewer directions to
keep an acceptable acquisition time (Descoteaux and Poupon, 2014). Averaging multiple acqui-
sitions also increases the SNR, but this should be done either using Gaussian distributed noisy
data (Eichner et al., 2015) or in the complex domain to avoid the increased noise bias (Jones
et al., 2013).

With the advance of parallel imaging and acceleration techniques such as the generalized
autocalibrating partially parallel acquisitions (GRAPPA) or the sensitivity encoding for fast
MRI (SENSE), taking into account the modified noise distribution is the next step (Aja-Fernindez
et al., 2014; Dietrich et al., 2008). The noise is usually modeled with a Rician distribution when
SENSE is used and a non central Chi (nc-y) distribution with 2N degrees of freedom (with N
the number of receiver coils) when a Sum of Squares (SoS) reconstruction is used. If GRAPPA
acceleration is also used with a SoS reconstruction, the degrees of freedom of the nc-x distri-
bution will vary between 1 and 2N (Aja-Fernandez et al., 2014). Some techniques have been
specifically adapted by the medical imaging community to take into account the Rician nature
of the noise such as non local means algorithms (Coupe et al., 2008; Manjén, Coupé, Marti-
Bonmad, et al., 2010; Tristan-Vega and Aja-Ferndndez, 2010), Linear Minimum Mean Square
Error estimator (Aja-Fernandez et al., 2008; Brion et al., 2013), generalized total variation (Liu
et al., 2014), a majorize-minimize framework with total variation denoising (Varadarajan and
Haldar, 2015), maximum likelihood (Rajan et al., 2012) or block matching (Maggioni et al.,
2013). Some methods (Bao et al., 2013; Becker et al., 2014; Brion et al., 2013; Gramfort et al.,
2014; Lam et al., 2014; Manjon, Coupé, Concha, et al., 2013; St-Jean et al., 2014; Tristin-Vega
and Aja-Fernindez, 2010) have also been specifically designed to take advantage of the properties
of the diffusion MRI signal such as symmetry, positivity or angular redundancy. Since the data
acquired in diffusion MRI depicts the same structural information, but under different sensitiz-
ing gradients and noise realization, these ideas take advantage of the information contained in
the multiple acquired diffusion MRI datasets.
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We thus propose to exploit the structural redundancy across DWTIs through a common sparse
representation using dictionary learning and sparse coding to reduce the noise level and achieve
a higher SNR. Our method can be thought of a Non Local Spatial and Angular Matching
(NLSAM) with dictionary learning. To the best of our knowledge, most recent state-of-the-art
denoising algorithms either concentrate on modeling the nc-x noise bias or the spatially varying
nature of the noise in a Rician setting. Our method thus fills the gap by being robust to both of
these aspects at the same time, as seen in Table 2.1. We will compare our method against one
structural MRI method and two other publicly available algorithms: the Adaptive Optimized
Non Local Means (AONLM) (Manjén, Coupé, Marti-Bonmati, et al., 2010), which is designed
for 3D structural MRI, the Local Principal Component Analysis (LPCA) (Manjon, Coupé,
Concha, et al., 2013) and the multi-shell Position-Orientation Adaptive Smoothing (msPOAS)
algorithm (Becker et al., 2014), both designed for processing diffusion MRI datasets. More
information on each method features and parameters will be detailed later.

Noise type AONLM LPCA msPOAS NLSAM
Stati Rician v’ v’ v’ v’
ationary ne-x X X o o
. Rician v’ v’ X v’
Variable ne-x X X X o
Use 4D angular information X v’ v’ v’

Table 2.1: Features of the compared denoising algorithm, see Section 2.3.3 for an in-depth review of each
method. The NLSAM algorithm is the only technique robust to both the spatially varying nature of the
noise and the nc-x bias at the same time.

The contributions of our work are:

i) Developing a novel denoising technique specifically tailored for diffusion MRI, which
takes into account spatially varying Rician and nc-x noise.

i) Quantitatively comparing all methods on common diffusion MRI metrics.
iii) Quantifying the impact of denoising on local reconstruction models.

iv) Analyzing the impact of denoising on tractography with a synthetic phantom and a high
spatial resolution dataset.

2.2 Theory

We now define two important terms used throughout the present work. Firstly, a patch is
defined as a 3D region of neighboring spatial voxels, i.e. a small local region of a single 3D DW1.
Secondly, a block is defined as a collection of patches taken at the same spatial position, but in
different DWTs, i.e. a block is a 4D stack of patches that are similar in the angular domain. The
reader is referred to Fig. 2.1 for a visual representation of the process.

The Block Matching Algorithm Reusing the key ideas from the non local means, the block
matching algorithm (Dabov et al., 2007) further exploits image self-similarity. Similar 2D
patches found inside a local neighborhood are stacked into a 3D transform domain and jointly
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(b) Angular neighbors po-
(a) A block is made of the b0 and some angular neighbors sition on the sphere.

Figure 2.1: a) A 3D block is made by stacking along the 4th dimension the b0, a DWI and its angular
neighbors, which share similar structure, but under a slightly different noise realization. b) Disposition of
equidistant angular neighbors on the sphere.

filtered via wavelet hard-thresholding and Wiener filtering. Combining these filtered estimates
using a weighted average based on their sparsity leads to superior denoising performance than the
non local means filter. The idea has been extended in 3D for MRI image denoising in (Maggioni
et al., 2013) and an adaptive patch size version for cardiac diffusion MRI image denoising was

successfully employed by (Bao et al., 2013).

The Dictionary Learning Algorithm  Dictionary learning has been used in the machine learn-
ing community to find data driven sparse representations (Elad and Aharon, 2006; Mairal et al.,
2009). Typically, a set of atoms (called the dictionary) is learned over the data, providing a way
to represent it with a basis tailored to the signal at hand (Olshausen and Field, 1996). This is
analogous to using an off-the-shelf basis like the discrete cosine transform or wavelets, but in a
data-driven manner, which gives better results than using a fixed, general-purpose basis since it
can also be overcomplete, i.e. it can have more atoms than coeflicients. Given a set of input data
X = [zq,...,2,] € R™™ organized as column vectors, the process is expressed as

. 1 n 1 2 2
min - ; (5 lz, — Da,|f + )\HaiHl) st. [DJ2 =1, 2.1)

where D € R™*? is the learned dictionary, X is a trade-off parameter between the data fidelity
term and the penalization on the coefficients & = [ay, ..., ] € RP*". A higher value of A
promotes sparsity at the expense of the similarity with the original data. The columns of D are
also constrained to be of unit £, norm in order to avoid degenerated solutions (Elad and Aharon,
2006; Gramfort et al., 2014; Mairal et al., 2009). The key is to devise a sparse representation
to reconstruct structural information and discard noise, since the latter does not typically allow
a sparse representation in any basis. Using a penalization on the ¢; norm of the coefficients
promotes sparsity, hence providing denoising through the regularized reconstruction. This idea
has led to inpainting and denoising applications from the machine learning community (Elad
and Aharon, 2006; Mairal et al., 2009) or even to accelerated acquisition process in the diffusion
MRI community for diffusion spectrum imaging (DSI) (Gramfort et al., 2014).

Adjusting for various noise types Although the original formulations of Egs. (2.1) and (2.4)
assume stationary, white additive Gaussian noise, this is usually not true in diffusion MRI data,
especially at high b-values and low SNR. The noise is usually modeled as following a Rician
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distribution or a nc-y distribution when used with parallel imaging depending on the recon-
struction algorithm and the number of coils N used during the acquisition (Aja-Fernindez et al.,
2014; Dietrich et al., 2008). This introduces a bias, which depends on the intensity of the signal
that must be taken into account to recover the expected value of the original signal as shown
in Fig. 2.2. Note, though, that other common preprocessing corrections, such as motion cor-

rection or eddy current correction, require interpolation and could thus change the theoretical
noise distribution (Veraart et al., 2013).

60000

50000

80 100

Figure 2.2: Top: a) A noisy acquisition with slowly varying nc-x noise and b) the resulting stabilized,
Gaussian distributed noisy DWI. €) A noisy acquisition with fast varying Rician noise where the background
was masked by the scanner with d) its stabilized counterpart. Bottom: Histogram of the nc-x noise
distribution in the selected background region of a) before stabilization and b) after stabilization. Note
the non-Gaussianity of the noise in a) versus b).

The key idea lies in the fact that the nc-x distribution is actually made from a sum of Gaus-
sians, from which the Rician distribution is a special case with N = 1. By making the hypothesis
that each of the 2N Gaussian distributions shares the same standard deviation o, (Koay, Ozarslan,
and Basser, 2009), one can map a value m from a nc-y distribution to a equivalent value /i from
a Gaussian distribution. We first compute estimates for o and n (which is an estimate of the
signal value in a Gaussian setting). If n is below the noise floor due to a low local SNR, that is
when 1 < o4/7/2, we set n = 0 instead of being negative as suggested by (Bai et al., 2014).
The next step uses the cumulative distribution function (cdf) of a nc-y distribution and the
inverse cumulative distribution function (icdf) of a Gaussian distribution to find the equivalent
value m between the two distributions. This effectively maps a noisy nc-x distributed signal m
to a equivalent noisy Gaussian distributed signal m. See Fig. 2.3 for a synthetic example with
a visual depiction of the process for mapping nc-x signals to Gaussian distributed signals and
(Koay, Ozarslan, and Basser, 2009) for the original in-depth details.

Using a variance stabilization means considering the noise as additive white Gaussian noise,
which allows any already designed technique for Gaussian noise to be used without any modi-
fication. The author of (Foi, 2011) has shown that techniques with a Rician noise adaptation
performed equally well as their Gaussian noise version through the use of a noise stabilization
approach. The same idea has been directly applied with block matching (Dabov et al., 2007) for
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Figure 2.3: A synthetic example of the stabilization algorithm. a) Given a noisy value m = 678 observed
in a nc-x distribution with N = 4 and o, = 200, the underlying value is estimated as n = 407. b) The
associated probability in the nc-x cdf with 1 is a = 0.513, ) thus giving from the inverse cdf of a Gaussian
distribution with mean p = 407 and standard deviation o, = 200 a new noisy value m = 413.

structural MRI in (Maggioni et al., 2013). The classical solution to remove the noise bias is to in-
clude the noise model into the denoising algorithm itself, as for example done in (Aja-Fernandez
etal.,, 2008; Becker et al., 2014; Lam et al., 2014; Manjon, Coupé, Marti-Bonmati, et al., 2010).
The drawback with this solution is that each method has to be rethought to account for any
other noise type not considered in its original formulation.

2.3 Method

Adjusting for various noise types In this paper, we will deal with both the Rician and nc-x
noise model on a voxelwise basis through the noise stabilization technique of (Koay, Ozarslan,
and Basser, 2009). This indeed makes our algorithm easily adaptable for any noise type by simply
changing the pre-applied transformation as needed. We will use the Probabilistic Identification
and Estimation of Noise (PIESNO) (Koay, Ozarslan, and Pierpaoli, 2009) to estimate the station-
ary noise standard deviation. PIESNO works on a slice by slice basis and assumes the background
noise as stationary along the selected slice, and is designed to find the underlying standard devi-
ation of the Gaussian noise given its Rician or nc-x nature. Voxels that are considered as pure
background noise are found automatically by the method, using the fact that the squared mean
of those voxels follows a Gamma distribution. Once automatically identified, the standard devi-
ation o of those voxels can be computed and a new estimation of the Gamma distribution is
made with the updated o, until convergence. In the case of spatially varying noise, we will use a
method similar to (Manjén, Coupé, Marti-Bonmati, et al., 2010), where the noise is estimated
locally as

o? = min ||u; — ung, Vi # 7, (2.2)

with u; a noisy patch computed by subtracting a patch to a low-pass filtered version of itself
and applying the local Rician correction factor of (Koay and Basser, 2006). If the background
was masked automatically by the scanner or is unreliable due to the scanner preprocessing for
statistical estimation, we use a similar idea by computing the local standard deviation of the noise
field as

o; = std(u; — low_pass(u;)) (2.3)

If a noise map was acquired during the scanning session, it can be sampled directly to estimate the
parameters of the noise distribution. In the event that such a map is unavailable, a synthetic one
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can be constructed by subtracting the image from its low-pass filtered counterpart (see Eq. (2.3)).
Since the noise is assumed as independent and identically distributed across DW1s, we apply a
median filter on the 4D dataset to get a 3D noise field. Finally, a Gaussian filter with a full-width
at half maximum of 10 mm is applied to regularize the noise field, which is then corrected for
the more general nc-y bias with the correction factor of (Koay and Basser, 2006). A similar
approach based on extracting the noise field with a principal component analysis was used by
(Manjon, Coupé, Concha, et al., 2013).

Locally Adapting the Dictionary Learning To locally adapt the method to spatially varying
noise, we add some more constraints to the classical formulation of Eq. (2.1). Firstly, since
the measured signal in diffusion MRI is always positive, we use this assumption to constrain
the positivity of the global dictionary D and the coefficients e, i.e. D > 0, > 0 as done in
(Gramfort et al., 2014). We fixed the regularization parameter A for Eq. (2.1) in the same fashion
as (Mairal et al., 2009), that is A = 1.2/y/m, with m = ps® x an, ps is the patch size and an
the number of angular neighbors. Secondly, once D is known, we use Eq. (2.4) (see the next
paragraph) iteratively until convergence with the constraint > 0 and \;, = o?(m + 3v2m),
where o7 is the local noise variance found either with PIESNO or Eq. (2.3). In accordance with
(Candés et al., 2008), ), is an upper bound on the £, norm of the noise. We set the convergence as
reached for «; at iteration j when max |a; ; —a; ; ;| < 107° or until a maximum of 40 iterations
is realized.

i,j—1

Adaptive and Iterative ¢, Minimization While Eq. (2.1) will both construct the dictionary D
and find the coeflicients e, there are specialized iterative algorithms for solving ¢, problems to
yield sparser solutions (Candés et al., 2008; Daubechies et al., 2010). An equivalent constrained
formulation for solving each column i of « is

. 1 2

ngn“wjai LSt [2; = Dayl[, < N;, (2.4)
where w; is a weighting vector penalizing the coefficients of a; at iteration j. Eq. (2.4) can thus

. . . . . . o 1

be iterated to further identify non zero coefficients in a; by setting w,,, = o
iteration. The algorithm is then started with w, = 1and ¢ = max|D”¢|. Assuggested by (Candés
et al., 2008), & ~ N (0,0?%) is set as a random Gaussian vector, which gives a baseline where
significant signal components might be recovered. While similar in spirit to Eq. (2.1), Eq. (2.4)
provides a way to find the sparser representation for o; while bounding the ¢, reconstruction
error.

for the next

To the best of our knowledge, our paper is also the first to use the noise variance as an explicit
bound on the ¢, reconstruction error. This yields a sparse representation while controlling at
the same time the fidelity with respect to the original data, while the classical way is to use the
variance as a regularized penalization factor.

2.3.1 The proposed algorithm

Our new NLSAM algorithm combines ideas from block matching and sparse coding. We will
use the same kind of framework, but by replacing the thresholding part in the block matching
with a step of dictionary denoising instead, allowing the penalization on the sparsity of the signal
to regularize the noisy blocks. We also take explicit advantage of the fact that diffusion MRI data
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is composed of multiples volumes of the same structure, albeit with different noise realizations
and contrasts across DWIs. This allows sparser estimates to be found, further enhancing the
separation of the data from the noise (Olshausen and Field, 1996). Our method is thus composed
of three steps:

1. Correct the noise bias if needed.
2. Find angular neighbors on the sphere for each DWI.

3. Apply iterative local dictionary denoising on each subset of neighbors.

Step 1. In case the noise is not Gaussian distributed, we first correct for the noise bias
by finding the Gaussian noise standard deviation with PIESNO (Koay, Ozarslan, and Pierpaoli,
2009). If the background is masked, we instead use Eq. (2.3). We then transform the DWTIs into
Gaussian distributed, noisy signals using the correction scheme of (Koay, Ozarslan, and Basser,
2009).

Step 2. We find the angular neighbors for each of the DWIs. In this step, the local angular
information is encoded in a 4D block of similar angular data, as seen in Fig. 2.1. The gradients
are symmetrized to account for opposite polarity DWTs, which share similar structure to their
symmetrized counterpart. The search is also made along all the shell at the same time, since
structural information (such as sharp edges) is encoded along the axial part of the data. This
encodes the similar angular structure of the data along the 4th dimension in a single vector.

Step 3. The dictionary D is constructed with Eq. (2.1) and the blocks are then denoised with
Eq. (2.4). This step can be thought of finding a linear combination with the smallest number of
atoms to represent a block. To adapt to spatially varying noise, each block is penalized differently
based on the local variance of the noise. This enables the regularization to adapt to the amount
of noise in the block, which is usually stronger as the acquired signal is farther from the receiver
coils. Since each overlapping block is extracted, each voxel is represented many times and they
are recombined using a weighted average based on their sparsity as in (Maggioni et al., 2013;
Manjén, Coupé, Concha, et al., 2013). For each voxel ¢ with intensity v; contained in multiple
overlapping blocks V; in neighborhood V, we set the final value of v; as

> v (L+[Villo)
v 2.5)
’ Y1+l

JeEV

where V' is the same spatial position for voxel 7 across multiple blocks V;. This assumes that
more coefficients in block V; also mean more noise in the reconstruction. The ¢, norm thus
penalizes reconstructions with more coeflicients and assigns a lower weight in that case for the
overlapping weighted average.

This third step is then repeated for all the DWIs. Since each DWI will be processed more
than once with a different set of neighbors each time (see Fig. 2.1 for the block formation
process), we obtain multiple denoised volumes of exactly the same data, but denoised in a different
angular context. Once all the DWIs have been processed, we average the multiple denoised
versions obtained previously to further reduce any residual noise. See Section 2.7 for an outline
of the NLSAM algorithm as pseudocode. The result will be a denoised version of the input,
through both dictionary learning and spatial and angular block matching.
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2.3.2 Datasets and acquisition parameters

Synthetic phantom datasets The synthetic data simulations were based on the ISBI 2013
HARDI challenge phantom! and were made with phantomas®. We used the given 64 gradients
set from the challenge at b-values of b = 1000 s/mm? and b = 3000 s/mm?. For simplicity, we
will now refer to these datasets as the b = 1000 s/mm? and the b = 3000 s/mm? datasets. The
datasets were generated with Rician and nc-x noise profile, both stationary and spatially varying,
at two different signal-to-noise ratios (SNR) for each case. In total, we thus have 8 different
noise profiles for each b-value. The stationary noise was generated with SNR 10 and 20 and the
spatially varying noise was generated with SNR varying linearly from 5 to 15 and from 7 to 20.
The noise distributions were generated for each SNR by setting N = 1 for the Rician noise and
N = 12 for the nc-x noise. The noisy data was generated according to

N 2
I= J Z (% +ﬁei> + Be?, where €y €5 ™ N(0,0?), (2.6)

i=0,j=0

where T is the resulting noisy volume, (0, o) is a Gaussian distribution of mean 0 and variance
o? with o = mean (b0) / SNR and mean(b0) is the mean signal value of the b = 0 s/mm? image.
(3 is a mask to create the noise distribution set to 1 in the constant noise case and as a sphere
for the spatially varying noise case. For the spatially varying noise experiments, 3 has a value of
1 on the borders up to a value of 3 at the middle of the mask, thus generating a stronger noise
profile near the middle of the phantom than for the stationary (constant) noise case. As shown
on Fig. 2.4, this results in a variable SNR ranging from approximately SNR 5 and SNR 7 in
the middle of the phantom up to SNR 15 and SNR 20 for the spatially varying noise case. This
noise mimics a homogeneous noise reconstruction as implemented by some scanners while still
having a spatially varying noise map.

Real datasets  To compare our NLSAM method on a real dataset, we acquired a full brain in vivo
dataset consisting of 40 DWTs at b = 1000 s/mm? and one b = 0 s/mm?. The acquisition spatial
resolution was 1.2x 1.2x 1.2 mm?®, TR/TE = 18.9 s / 104 ms, gradient strength of 45 mT/m on a
3T Philips Ingenia scanner with a 32 channels head coil for a total acquisition time of 13 minutes.
An in-plane parallel imaging factor of R = 2 was used with the SENSE reconstruction algorithm,
thus giving a fast spatially varying Rician noise distribution (hence, the denoising algorithms will
be set with N = 1) even if multiple coils are used by the reconstruction algorithm for producing
the final image (see Fig. 2.2). No correction was applied to the dataset, as we wanted to show the
effectiveness of denoising without any other preprocessing step such as eddy current or motion
correction, which could introduce blurring caused by interpolation. To obtain a comparable
clinical-like baseline dataset and show the advantage of acquiring directly high resolution DWTIs,
we also obtained a 64 DWTs dataset at b = 1000 s/mm? and one b = 0 s/mm? of the same subject.
The spatial resolution was 1.8 x 1.8 x 1.8 mm®, TR/TE = 11.1 s / 63 ms, for a total acquisition
time of 12 mins. The acquisition was made on the same scanner, but during another scanning
session. No further processing nor denoising was done on this dataset for the reasons mentioned
above. This can be thought of having a higher angular resolution at the cost of a lower spatial
resolution for a comparable acquisition time.

1 http://hardi.epfl.ch/static/events/2013_ISBI/
thtp ://www.emmanuelcaruyer.com/phantomas.php
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b0 image

DW image

Added noise

(a) Noiseless (b) SNR10 stat  (c) SNR10 stat (d) SNR15 var (e) SNR15 var
Rician nc-x Rician nc-x

Figure 2.4: Synthetic b = 1000 s/mm? datasets with various noise profiles used in the experiments. The
top row shows the b0 image, the middle row shows the same DWI across noise types and the bottom row
shows the various noise distribution which generated the middle row. From left to right: the noiseless
data, SNR 10 with stationary Rician noise, SNR 10 with stationary nc-x noise, SNR 15 with spatially
variable Rician noise, SNR 15 with spatially varying nc-x noise.

2.3.3 Other denoising algorithms for comparison

We now present the various features and cases covered by the denoising algorithms studied in this
paper. The Adaptive Optimized Nonlocal Means (AONLM) method (Manjén, Coupé, Marti-
Bonmati, et al., 2010) is designed for Rician noise removal in a 3D fashion and works separately
on each DWIs volume. It also includes a Rician bias removal step and is able to spatially adapt
to a varying noise profile automatically. We used the recommended default parameter of a 3D
patch size of 3 x 3 x 3 voxels with the Rician bias correction in all cases. The Local Principal
Component Analysis (LPCA) method (Manjén, Coupé, Concha, etal., 2013) is also made to take
into account the Rician noise bias and is spatially adaptive, but also uses the information from all
the DWTs in the denoising process. We used the automatic threshold set by the method with the
Rician noise correction for all experiments. Both AONLM and LPCA can be downloaded from
the author’s website*. The multi-shell Position-Orientation Adaptive Smoothing (msPOAS)
algorithm (Becker et al., 2014) was designed for both Rician and nc-x noise, while also taking
into account the angular structure of the data for adaptive smoothing. We discussed with the
authors of msPOAS* for their recommendations and using their suggestion, we set k* = 12
and A = 18. We also supplied the correct value for N and used the implemented automatic
detection of the noise standard deviation from msPOAS. For the NLSAM algorithm, we used
a patchsize of 3 x 3 x 3 voxels with 4 angular neighbors, which correspond to the number of
angular neighbors at the same distance on the sphere for each selected DWI. The value of N

Shttp://personaleSA upv.es/jmanjon/denoising/index.htm

4http ://cran.r-project.org/web/packages/dti/index.html
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was given to the algorithm and the number of atoms was set to two times the number of voxels
in a block for the dictionary learning part, which was repeated for 150 iterations. The other
parameters were set as described in Section 2.3. As shown in Table 2.1, our method is designed
to work on both stationary and spatially variable Rician and nc-x noise. The NLSAM algorithm
is implemented in python and is freely available.’

Finally, we quantitatively assess the performance of each method by comparing them against
the noiseless synthetic data using

i) The peak signal-to-noise ratio (PSNR) in dB and the structural similarity index (SSIM)
on the raw data intensities (Wang et al., 2004).

ii) The dispersion of the FA error, computed from a weighted least-square diffusion tensor
model.

iii) The mean angular error (AE) in degrees and the discrete number of compartments (DNC)
error for a region of crossings (Daducci et al., 2014; Paquette et al., 2015).

iv) The Tractometer (Coté, Girard, et al., 2013) ranking platform on deterministic tractog-
raphy algorithms for the synthetic datasets. This platform computes global connectivity
metrics, giving an insight on the global coherence of the denoised datasets in a tractogra-

phy setting.

v) Tracking some known bundles on the high resolution in vivo dataset and qualitatively
comparing them to their lower spatial resolution counterpart.

2.3.4 Local models reconstruction and fiber tractography

The weighted least-square diffusion tensors were reconstructed using the default parameters of
Dipy (Garyfallidis et al., 2014) to compute the FA values. We used the Constrained Spherical
Deconvolution (CSD) (Tournier et al., 2007) with a spherical harmonics of order 8 to reconstruct
the fODFs and extract the peaks subsequently used for the deterministic tracking. To compute
the fiber response function (frf), we used all the voxels in the white matter that had an FA
superior to 0.7. If less than 300 voxels meeting this criterion were found, the FA threshold was
lowered by 0.05 until the criterion was met. See Sections 2.4.2 and 2.5.3 for more information
about the bias introduced in the FA. For the synthetic datasets, the tracking was done inside
the white matter mask and the seeding was done from the bundles extremities to mimic seeding
from the white-gray matter interface (Girard et al., 2014). We used 100 seeds per voxels to
allow sufficient bundle coverage, a stepsize of 0.2 mm and a maximum angle deviation of 60
degrees. The other parameters used were the defaults supplied by the tractometer pipeline (Coté,
Girard, et al., 2013). The in vivo datasets deterministic tracking was made with the technique of
(Girard et al., 2014) by seeding from the white matter and gray matter interface with the particle
filtering and generating approximately 1 million of streamlines. White matter masks were created
by segmenting a T1-weighted image with FSL. FAST® from the same subject and then registered
with ANTS’ to each in vivo dataset. The bundles were finally automatically segmented using the
White Matter Query Language (WMQL) (Wassermann et al., 2016) Tract Querier tool with
regions obtained from a T1-weighted white matter and gray matter parcellation. This atlas-based

5https: //github.com/samuelstjean/nlsam
6http://fsl .fmrib.ox.ac.uk/fsl/fslwiki/FAST
7http://picsl .upenn.edu/software/ants/
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automatic dissection method extracts fiber bundles automatically using anatomical definitions in
a reproducible manner for all methods, as opposed to the traditional way of manually defining
including and excluding ROIs to define bundles. Visualization of fODFs, peaks and tractography
was made using the fibernavigator® (Chamberland et al., 2014).

2.4 Results

2.4.1 Preserving the raw DWI data

Fig. 2.5 shows the b = 1000 s/mm? noiseless data, the noisy input data at SNR 10 for nc-y
stationary noise and the results of the denoising on the synthetic phantom for all compared
methods. This is the noise case theoretically covered by msPOAS and our NLSAM algorithm.
We also show two zoomed regions of crossings with the reconstructed peaks extracted from
fODFs. All perceptual and FA metrics were computed on the slice shown while angular metrics
were computed in the zoomed region depicted by the yellow box. Note how the small blue bundle
and its crossings are preserved on the NLSAM denoised dataset, while other denoising methods
tend to introduce blurring.

Fig. 2.6 shows the noisy high resolution in vivo dataset, the denoised version obtained for
each algorithm and the low spatial resolution acquisition of the same subject without any de-
noising. Since our scanner uses a 32 channels head-coil but implements the SENSE reconstruc-
tion algorithm, the resulting spatially varying Rician noise distribution is the case covered by
AONLM, LPCA and our NLSAM algorithm. We show a coronal slice for the gradient direc-
tion closest to (0, 1, 0), the colored FA map and a zoom on two regions of crossings. The
yellow region shows the junction of the corticospinal tract (CST) and superior longitudinal fas-
ciculus (SLF) while the white region shows the junction of the corpus callosum (CC) and the
CST. While the high resolution dataset is noisier than its lower resolution counterpart is, the
highlighted crossings regions are well recovered by the denoising algorithms and thus offer an
improvement in anatomical details over the lower spatial resolution dataset. We also see in the
yellow box that the NLSAM denoised dataset recovers crossings extending from the CC which
are almost absent in the compared datasets.

Fig. 2.7 shows the PSNR and SSIM for the SNR 10 (stationary noise) and SNR 15 (spatially
varying noise) synthetic datasets. The LPCA algorithm performs best in term of PSNR on the
Rician noise case, but attains a lower score for nc-x noisy datasets. The same trend is seen for
AONLM and msPOAS algorithms, where the SNR 15 nc-x case is the hardest test case. In
contrast, our NLSAM technique is above 30 dB for the PSNR and 0.9 for the SSIM in most
cases, with a relatively stable performance amongst the majority of tested cases. We also note
that even though msPOAS is made to adjust itself to nc-x noise, the fact that the algorithm does
not account for the intensity bias makes the perceptual metrics drop for the nc-x noise cases.

2.4.2 Bias introduced in the FA

As shown by the FA difference map on Fig. 2.8, our NLSAM method commits a small FA error
locally with a smaller maximum error than the compared methods. Voxelwise underestimation
is denoted in blue and overestimation in red, where white means the computed value is close
to the expected value. The noisy data largely overestimates the FA values for the synthetic
datasets, while other denoising methods underestimate the real FA value most of the time. On

8https://github.(:om/sci1us/1‘"iber‘navigator
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(a) Noiseless (b) Noisy (c) NLSAM (d) AONLM (e) LPCA (f) msPOAS

Figure 2.5: Phantomas b = 1000 s/mm? synthetic dataset at SNR 10 for stationary nc-x noise on the
y = 24 slice. From top to bottom: Raw diffusion MRI, colored FA map, zoom on extracted peaks from
fODF of order 8. Note how NLSAM restores the structure without blurring on the colored FA map and
is the only method to restore the peaks from the noisy dataset in the zoomed white box region.

the b = 1000 s/mm? datasets, NLSAM has the smallest spread of FA error. The effect of
stabilizing the data prior to denoising can also be seen by the stable FA median error committed
by NLSAM across all noise types. For the b = 3000 s/mm? datasets, the need to correct the
intensity bias caused by the noise becomes more important, as seen by the increased error in
underestimating the correct FA value for most methods. For the spatially varying Rician noise
case, our method commits the lowest overestimation, as opposed to AONLM and LPCA, which
are developed for this particular noise case. It is also important to note that in contrast to the
other methods, msPOAS does not explicitly correct for the intensity bias by design, but rather
leaves this correction to subsequent processing steps. The SNR 15 nc-y noise case is where
all the methods make the biggest error, as they reduce the variance but still suffer from a large
bias in FA. Overall, our method restores the value of the FA for large bundles more accurately.
We also see that most methods make their largest error near the partial volume ball mimicking

cerebrospinal fluid (CSF).

2.4.3 Impact on angular and discrete number of compartments (DNC) error

We now study the angular error and the mean relative error in the discrete number of compart-
ments (DNC) (Daducci et al., 2014; Paquette et al., 2015). The mean relative discrete number
of compartments error is deﬁned as DNC,; =100 x |P, ~—P; |/P,  forvoxeli, P, and

true

P, _is the number of crossings respectlvely found on the noiseless dataset and on the compared

dataset. All metrics were computed on the voxels containing at least two crossings fibers on the
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(e) msPOAS (f) 1.8 mm

Figure 2.6: From top to bottom, the raw high resolution in vivo data corrupted with spatially varying
Rician distributed intensities, the colored FA map and a zoom on two regions of crossings. All denoised
methods were applied on the high spatial resolution 1.2 mm dataset. We also show an acquisition of
the same subject at 1.8 mm for visual comparison. Our NLSAM algorithm is able to recover more
crossings from the 3 way junction of the SLF, the CST and the CC as shown in the yellow and white
boxes. While the 1.8 mm dataset is less noisy, its lower spatial resolution also means that each voxel
contains more heterogeneous tissues and mixed diffusion orientations. The 1.2 mm denoised dataset
shows more crossings without the averaging effect of the larger voxel size. For a comparable acquisition
time, the denoised high resolution dataset has more information than its lower resolution counterpart
without processing.

noiseless dataset shown previously in Fig. 2.5.

Fig. 2.9 shows the distribution of the angular error and of the DNC error found in the
region studied in addition to the mean angular error. All of the denoising algorithms have
a lower median and mean angular error than the noisy datasets. In addition, the NLSAM
denoised datasets have an almost equal or lower angular error than the other denoising methods,
but with a lower maximum error most of the time as shown by the smaller whiskers. For the
b = 1000 s/mm? dataset DNC error, all three of AONLM, LPCA and NLSAM improve on the
noisy dataset for the Rician noise case as they are devised for this kind of data. LPCA also has a
better performance than the other two for the spatially varying Rician noise case, while NLSAM
has a lower mean DNC error for both of the nc-y noise case. The effect of the intensity bias
is also seen on msPOAS, where the DNC error is always lower than the noisy dataset, but also
higher than all the other methods that take into account the intensity bias. The b = 3000 s/mm?
dataset is much harder, where no method seems to have a clear advantage in all cases over the
others. One interesting thing to note is that the noisy dataset has a low DNC error for both of
the Rician noise case, but the confidence interval indicates it is in the same range as the denoised
datasets.
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Figure 2.7: PSNR and SSIM metrics for the SNR 10 stationary and SNR 15 spatially variable noise cases
datasets. All methods can correct the stationary and spatially varying Rician noise case to some extent
while only our NLSAM algorithm has the best performance for the nc-x noise case, especially for the
spatially varying noise case.

2.44 Impact on tractography

We now show how denoising techniques impact tractography by evaluating the number of valid
bundles (VB), invalid bundles (IB) (Cété, Girard, et al., 2013) and the valid connection to con-
nection ratio (VCCR) (Girard et al., 2014) found by the tracking algorithm. A valid bundle
is defined as connecting two ROIs in the ground truth data while an invalid bundle is a con-
nection made between two ROIs which is not supported by the ground truth data. The valid
connection to connection ratio is the total of valid connections (VC) over the sum of valid and
invalid connections (IC), i.e. VCCR = VC / (VC + IC). A good denoising algorithm should find
a high number of valid bundles, a low number of invalid bundles and a high percentage of valid
connection to connection ratio.

Deterministic tractography on the synthetic phantom Table 2.2 shows the results of deter-
ministic tractography on the SNR 10, 15 and 20 synthetic datasets for both b = 1000 s/mm?
and b = 3000 s/mm?. The noiseless b = 1000 s/mm? dataset had 25/27 valid bundles, 55 invalid
bundles and a valid connection to connection ratio of 65% and the noiseless b = 3000 s/mm?
dataset had 27/27 valid bundles, 40 invalid bundles and a valid connection to connection ratio
of 68%. One of the first thing to note is that even though the noisy dataset always has a high
number of valid bundles, it is at the price of a huge number of invalid bundles. Moreover, the
valid connection to connection ratio is systematically lower for the SNR 10 datasets than any of
the denoising methods. This indicates that only looking at the number of valid and invalid bun-
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FA difference for the phantomas stationary nc-y SNR 10 and spatially varying Rician SNR 15
b = 1000 s/mm? datasets. Blue values denote underestimation while red values show overestimation
of the FA. Top: Stationary nc-x noise. NLSAM is less biased than the other methods in large, homoge-
neous regions, while the compared methods produces more underestimation for the nc-x case. Bottom:
Spatially variable Rician noise. While being a harder case than the SNR 10 dataset since it varies from
SNR 5 to 15, all methods adapt themselves to some extent to the varying noise profile.
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Figure 2.8: Boxplot of the difference in FA for the synthetic datasets at b = 1000 s/mm? (left) and
b = 3000 s/mm? (right). The whiskers show 1.5 times the interquartile range (1.5 x IQR), where outliers
are plotted individually. The bars represent the first quantile, the median and the third quartile. No
method performs well on the nc-x b = 3000 s/mm? spatially varying noise case, which is the hardest test
case. NLSAM overall produces less error or is equal to the other methods, but has a lower bias in the FA
error along noise type.

dles does not show how many streamlines reached each region since only at least one streamline
is required to make a connection, thus counting as a valid bundle. Another observation is that
denoising helps controlling the number of invalid bundles and gives a better valid connection
to connection ratio in most cases over the noisy data. For the SNR 15 cases, NLSAM has the
highest number of valid bundles in almost all cases, but at the price of a larger number of invalid
bundles at lower SNR. Another interesting trend is the tradeoft between valid bundles and in-
valid bundles: AONLM and LPCA both manage to get a lower number of invalid bundles, but
also tend to have a lower number of valid bundles than msPOAS or NLSAM overall.

For the SNR 20 stationary noise cases, all methods are close in valid bundles with some
difference in the number of invalid bundles. This shows that tractography could benefit from
variable tracking parameters instead of fixed values depending on the preferred trade-off for the

task at hand (Chamberland et al., 2014).

31

Chap. 2



2.4. Results

m Stationary Rician m Stationary Rician
. Variable Rician . Variable Rician

. Stationary Ne-Chi m Stationary Ne-Chi
= Variable Ne-Chi = Variable Nc-Chi
60
'
50
40
30
20
10
A v
H v !
0

hs 1 . . 0 . € .
AONLM LPCA msPOAS NLSAM Noisy AONLM LPCA msPOAS NLSAM Noisy

b = 1000 s/mm? b = 3000 s/mm?

3

5

Angular error (degrees)

Angular error (degrees)

Boxplot of the angular error in degrees on the synthetic datasets, where the dot represents the mean
angular error. A low angular error means that the extracted fODFs peaks are aligned with the noiseless

dataset extracted peaks.

60 60
LPCA msPOAS NLSAM Noisy

m Stationary Rician = Stationary Rician

55 mmm Variable Rician = Variable Rician

= stationary Ne-Chi m= Stationary Ne-Chi
LPCA msPOAS NLSAM Noisy

b = 1000 s/mm? b = 3000 s/mm?

8 5 8 8 2 & 8

Mean % of relative DNC error

Mean % of relative DNC error

o

AONLM

Figure 2.9: The mean relative percentage of DNC error for the synthetic datasets. The bar represents
the 95% confidence interval on the mean as computed by bootstrapping. The DNC error is the number
of peaks found in excess or missing in each voxel with respect to the noiseless dataset.

Tracking the real data We now look at tractography on the in vivo high spatial resolution
dataset and its clinical spatial resolution counterpart of the same subject previously shown on
Fig. 2.6. The high spatial resolution dataset at 1.2 mm isotropic has 40 unique gradient di-
rections while the lower spatial resolution dataset at 1.8 mm isotropic has 64 unique gradient
directions for a comparable acquisition time. The background is masked by the scanner and has
a spatially varying Rician noise profile due to the SENSE reconstruction, which is the specific
noise case covered by the AONLM and LPCA denoising algorithm. We use the deterministic
tractography algorithm from (Girard et al., 2014), which considers anatomical constraints for
more anatomically plausible tractography. Fig. 2.10 shows from top to bottom the left arcuate
fasciculus (AF), the inferior fronto-occipital fasciculus (IFOF) and the corticospinal tract (CST)
as dissected automatically by the Tract querier (Wassermann et al., 2016). The noisy 1.2 mm
AF stops prematurely in the frontal part of the bundle, while the 1.8 mm noisy AF misses the
temporal lobe. In contrast, the streamlines from the NLSAM denoised bundle go further into
the temporal lobe. Also, note how the right IFOF has a better coverage for all the 1.2 mm
datasets and more fanning near the front of the brain than the noisy 1.8 mm dataset. We also
see that the left IFOF is thinner than its right counterpart is, but most of the bundles tracked
from the denoised datasets produce less spurious tracks while keeping the anatomical details.
The LPCA denoised IFOF stops prematurely for the left posterior part of the bundle, possibly
because of a lost crossing region along the fibers during the denoising process. The CST does
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Stationary noise Spatially variable noise
SNR 10 SNR 20 SNR 15 SNR 20
Method / Noise VB IB VCCR VB IB VCCR VB IB VCCR VB IB VCCR
b 1000 /e Ricin 2578 49% 2575 51% 23 91 45% 25 89  50%
AONLM nc-y 25 88 50% 26 88  52% 21 111 44% 23 93 47%
b o 3000 /mme  Rican 25 69 52% 25 60 56% 24 85 0% 26 72 52%
- nc-y 25 78 55% 26 67 55% 20 95  48% 22 78  54%
b 1000 /mme Ricn 23 61 49% 25 64 54% 16 36  42% 18 38  45%
LPCA - ST ey 22 66 50% 24 70 54% 16 46 51% 20 56  52%
b - 3000 Jmpe Rican 23 44 47% 26 46 53% 17 37 4% 19 4 45%
- ) nc-y 20 42 58% 25 57 53% 18 40 55% 20 56  55%
b 1000 /e Rician 25101 49% 25 89 52% 23 129 44% 25 118 46%
mPOAS ne-y 23 121 40% 25 95 54% 20 131 35% 25 141 41%
s b= 3000 /mye Ricn 26 108 53% 26 74 8% 25 88 52% 25 93  49%
- ST ey 17 84 37% 25 84 57% 22 9% 3% 23 9%  47%
b 1000 /mye Ricn 25 90 49% 26 96 54% 25 127 42% 25 114 45%
NLSAM s ne-y 25 120 48% 25 90 54% 25 170 28% 26 144 43%
b 3000 /e Ricin 2592 50% 26 67 54% 25 108 43% 25 97  47%
- nc-y 23 100 45% 24 82 53% 23 173 29% 25 131 37%
b 1000 /e Rician 25138 41% 25107 53% 25 159 36% 25 134 42%
Noi - ne-y 25 166 34% 26 119 49% 17 120 9% 25 209  24%
Y b= 3000 /mye Ricn 25 116 46% 27 87 4% 25 160  36% 25 149 42%
SOURSIMMT ey 25 182 36% 26 103 53% 18 124 9% 25 210 24%
VB IC VCCR
Noiseless b = 1000 s/mm? 25 55 65%
b = 3000 s/mm? 27 40 68%

Table 2.2: Tractometer results for the deterministic tracking.

show some commissural fibers through the pons in the noisy 1.8 mm dataset, while they are
present but look like spurious fibers on the noisy 1.2 mm dataset. AONLM can recover some of
those commissural fibers, while NLSAM is the only algorithm that recovers them in addition
to richer fanning near both sides of the motor cortex.

2.5 Discussion

2.5.1 Enhancing the raw data

We quantitatively showed in Fig. 2.7 that denoising restores perceptual information when com-
pared to the unprocessed noisy data. Taking the spatially varying aspect and the particular nature
of the noise into account is also important since modern scanners implement parallel imaging,
which changes the nature of the noise (Dietrich et al., 2008), leading to a lower performance
for denoising methods not fully taking into account the introduced bias. Fig. 2.6 shows that
this is also qualitatively true for in vivo data, where denoising visually restores information in
regions heavily corrupted by noise. While perceptual metrics might indicate the performance of
an algorithm, one must remember that the relative signal difference is of interest in diffusion
MRI, which is not fully captured by perceptual metrics like the PSNR or the SSIM. One is also
usually interested in diffusion MRI metrics as opposed to perceptual information brought by the
raw diffusion MRI datasets. AONLM is able to remove most of the noise, but still shows some
residuals near the inferior part of the brain, possibly due to only considering the 3D volumes
separately, which means that the algorithm can not benefit from the additional angular infor-
mation brought by diffusion MRI. LPCA can restore visual information and sharp edges from
the noisy dataset, but the region in the pons, where the noise level is higher and crossing fibers
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(@) NLSAM (b)) 12mm  (c) AONLM  (d) LPCA (e) msPOAS  (f) 1.8 mm

Figure 2.10: Deterministic tractography for selected bundles on the in vivo dataset. We also show a T1-
weighted image aligned in the diffusion space for anatomical reference. Top: The left arcuate fasciculus.
Note how the denoised NLSAM arcuate fasciculus goes further into the frontal and temporal region than
both of its noisy 1.2 mm and 1.8 mm counterparts. Middle: The inferior fronto-occipital fasciculus. The
AONLM denoised bundle has a denser part for the right IFOF while the LPCA bundle stops prematurely
for the left IFOF, possibly due to a missing crossing along the bundle. Bottom: The corticospinal tract.
We see that NLSAM recovers the commissural fibers in the pons from the noisy 1.2 mm dataset, which
are not even present on the noisy 1.8 mm dataset nor on the other denoising algorithm’s bundles. NLSAM
also recovers more fanning to both sides of the brain than all the compared methods.

are more complex, also seems to be piecewise constant. This might arise from the fact that the
algorithm uses all of the DWTs at once for its PCA decomposition step and treats all intensities
at the same in the noise removal step. As for NLSAM, the algorithm only works in the local
angular domain, thus exploiting similar contrast and redundant edge structure under different
noise realization. msPOAS also uses a similar idea, where the angular similarity is weighted
according to the Kullback-Leibler divergence to control the importance of dissimilar intensities
in the denoising process. Nevertheless, these perceptual metrics show that denoising improves
upon the noisy data, but one should also look at metrics derived from the studied object of
interest i.e. tensor or fODF derived metrics, since high perceptual metrics might also reflect
blurring of diffusion features, which is the main interest in this type of acquisition rather than
the perceived quality.

2.5.2 Impact of the stabilization algorithm on the compared denoising methods

Fig. 2.11 shows the FA map when the compared denoising algorithm are applied on the stabilized
data with the algorithm of (Koay, Ozarslan, and Basser, 2009). For this experiment, we consider
a voxel as being degenerated if its FA is exactly 0. The first thing to note is that the algorithm
only reprojects the noisy data on plausible Gaussian distributed values and does not do any
denoising. While we used here the algorithm of (Koay, Ozarslan, and Basser, 2009) to correct
the noise bias, another interesting approach consist of producing real-valued datasets as shown
in (Eichner et al., 2015). This approach does not require estimation of ¢ or N, but instead
use information contained in the phase of complex-valued acquisitions. Secondly, all of the
other compared denoising algorithms produce some invalid voxels on the raw dataset, while
having less degenerated voxels on the stabilized dataset as shown in Table 2.3. Nevertheless, only
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our NLSAM algorithm does not produce any degenerated FA voxel on the in vivo dataset. As
tractography might rely on a thresholded FA mask (Chamberland et al., 2014), any missing white
matter voxel will end the tractography early and produce anatomically invalid tractography. In
the same way, computing FA based statistics in search of group differences inside a white matter
mask might lead to erroneous conclusions when degenerated voxels are present. This undesirable
side effect should be avoided when possible by choosing a method producing a low number of
invalid voxels, such as NLSAM.

(a) Noisy (b) NLSAM (c) AONLM (d) LPCA (e) msPOAS

Figure 2.11: Effect of the stabilization algorithm on the compared methods. The top row shows an axial
slice of the in vivo FA map computed on the stabilized dataset, where some voxels are degenerated. The
bottom row shows their location on a binary brain mask. As shown in Table 2.3, all methods produce
degenerated FA voxels on both the regular and stabilized data, with the sole exception of NLSAM.

AONLM LPCA msPOAS NLSAM Noisy Mask

Builiin Brain mask 83 314 (10.1%) 10 526 (1.3%) 84 319 (10.2%) © 5994 (0.7%) 823 068 (100%)
wiet WM mask 29 664 (5.1%) 1298 (0.2%) 16 665 (2.9%) ® 1769 (0.3%) 578 418 (100%)
Subilpation  Brainmask 10052 (129%) 15750 (1.9%) 29377 (3.6%)  0(0%) 9395 (3.6%) 823 068 (100%)
ADRZATON N mask 404 (0.1%) 1468 (0.3%) 4267 (0.7%)  0(0%) 2850 (0.5%) 578 418 (100%)

Table 2.3: Number of degenerated FA voxels inside a brain mask and a white matter mask for the in
vivo dataset. All methods were compared with their built-in noise estimation on the stabilized version,
but without any additional noise correction factor. The percentage of degenerated voxels is indicated in
parenthesis for each mask, where a voxel is considered degenerated if its FA value is exactly 0.

2.5.3 Reducing the diffusion metrics bias

Fig. 2.8 shows that knowing where errors are committed gives a better view of how denoising
improves upon the noisy data. We see that our NLSAM algorithm actually has a smaller max-
imum error in underestimating the FA most of the time while other methods both over and
underestimate the real FA value and make larger errors near CSF or at borders with the back-
ground. This could indicate that they are subject to problems with partial volume effect, which
seems less important for NLSAM.
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While stabilizing the data alleviates the FA underestimation problem in most cases, it also
helps to reduce the number of degenerated voxels in the in vivo data as shown in Fig. 2.11.
Both AONLM and msPOAS produce less degenerated FA voxels on the stabilized dataset as
shown in Table 2.3, while NLSAM does not produce any degenerated voxel. In contrast, the
noisy data and LPCA have an increased number of degenerated FA voxels, which might be
caused by the diffusion signal being near the noise floor, thus producing a flat profile that is
not properly recovered in this case. Reducing the FA bias and avoiding degenerated voxels by
including denoising in the processing pipeline could improve the statistical analysis in along-tract
metrics (Colby et al., 2012) when looking for group differences.

2.5.4 Restoring the coherence of local models

The CSD algorithm relies on the estimation of the fiber response function (frf), which in turn
relies on the diffusion tensor. To estimate the frf, one must select voxels containing only a
single fiber population. One way to do this is to estimate it from voxels with a high FA, usually
with FA > 0.7 (Descoteaux, Deriche, et al., 2009; Tournier et al., 2007). We observed that for
the SNR 10 dataset with nc-y noise, the noisy dataset, AONLM and LPCA could not find as
many single fiber voxels based on the FA threshold method as msPOAS or NLSAM since their
reconstructed tensors have an inherently lower FA. This in turns impacts deconvolution since
the estimates used for the deconvolution kernel are less stable, and lowering the FA threshold
too much might violates the single fiber assumption, which is crucial for the CSD algorithm.
One way to circumvent this could be by using the method of (Tax et al., 2014), which is based
on a peak amplitude criterion instead of an FA threshold to identify single fiber voxels.

Fig. 2.9 shows that msPOAS and NLSAM have larger angular error than AONLM or LPCA,
but this does not seem to impact much the number of valid bundles found by deterministic
tractography. Indeed, the noisy data has the largest angular error in all cases, but still has a
high number of valid bundles in most cases. This also suggests that a large overestimation
or underestimation of fiber crossings (as reflected by the DNC error) has a higher impact on
tractography. Both LPCA and msPOAS have a lower number of valid bundles than AONLM
or NLSAM, which both have a rather symmetric under and over estimation of the number of
peaks. This means that an overall estimation or underestimation of the number of crossings bias
tractography, as it tends to follow false crossings or stops prematurely due to a lack of crossings,
while a distributed error is not skewed toward these effects.

In Fig. 2.6, we see that denoising restores coherence in regions of crossing fibers that were
lost on the noisy dataset or not even present in the lower spatial resolution 1.8 mm dataset due
to a smaller voxel size. We also see that NLSAM restores more coherent crossings than the
other denoising methods in the junction of the SLF and the CST, whereas the noisy dataset
only shows incoherent crossings. This actually enables tractography algorithms to reconstructs
tracts that are in agreement with the expected anatomy. In the same amount of acquisition
time, one can thus acquire higher spatial resolution DWIs and get better angular information
by post-processing the acquired data with denoising.

2.5.5 Limiting spurious fibers from tractography

We studied the impact of denoising techniques on deterministic tractography on a synthetic
dataset in Section 2.4.4. One often has to choose between finding a high number of valid
bundles and invalid bundles, and finding less valid bundles and at the same time reducing the
amount of invalid bundles. The noisy dataset always reaches a high number of valid bundles, but
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also at the price of having the highest number of invalid bundles most of the time. Our NLSAM
algorithm shows a good balance between the number of valid and invalid bundles at low SNR,
especially for the spatially varying noise case. This is always a tradeoff as seen in the ISMRM
2015 tractography challenge’.

For example, the LPCA algorithm has always a low number of invalid bundles, but also the
lowest number of valid bundles for the spatially varying noise case. In opposition, NLSAM has
a high number of valid bundles, but also a high number of invalid bundles most of the time.

Regarding the deterministic tractography, changing the stepsize or the maximum curving
angle would give different results in terms of connectivity metrics, indicating that the tractogra-
phy algorithm and chosen tractography parameters have a non-negligible influence on the results
(Chamberland et al., 2014; Girard et al., 2014). We also used a seeding strategy of 100 seeds per
voxel from the ROIs at each bundles endpoints to ensure a maximal number of valid bundles,
which promotes a high number of valid bundles for each dataset. This shows that the missed
bundles are hard to recover or not supported by the data itself, as opposed to being missed be-
cause of inadequate seeding (Coté, Girard, et al., 2013). On the other hand, this can artificially
increase the number of invalid bundles, which could be reduced by reducing the number of
seeds per voxel. Since automatic tractography pruning techniques such as (Cété, Garyfallidis,
et al., 2015) might help reduce the number of spurious tracks, this would indicate that having
a higher number of valid bundles would be preferable since invalid bundles could be potentially
removed afterward. In contrast, a low number of valid bundles cannot be circumvented with
further post-processing. Nevertheless, denoising increases the valid connection to connection
ratio and reduces the number of invalid bundles, thus bringing confidence in the validity of the
tractography results when compared to the noisy datasets.

For the in vivo dataset tracking shown in Fig. 2.10, we see that tractography benefits from
higher spatial resolution acquisitions, but that the produced tracts are slightly noisier. Combin-
ing the high spatial resolution, highly noisy dataset with a denoising algorithm at the beginning
of the processing pipeline gives more anatomically plausible tracts in the end. The AF and CST
produced by the NLSAM denoised dataset are both more anatomically plausible than their noisy
or lower spatial resolution counterpart, which have less fanning fibers in the case of the CST.
This shows that high resolution DWIs exhibits additional anatomical information due to the
smaller voxel size, which might not be easily discernible at a lower spatial resolution (Sotiropou-
los et al., 2013). Acquiring at higher spatial resolution could also help resolve complicated fiber
configurations such as crossings fibers from fanning fibers or disentangle small structures like the
optic chiasm (Roebroeck et al., 2008), which is not possible at lower spatial resolution (Calabrese
et al., 2014; Jones et al., 2013).

2.5.6 Other methods for high spatial resolution acquisitions

We have shown in Fig. 2.6 that high spatial resolution acquisitions which are noisy at first can
reveal improved anatomical details when they are subsequently denoised. This indeed suggests
that high resolution acquisition can now be acquired on clinical scanners. Recently, other algo-
rithms enabling a high spatial resolution at the acquisition level have been suggested (Ning et al.,
2016; Scherrer et al., 2015). These methods both rely on smartly fusing the (complementary)
data of multiple acquisitions acquired at a lower spatial resolution to obtain a single high resolu-
tion volume. While the approach we suggest here is to acquire a single volume using a standard
sequence, both techniques are fundamentally exploiting different aspects to increase the available

9http ://www. tractometer.org/ismrm_2015_challenge/

37

Chap. 2


http://www.tractometer.org/ismrm_2015_challenge/
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spatial resolution. As such, it would be possible to combine our denoising algorithm with the
reconstruction algorithms presented in (Ning et al., 2016; Scherrer et al., 2015).

2.5.7 Current limitations and possible improvements

Although most models assume a Rician or nc-y noise distribution, this does not take into account
the noise correlation between each coils or the effect of acceleration techniques that subsample
the k-space (Aja-Ferndndez et al., 2014). The development of correction factors for existing algo-
rithms relies on computing the effective values for the noise standard deviation o and the number
of degrees of freedom of the nc-y distribution, which is expected to be smaller than 2N. These
values can be used to take into account the correlation introduced between the coils in parallel
imaging acquisitions (Brion et al., 2013). To consider the fact that the noise distribution nature
might vary spatially in addition to the noise variance, one can use a priori information obtained
from the scanner through the SENSE sensitivity maps or the GRAPPA weights and need to
estimate the correlation between each of the receiver coils. We could explicitly add such a correc-
tion to our algorithm since we work locally with the stabilization algorithm, Eqgs. (2.1) and (2.4).
Using multiband acceleration also modifies the noise properties due to the introduced aliasing,
which further strengthen the idea that spatially adaptive denoising algorithms should be used on
modern scanners and sequences (Ugurbil et al., 2013). Nevertheless, obtaining the needed map
for a SENSE reconstruction or the required GRAPPA weights might not be easily feasible in a
clinical setting. We also intend to revisit the order in which preprocessing algorithms (motion
correction, eddy currents correction, distortions correction) should be applied since these steps
require interpolation, which could also introduce spatial correlation in the noise profile. This
also makes the noise distribution deviate slightly from its theoretical distribution, where param-
eters vary spatially instead of being fixed constants for the whole volume (Aja-Fernindez et al.,
2014). Nevertheless, we have observed experimentally that our NLSAM algorithm is robust
to small subject motion thanks to the local neighborhood processing. In cases where artifacts
(such as EPI distortions) might undermine the denoising process, one can first correct for these
artifacts using a nearest neighbor interpolation, which should not modify the noise distribution.
Subsequent corrections can then be performed after denoising using other kinds of interpolation
as needed.

While developing the NLSAM algorithm, we found that using a bigger 3D patchsize did not
significantly improve the denoising quality, while augmenting both computing time and memory
requirements. Our implementation also allows one create the smallest subset of angular neigh-
bors covering all DWIs through a greedy set cover algorithm. This option (named “NLSAM
fast” in Table 2.4) leads to a speedup of 3 to 4 times, but at the cost of slightly reducing the
denoising performance since some DWIs might be denoised only once instead of multiple times.
We used the fully covered version for our experiments, which were run on a machine running
Ubuntu Linux 12.04 with a quad core Intel i7 930 at 2.8 GHz and 18 GB of RAM. Table 2.4
reports the runtime of the various algorithms in minutes and their RAM usage. While the com-
puting time required by NLSAM is larger than the other methods, our Python implementation
is fairly unoptimized and could be sped up to competitive runtimes by various code optimizations
or lowering the maximum number of iterations in Eq. (2.4).
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AONLM LPCA msPOAS NLSAM NLSAM fast

Time (mins) 22.2 3.7 4.0 37.1 9.8
RAM usage (MB) 552 640 1543 606 412

Table 2.4: Required time and RAM usage for the compared denoising algorithms on the b = 1000 s/mm?
SNR 10 dataset with stationary Rician noise.

2.6 Conclusion

In this paper, we introduced a new denoising method, the Non Local Spatial and Angular Match-
ing (NLSAM), which is specifically designed to take advantage of diffusion MRI data. Our
method is based on 1) Correcting the spatially varying Rician and nc-x noise bias 2) Finding sim-
ilar DWIs through angular neighbors to promote sparsity 3) Iteratively denoise similar patches
and their neighbors locally with dictionary learning, where the local variance is used as an upper
bound on the ¢, reconstruction error. We extensively compared quantitatively our new method
against three other state-of-the-art denoising methods on a synthetic phantom and qualitatively
on an in vivo high resolution dataset. We also showed that taking into account both the effect
of spatially varying noise and non-Gaussian distributed noise is crucial to denoise effectively the
DWIs. Our NLSAM algorithm is freely available!?, restores perceptual information, removes
the noise bias in common diffusion metrics and produces more anatomically plausible tractog-
raphy on a high spatial resolution in vivo dataset when compared to a lower spatial resolution
acquisition of the same subject.

Since our NLSAM algorithm can be used on any already acquired dataset and does not add
any acquisition time, this shows that denoising the data should be a pre-processing part of every
pipeline, just like any other correction method that is commonly applied for artifacts removal.
With that in mind, the diffusion MRI community could aim for higher spatial resolution DWTs,
without requiring the use of costly new hardware or complicated acquisition schemes. This could
in turn reveal new anatomical details, which are not achievable at the spatial resolution currently
used in diffusion MRI.

2.7 Appendix: The NLSAM Algorithm

This appendix outlines the NLSAM algorithm as pseudo code. The original implementation in
Python is ﬁ'eely available at https://github.com/samuelstjean/nlsam.

1Ohttps ://github.com/samuelstjean/nlsam
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2.7. Appendix: The NLSAM Algorithm

Algorithm 2.1: The proposed NLSAM denoising algorithm.

Data: 4D dMRI data, an = number of angular neighbors, ps = spatial patch size, N = Number of coils,
mazx_iter = 40
Result: Denoised data with NLSAM
Step 1;
Find o with either PIESNO or Eq. (2.3);
Apply noise stabilization with o and N coils;

foreach DW7T in dMRI data do
Step 2;
Find the closest an angular neighbors;
Create 4D block with b0, DWT and its an neighbors;
Extract all overlapping patches of size (ps, ps, ps);
Step 3;
Apply Eq. (2.1) to find D;
Iterate Eq. (2.4) to find o until convergence or maz_iter is reached;
Average overlapping patches based on sparsity with Eq. (2.5);

Return to original shape;

end

foreach Denoised DWT in dMRI data do
‘ Average all Denoised DWI representations;
end
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John Archibald Wheeler

Obtaining representative core streamlines for
white matter tractometry of the human brain

Based on

Maxime Chamberland, Samuel St-Jean, Chantal M. W. Tax and Derek K. Jones

Obtaining representative core streamlines for white matter tractometry of the human brain
Computational Diffusion MRI (CDMRI) workshop of MICCAI 2018, Granada. Springer In-
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Abstract

Diffusion MRI infers information about the micro-structural architecture of the
brain by probing the diffusion of water molecules. The process of virtually recon-
structing brain pathways based on these measurements is called tractography. Various
metrics can be mapped onto pathways to study their micro-structural properties. Trac-
tometry is an along-tract profiling technique that often requires the extraction of a
representative streamline for a given bundle. This is traditionally computed by local
averaging of the spatial coordinates of the vertices, and constructing a single streamline
through those averages. However, the resulting streamline can end up being highly
non-representative of the shape of the individual streamlines forming the bundle. In
particular, this occurs when there is variation in the topology of streamlines within
a bundle (e.g., differences in length, shape or branching). We propose an envelope-
based method to compute a representative streamline that is robust to these individual
differences. We demonstrate that this method produces a more representative core
streamline, which in turn should lead to more reliable and interpretable tractometry
analyses.

Keywords: Tractography, Tractometry, Bundle envelope, Core streamline, Diffusion MRI
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Chapter 3. Obtaining representative core streamlines for tractometry

3.1 Introduction

Tractography derived from diffusion MRI infers information about the structural architecture
of the brain. In most studies, diffusion MRI metrics (e.g. fractional anisotropy (FA)) are often
collapsed to a single scalar value per bundle (Jones, Catani, et al., 2005). Recently, a trend towards
tract profiling (Colby et al., 2012; Yeatman et al., 2012) and direction-specific measurements
within a voxel has emerged. Along-tract analysis is a technique that maps a given metric over
the course of a bundle. The term tractometry was originally introduced by Bells et al. (2011) and
the technique has been refined over the years by various groups (Colby et al., 2012; Corouge
et al., 2006; De Santis et al., 2014; Jones, Travis, et al., 2005; Yeatman et al., 2012). It can be
used to characterize areas of the brain with abnormal properties in patients (Cousineau et al.,
2017; Dayan et al., 2016; Groeschel et al., 2014).

At the core of tractometry lies the concept of a representative streamline (O'Donnell et al.,
2009) which is used to project metrics along the course of a given bundle. This is typically
done by resampling all streamlines forming the bundle to n points and by averaging their spatial
coordinates in a point-wise fashion (Colby et al., 2012; O’Donnell et al., 2009; Yeatman et al.,
2012). This technique will produce a reasonable estimate of the average trajectory when there is
very little branching and dispersion between the streamlines forming the pathway (Fig. 3.1, left).
However, it is known that streamlines within a given bundle can vary in length and orientation,
making direct averaging of their coordinates inappropriate (O’'Donnell et al., 2009). Indeed, if
the underlying streamlines are even slightly dispersed from each other, the resulting representa-
tive streamline obtained by simply averaging the coordinates can end up running outside of the
shape of the bundle (Fig. 3.1, right). Not only does this representation become anatomically im-
plausible, but also it can directly hamper further steps down the tractometry pipeline (e.g. when
averaging metrics along different sections of the pathway). A common solution to overcome this
problem is to perform tractometry only within the compact portion of the pathway by excluding
data from the extremities, which tend to include fanning (Glozman et al., 2018; Yeatman et al.,
2012). This approach greatly helps to 1) quickly obtain a representative streamline and 2) miti-
gate variability between subjects since bundles are essentially reduced to a simpler representation.
However, cutting both extremities inherently limits the benefits conferred by state-of-the-art
tractography techniques that can recover fanning and branching portions of white matter fas-
ciculi. Here, we propose a technique to generate a representative streamline that is robust to
multiple streamline lengths, arching configurations and orientations that naturally occur within
a bundle.

3.2 Theory and Methods

3.2.1 Acquisition and processing

Multi-shell high angular resolution diffusion MRI data were acquired on a Siemens Prisma
scanner (TR = 4500 ms, TE = 80 ms, with b-values of 1200, 3000, 5000 s/mm?, 60 diffusion
directions per shell and 15 non diffusion weighted images at a voxel size of 1.5 mm isotropic).
Correction for subject motion and distortions caused by eddy currents were performed using FSL
eddy and topup (Andersson and Sotiropoulos, 2016). Next, fiber orientation distributions func-
tions (fODF) were computed using multi-shell multi-tissue constrained spherical deconvolution
(Jeurissen et al., 2014). Tractography was performed using FiberNavigator (Chamberland et al.,
2014), followed by manual bundle extraction of the corticospinal tract (CST), fornix (Fx), cingu-
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Conventional resampling strategy

No branching With branching

(pruned)
AF

Figure 3.1: Point-wise streamline averaging illustrated for two scenarios: pruned bundles (left) and fanning
bundles (right). The mean streamline (purple) runs outside of the shape of the bundle when streamlines
within a bundle slightly diverge from each other. Bundles: cingulum (Cg) and arcuate fasciculus (AF).

lum (Cg), arcuate fasciculus (AF) and inferior fronto-occipital fasciculus (iFOF). The main goal
of the dissection plan was to preserve the characteristic anatomy, including fanning and branch-
ing, of each bundle (Rojkova et al., 2016). Tractography parameters were set as follows: min.
fODF amplitude: 0.1, step size: 0.5 mm, max. angular threshold: 45°, min./max. streamline
length: 30/200 mm with 1.5 million seeds covering the whole brain.

3.2.2 Proposed representative streamline extraction algorithm

The proposed method starts by averaging the top 5% longest streamlines from a bundle of
interest to get a coarse approximation of the bundle’s core, defined by C = {p, € R%|i = 1, ..., n}
where p, is a 3D point of the representative streamline. This core C will serve as guidance for
the propagation of a convex hull envelope along the entirety of the bundle. Next, we generate
an orthogonal plane P, at each point p; € C using the normal vector 77, formed by p; and p,_ ;.
Then, for each streamline from the bundle of interest, we find all line segments intersecting the
current orthogonal plane P, up to a distance threshold of t mm (which is interactively defined in
our implementation). If multiple points from a streamline intersect a plane P; (e.g., a spurious
streamline doubling back on itself), only the closest point to C is preserved so that the actual
shape of the bundle is represented by its 3D envelope. We then compute a 2D convex hull
H, c P, for each group of points found in the previous step as illustrated in Fig. 3.2. Finally,
the centers of mass of each hull H; are linked together by fitting a 4'" order b-spline curve
comprising k knots, where k is a user-defined parameter. This step ensures that the representative
streamline is located at the center since there is no guarantee that this is the case using the initial
approximation of C defined using the longest streamlines. The proposed framework is integrated
within FiberNavigator, where all parameters are accessible to the user.
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Figure 3.2: Example of a cross-section generated along the core of a bundle from a normal plane (P;).
The black dots represent in-plane streamlines with their convex hull H; in dark blue. On the right, the
representative streamline (light blue) is obtained by linking the center of mass of each convex-hull (light
blue dot).

3.2.3 Label maps generation

We compared our technique with conventional point-based resampling (n = 50) computed using

the mean distance flip algorithm, accounting for streamline direction (Cousineau et al., 2017).

Distance maps were then generated by computing the minimum Euclidean distance between
each point of the bundle and the core representative streamline. A transfer function was used
to visually map sections of the bundle assigned to respective locations along the core. A unique
and smooth color grading from one end of the bundle to the other indicates a correct assignment
along C, which in turn reflects how the diffusion metrics are averaged locally.

3.3 Results

3.3.1 Bundles without branching and dispersion

Fig. 3.3 shows results on tubular-shaped bundles (e.g. CST, Fx, iFOF) with little dispersion
between the streamlines’ starting and ending points. One can observe that the core streamline
(i) has a length comparable to the rest of the streamlines within each bundle; (ii) lies inside the
boundaries defined by all the streamlines. The color grading also shows a gradual labeling of the
streamlines’ points along the core.

3.3.2 Bundles with branching and dispersion

Fig. 3.4 shows results on more complex bundles having different streamline lengths. In this
example, the Cg consists of sub-components that connect the posterior cingulate cortex (PCC) to
the medial prefrontal cortex (red streamlines) and the PCC to the parahippocampal gyrus (green
streamlines). The complex configuration of the bundles inherently leads to an unrepresentative
streamline when using the conventional point-based averaging (white arrows), as well as incorrect
assignment of different sections along the bundle (indicated by the repeated green sections). The
proposed cross-section method recovers an anatomically representative pathway that stays within
the shape of the bundle.

In the second example, the AF aggregates multiple sub-components with various arching
streamlines that project to different areas of the lateral cortex. The representative streamline
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Figure 3.3: Label maps and representative streamlines illustrated for tubular-shaped bundles with little
dispersion at the end points (e.g. directly connecting two brain regions) show agreement between the two
methods (square: resampling method, circle: proposed method).

mResampling ¢ Cross-sections

A\

10 sub-components

Figure 3.4: Complex fanning bundles with dispersed end-points reveal an astray mean streamline when
using a conventional resampling approach to compute the core C, as well as incorrect label mapping
(white arrows).

extracted from traditional averaging appears shorter than the full course of the bundle (white
streamline). The inferior temporal aspect of the bundle (dark blue) is also incorrectly averaged
and collapsed to the first point of the representative streamline. The last panel shows that
the representative streamline traverses the full length of the bundle when using the proposed
technique, which is also supported by the unique color grading of the label map.

Fig. 3.5 shows FA profiles computed along a tubular-shaped tract (Fx) and a fanning-shaped
tract (AF). The Fx profiles appear similar in both resampling and cross-sections methods, except
for a small shift induced by the larger anterior extent of the proposed method. The AF shows
large differences between the two techniques in terms of profiling (red star), mostly due to the
sub-optimality of the mean streamline as the representative streamline.

50



Chapter 3. Obtaining representative core streamlines for tractometry

S
o
T &;\A
=\
B 2 - <
Fornix Arcuate fasciculus
07 0.8 *
06 0.7 *
e /’ \ < . o/
(i 1 »\\/
“A B 03 \//_/\/\ |
A B
Position along tract Position along tract
——Resampling Cross-sections ——Resampling Cross-sections

Figure 3.5: FA profiles illustrated for two representative streamline extraction algorithms. Left: Similar
profiles are obtained for a tubular-shaped bundle (Fx). Right: Different profiles are obtained for a
branching bundle (AF). The red star shows the location on the bundle where the maximum difference
between the two methods occurs. Outlines of the bundles are shown for anatomical reference.

3.4 Discussion and Conclusion

We have shown that taking an average streamline as the representative pathway of a bundle can
lead to non-representative results in the presence of tract branching and dispersion. To address
this problem, we used orthogonal planes throughout the bundle to derive a representative core
streamline that traverses its entire center of mass and therefore, allowing for a more interpretable
tractometry. Generating core streamlines based on convex-hulls has been applied previously in
the creation of 3D meshes for visualization (Enders et al., 2005), as well as for extracting skeleton
streamlines for connectivity analysis using an atlas (Duda et al., 2010). Here, we additionally
show that this approach produces more representative core streamlines for tractometry analyses
in various bundle shapes. A drawback to the current approach is that it requires that at least
some streamlines run from one end of the bundle to the other. Otherwise, the cross-section
propagation may halt prematurely and thus affect the computation of the representative stream-
line. In addition, we assume that the input bundles are already pruned from streamline loops
and undesired false positives.

Since tract morphology varies between subjects, truncation and resampling streamlines based
on a length criterion (Colby et al., 2012) or number of points (Cousineau et al., 2017; Yeatman
et al., 2012) may inadvertently discard important information that is specific to the pathway of
interest. This loss of information is inherent to the truncation approach and should be minimized
when assigning diffusion metrics to a representative pathway to preserve the full extent of a bundle
as much as possible (O’Donnell et al., 2009). We showed that this inevitably leads to discrepancies
in tract profiling when assigning diffusion metrics to a representative streamline. An alternative
approach to truncation and tract averaging could be to remove the need for a representative
streamline by matching geometrical properties of streamlines between subjects (Glozman et al.,
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2018; Parker et al., 2016). Yet, the performance of those techniques still requires investigation
for complex white matter configurations (e.g. fanning and branching). Nevertheless, truncation
can also be useful to reduce potential issues associated with tractography and could still be applied
in a post-processing step to our technique, once the representative streamline has been generated.

Finally, a potential improvement to the proposed method would be to recursively generate
multiple convex hulls, allowing the algorithm to recover various sub-branches in fanning bundles.
This could help in achieving a simplified—yet still anatomically accurate—representation of the
core of a bundle, which is the centerpiece for the future design of tractometry pipelines.
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There’s a lesson here, and I'm not the one that’s gonna figure it out.
Rick and Morty

Reducing variability in along-tract analysis
with diftusion profile realignment

Based on

Samuel St-Jean, Maxime Chamberland, Max A. Viergever and Alexander Leemans
Reducing variability in along-tract analysis with diffusion profile realignment
NeuroImage, Volume 199, 2019, Pages 663-679
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Abstract

Diffusion weighted magnetic resonance imaging ({MRI) provides a noninvasive virtual
reconstruction of the brain’s white matter structures through tractography. Analyzing
dMRI measures along the trajectory of white matter bundles can provide a more spe-
cific investigation than considering a region of interest or tract-averaged measurements.
However, performing group analyses with this along-tract strategy requires correspon-
dence between points of tract pathways across subjects. This is usually achieved by
creating a new common space where the representative streamlines from every sub-
ject are resampled to the same number of points. If the underlying anatomy of some
subjects was altered due to, e.g. disease or developmental changes, such information
might be lost by resampling to a fixed number of points. In this work, we propose to
address the issue of possible misalignment, which might be present even after resam-
pling, by realigning the representative streamline of each subject in this 1D space with
a new method, coined diffusion profile realignment (DPR). Experiments on synthetic
datasets show that DPR reduces the coefficient of variation for the mean diffusiv-
ity, fractional anisotropy and apparent fiber density when compared to the unaligned
case. Using 100 in vivo datasets from the human connectome project, we simulated
changes in mean diftusivity, fractional anisotropy and apparent fiber density. Indepen-
dent Student’s t-tests between these altered subjects and the original subjects indicate
that regional changes are identified after realignment with the DPR algorithm, while
preserving differences previously detected in the unaligned case. This new correction
strategy contributes to revealing effects of interest which might be hidden by mis-
alignment and has the potential to improve the specificity in longitudinal population
studies beyond the traditional region of interest based analysis and along-tract analysis
workflows.

Keywords: Diffusion profile realignment, Along-tract analysis, Tractometry, Tractography,
Diffusion MRI, White matter
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4.1 Introduction

Diffusion weighted magnetic resonance imaging (dMRI) is a noninvasive technique that can be
used to study microstructure in living tissues based on the displacement of water molecules. Since
neurological diseases (e.g. multiple sclerosis (MS) (Cercignani and Gandini Wheeler-Kingshott,
2018), amyotrophic lateral sclerosis (ALS) (Haakma et al., 2017)) involve many processes that
affect the density and properties of the underlying tissue, the corresponding changes are reflected
on scalar values extracted from dMRI (Bodini and Ciccarelli, 2009). However, it remains chal-
lenging to pinpoint accurately the underlying cause as many of these changes (e.g. axonal damage,
demyelination) may be reflected similarly by changes in measurements from dMRI (Beaulieu,
2002). Such changes could even be due to acquisition artifacts or from the use of a different
processing method during data analysis (Jones and Cercignani, 2010), making dMRI sensitive,
but not necessarily specific, to the various mechanisms involved in those changes (O’Donnell and
Pasternak, 2015). Accurate characterization of the underlying processes affecting scalar metrics
computed from dMRI still remains an open question.

A successful application of dMRI is to reconstruct the structure of the underlying tissues, a
process known as tractography (see, e.g. Jeurissen et al. (2017) and Mori and Van Zijl (2002) for
a review). Tractography enables a virtual reconstruction of the white matter bundles and path-
ways of the brain, which is central to preoperative neurosurgical planning (Nimsky et al., 2016)
and at the heart of connectomics (Hagmann et al., 2007; Sporns et al., 2005). Over the last
years, various analysis strategies have arisen to study scalar values computed from dMRI models.
Two popular schools of techniques consist of using anatomical regions of interests (ROIs), either
by manual or automatic delineation (Froeling et al., 2016; Smith et al., 2006), or using spatial
information additionally brought by tractography to analyze scalar metrics along reconstructed
bundles (Colby et al., 2012; Corouge et al., 2006; Cousineau et al., 2017; Jones, Travis, et al.,
2005; Yeatman et al., 2012). Both approaches involve various user-defined settings and have
their respective criticisms and drawbacks; ROI based analysis requires accurate groupwise regis-
tration (Bach et al., 2014), whereas tractography-based analysis needs to deal with false positives
streamlines which can also look anatomically plausible (Maier-Hein et al., 2017). One key point
shared between these methods is that they both require some form of correspondence between
the studied structure of interest for each subjects, either by spatial registration to align the de-
lineated ROIs (Froeling et al., 2016; Smith et al., 2006) or along the streamlines by resampling
to a common number of points (Colby et al., 2012; Yeatman et al., 2012). Tractography-based
approaches can analyze the voxels traversed by a specific white matter bundle in a data driven
way and reveal subtle local changes inside a bundle, while ROI based analysis discards the 3D
spatial information but reveal widespread changes in the bundle (O’Hanlon et al., 2015). For
tractography-based analysis, metrics are either averaged by using all points forming a common
bundle (Wakana et al., 2007) or collapsed as a representative pathway of the bundle (Colby et al.,
2012; Cousineau et al., 2017; Yeatman et al., 2012) to study changes in scalar values along its
length. Once this per subject representative streamline has been defined, it is used to index scalar
values along the length of this pathway (O’'Hanlon et al., 2015; Szczepankiewicz et al., 2013).
Recent applications include studying changes in diffusion metrics due to Alzheimer’s disease
(AD) (Jin et al., 2017), which helped to uncover changes in mean diffusivity (MD) along the
fornix for example. Studies in ALS patients also identified a diminution in fractional anisotropy
(FA) along the corticospinal tract depending on the origin of the disease (Blain et al., 2011).
Information from other MRI weighting such as myelin water fraction maps derived from T2
relaxometry have also been included to study changes due to MS (Dayan et al., 2016). As each
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subject respective morphology is different (i.e. reconstructed bundles from different subjects vary
in shape and size) just as in ROIs based analysis, one needs to ensure correspondence between
each segment of the studied bundle for all subjects. This correspondence is usually achieved by
creating a new common space where all of the subjects representative streamlines are resampled
to a common number of points. As noted by Colby et al. (2012), resampling to the same number
of points makes the implicit assumption that the end points (and every point in between) are in
correspondence across each subject. Yeatman et al. (2012) also mention that “it is important to
recognize that the distal portions of the tract may not be in register across subjects”, even though
the resampling step creates a new 1D space for point-by-point comparison. O’Donnell, Westin,
et al. (2009) previously noticed the potential issue introduced by misalignment between subjects
mentioning that “improved cross-subject alignment is of interest [...] as the high-frequency vari-
ations seen in individual subjects [...] are smoothed in the group average”. While many methods
for registering dMRI volumes or streamlines were developed (see, e.g. O’'Donnell, Daducci, et al.
(2017) for a review), they do not directly address the issue of possible residual misalignment
between the end points affer extracting the representative streamlines of each subject. To ensure
an adequate comparison between subjects, one must make sure that each streamline corresponds
to the same underlying anatomical location.

In the present work, which extends our preliminary work presented at the ISMRM (St-
Jean, Viergever, et al., 2016), we focus on the issue of possible misalignment between the final
representative streamlines before conducting statistical analysis. To prevent this issue, we propose
to realign the representative streamline of each subject while ensuring that the distance between
each point is preserved, by resampling to a larger number of points than initially present. This
strategy preserves the original 1D resolution of each subject, allowing a groupwise realignment
based on maximizing the overall similarity by using the Fourier transform. After this realignment,
points from individual streamlines that are identified as outliers can be discarded, as they would
not overlap with the rest of the subjects. The representative, and now realigned, streamlines can
be resampled to a lower number of points such as approximately one unit voxel size to facilitate
group comparison and statistics (Colby et al., 2012). Fig. 4.1 shows an example of a typical
workflow to analyze dMRI datasets and shows how the proposed diffusion profile realignment
(DPR) methodology can be used in preexisting pipelines.

4.2 Theory

Each subject’s representative streamline is a 3D object, but the scalar metrics extracted along
the tract can be viewed as a discrete 1D signal that may be non-stationary. In this work, we
consider the 1D scalar metric profile to be a discrete signal equally sampled at each step of the
tractography, which has a value of 0 outside the region delineated by the bundle it represents. We
now present a realignment technique for 1D signals based on maximizing the cross-correlation
function (CCF).

We can define the CCF using the fast Fourier transform (FFT) (Cooley and Tukey, 1965) as

CCF(z,y) = F (T (x) © F(y)"), (4.1)

where 7 (x) and ! (x) is the Fourier transform of z and its inverse, * is the complex conjugation
and © the pointwise Hadamard product. The required shift to realign the vectors is given at the
maximum coordinate of the CCF. The CCF measures the similarity between two vectors = and
y assuming that the data is 1) stationary, 2) equally spaced between all points and 3) normally
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Figure 4.1: Flowchart of current approaches and the proposed methodology. The diffusion profile realign-
ment inserts itself in existing along-tract analysis workflows (red box) by combining a different resampling
strategy with a realignment step. It is also possible to resample each streamlines to a smaller number of
points (red arrow) if desired.

distributed (Denman, 1975; Platt and Denman, 1975). Stationarity can be achieved by fitting
and subtracting a low degree polynomial from each vector before computing the cross-correlation,
see, e.g. Box et al. (2008) and Stoica and Moses (2005) and references therein for more details.
Equal spacing between each points can be obtained by resampling the data. The normality
assumption seems less of an issue for large samples in practice (Platt and Denman, 1975). If
the two vectors z and y have a different amplitude, the cross-correlation can be normalized by
subtracting the mean and dividing by the standard deviation of each vector beforehand (Lewis,
1995). The shift computed at the maximum of the CCF is an integer displacement that can be
refined by finding the maximum of the parabola around this point. Fig. 4.2 shows an example
of the cross-correlation for both the stationary and non stationary case on two vectors. The first
vector was randomly sampled from the standard normal distribution N (0, 1). The second vector
was generated from the first vector by changing the offset and amplitude and then zero padding
it at both ends to create an artificial displacement.

4.3 Materials and methods
To evaluate the proposed realignment procedure, we 1) generated synthetic datasets comprised of
crossing bundles and 2) compared realignment on in vivo datasets with an altered version of their

diffusion metrics. We now detail the various steps needed to perform an along-tract analysis and
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Figure 4.2: A synthetic example of the CCF between two randomly generated vectors. The top graphs
showcase how the CCF spectrum can be used to find the displacement required to realign two different
vectors by finding its maximum. A) Two vectors which are displaced with respect to each other, where
vector B has a different amplitude from vector A. B) The cross-correlation spectrum, where the peak
indicates the required shift to maximize the overlap between both vectors. C) The vectors after realign-
ment, which is the exact displacement that had been applied. On the bottom graphs, removing the linear
trend and normalizing the vectors satisfies the assumption of stationarity required by Eq. (4.1) and allows
recovering the correct shift. D) Two unaligned vectors of different amplitude where vector B is also non
stationary. E) The cross-correlation spectrum with detrending and normalization (in blue) and without
these steps (in red). The detrended version recovers the correct shift, while the original CCF exhibits
a variation in amplitude which hides the correct peak as a local (red box), but not global, maxima due
to non stationarity. F) The vectors after realignment with the shift as computed by the detrended CCF.
Both vectors are now realigned after shifting vector B with the shift computed in E).

how the proposed realignment algorithm can be applied before performing a statistical analysis
between subjects.

4.3.1 Resampling strategies for comparison between subjects

Various resampling strategies have been discussed in previous along-tract frameworks, with a
common idea advocating resampling all representative streamlines to the same number of points.
In Cousineau et al. (2017), the authors used a fixed number of points by resampling all of the
studied bundles to 20 points while Yeatman et al. (2012) instead used 100 points. Colby et al.
(2012) opted for resampling each bundle based on their average group length, ensuring that ap-
proximately one point per voxel was present. In this representation, each point of the streamlines
is considered to correspond to the same anatomical location across subjects and is therefore blind
to the intrinsic variance in shape or length between subjects. As each representative streamline
most likely had a different length initially, the distance in millimeters between each sampled co-
ordinate will be different for each subject. If the underlying anatomy of some subjects was altered
due to, e.g. disease or developmental changes, such information might be lost by resampling to
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a fixed number of points as a first step. This can be prevented by ensuring that the new sampling
resolution is at least equal or larger than the initial resolution used during tractography.

As a bundle is comprised of many individual streamlines, they are usually collapsed to a single
representative pathway to facilitate subsequent analysis. This representative streamline is there-
fore an aggregation of many streamlines of various length and can be obtained either by averaging
(Colby et al., 2012; Yeatman et al., 2012) or by finding representative clusters (Cousineau et al.,
2017). Other assignment strategies towards a single representative pathway have been discussed
in (Corouge et al., 2006; O’Donnell, Westin, et al., 2009). To ensure correspondence during this
aggregation step, individual streamlines are usually resampled to a common number of points
for all subjects. While this resampling is needed to obtain the representative streamline, it may
also reduces the sampling resolution from the original streamlines given by the step size used for
tractography if not enough points are kept. The representative streamline of each subject may
also have a different orientation altogether and therefore might need to be flipped, ensuring that
they share a common coordinate system (Colby et al., 2012).

In the present work, we instead advocate a novel two-step resampling strategy that builds
upon the classical resampling strategy. After extracting the representative streamlines (S, ..., S,,)
for i = 1,...,n of each subject, each representative streamline S, is defined by its number
of points N, and the distance between its points §;. All streamlines are first resampled to
M, = N; x§,/6,.:,, points, ensuring an equal distance between each point §,;, = min(4, ..., d,,).
In the end, the streamlines still have a different number of points M; > min(N;, ..., N,) and
points at the same coordinates across subjects do not implicitly assume to represent the same
anatomical location. However, the distance §; between each point M, is now constant across
subjects. While this idea may seem counterintuitive, the motivation behind this choice is due
to Eq. (4.1), which relies on the FFT, and as such, needs equally sampled vectors and benefits
from a high sampling resolution.

After the displacement has been applied, one can use the classical resampling strategies pre-
sented by other authors, therefore making our approach fully compatible with already existing
analysis techniques. We opted to use the methodology of Colby et al. (2012) since more than one
point per unit voxel size would not carry additional information from the original data. This also
alleviates further complications arising from multiple comparisons (Benjamini and Hochberg,
1995) for the subsequent statistical analysis one seeks to apply afterwards. Fig. 4.3 illustrates
schematically the classical resampling versus our novel two-step resampling strategy.

4.3.2 Proposed algorithm for diffusion profile realignment

DPR works in three steps once the 1D profiles have been resampled to an equal spacing as
presented in Section 4.3.1. We also ensure stationarity of the data by fitting and subtracting a
polynomial of degree one (i.e. a straight line) to each subject. It is important to mention here
that this step is only to satisfy the stationarity assumption of Eq. (4.1) and does not modify the
extracted diffusion profiles afterwards.

Firstly, a matrix of displacement is computed between every pairs of subjects and subse-
quently refined with parabola fitting as previously defined in Section 4.2. A maximum possible
displacement in mm is then chosen. From the displacement matrix, the subject realigning the
largest number of streamlines inside this maximum displacement is chosen automatically as the
template subject. As Eq. (4.1) is symmetric, realigning subject A to B or subject B to A will
have the same outcome in practice.

Secondly, all outliers with a displacement larger than the chosen threshold from the first
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Figure 4.3: An example of the classical and proposed resampling strategies on three representative
streamlines. In A), three representative streamlines which have different shapes and lengths with their
start (1A, 1B and 1C) and end points (2A, 2B and 2C) at different spatial locations. In B), the classical
strategy of resampling to the same number of points (circles) introduces a common space to easily compare
them. However, the end points of the underlying anatomies are artificially aligned when compared to
their original representation and each point is at a different distance (black lines). In C), the proposed
resampling strategy ensures that the distance 4., (black lines) between every point is constant. Even
though each streamline length is different as indicated by the location of the end points, they can now
be realigned to identify the common anatomical positions between all subjects.
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Figure 4.4: An example of a cross-correlation spectra (left) and finding a new template to realign outliers
(right) using the HCP datasets. On the left, a threshold of 15% of the total streamline length is selected
as the maximum allowed displacement (dashed vertical lines). A) A streamline with the global maximum
of the CCF inside the chosen threshold. The maximum indicates the shift needed to realign it to the
template. B) A streamline with a local maximum, but not the global maximum, of the CCF inside the
chosen threshold. In this case, the two streamlines would not be realigned together as only small shifts
should be needed for realignment. On the right, an example of realigning an outlier subject (in blue) to
the original template (in green) via the closest matching new template (in red) using the AFD metric.
The black dashed bars indicate the region where all three streamlines fully overlap and the red dashed
bars shows the maximum allowed displacement of 15%. C) The three streamlines before realignment. D)
Realigning the blue streamline with the template (in green) as given by the maximum of the CCF results
in an outlier as in case B). E) To circumvent the issue, a new template (in red) is found amongst the non-
outlier subjects which minimizes the total displacement with the original template. The blue streamline
is therefore not an outlier anymore as it now lies inside the displacement threshold as in case A).
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step are realigned with the help of a new per-streamline template. For each outlier, a new
template is selected amongst the remaining non-outlier subjects, which minimizes the total
displacement between the original template from the first step and the current outlier. If the
new minimum displacement is inside the chosen threshold, the subject that was previously an
outlier is now registered through this new template. If no new template providing realignment
inside the threshold can be found, then this subject is declared as an outlier and is not realigned
at all. Fig. 4.4 shows the spectra of a normal subject and of an outlier for spectra computed with
Eq. (4.1) from the HCP datasets. Even if the optimum displacement lies outside the chosen
threshold, the outlier can still be realigned by finding a new template subject.

Finally, after realigning all the admissible streamlines to the template, there will be a dif-
ferent number of overlapping subjects for each coordinate. Just as ROIs were previously used
to truncate the bundles’ end points (recall Fig. 4.6), the resulting aligned streamlines should be
truncated once again to reduce their uncertainty since not all coordinates have the same number
of overlapping streamlines anymore. A pseudocode version of the proposed algorithm is out-
lined in Section 4.7. Our reference implementation is freely available as a standalone! (St-Jean,
2019), and will also be included in ExploreDTI (Leemans, Jeurissen, et al., 2009). We also make
available the synthetic datasets and metrics extracted along the representative streamlines of the
HCP datasets that are used in this manuscript (St-Jean, Chamberland, et al., 2018).

4.3.3 Datasets and acquisition parameters

Synthetic datasets A synthetic phantom consisting of 3 straight bundles crossing in the center
at 60 degrees with a voxel size of 2 mm was created with phantomas (Caruyer et al., 2014). Each
bundle has some partial voluming present on the outer edge to mimic the white matter / gray
matter interface. We simulated 64 diffusion weighted images (DW1s) using gradient directions
uniformly distributed on a half sphere and one b = 0 s/mm? image with a signal-to-noise ratio
(SNR) of 10, 20 and 30 with uniformly distributed Rician noise and a noiseless reference volume.
Two distinct diffusion weightings of b = 1000 s/mm? and b = 3000 s/mm? were used, producing
a total of 8 different synthetic datasets. The SNR was defined as SNR = S/, where S is the
non-diftusion weighted signal and o is the Gaussian noise standard deviation.

HCP datasets 100 subjects (50 males, 50 females) from the in vivo Human Connectome
Project (HCP) database (Van Essen et al., 2012) aged between 26 and 30 years old were selected.
All 18 b = 0 s/mm? volumes were kept along with the 90 volumes at b = 3000 s/mm? in order to
maximize the angular resolution (Tournier et al., 2013). The acquisition parameters were a voxel
size of 1.25 mm isotropic, a gradient strength of 100 mT/m, a multiband acceleration factor of
3 and TR/ TE = 5520 ms / 89.5 ms. We used the minimally preprocessed datasets which are
already corrected for subject motion, EPI distortions and eddy currents induced distortions (Van
Essen et al., 2012).

4.3.4 Local model reconstruction and fiber tractography

We used the constrained spherical deconvolution (CSD) algorithm (Tournier et al., 2007) with
a recursive calibration of the response function (C. M. Tax et al., 2014) and spherical harmonics
of order 8 to estimate the fiber orientation distribution functions (fODFs). We also computed
the diffusion tensors using the REKINDLE approach (C. M. W. Tax et al., 2015) to exclude

1 https://github.com/samuelstjean/dpr
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potential outliers from the data. We subsequently computed the apparent fiber density (AFD)
maps (Dell'Acqua et al., 2013; Raffelt et al., 2012) from the fODFs and the FA and MD maps
from the diffusion tensors (Basser and Pierpaoli, 1996) in all experiments. Whole-brain deter-
ministic tractography was performed using the fODFs with ExploreDTI (Leemans, Jeurissen,
et al., 2009) with a step size of 0.5 mm, a fODFs threshold of 0.1 and an FA threshold of 0.2
for all datasets. The angle threshold, seeding grid resolution and streamlines length threshold
used during tractography were different for the synthetic and HCP datasets as detailed below.

Tractography parameters for the synthetic datasets Tractography was performed with an angle
threshold of 30 degrees and a seeding grid resolution of 0.5 mm on each axis to ensure a dense
coverage of each bundle. Only the streamlines with a length of at least 10 mm and up to
150 mm were kept to prevent the presence of spurious streamlines. Two ROIs were manually
drawn on one bundle to select only straight streamlines belonging to this bundle as shown in
Fig. 4.5. The streamlines were kept to their full extent, including some small variations near the
end points due to partial voluming, which ensures that the intersection of the three bundles is
approximately at the center. To mimic similar representative streamlines extracted from various
subjects, 150 streamlines were randomly selected and cut randomly from 1% up to 10% of
their total length at both end points. Two sets of representative streamlines were created using
classical resampling to the same number of points and our novel two-step resampling strategy,
which is detailed in Section 4.3.1. In the first case, all streamlines were resampled to 50 points,
which is approximately one unit point size per voxel. As each synthetic representative streamline
had a different length after truncation, resampling to the same number of points allows a direct
comparison between each coordinate, even if they do not match the same “anatomical” location
by design of the experiment. No resampling was needed to simulate our proposed resampling
strategy, as the distance between each point is already equal for this particular synthetic example.

Tractography parameters for the HCP datasets Whole-brain tractography was performed
with an angle threshold of 45 degrees and a seeding grid resolution of 2 mm on each axis.
Only the streamlines with a length of at least 10 mm and up to 300 mm were kept to limit
the presence of spurious streamlines. ROIs were manually drawn to segment the left and right
arcuate fasciculus (AF) and the left and right corticospinal tract (CST) on an exemplar subject
(Wakana et al., 2007) as shown in Fig. 4.5. This exemplar subject FA map was used as a template
and subsequently non linearly registered to each other subject respective FA map using Elastix
(Klein et al., 2010). The obtained transformation was then applied on each ROIs drawn on
the exemplar subject defining the four bundles, therefore warping the original ROIs unto each
subject’s respective diffusion space as in Lebel et al. (2008). Only the segments between the
ROIs were kept to only retain the straight sections and to remove spurious end points e.g. before
the fanning in the CST. An alternative approach could be to extract the bundles automatically
using a parcellation of the white matter obtained from each subject’s T1-weighted MR image
(Cousineau et al., 2017; Wassermann et al., 2016). This would capture the full extent of the
bundle instead of only keeping the sections between ROIs as done in the present work, but
at the expense of possibly increasing variability. Such an approach may be useful if important
anatomical information is contained in these end regions.

Extracting representative streamlines for the HCP datasets To extract the representative
streamline of each subject, all streamlines forming a given bundle were linearly resampled to
the same number of points, chosen as the number of points of the top 5% longest streamlines
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Figure 4.5: The synthetic bundles dataset and the locations of the ROIls used to segment some of the
in vivo bundles on the exemplar subject with their automatically extracted counterpart for three subjects.
In the top row, A) streamlines in a straight bundle of the synthetic datasets. Note that the streamlines
are not truncated at the end points, but rather cover the full length of the red bundle so that they cross
exactly at the center. The two inclusions (in green) and one exclusion (in red) ROIls segmenting B) the
right AF on the exemplar subject and C) three automatically extracted right AF drawn in the exemplar
subject native space (shown in green, cyan and magenta). On the bottom row, D) the left CST on
the exemplar subject and E) three automatically extracted left CST bundles (shown in green, cyan and
magenta) drawn in the exemplar subject native space. Note that each subject’s bundle would correspond
roughly to the same anatomical location in its own native space.

to reduce the effect of possible outliers. This choice is robust to possible outliers which might
be longer (or much smaller) than the rest of the streamlines due to spurious results from trac-

tography while also keeping a high sampling resolution, a desirable property for Eq. (4.1).

In the present work, the mean streamline per bundle was extracted and finally resampled in
two different ways: 1) using a fixed number of points for all subjects and 2) ensuring an equal
distance between each point. For the classical resampling strategy, we resampled all subjects
to 70 points for the arcuate fasciculi and 105 points for the corticospinal tracts. The second
resampling strategy ensured that the distance &, (in mm) between each point is the same for
all subjects. This also means that the representative streamlines of each subject do nor have the
same number of points and can not be compared directly at this stage when using this resampling
strategy. Fig. 4.6 shows an example of selecting a representative segment between two ROIs as
would be done for the uncinate fasciculus.
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Figure 4.6: An example of along-tract analysis. A) The uncinate fasciculus is first segmented from a
whole-brain tractography on an exemplar subject. B) The two ROIs (shown in red) that were defined to
segment the uncinate fasciculus. Warping these ROls to each subject provides an automatic dissection
of the bundle. C) Only the portion of the mean streamline (shown in white) between the two ROls is
discretized (shown by the red dots), which allows mapping scalar metrics along the bundle itself.

4.3.5 Extracting diffusion metrics for along-tract analysis

Once every representative streamline has been obtained, it can be used to collect diffusion de-
rived metrics along the 3D pathway indexing a volume of interest. We collected the values of
MD, FA and AFD for each subject along the streamline trajectory as in Colby et al. (2012).
The resulting 1D segment is a vector of values varying along the length of the representative
streamline. This single representative pathway can now be realigned in a pointwise fashion to
ensure correspondence between subjects before moving on to statistical analysis.

4.3.6 Applying the diffusion profile realignment on representative streamlines

Realignment of uniformly resampled and variable length streamlines To evaluate the reduc-
tion in variability brought by our proposed DPR algorithm, we estimated the coefficient of
variation (CV) at each coordinate along the streamlines before and after realignment using both
resampling strategies. The CV, defined as C'V = o/ with o the standard deviation and p the
mean of each metric, is a unitless standardized measure of dispersion where a lower CV indicates
a lower standard deviation around the mean value. For all experiments, we used a maximum
displacement threshold of 15% to find the subject serving as a template during realignment. We
computed the CV before and after the realignment of the representative streamlines using both
resampling strategies. To compare the variability due to truncation of the end points, only the
segments where 1% (at least one streamline present), 50%, 75% and 100% (all streamlines are
fully overlapping) of the realigned streamlines were kept for computing the CV. In the synthetic
datasets experiments, we weighted the CV by the number of points at each coordinate to account
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for the different number of points of the unaligned bundle. For experiments with the HCP
datasets, we instead did a final resampling to the same number of points (if appropriate) after
the realignment as previously used for the classical resampling strategy in order to ensure a fair
comparison between both approaches.

Simulating abnormal values of diffusion metrics in HCP subjects An example application of
the along-tract analysis framework could be to study neurological changes in a given population.
These changes would presumably affect some specific white matter bundles and their underlying
scalar values extracted from dMRI. Both the location and magnitude of these changes could
reveal an effect of interest that might be hidden at first due to potential misalignment between
subjects. To simulate a change in scalar metrics, 50 subjects were chosen randomly and had
their representative streamlines profile modified while the other 50 subjects were left untouched.
These 50 modified subjects are now classified as the “altered” subjects and the other untouched
50 subjects as the “controls” subjects in the subsequent experiments. For each altered subject,
a location covering two times the affected length on both sides was chosen at random starting
from the middle and the metrics were modified at this location. Two separate set of experiments
were performed where the changes in metric was at first +10% and then —10% of its original
value over 15% of the length. An additional set of experiments simulating highly focused dam-
age of +25% and +50% of the metrics over 5% or 1% of the bundle length was performed. For
the three cases, the randomly chosen location was at a position from 20% to 80%, 40% to 60%
and 48% to 52% of the bundle length. This process is repeated for each metric and each bundle,
creating a different set of randomly modified subjects every time. The representative streamlines
were finally realigned separately per group. As the control and altered subjects likely have differ-
ent 1D profiles, realigning them separately makes it possible to select the best template for each
group by itself. This strategy implicitly assumes that the neurological changes induce a similar
increase or decrease in the diffusion metrics of each subject and that after realignment, each
anatomical location is in correspondence between both groups. Correspondence between groups
is also implied in classical along-tract analysis when resampling to the same number of points for
comparison. Limiting the maximum displacement allowed also ensures that information carried
by the diffusion metrics stays locally around the same position. The correspondence after sepa-
rate realignment is assumed by resampling to the same number of points as the final step before
analysis. In a clinical study setting, this could reflect neurological changes as induced by, e.g. a
neurodegenerative disease or aging. The idea is to induce some changes in the extracted scalar
values only, without modifying the underlying raw data or performing tractography and repre-
sentative streamlines extraction once again. This choice of working in the extracted metric space
only is to assess the changes in the metrics and realignment, in opposition to changes affecting
the raw data itself. As the tractography process and extracted streamlines would most likely be
slightly different due to the inherent challenges in reproducing tractography (Maier-Hein et al.,
2017), the subsequent interpretation of the results could be confounded if tractography would
be done anew.

Statistical tests between HCP subjects We conducted a Student’s t-test for independent sam-
ples between the controls and altered HCP subjects with a correction for the false discovery rate
(FDR) of a = 0.05 (Benjamini and Hochberg, 1995) for one metric on each bundle. The t-test
was realized on the datasets before and after the realignment of the representative streamlines
metrics. However, the FDR correction only ensures an upper bound on the occurrence of false
effects and do not indicate their location nor how many are present.
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4.4 Results

4.4.1 Simulations with the synthetic datasets

We now present numerical simulations involving the synthetic datasets presented in Section 4.3.3,
comparing the two resampling strategies from Section 4.3.1 before applying the DPR algorithm.
Fig. 4.7 shows the reduced CV for the realignment of the AFD metric on the SNR 20 dataset
at b = 3000 s/mm? when compared to their non realigned counterpart. After realignment, the
standard deviation at each coordinate is now generally lower, especially in the center portion
where the three bundles are crossing. In the case of resampling to an equal distance 4,
a few streamlines are overlapping at the end points, which might reduce statistical power for
these regions during subsequent analyses. As previously mentioned in Section 4.3.2, portions
where only a few streamlines are overlapping should be truncated accordingly to prevent these
degenerate cases. Fig. 4.8 shows summary boxplots of the CV in addition to the mean CV across
all coordinates for the synthetic datasets for the MD, FA and AFD. In all cases, realignment
provides a lower CV than the non realigned synthetic streamlines.

4.4.2 Realignment of the in vivo HCP datasets

Realignment of the arcuate fasciculi and corticospinal tracts To quantify the improvements
brought by the DPR algorithm for the in vivo datasets, we realigned the representative stream-
lines extracted from the 100 HCP datasets. Fig. 4.9 shows the final outcome with the two pre-
viously discussed pipelines for producing along-tract averaged profiles: resampling to the same
number of points as is conventionally done and after realignment with the DPR algorithm. For
the realigned case, we kept only the segments where at least 75% of the subjects are overlapping
and finally resampled all subjects to the same number of points. This last resampling step could
be considered optional and is used to allow an easier visual comparison between the unaligned
and realigned group profiles. While the overall shape of each profile is similar between the un-
aligned and realigned version, the end points and location of salient features are slightly different
due to the realignment and the truncation threshold we used. As the maximum displacement
threshold dictates which subject is used as a template for the realignment, average group profiles
using a maximum displacement threshold of 5, 10 and 20% are shown in the supplementary
materials Section 4.8.1. To assess the effect of truncation on variance near the end points, we
computed the CV for each metric at various truncation thresholds and for the unaligned metrics.
Fig. 4.10 shows the CV for the HCP datasets when the bundles are first resampled to the same
number of points and after realignment (in brown). In all cases, the CV is approximately equal
or lower after realignment with the DPR algorithm than when the representative streamlines are
unaligned and resampled to the same number of points. We also show the CV in the unaligned
case where all streamlines have an equal distance ¢, between points and for four truncation
thresholds after applying the DPR algorithm (no truncation, 50%, 75% and 100% of overlap).
In this particular case, the resampled and realigned bundles (light brown) and the realigned bun-
dles with no truncation (green) are mostly equivalent as they are resampled to the same final
number of points after realignment for comparison purposes. The main tendency shows a lower
mean CV after realignment when compared to the non realigned cases. The CV values are also
generally lower with increasing truncation thresholds as the number of overlapping points per
coordinates is also increasing, contributing to a lower standard deviation of each metric.
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Figure 4.7: Realignment of representative streamlines resampled to 50 points (left column) and with an
equal distance §,;, (right column) for the AFD case at SNR 20 and b = 3000 s/mm?. Each individual
streamline is plotted in light gray, with the mean value in color and the standard deviation as the shaded
area. The black vertical bars indicate the location of the original, non realigned streamlines. The colored
vertical bars indicate the number of overlapping streamlines, ranging from at least 1 (all subjects, purple
lines) to all of them (100%, red lines). Panels A) and B) show the streamlines before realignment. Note
how individual streamlines are rather dispersed around the mean. Panels C) and D) show the streamlines
after realignment, with the mean value being closer to all of the subjects and a smaller standard deviation
than in panels A) and B). However, due to the realignment, the end points have less subjects contributing
to the mean value and should be truncated according to the number of overlapping subjects. Panels E)
and F) show the coefficient of variation (CV, where lower is better) for each point, which is in general
lower or equal than the non realigned version in both cases. Note how the largest reduction in CV is in
the crossing region, where the standard deviation is approximately three times smaller in the realigned
case than for the unaligned case.
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Figure 4.8: Boxplots of the CV for each point weighted by the number of overlapping subjects, for the
MD (left), FA (center) and AFD (right) metrics and their respective mean value (in orange). The top
row shows results for b = 1000 s/mm? on the synthetics datasets at SNR 10, 20, 30 and in the noiseless
case while the bottom row shows results for b = 3000 s/mm?. In all cases, the realigned metrics (for
any truncation percentage) have a lower or equal CV on average than the non realigned metrics (in blue).
The FA and AFD metrics have a CV in the realigned case which is on average approximately two times
smaller than the non realigned case across all SNRs and both b-values. This gain is smaller for the MD,
which might be due to the relative homogeneity of the MD values.

Robustness of the shapes of averaged profiles towards different metrics When performing
an along-tract analysis, tractography plays a key role as a spatial indexation method for extracting
the 1D metric profiles along the streamline. Given a particular subject representative streamline,
the various scalar metrics that can be extracted each have their own distinct 1D profile along the
streamline. In order to assess the robustness of our proposed DPR algorithm, we investigated
whether for a given metric and template the resulting average group profile would be similar
using the displacement computed from the other metrics. As the displacement depends on
the spectrum of each 1D profile, each metric may use a different template and apply a different
displacement for each subject. This may ultimately lead to a different group average profile due to
our algorithm automatically choosing the template amongst the subjects. However, the relative
displacement due to a change of template (and hence the resulting group average 1D profile)
may be unaffected by this choice, leading to a similar group average profile. Fig. 4.11 shows
the resulting average group profiles for each metric when using the original realignment and
the realignment that would be applied from the two other remaining metrics with a maximum
displacement threshold of 15%. As the AF is slowly varying in terms of diffusion metrics along
its extracted path, the realignment of the MD metric is similar even when using the displacement
computed from the FA or AFD metric. On the other hand, applying the realignment given by
the MD to the FA and AFD profiles leads to different optimal realignments and a change in their
overall profile. For the CST, as the representative streamline crosses other anatomical bundles
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Figure 4.9: Along-tract averaged profiles (and standard deviation as the shaded area) of the unaligned
(blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling to the
same number of points. Each row shows the profile for one diffusion metric (MD, FA and AFD) while
each column shows one of the studied bundles (AF left/right from anterior (coordinate 0) to posterior and
CST left/right from inferior (coordinate 0) to superior). After realignment and truncation, the profiles
are slightly different from their unaligned version at the end points while the center profile is similar. This
is likely due to the misalignment mostly affecting the initial end points which are defined by the original
truncation from the ROls.

along its path, the 1D profiles have more variation along coordinates than in the AF case. This is
mostly notable in the MD metric profile, which is now similarly realigned when using either the
FA or AFD. Due to these anatomical “landmarks”, the displacement given by the MD also yields
similar profiles when applied to the FA and AFD metrics. Results for maximum displacement
thresholds of 5, 10 and 20% produced similar trends, which are shown in the supplementary
materials Section 4.8.2.

Realignment with simulated diffusion abnormalities in HCP datasets We first focus on the
new strategy of resampling the representative streamlines, while ensuring that the distance be-
tween each point d,,;, is the same. As one can always resample to a common number of points
after realignment, this prevents a reduced sampling resolution when using Eq. (4.1). Automati-
cally selecting a template from the subjects themselves allows the DPR algorithm to be as flexible
as possible. The changes in scalar metrics (e.g. introduced by local alteration of tissue microstruc-
ture following disease) might not be obviously identified on the group average for the unaligned
streamlines case, but the variations in shape of the realigned group average may be uncovered by
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Figure 4.10: Boxplots of the CV for each point weighted by the number of overlapping subjects, for
the MD (left), FA (center) and AFD (right) metrics and their respective mean value (in orange) for the
four studied bundles. Similar to the synthetic datasets experiments, the in vivo datasets have a lower CV
after realignment (green, red, purple and yellow boxplots) than when they are unaligned (brown boxplots).
Even if the representative streamlines are truncated to the shortest number of points (yellow boxplot) or
are resampled to the same length (light brown boxplot), the CV is smaller in the realigned cases than in
the unaligned cases (brown and blue boxplots respectively). The gain in CV is once again smaller for the
MD but larger for the FA and AFD in favor of the realigned cases, which is in line with the synthetic
experiments.

selecting a new template. Fig. 4.12 shows four examples of the unaligned and realigned profiles
of the scalar metrics for the datasets with and without simulated diffusion abnormalities for each
white matter fiber bundle. Note how the original and altered unaligned streamlines have a similar
profile for both metrics at first, but the realigned altered streamlines now have a different profile
which was uncovered by realignment with the DPR algorithm (see the red boxes in Fig. 4.12).
This is especially prevalent in the case of the MD metric where the unaligned profiles are similar
for the control and altered subject data, while realignment uncovers the higher MD values that
were originally simulated.

Statistical hypothesis testing We now look at uncovering groupwise differences between the
control and altered HCP subjects over the affected regions. Fig. 4.13 shows the results of the
unpaired t-test for the HCP datasets before and after realignment for the A) AF left with the
MD metric, B) AF right with the FA metric, C) CST left with the FA metric and D) CST right
with the AFD metric, as previously shown in Fig. 4.12. All of the regions uncovered before
using realignment are also identified as statistically significant at the level of p-value < 0.05 after
realignment. This indicates that findings for the unaligned case are preserved when using our
proposed algorithm, with the addition of new affected regions, which might have been averaged
out due to misalignment in the first place. For example, the left AF and left CST showcase an
affected portion that is statistically significant only after realignment. However, using a lower
statistical threshold or a higher level o for the FDR might reveal additional affected regions at
the cost of introducing potential false positives. Fig. 4.14 shows a second set of experiments on
the four bundles realized with large alterations of the metrics which are spatially focused e.g. in
the presence of tumors. Specifically, alterations in the metrics of 25% or 50% were induced over
1% or 5% of each bundle length and each group subsequently realigned with DPR. Unpaired
t-test before and after realignment are conducted between the two groups at each location as
in Fig. 4.13. Almost all affected regions are identified before and after realignment when the
affected length is of 5%. For the CST left, the affected region is only identified after realignment
when the alteration is of 25%. When only 1% of the bundle length is affected, no changes are
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Figure 4.11: Along-tract averaged profiles (and standard deviation as the shaded area) of the white matter
fiber bundles (columns) from the HCP datasets after realignment for each studied metric (rows). The
metrics were truncated to 75% of overlap after realignment with a final resampling to the same number
of points. On each row, the along-tract profile after realignment is shown for a given metric (MD on the
first row, FA on the second row and AFD on the third row) using the displacement computed by the MD
(blue), FA (green) and AFD (red). The AF are displayed from anterior (coordinate 0) to posterior and
the CST from inferior (coordinate 0) to superior.

identified before realignment, but are uncovered after realignment with the DPR algorithm in
all cases. Results obtained with maximum displacement thresholds of 5%, 10% and 100% are
shown in the supplementary materials Section 4.8.3.

4.5 Discussion

4.5.1 Reducing variability along bundles

Using simulations, we have shown how residual misalignment may hide the expected average
profile of an along-tract analysis. Fig. 4.7 shows this effect directly as the group mean profile
from a set of streamlines only roughly corresponds to their individual, but in truth identical,
shape as their spatial location differs due to small differences in their length. Realignment not
only restores the expected group profile, but also reduces the pointwise variability of the metrics
as the unequal streamlines are now aligned as reflected by the lower overall CV. Each individual
subject is therefore participating to the group average instead of being spread out and biasing the
estimated mean scalar value of the overall bundle in the crossing region. This is also true if the

73

Chap. 4



4.5. Discussion

O Left arcuate fasciculus for the MD Right arcuate fasciculus for the FA
A contol nalgned aterod unabgned contol natgned

= e

iSSS=av |

Left corticospinal tract for the FA Right corticospinal tract for the AFD
atered 4 anered unaigned

Figure 4.12: Comparisons between the unaligned and realigned profiles for the HCP datasets without
(control column) and with (altered column) simulated diffusion alterations in the white matter fiber
bundles. A different bundle for a specific metric is shown in each subfigure: A) AF left for the MD, B)
AF right for the FA, C) CST left for the FA and D) CST right for the AFD. The AF are displayed from
anterior (coordinate 0) to posterior and the CST from inferior (coordinate 0) to superior. Each subject
representative streamline is rendered transparently and the group average representative streamline is
represented by the solid line. The black bars indicate where at least 75% of the subjects are overlapping.
Some key visual differences (red boxes) are hidden by misalignment between the control and altered
subject data when they are unaligned, while realignment helps to uncover those hidden degeneracies.
Note that the red boxes in the subgraphs have the same size and are aligned for easier visual comparison.
The most striking example is in A) where the change in MD is easier to see after realignment as the
control subjects are keeping their original shape while the altered datasets exhibit a drop in their scalar
value around the same region. The unaligned group average streamline however makes this difference
harder to uncover.

streamlines are first resampled to the same number of points. In this case, the variance at the
end points is larger, possibly due to a loss in spectral resolution caused by resampling to a lower
number of points than originally present. Resampling early in the along-tract analysis pipeline
may not only inadvertently hide information for the realignment, but also hamper statistical
testing by reducing the spatial specificity of the data (O’'Donnell, Westin, et al., 2009).

For the realignment of the in vivo HCP datasets, Fig. 4.9 shows that realignment alters the
group profile at the end points while preserving the overall shape and the central portion of
the bundle. This leads to a reduction of the CV, likely due to the reduction in variance at the
end points while the overall mean profile is preserved as shown in Fig. 4.10. As the realigned
end points will also have less data from different subjects present at each coordinate, subsequent
truncation further reduces the CV once again. The change of shape after realignment is possibly
due to the difference in length between each subject and the subsequent mapping to their 1D
metric profile. This 1D space hides the spatial 3D coordinates misalignment that may be present
between subjects. However, this misalignment can still be mitigated afterwards. Even if the
representative streamlines are shifted as a whole with the realignment, preservation of the overall
shape and center portion might indicate that only the end points were dissimilar. The lower end
point variance effect is also present when using the classical resampling strategy and subsequently
realigning the representative streamlines. The misalignment at the end points between subjects
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Figure 4.13: Unpaired t-test corrected for false discovery rate (FDR) at a = 0.05 overlaid on the exemplar
subject bundle for the same cases as in Fig. 4.12. On the left, fiber trajectories of the exemplar subject (in
gray) and truncated portions of these pathways between the ROIs (in blue) expressed in world coordinates
A) before realignment and C) after realignment with the DPR algorithm. The p-values at locations deemed

statistically significant in the present work (p < 0.05) are overlaid on the average streamline (in green).

On the right, the p-values on a log scale after FDR correction along the average streamlines B) before
realignment and D) after realignment with the DPR algorithm, but expressed as along-tract 1D point
coordinates. The horizontal black bar is located at p-value = 0.05. In the realigned data case, the p-values
are lower in the significant regions (corticospinal tract right) or even show affected regions which are not
detected when the data is unaligned (arcuate fasciculi and corticospinal tract left). The most prominent
case is for the left arcuate fasciculus, where the affected portion is not identified in the unaligned case
(for our chosen significance threshold of 0.05), but has a corrected p-value of approximately 107> after
realignment.
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Figure 4.14: Unpaired t-test (FDR corrected at o = 0.05) with focused alterations of the metrics for
each bundle of A) 25% over 1% of the length, B) 50% over 1% of the length, C) 25% over 5% of the
length and D) 50% over 5% of the length. The AF left/right are represented from anterior (coordinate
0) to posterior and the CST left/right from inferior (coordinate 0) to superior. The p-values are on a
log scale along the average streamline before realignment (dashed red lines) and after realignment (solid
blue lines) with the DPR algorithm. The horizontal dashed black lines indicate p-value = 0.05. When
alterations cover 1% of the length, the affected profiles are identified only after realignment. At 5% of
the length, the uncovered regions after realignment are concentrated around smaller sections than their
counterpart before realignment.
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is due in part to the truncation effect of the ROIs and to the nature of tractography itself and its
many user-defined settings (Chamberland, Whittingstall, et al., 2014). The use of termination
criteria (e.g. FA threshold, white matter mask, maximum curvature) or seeding strategy (e.g.
white matter versus cortex seeding) (Girard et al., 2014) may prematurely terminate tractography
in the middle of a white matter bundle, contributing in producing shorter streamlines which end
before fully reaching the gray matter (Maier-Hein et al., 2017). New algorithms and seeding
strategies are developed to enhance tractography end points near the cortex (St-Onge et al., 2018)
and could help to reduce this truncation effect.

4.5.2 Effect of exchanging metrics for realignment

We have shown in Fig. 4.11 the effect of applying the realignment computed from different
metrics on the mean group tract profile. From these results, we can observe the different dis-
placement values obtained from the dMRI metrics, even though the representative streamlines
arise from the same anatomical location. This is due to the fact that our framework is fully driven
by the 1D profiles of the studied metric, which all have different shapes and features, leading
to slightly different realignment outcome depending on the bundle and the metric that is used.
As the FA and AFD profiles are similar in the four studied bundles, exchanging their value still
leads to the same overall profile in most cases. For the MD, results showed that the CST is also
stable. This is most likely due to the complex 1D profile of the CST for the three metrics, as it
defines unique landmarks that are picked by our algorithm for accurate realignment. Regarding
the AF, exchanging the displacement from the FA or AFD yields similar profiles, an observation
that does not hold for the MD metric. As the MD metric for the AF has a rather flat profile,
the algorithm might pick up a spurious displacement due to the lack of well-defined features
to exploit. Avants et al. (2011) also reached a similar conclusion in the context of 3D volume
registration when using different metrics such as the mean square difference, cross-correlation
or mutual information; using different metrics, type of registration or registering subject A onto
subject B (and vice versa) leads to slightly different outcomes. We have fixed the maximally
allowed displacement to 15% of the length of the bundle, but similar conclusions also applied
for 10% and 20% of maximum displacement as shown in Section 4.8.2. When the maximum
displacement is only 5%, the AF show similar mean profiles for the three metrics, whereas the
opposite is seen in the CST. This indicates that the maximally allowed displacement should be
chosen per bundle and is data dependent. Short, straight and simpler bundles, such as the AF,
might only need small realignment, whereas more complex structures with fanning, intersecting
bundles and possibly large anatomical variations between subjects, such as the CST, likely benefit
from larger maximum displacement thresholds to find their full overlap between subjects.

4.5.3 Identifying brain regions affected by abnormalities along-tract

One of the end goal of along-tract analysis is to uncover alteration of the white matter due
to, e.g. disease at their specific locations. This is at the cost of trading the sensitivity of ROI
averaging based analysis for additional specificity along the bundle, which also depends on the
discretization of the points forming the streamlines (O’Donnell, Westin, et al., 2009). Using
simulated changes in scalar metrics from the HCP subjects, we have shown in Fig. 4.12 how
misalignment can artificially reduce the specificity of along-tract analysis. As the affected portion
of the bundle is usually unknown a priori, morphological differences between subjects might
map the affected area to different points in their 1D profile during the representative streamlines
extraction. The unaligned metrics might exhibit similar mean profiles between the control and
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altered subjects in this case, as the affected portions would be originating from an adjacent
anatomical location in each subject’s original space, but would not be aligned in the 1D space.
The mean representative streamline at the group level could therefore average out each subject’s
individual difference due to residual misalignment, hiding the effect of interest in the process. As
we have previously mentioned in Section 4.1, this effect of averaging out important information
has also been theorized by O’Donnell, Westin, et al. (2009). However, the same effects can also
become easier to detect after realignment since the control subjects mean profile will potentially
be different from the altered subjects mean profile. This is thanks to the particular features of
their 1D profile now being realigned instead of averaged out. In a similar way, if changes in
the diffusion metrics are potentially present across the whole length of a white matter bundle,
the maximum displacement threshold should be increased. This may reduce the number of
subjects identified as outliers by using a smaller maximum displacement, which would not have
been realigned in the first place. The tradeoff in allowing a larger maximum displacement is a
potential reduction in statistical power or false discoveries as less subjects may be present at each
along-tract location for statistical testing.

In our simulations, changes on the left AF and left CST are identifiable only after re-
alignment whereas the original control and altered average profiles are mostly similar since each
individual contribution is lost in the unaligned group averaging. After realignment, the altered
region can be identified as each realigned subject now contributes to the group average at the
same location. This effect is similar to what we observed in our simulations in Section 4.4.1,
where the CV is lower in the crossing-bundles region after realignment and how the mean group
profile is also lower after realignment. It is also noticeable on the right AF bundle with the FA
metric or on the CST bundles, but to a lesser extent, as the overall morphology of the CST bun-
dles stays relatively similar even after altering the scalar metrics. Interestingly, the altered group
profile seems to be subject to larger morphometric changes after realignment than the control
group counterpart. This might indicate that sharp profile changes in each subject’s shape due
to disease are automatically picked up by our algorithm, providing realignment based on this
change.

We also conducted unpaired Student’s t-tests to statistically identify the altered regions on
the same bundles and metrics as shown in Fig. 4.13. While we used an FDR correction of
a = 0.05, different results could be obtained by choosing a different value of a. However,
the main conclusion should still be valid; statistical testing performed on the realigned datasets
uncovered affected regions that were not identified in the unaligned case as shown from the
global p-values plot. This difference could be partly due to the residual misalignment between
subjects inadvertently canceling out the effect of interest, as coordinates are not overlapping. In
this study, we considered statistical testing at the spatial resolution in the order of magnitude
of one voxel size (1.25 mm in our case), but studying larger bundle segments could be used as a
compromise between averaging data over the whole bundle in order to uncover effects of interest
at the expense of spatial specificity (O’'Donnell, Westin, et al., 2009).

4.5.4 Mapping to 1D space versus registration methods

In the present work, we concentrated on reducing the effect of residual misalignment between
representative streamlines. As tractography is a mandatory step before using our approach, regis-
tration methods for raw dMRI datasets would likely not reduce the misalignment resulting from
streamlines extraction. Some registration methods specifically work directly on the streamlines
or bundles space (e.g. Leemans, Sijbers, et al. (2006)), but the same transformation should be

78



Chapter 4. Reducing variability in along-tract analysis

applied to the underlying 3D volume containing the metric of interest. This is because we work
on metrics extracted from representative streamlines, and not directly in the streamlines space
itself, see e.g. Glozman et al. (2018) and O’Donnell, Daducci, et al. (2017) and references therein
for a review of registration methods in dMRI.

O’Donnell, Westin, et al. (2009) state that “because within a bundle fibers have varying
lengths and their point correspondence is not known a priori, it is not possible to directly av-
erage fiber coordinates to calculate a mean fiber”; care must be taken during the representative
streamline extraction step that is at the core of the along-tract analysis framework. As such, the
required step dictating this possible misalignment is the mapping strategy used to extract the
representative streamline and how its end points are defined. Various schemes have been pro-
posed such as assignment to perpendicular planes (Corouge et al., 2006), variants reducing the
effect of outliers by additionally considering the spatial distance between streamlines (O’Donnell,
Westin, et al., 2009), extracting representative core streamlines with splines (Chamberland, St-
Jean, et al., 2018) or resampling to a common number of points (Colby et al., 2012). All these
choices inevitably lead to differences and a mismatch across subjects after metric extraction, even
if the original underlying anatomy would be perfectly aligned as we have shown in our synthetic
experiments in Fig. 4.7. Assignment and truncation strategies between the common points of
bundles have been explored in Colby et al. (2012) with the authors noting that all compared
methods are generally successful in extracting a meaningful (but slightly different) representa-
tion as they use different strategies and parameters. Close similarities in the extracted metrics
using the representative streamline could explain why 1D misalignment, while still present, had
not been thoroughly investigated previously. Reliably extracting the information from fanning
regions (e.g. CST towards the motor cortex) or from a splitting configuration (e.g. anterior pillars
of the fornix) in a single representative streamline still remains an open problem (Chamberland,
St-Jean, et al., 2018).

4.5.5 Assumptions of the DPR algorithm and limitations of this study

In the present work, we exchanged the classical assumption of 1D spatial correspondence between
points for the assumption of an equal 1D spatial distance between points. This latter requirement
is usually fulfilled with the use of a fixed step size during tractography, but might be void by the
representative streamline extraction. Without loss of generality, we chose to resample each
subjects’ representative streamline a second time to ensure an equal distance 4, between each
point. We advocate resampling to a larger number of points than initially present to reduce
possible complications due to aliasing or using windowing functions for filtering (Stoica and
Moses, 2005). While this theoretically increases the computational complexity of the DPR
algorithm, it also preserves the full spectra when applying Eq. (4.1). This is not a problem in
practice owing to the existence of efficient FFT implementations; our algorithm can realign the
100 HCP subjects in less than 3 seconds on a standard desktop with a 3.5 GHz Intel processor.
The resulting realigned metrics can then be resampled back to approximately one point per unit
voxel size to minimize the effect of multiple comparisons during statistical testing. With the
development of new methods that go beyond fixed step size tractography, such as the use of
compressed streamlines (Rheault et al., 2017), it might be beneficial to avoid this resampling
step for computational reasons after sampling metrics along non regularly spaced streamlines.
Another approach to remove the need of resampling could be to use an FFT implementation
dealing with non-equal sampling of the data (Dutt and Rokhlin, 1993; Scargle, 1989), but such
implementations may not be as widely (and easily) available as the classical equispaced version of
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the FFT algorithm.

Due to the difficulty in reproducing tractography (Maier-Hein et al., 2017), our simulations
on the in vivo datasets were designed around altered versions of already extracted scalar values.
One would however expect true neurodegenerative changes to additionally influence the steps
prior to tractography such as the main orientations extracted from tensors or fODF. The results
we obtained should translate as long as a representative streamline for each bundle of interest can
be reliably delineated for all subjects. Similar recommendations apply if the white matter bundle
of interest is largely affected by disease or altered when compared to the expected overall shape
from a healthy subject. Specific care should also be taken during the prior step of extracting
the representative streamlines in these cases to ensure that relevant portions of the bundles of
interest are present in all subjects (Parker et al., 2016).

Although not considered in the present work, any quantitative diffusion metric such as the
diffusion kurtosis metrics (e.g. mean kurtosis (MK)) (Jensen and Helpern, 2010), the axon di-
ameter (Assaf et al., 2008), or metrics provided by NODDI (Zhang et al., 2012) could be studied
using our proposed framework. In cases of physical alterations of the white matter (e.g. tumors,
lesions), the diffusion metrics themselves may not provide accurate landmarks for realignment
due to differences in tractography when extracting the representative streamline of each subject.
The use of shape descriptors, such as torsion or curvature of the bundles themselves (Leemans,
Sijbers, et al., 2006), could also be employed with DPR instead of diffusion metrics as done in
the present work. These descriptors may also be useful in cases where using a large maximum
displacement threshold may yield false positives detections if the effects are small, see the sup-
plementary materials Section 4.8.3 for examples. In a similar fashion, any other volume (e.g. T1
or T2 relaxometry values (Deoni et al., 2008)) providing anatomical information of interest can
be used once co-registered to each subject’s native diffusion space. Combining the realignment
information from multiple or complementary metrics (e.g. computing their average displace-
ment) may improve the robustness of the DPR framework. When white matter alterations are
affecting the diffusion metrics to an unacceptable extent, the average displacement from these
independent anatomical features (which are presumably less affected by these effects) could be
used to circumvent this issue.

We did not investigate realignment of lateralized bundles (e.g. realignment of the left and
right AF together instead of separately) which can be useful for studying intra-hemispheric
differences between subjects (Catani et al., 2007). Variations between left and right anatomical
locations also implicitly assume that each coordinate in the 1D space is matched against its inter
hemispheric counterpart. To facilitate this mapping between hemispheres, O’'Donnell, Westin,
et al. (2009) proposed to mirror all streamlines from one hemisphere to the other, allowing
a direct correspondence between the subsequently extracted representative streamlines as they
would be effectively identical. However, the 3D volume used to extract the scalar metrics of
interest would possibly be different in each hemisphere. In this context, the realignment could
be done separately for each side, providing different profiles reflecting lateralization.

4.6 Conclusion

In this paper, we developed a new correction strategy, the diffusion profile realignment (DPR),
which is designed to address residual misalignments between subjects in along-tract analysis.
Through simulations on synthetic and in vivo datasets, we have shown how realignment based
on our novel approach can reduce variability at the group level between subjects. Furthermore,
realignment of the in vivo datasets provided new insights and improved sensitivity about the
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location of the induced changes, which could not be completely identified at first when mis-
alignment was present. The DPR algorithm can be integrated in preexisting along-tract analysis
pipelines as it comes just before conducting statistical analysis. It can be used to reveal effects of
interest, which may be hidden by misalignment and has the potential to improve the specificity
in longitudinal population studies beyond the traditional ROI based analysis and along-tract
analysis workflows.

4.7 Appendix: The diffusion profile realignment algorithm

This appendix outlines the diffusion profile realignment (DPR) algorithm. Our implementation
is also freely available at https://github.com/samuelstjean/dpr (St-Jean, 2019) and will be a part
of ExploreDTI (Leemans, Jeurissen, et al., 2009). The synthetic datasets and metrics extracted
along the representative streamlines of the HCP datasets used in this manuscript are also available
(St-Jean, Chamberland, et al., 2018).

To complement Eq. (4.1), the shift needed to maximize the overlap between the vector =
and y is the maximum of the CCF, given by

shift(z, y) = arg max(CCF(z,y)). (4.2)

In practice, 2 and y are discrete and must be both zero-padded sufficiently, that is, zeros are ap-
p y p y. P

pended to each vector and make them artificially longer to prevent border effects when computing
the linear cross-correlation (Stoica and Moses, 2005).
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4.8. Supplementary materials

Algorithm 4.1: The proposed diffusion profile realignment (DPR) algorithm.

Data: Metrics extracted from streamlines discretized (with an equal distance 6, and stationary metrics),
displacement threshold t, percentage of overlap p%
Result: Realigned metrics

Step 1 : Finding a common template;
foreach streamline do

‘ Compute the displacement d with each other streamline using Eq. (4.2);
end

Define the template as the subject which realigns the most streamlines below the threshold t;

foreach streamline do
if |d| < t then
| Realign the streamline unto the candidate template by its displacement d;
else
| Do not touch the streamline and flag it as an outlier;
end
end

Step 2 : Realigning outliers;
foreach outlier do
Compute the new displacement nd between the template, the outlier and each other non outlier;
if min(|/d + nd|) < t then
Realign the streamline unto the template using the new displacement d + nd (see Fig. 4.4);
Add the streamline to the pool of non outliers candidates such that it can now be used;
else
‘ Do not touch the streamline and flag it as an outlier;
end
end

Step 3 : Truncating to overlapping coordinates;

Truncate the realigned metrics to have at least p% of overlapping streamlines;

If outliers are still present from Step 2, (optionally) exclude them from further analysis as they can
not be realigned inside the chosen displacement threshold t;

4.8 Supplementary materials

4.8.1 Realignment of the HCP datasets

Section 4.8.1 presents counterpart results to Fig. 4.9, comparing along-tract averaged profiles
before and after realignment, but instead using a maximally allowed displacement of 5%, 10%
or 20%. Coordinates for the AF are from anterior (coordinate 0) to posterior and the CST are
drawn from inferior (coordinate 0) to superior. In general, the overall mean profile is similar for
every value of the maximally allowed displacement that were tested.

4.8.2 Displacement of the HCP datasets

Section 4.8.2 presents counterpart results to Fig. 4.11 using realignment from other metrics, but
instead using a maximally allowed displacement of 5%, 10% or 20%. Coordinates for the AF
are from anterior (coordinate 0) to posterior and the CST are drawn from inferior (coordinate 0)
to superior. Most of the trends observed previously when the displacement was of 15% are still

valid.

82



Chapter 4. Reducing variability in along-tract analysis

4.8.3 Localized alterations of the HCP datasets

Section 4.8.3 presents counterpart results to Fig. 4.14, but instead using a maximally allowed
displacement of 5%, 10% or 100% (no limit). Unpaired t-test (FDR corrected at @ = 0.05)
with focused alterations of the metrics for each bundle of A) 25% over 1% of the length, B)
50% over 1% of the length, C) 25% over 5% of the length and D) 50% over 5% of the length
are shown. The AF left/right are represented from anterior (coordinate 0) to posterior and the
CST left/right from inferior (coordinate 0) to superior. The p-values are on a log scale along the
average streamline before realignment (dashed red lines) and after realignment (solid blue lines)
with the DPR algorithm. The horizontal dashed black lines indicate p-value = 0.05. In general,
alterations occurring over 5% of the length of the bundle can be detected, whereas small local
changes over 1% of the length are detected only after realignment with the DPR algorithm.
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Figure 4.15: Along-tract averaged profiles (and standard deviation as the shaded area) of the unaligned
(blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling to the
same number of points. These results are obtained by using a maximally allowed displacement of 5%.
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Figure 4.16: Along-tract averaged profiles (and standard deviation as the shaded area) of the unaligned
(blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling to the
same number of points. These results are obtained by using a maximally allowed displacement of 10%.
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Mean profiles before and after realignment
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Figure 4.17: Along-tract averaged profiles (and standard deviation as the shaded area) of the unaligned
(blue) and realigned (green) HCP subjects truncated to 75% of overlap with a final resampling to the
same number of points. These results are obtained by using a maximally allowed displacement of 20%.
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Mean profiles using realignment from all metrics
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Figure 4.18: Along-tract averaged profiles (and standard deviation as the shaded area) of the white
matter fiber bundles (columns) from the HCP datasets after realignment for each studied metric (rows).
These results are obtained by using a maximally allowed displacement of 5%.
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Figure 4.19: Along-tract averaged profiles (and standard deviation as the shaded area) of the white
matter fiber bundles (columns) from the HCP datasets after realignment for each studied metric (rows).
These results are obtained by using a maximally allowed displacement of 10%.
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Mean profiles using realignment from all metrics
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Figure 4.20: Along-tract averaged profiles (and standard deviation as the shaded area) of the white
matter fiber bundles (columns) from the HCP datasets after realignment for each studied metric (rows).
These results are obtained by using a maximally allowed displacement of 20%.
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Figure 4.21: Unpaired t-test before and after realignment for the four bundles. These results are obtained

by using a maximally allowed displacement of 5%.
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Figure 4.22: Unpaired t-test before and after realignment for the four bundles. These results are obtained
by using a maximally allowed displacement of 10%.
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Figure 4.23: Unpaired t-test before and after realignment for the four bundles. These results are obtained
without limiting the allowed maximum displacement. This leads to false effects for the AF right bun-
dles, presumably because structural differences, rather than local alterations, are driving the realignment
process.
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Abstract

Knowledge of the noise distribution in magnitude diffusion MRI images is the cen-
terpiece to quantify uncertainties arising from the acquisition process. The use of
parallel imaging methods, the number of receiver coils and imaging filters applied by
the scanner, amongst other factors, dictate the resulting signal distribution. Accurate
estimation beyond textbook Rician or noncentral chi distributions often requires in-
formation about the acquisition process (e.g. coils sensitivity maps or reconstruction
coeflicients), which is usually not available. We introduce two new automated meth-
ods using moments and maximum likelihood equations of the Gamma distribution to
estimate noise distributions as they explicitly depend on the number of coils, making
it possible to estimate all unknown parameters using only the magnitude data. A rejec-
tion step is used to make the framework automatic and robust to artifacts. Simulations
using stationary and spatially varying noncentral chi noise distributions were created
for two diffusion weightings with SENSE or GRAPPA reconstruction and 8, 12 or
32 receiver coils. Furthermore, MRI data of a water phantom with different combina-
tions of parallel imaging were acquired on a 3T Philips scanner along with noise-only
measurements. Finally, experiments on freely available datasets from a single subject
acquired on a 3T GE scanner are used to assess reproducibility when limited infor-
mation about the acquisition protocol is available. Additionally, we demonstrated the
applicability of the proposed methods for a bias correction and denoising task on an
in vivo dataset acquired on a 3T Siemens scanner. A generalized version of the bias
correction framework for non integer values of N is also introduced. The proposed
framework is compared with three other algorithms with datasets from three vendors,
employing different reconstruction methods. Simulations showed that assuming a Ri-
cian distribution can lead to misestimation of the noise distribution in parallel imag-
ing. Results on the acquired datasets showed that signal leakage in multiband can
also lead to a misestimation of the noise distribution. Repeated acquisitions of in vivo
datasets show that the estimated parameters are stable and have lower variability than
compared methods. Results for the bias correction and denoising task show that the
proposed methods reduce the appearance of noise at high b-value. The proposed al-
gorithms herein can estimate both parameters of the noise distribution automatically,
are robust to signal leakage artifacts and perform best when used on acquired noise
maps.

Keywords: Diffusion MRI, Noise estimation, Parallel acceleration, Gamma distribution, GRA-
PPA, SENSE
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5.1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a noninvasive imaging technique that allows
probing microstructural properties of living tissues. Advances in parallel imaging techniques
(Griswold et al., 2002; Pruessmann et al., 1999), such as accelerated acquisitions (e.g. partial
k-space (Storey et al., 2007), multiband imaging (Moeller et al., 2010; Nunes et al., 2006) and
compressed sensing (Lustig et al., 2007; Paquette et al., 2015)), have greatly reduced the in-
herently long scan time in dMRI. New acquisition methods and pulse sequences in dMRI are
also pushing the limits of spatial resolution while reducing scan time (Holdsworth et al., 2019),
which also affects the signal distribution in ways that are challenging to model. Estimation
of signal distributions deviating from theoretical cases is challenging and oftentimes requires
information such as coil sensitivities or reconstruction matrices. This information may not be
recorded at acquisition time or is even not available from the scanner, making techniques relying
on these parameters difficult to apply in practice. Even though the magnitude signal model is
still valid nowadays, the use of image filters (Dietrich et al., 2008), acceleration methods sub-
sampling k-space (e.g. the SENSE (SENsitivity ENcoding) (Pruessmann et al., 1999), GRAPPA
(GeneRalized Autocalibrating Partial Parallel Acquisition) (Griswold et al., 2002; Heidemann
et al., 2012) or the homodyne detection methods (Noll et al., 1991)) and spatial correlation be-
tween coil elements (Aja-Fernindez, Vegas-Sanchez-Ferrero, et al., 2014; Dietrich et al., 2008)
influence, amongst other factors, the parameters of the resulting signal distribution.

With the recent trend towards open data sharing and large multicenter studies using stan-
dardized protocols (Duchesne et al., 2019; Emaus et al., 2015), differences in hardware, acquisi-
tion or reconstruction algorithms may inevitably lead to different signal distributions. This may
affect large-scale longitudinal studies investigating neurological changes due to these “scanner
effects” (Sakaie, Zhou, et al., 2018) as the acquired data may be fundamentally different across
sites in terms of statistical properties of the signal. Algorithms have been developed to miti-
gate these potential differences (Mirzaalian et al., 2018; Tax et al., 2019), but characterization
of the signal distribution from various scanners is challenging due to the black box nature of
the acquisition process, especially in routine clinical settings. While some recent algorithms for
dMRI are developed to include information about the noise distribution (Collier et al., 2018;
Sakaie and Lowe, 2017), there is no method, to the best of our knowledge, providing a fully au-
tomated way to characterize the noise distribution using information from the magnitude data
itself only. Due to this gap between the physical acquisition process and noise estimation the-
ory, noise distributions are either assumed as Rician (with parameter o, related to the standard
deviation) or noncentral chi (with fixed degrees of freedom N) and concentrate in estimating the
noise standard deviation o, (Koay, Ozarslan, and Pierpaoli, 2009; Tabelow et al., 2015; Veraart
etal.,, 2016). This assumption inevitably leads to misestimation of the true signal distribution as
N and o, are interdependent for some reconstruction algorithms (Aja-Fernindez, Brion, et al.,
2013). Reconstruction filters preserving only the real part of the signal also cause N to deviate
from the Rician noise distribution, producing instead a half-Gaussian signal distribution (Diet-
rich et al., 2008). Misestimation of the appropriate signal distribution could impact subsequent
processing steps such as bias correction (Koay, Orzarslan, and Basser, 2009), denoising (St-Jean,
Coupé, et al., 2016) or diffusion model estimation (Landman et al., 2007; Sakaie and Lowe,
2017; Zhang et al., 2012), therefore negating potential gains in statistical power from analyzing
datasets acquired in different centers or from different vendors.

In this work, we propose to estimate the parameters o, and N from either the magnitude data
or the acquired noise maps by using a change of variable to a Gamma distribution Gamma(N, 1)

99

Chap. 5



5.2. Theory

(Koay, Ozarslan, and Pierpaoli, 2009), whose first moments and maximum likelihood equations
directly depend on N. This makes the proposed method fast and easy to apply to existing
data without additional information, while being robust to artifacts by rejecting outliers of the
distribution. Preliminary results of this work have been presented at the annual meeting of the
MICCAI (St-Jean, De Luca, Viergever, et al., 2018). This manuscript now contains additional
theory, simulations including signal correlations and parallel acceleration, and experiments on
phantoms and in vivo datasets acquired with parallel and multiband acceleration. As example
applications, we perform bias correction and denoising on an in vivo dataset using the estimated
distribution derived with each algorithm.

5.2 Theory

In this section, we introduce the necessary background on the Gamma distribution, its moments
and maximum likelihood equations. Expressing the signal with a Gamma distribution highlights
equations which can be solved to estimate parameters a, and N.

5.2.1 Probability distribution functions of MRI data

To account for uncertainty in the acquisition process, the complex signal measured in k-space
by the receiver coil array can be modeled with a separate additive zero mean Gaussian noise for
each channel with identical variance 0'3 (Gudbjartsson and Patz, 1995). The signal acquired from
the real and imaginary part of each coil in a reconstructed magnitude image can be expressed as

(Constantinides et al., 1997)
N
my = Zm%n—ﬁ—mfm (5.1)
n=1

where mp,, and m,, are the real and imaginary parts of the signal, respectively, as measured
by coil number n, N is the number of degrees of freedom (which can be up to the number of
coils in the absence of accelerated parallel imaging) and m , is the resulting reconstructed signal
value for a given voxel. The magnitude signal can therefore be approximated by a noncentral chi
distribution and has a probability density function (pdf) given by (Dietrich et al., 2008; Koay,
Orzarslan, and Basser, 2009)

m¥ —(m? +n?) mn
pdf(m|7} O'g,N) = W exp ( [N71 ? dm, (52)

207 :

where m is the noisy signal value for a given voxel, 7 is the (unknown) noiseless signal value, o,
is the Gaussian noise standard deviation, NV is the number of degrees of freedom and I, () is the
modified Bessel function of the first kind.

With the introduction of multiband imaging and other modern acquisition methods, param-
eters estimation of the magnitude data is not straightforward anymore. The number of degrees
of freedom N, which is related to the number of receiver coils, likely deviates from heuristic
estimation based on the actual number of coils as N also depends on the reconstruction tech-
nique employed (Sotiropoulos et al., 2013). The pdf of the magnitude data can be modeled by
considering spatially varying degrees of freedom N, ;; and standard deviation o, (also called
the effective values) and we generally have N, < N, (Aja-Fernandez, Vegas-Sinchez-Ferrero,
et al., 2014; Dietrich et al., 2008).
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The noncentral chi distribution includes the Rician (N = 1), the Rayleigh (N =1, = 0)
and the central chi distribution (n = 0) as special cases (Dietrich et al., 2008). The probability
density function (pdf) of the central chi distribution is given by

m2N-1 2
pdflmln =0,0,,N) = N TN exp ( >dm7 (5.3)

2
20g

where T'(z) is the Gamma function. With a change of variable introduced by (Koay, Ozarslan,
and Pierpaoli, 2009), Eq. (5.3) can be rewritten as a Gamma distribution Gamma(N,1) with
t= m2/2(7§, dt = m/(rgdm which has a pdf given by

PAfitIN) = ﬁt”l exp (—t)dt. (5.4)

Eq. (5.4) only depends on N, which can be estimated from the sample values.

5.2.2 Parameter estimation using the method of moments and maximum likelihood

The method of moments The pdf of Gamma(a, ) is defined as

mafl

I(a)p

paflz|a, B) = exp (—z/B)dz (5.5)

. 2 .
and has mean p1.,,,,,, and variance o;,,.,., given by

u’gamma = OC,B, Usamma = 0[62. (56)

Another useful identity comes from the sum of Gamma distributions, which is also a Gamma
distribution (Weisstein, 2017) such that if ¢, ~ Gamma(a;, 8), then

K K
Zti ~ Gamma (Z ai,ﬂ> . (5.7)
i=1 i=1

From Eq. (5.6), we obtain that the mean and the variance of the distribution Gamma(N, 1) are
in fact equal and of value N. That is, we can estimate the Gaussian noise standard deviation
o, and the number of coils N' from the sample moments of the magnitude images themselves,
provided we can select voxels without any signal contribution where 7 = 0. Firstly, o, can be

estimated from Eq. (5.6) as

v
1 szl mg 1 2
%9 = ﬁJ ;T2 G8

where V' is the number of identified noise only voxels and m, the value of such a voxel, see
Section 5.7.1 for the derivations. Once o, is known, N can be estimated from the sample mean
of those previously identified voxels as

\4

1
N==St, = —3 m2 5.9
y 2t Vo2 9)

v=1
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Derivations of Eqgs. (5.8) and (5.9) are detailed in Section 5.7.1.

Maximum likelihood equations for the Gamma distribution Estimation based on the method
of maximum likelihood yields two equations for estimating « and 3. Rearranging the equations
for a Gamma distribution will give Eq. (5.9) and a second implicit equation for N that is given

by (Thom, 1958)
log(B) + Z logt,, (5.10)

where 1(z) = - log(T'(x)) is the digamma function. For the special case Gamma(N, 1), we can
rewrite Eq. (5.10) as

Z log(m /20 (5.11)

Combining Eq. (5.9) and Eq. (5.11), we also have an implicit equation to find o,

(QVO'ZZ ) Zlog 2/20 = Zlog log(20) (5.12)

v=1 v=1

As Egs. (5.11) and (5.12) have no closed form solution, they can be solved numerically e.g. using
Newton’s method. See Section 5.7.1 for practical implementation details.

5.3 Material and Methods

5.3.1 Automated and robust background separation

The equations we presented in Section 5.2.1 are only valid when n = 0 by construction and as-
sume that each selected voxel m, belongs to the same Gamma distribution. Following a method-
ology similar to (Koay, Ozarslan, and Pierpaoli, 2009), we assume that each 2D slice with the
same spatial location belongs to the same statistical distribution throughout each 3D volume.
This practical assumption allows selecting a large number of noise only voxels for computing
statistics as well as identifying (and subsequently discarding) potential slice acquisition artifacts
that may affect one volume, but not the rest of the acquisition. Using Eq. (5.7), the sum of all
DWTs can be used to separate the voxels belonging to the Gamma distribution Gamma(K N, 1),
where K is the number of acquired DWTs, from the voxels not in that specific distribution with
a rejection step using the inverse cumulative distribution function!(cdf). In the particular case
Gamma(K N, 1) at a probability level p, the inverse cdf is icdfla, p) = P~'(a, p), where P!
is the inverse lower incomplete regularized gamma function?. This relationship can be used to
identify potential outliers, such as voxels which contain non background signal, by excluding any
voxel m, whose value does not fall between A_ = icdflar, p/2) and A, = icdfla, 1 — p/2), i.e. m,
is an outlier if m, < A_ or m, > A_.

To provide a better understanding of the change of variable ¢ = m? /207, Fig. 5.1 shows the
histogram for a synthetic dataset at b = 3000 s/mm?, which will be detailed later in Section 5.3.2.
Voxels belonging to the background are easily separated in terms of the Gamma distribution

IThe inverse cdf is also known as the quantile function.
2As there is no analytical solution to the inverse cdf of a Gamma distribution, one can use the function
gaminv(p, o, 8 = 1) in Matlab or InverseGammaRegularized(cr, 1 — p) in Mathematica to numerically estimate it.
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after transformation, thus allowing estimation of parameters from voxels truly belonging to the
noise distribution, see Section 5.7.3 and (St-Jean, De Luca, Viergever, et al., 2018) for technical
details. Our implementation of the proposed algorithm is freely available® (St-Jean, De Luca,
Tax, et al., 2019).
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Figure 5.1: Histogram of the synthetic data at b = 3000 s/mm? A) before the change of variable to a
Gamma distribution and B) after the change of variable to a Gamma distribution for N =1 and N = 12.
Summing all K DWIs together separates the background voxels from the rest of the data, which follows
a Gamma distribution Gamma(K N, 1) by construction. In C), a view of the left part from B) with the
theoretical histograms of Gamma distributions from N = 1 up to N = 12. The black dotted lines represent
the lower bound A_ to the upper bound X, , with p =0.05, N,,;, =1 and N, .. = 12. This broad search
covers the background voxels in both cases while excluding remaining voxels which do not belong to the
distribution Gamma(K N, 1).

3 https://github.com/samuelstjean/autodmri
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5.3. Material and Methods

5.3.2 Datasets and experiments

Synthetic phantom datasets Two synthetic phantom configurations from previous dMRI chal-
lenges were used. The first simulations were based on the ISBI 2013 HARDI challenge4 using
phantomas (Caruyer et al., 2014). We used the given 64 gradient directions to generate two
separate noiseless single-shell phantoms with either b = 1000 s/mm? or b = 3000 s/mm? and
an additional b = 0 s/mm? volume. The datasets were then corrupted with Rician (N = 1)
and noncentral chi noise profiles (N = 4,8 and 12), both stationary and spatially varying, at a
signal-to-noise ratio (SNR) of 30 according to

~ N I 2
I= J Z (ﬁ +T€,L-> + (7¢;)?, where ¢;,¢; ~ N(O,Ug), (5.13)

i=0,j=0

where I is the noiseless volume, I is the resulting noisy volume, 7 is a mask for the spatial
noise pattern, N(0,07) is a Gaussian distribution of mean 0 and variance o = (m/SNR)* and

m=(1/V Z:;l m,) with m,, each voxel of the b = 0 s/mm? image inside the white matter. In
the stationary noise case, 7 is set to 1 so that the noise is uniform. For the spatially varying
noise case, 7 is a sphere with a value of 1 in the center up to a value of 1.75 at the edges of the
phantom, thus generating a stronger noise profile outside the phantom than for the stationary
noise case. Since all datasets are generated at SNR 30, the noise standard deviation o, is the
same even though the b-value or number of coils N is different, but the magnitude standard
deviation o,, is lower than o,.

The second set of synthetic experiments is based on the ISMRM 2015 tractography chal-
lenge (Maier-Hein et al., 2017), which consists of 25 manually delineated white matter bun-
dles. Ground truth data consisting of 30 gradient directions at either b = 1000 s/mm? or
b = 3000 s/mm? and 3 b = 0 s/mm? images at a resolution of 2 mm isotropic was generated
using fiberfox (Neher et al., 2014) without artifacts or subject motion. Subsequent noisy datasets
were created at SNR 20 by simulating an acquisition with 8, 12 and 32 coils using the parallel
MRI simulation toolbox® with SENSE (Pruessmann et al., 1999) or GRAPPA (Griswold et al.,
2002) reconstructions with an acceleration factor of R = 2. The SENSE simulated datasets also
included spatial correlations between coils of p = 0.1, increasing the spatially varying effective
noise standard deviation o, and keeping the signal Rician distributed (V= 1). For the GRAPPA
reconstructed datasets, 32 calibrating lines were sampled in the k-space center, neglecting spatial
correlations (p = 0) as it is a k-space method (Aja-Fernindez and Tristin-Vega, 2015). The re-
sulting effective values of N and o, will be both spatially varying. We additionally generated 33
synthetic noise maps per dataset by setting the underlying signal value to = 0 and performing
the reconstruction using the same parameters as the DWIs. All generated datasets are available
online (St-Jean, De Luca, Tax, et al., 2018).

Acquired phantom datasets We acquired phantom images of a bottle of liquid on a 3T Philips
Ingenia scanner using a 32 channels head coil with a gradient strength of 45 mT/m. We varied the
SENSE factor from R = 1,2 or 3 and multiband acceleration factors from no multiband (MB),
MB =2 or MB = 3 while fixing remaining acquisition parameters to investigate their influence
on the resulting signal distributions, resulting in 9 different acquisitions. The datasets consist
of 5b = 0 s/mm? volumes and 4 shells with 10 DWIs each at b = 500 s/mm?, b = 1000 s/mm?,

4http ://hardi.epfl.ch/static/events/2013_ISBI/
5 https://mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
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b = 2000 s/mm? and b = 3000 s/mm? with a voxel size of 2 mm isotropic and TE / TR = 135
ms / 5000 ms, A/§ = 66.5 ms / 28.9 ms. Six noise maps were also acquired during each of the
experiments by disabling the RF pulse and gradients of the sequence. The acquired phantom
datasets are also available (St-Jean, De Luca, Tax, et al., 2018).

In vivo datasets A dataset consisting of four repetitions of a single subject® was also used
to assess the reproducibility of noise estimation without a priori knowledge (Poldrack et al.,
2015). This is the dataset we previously used in our MICCAI manuscript (St-Jean, De Luca,
Viergever, et al., 2018). The acquisition was performed on a GE MR750 3T scanner at Stanford
university, where a 3x slice acceleration with blipped-CAIPI shift of FOV/3 was used, partial
Fourier 5/8 with a homodyne reconstruction and a minimum TE of 81 ms. Two acquisitions
were made in the anterior-posterior phase encode direction and the two others in the posterior-
anterior direction. The voxelsize was 1.7 mm isotropic with 7 b = 0 s/mm? images, 38 volumes
at b = 1500 s/mm? and 38 volumes at b = 3000 s/mm?. As the acquisition used a homodyne
filter to fill the missing k-space, this should lead in practice to a half Gaussian noise profile, a
special case of the noncentral chi distribution with N = 0.5, due to using only the real part of
the signal for the final reconstruction (Chap. 13 Bernstein et al., 2004; Dietrich et al., 2008;
Noll et al., 1991).

In addition, one dataset acquired on a 3T Siemens Connectom scanner from the 2017 MIC-
CAI harmonization challenge’ consisting of 16 b = 0 s/mm? volumes and 3 shells with 60 DW1s
each at b = 1200 s/mm?, b = 3000 s/mm? and b = 5000 s/mm? was used (Tax et al., 2019). The
voxel size was 1.2 mm isotropic with a pulsed-gradient spin-echo echo-planar imaging (PGSE-
EPI) sequence and a gradient strength of 300 mT/m. Multiband acceleration MB = 2 was used
with GRAPPA parallel imaging with R = 2 and an adaptive combine reconstruction employing
a 32 channels head coil. Other imaging parameters were TE / TR = 68 ms / 5400 ms, A/6 =
31.1 ms / 8.5 ms, bandwidth of 1544 Hz/pixel and partial Fourier 6/8.

Noise estimation algorithms for comparison To assess the performance of the proposed meth-
ods, we used three other noise estimation algorithms previously used in the context of dMRI.
Default parameters were used for all of the algorithms as done in St-Jean, De Luca, Viergever,
et al. (2018). The local adaptive noise estimation (LANE) algorithm (Tabelow et al., 2015) is
designed for noncentral chi signal estimation, but requires a priori knowledge of N. Since the
method works on a single 3D volume, we only use the b = 0 s/mm? image for all of the exper-
iments to limit computations as the authors concluded that the estimates from a single DWI
are close to the mean estimate. We also use the Marchenko-Pastur (MP) distribution fitting on
the principal component analysis (PCA) decomposition of the diffusion data, which is termed
MPPCA (Veraart et al., 2016). Finally, we also compare to the Probabilistic Identification and
Estimation of Noise (PIESNO) (Koay, Ozarslan, and Pierpaoli, 2009), which originally proposed
the change of variable to the Gamma distribution that is at the core of our proposed method.
PIESNO requires knowledge of N (which is kept fixed by the algorithm) to iteratively estimate
o, until convergence by removing voxels which do not belong to the distribution Gamma(N, 1)
for a given slice. We set p = 0.05 and I = 50 for the initial search of o, in PIESNO and our
proposed method, with additional parameters set to N,,;, = 1 and N,,,. = 12 for all cases.
When estimating distributions from noise maps, we compute values in small local windows of

6https: //openfmri.org/dataset/ds000031
7https: //www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-
and-cross-protocol-diffusion-MRI-data-harmonisation
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5.4. Results

size 3 x 3 x 3. To the best of our knowledge, ours is the first method which estimates both o,
and N jointly without requiring any prior information about the reconstruction process of the
MRI scanner. Because PIESNO and LANE both require knowledge of the value of N, we set
the correct value of NV for the spatially varying noise phantom experiments and N = 1 for the
remaining experiments as suggested by Tabelow et al. (2015) when N is unknown. We quantita-
tively assess the performance of each method on the synthetic datasets by measuring the standard
deviation of the noise and the relative error inside the phantom against the known value of 7,
computed as

relative error = 100 x (0’

~ ) g (5.14)

As PIESNO and our proposed methods estimate a single value per slice whereas MPPCA and
LANE provide estimates from small spatial neighborhood, we report the mean value and the
standard deviation estimated inside the synthetic phantoms on each slice. For the acquired
phantom datasets, we report the estimated noise distributions using both the DWIs and the
measured noise maps for all 9 combinations of parallel imaging parameters that were acquired.
For the in vivo datasets, we report once again the noise distributions estimated by each method.
The reproducibility of the estimated distributions is assessed on the four GE datasets while the
Connectom dataset is used to evaluate the performance of each compared algorithm on a bias
correction and denoising task. In addition, we report N as estimated by our proposed methods
for all cases.

Yestimated

Bias correction and denoising of the Connectom dataset In a practical setting, small misesti-
mation in the noise distribution (e.g. spatially varying distribution vs nature of the distribution)
might not impact much the application of choice. We evaluate this effect of misestimation on
the Connectom dataset with a bias correction and a denoising task. Specifically, we apply non-
central chi bias correction (Koay, Ozarslan, and Basser, 2009) on the in vivo dataset from the
CDMRI challenge using Eq. (5.37). The algorithm is initialized with a spherical harmonics
decomposition of order 6 (Descoteaux et al., 2007) as done in St-Jean, Coupé, et al. (2016).
The data is then denoised using the non local spatial and angular matching (NLSAM) algo-
rithm with 5 angular neighbors where each b-value is treated separately (St-Jean, Coupé, et al.,
2016). Default parameters of a spatial patch size of 3 x 3 x 3 were used and the estimation of
o, as computed by each method was given to the NLSAM algorithm. For MPPCA, LLANE and
PIESNO, a default value of N = 1 was used and the value of N as computed by the moments
and maximum likelihood equations for the proposed methods. The bias correction algorithm
was also generalized for non integer values of NV as detailed in Section 5.7.2.

5.4 Results

We show here results obtained on the phantoms and in vivo datasets. The first set of simulations
uses a sum of square reconstruction with stationary and spatially varying noise profiles. The sec-
ond set of simulations includes SENSE and GRAPPA reconstructions, resulting in both spatially
varying signal distribution profiles. Finally, the distributions estimated by each algorithm for
the in vivo dataset are used for a bias correction and denoising task.

5.4.1 Synthetic phantom datasets

Simulations with a sum of squares reconstruction  Fig. 5.2 shows results from simulations with
stationary and spatially varying noise profiles for all datasets as estimated inside the phantom. For
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stationary noise profiles with N unknown, estimation of & is the most accurate for the proposed
methods with an error of about 1%, followed by MPPCA making an error of approximately 5%
and LANE of 15%. The error of PIESNO increases with the value of N, presumably due to
misspecification in the signal distribution, whereas MPPCA and LANE are both stable in their
estimation with increasing values of N. The proposed methods using equations based on the
moments and maximum likelihood recovers the correct value of o, in all cases with the lowest
variance across slices, indicating that the estimated value of o is similar in all slices as expected.
The same behavior is observed for PIESNO when N = 1, but the estimated o, is larger than
the correct value by two to three times when N is misspecified. In the spatially varying noise
case where N is known, the moments, maximum likelihood equations and PIESNO all perform
similarly with approximately 2% of error. LANE generally outperforms MPPCA except for the
N = 12 case, but still misestimates o, by approximately 15% and 25% respectively. Only the
proposed methods and MPPCA are independent of correctly specifying N. Finally, Fig. 5.3
shows the estimated values of N by the proposed methods. Estimation generally follows the
correct value, regardless of misestimation of o,
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Figure 5.2: Percentage of error when the real value of N is known and o, is constant (in A)) and N is
known with o, spatially varying (in B)) with the mean (solid line) and standard deviation (shaded area).
All methods underestimate spatially varying o, except for LANE with N = 12 which overestimates it
instead. On average, all methods are tied at around 5% of error with MPPCA reaching approximately
25% of error. Of interesting note, the proposed methods are tied with PIESNO when the correct value
of N is given to the latter, but do not require an estimate of N, which is now an output instead of a
prerequisite.

Simulations with parallel imaging Fig. 5.4 shows the estimated values of o, from a SENSE re-
construction and Fig. 5.5 shows the results for the GRAPPA reconstructed datasets. For SENSE,
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Figure 5.3: Estimated value of N using equations from the moments (top) and with maximum likelihood
(bottom) for the proposed methods. Even for the spatially variable case where o, is slightly underes-
timated, the estimated values of N are stable and correspond to the real values used in the synthetic
simulations in every case.

estimation using noise maps is the most precise for both proposed methods and PIESNO where
the average error is around 0, followed by LANE when using DWIs as the input which results
in 10% of overestimation. MPPCA generally underestimates o, by around 15% for data at
b = 1000 s/mm? and 30% for data at b = 3000 s/mm?*. LANE instead overestimates when using
DWIs and underestimates o, when using noise maps and knowing the correct value of N = 1.
The proposed methods (the moments and maximum likelihood equations) and PIESNO are
performing similarly, but PIESNO requires knowledge of N = 1. Estimation is also more
precise for the three methods using the Gamma distribution (moments, maximum likelihood
and PIESNO) than those using local estimations (MPPCA and LANE) and closest to the true
values when using noise maps. In the case of GRAPPA, results are similar to the SENSE exper-
iments with the exception of MPPCA being more precise than the compared methods for the
b = 1000 s/mm? case and performs equally well at b = 3000 s/mm? as the proposed methods
with an average error of about 20%. Results using LANE are similar with increasing number
of coils when assuming N = 1, while the estimated value from PIESNO also increases with the
number of coils as previously seen in Fig. 5.2. In this case, LANE overestimates o, by around
50% when using DWTIs, but performs similarly to MPPCA when estimating o, from the noise
maps. Estimation from noise maps using the moments or maximum likelihood equations is
the most precise in all cases. The error of PIESNO increases with N as seen in Fig. 5.5 panel
C). This is caused by mistakenly including gray matter voxels of low intensity in the estimated
distribution while they are correctly excluded automatically by the proposed methods. Finally,
Fig. 5.6 shows the estimated values of N, using the datasets from Figs. 5.4 and 5.5 by the
proposed methods. For the SENSE case, the true value is a constant N = 1 by construction and
the estimated values by both algorithms are on average correct with the maximum likelihood
equations having the lowest variance. In the case of GRAPPA, values of N vary spatially inside
the phantom and depend on the per voxel signal intensity, just as o, does in Fig. 5.5. This leads
to some overestimation when only background voxels are considered, with the best estimation
obtained when using the noise maps. For simulations using 8 and 12 coils, estimated values of
N are, in general, following the expected values. However, the spatially varying pattern can not
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be fully recovered as the correct value of N depends on the true signal intensity 7 in each voxel,

which is not present when collecting noise only measurements.

A) Estimation of g, for SENSE B) Estimation of g, for SENSE
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Figure 5.4: Estimation of the noise standard deviation o, (in A) and the percentage error (in B) inside
the phantom only for each method using a SENSE reconstruction with 8, 12 or 32 coils. The left columns
(basis = DWIs) shows estimation using all of the DWIs, while the right column (basis = noise maps)
shows the estimated values from synthetic noise maps. Results for b = 1000 s/mm? are on the top row,
while the bottom row shows results for the b = 3000 s/mm? datasets. Figure C) shows the spatially
estimated values of o, using the b = 3000 s/mm? dataset with 32 coils for a single slice. The top row
shows the results from the true distribution and local estimation as done by MPPCA and LANE. The
general trend shows that even though MPPCA and LANE misestimate o, they still follow the spatially
varying pattern (lower at edges with the highest intensity near the middle) from the correct values. In the
bottom row, voxels identified as belonging to the same distribution Gamma(N, 1) are overlaid in yellow
over the sum of all DWIs. Note how voxels containing signal from the DWIs are excluded by all three
methods.
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A) Estimation of 0, for GRAPPA B) Estimation of g, for GRAPPA
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Figure 5.5: Estimation of the noise standard deviation o, (in A) and the percentage error (in B) inside
the phantom only for each method using a GRAPPA reconstruction with 8, 12 or 32 coils, using the same
conventions as Fig. 5.4. Figure C) shows the spatially estimated values of o, using the b = 3000 s/mm?
dataset with 32 coils for a single slice. The top row shows the true value of o, and the spatial estimation
from MPPCA and LANE. There is once again a misestimation for both methods while following the
correct spatially varying pattern. In the bottom row, voxels identified as belonging to the same distribution
Gamma(N, 1) are overlaid in yellow over the sum of all DWIs. Note how PIESNO mistakenly selects some
low intensity voxels belonging to the gray matter, in addition to all of the voxels in the background, which
causes an overestimation of o, with a fixed value of N = 1. Both proposed methods instead select voxels
with small variations in intensity as belonging to the same distribution without mistakenly selecting gray
matter voxels.
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A) Estimation of N for SENSE B) Estimation of N for GRAPPA
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Figure 5.6: The estimated values of N for SENSE (left column) and GRAPPA (right column) for the
b = 1000 s/mm? (first row of boxplots) and b = 3000 s/mm? (second row of boxplots) datasets. The
left column shows results computed from the automatically selected background voxels (basis = DWIs),
while the right column shows local estimation using noise maps (basis = noise maps). In A) and B), the
boxplot of N inside the phantom for the SENSE/GRAPPA algorithm with a spatial map of N shown in
C) and D) computed using the noise maps from the b = 3000 s/mm? datasets.

5.4.2 Acquired phantom datasets

Fig. 5.7 shows the estimated values of o, for all methods with a SENSE acceleration of rate
R = 1,2 and 3 with multiband imaging at acceleration factors of MB = 2, MB = 3 or deactivated
in panel A). Results show that o, increases with R and is higher when MB = 3 for R fixed,
even if in theory o, should be similar for a given R and increasing MB. Panel C) shows the
estimated values of o, when using noise maps as the input for R = 3 and MB = 3. As in the
synthetic experiments, MPPCA and LANE have the lowest estimates for o, with PIESNO and
the proposed methods estimating higher values. Since the correct value is unknown, a reference
sample slice of a noise map is also shown. When compared to values from the measured noise
map, estimated values of o, are approximately fivefold lower for MPPCA, four times lower for
LANE and around half for the other methods. Estimation on the noise maps yields a value
of around N = 1 for both proposed methods as seen in panels B) and E), irrespective of the
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acceleration used. In the case of estimation using the DWIs, the range of estimated values is
larger and increases at acceleration factors of MB = 2 and R = 2 or 3.

Estimation of d for the scanned phantom B Estimation of N for the scanned phantom
A SENSE= 1 SENSE =2 SENsE=3 SENSE=1 SENSE =2 SENSE =3
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Figure 5.7: Estimation of noise distributions for the scanned phantom datasets inside a small ROI. Large
outliers above the 95th percentile were removed to not skew the presented boxplots. In A), the estimation
of the noise standard deviation o, for each method using DWIs (top row) and using noise maps (bottom
row). Each column shows an increasing SENSE factor, where o increases (according to theory) with the
square root of the SENSE factor. The different hues show an increasing multiband factor, which should
not influence the estimation of o,. For the case MB = 3, there may be signal leakage to adjacent slices,
which would increase the measured values of o, even when the estimation uses only noise maps. In B),
boxplots for the values of N estimated by both proposed methodologies for the experiments shown in A).
Estimated values using noise maps are always close to 1 on average while estimations using DWIs seems
to be affected by the possible signal leakage inherent to the use of multiband imaging. In C), an axial
slice of a noise map and estimated values of o, by all methods for the case R = 3 and MB = 3, which
is the highest rate of acceleration from all of the investigated cases. Note the different scaling between
the top and bottom row as MPPCA and LANE estimates of o, are two to three times lower than other
methods. In D), a b = 0 s/mm? image of the phantom and spatially estimated values of o, for MPPCA
and LANE. Note how some signal leakage (orange arrows) is affecting the b = 0 s/mm? volume due to
using MB = 3. In E), location of the spherical ROI used for the boxplots overlaid on a noise map and
spatially estimated values of N for both proposed methods. As less voxels are available near the borders
of the phantom, estimating the noise distributions parameters results in lower precision.

5.4.3 In vivo datasets

Multiple datasets from a single subject Fig. 5.8 shows the estimated value of o, on four repe-
titions of the GE datasets for each method as computed inside a brain mask. The values from a
b = 3000 s/mm? volume (including background) is also shown as a reference for the values present
at the highest diffusion weighting in the dataset. All methods show good reproducibility, as their
estimates are stable across the data. The value of N as computed by our proposed methods is
also similar for all datasets with the median at N = 0.45 for the moments and N = 0.49 for the
maximum likelihood equations. This corresponds to a half Gaussian distribution as would be
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obtained by a real part magnitude reconstruction (Dietrich et al., 2008). However, LANE recov-
ered the highest values of o, amongst all methods with a large variance and a median higher than
the b = 3000 s/mm? values, which might indicate overestimation in some areas. The median of
MPPCA and the proposed methods are similar, while PIESNO estimates of o, are approximately
two times lower. This could indicate that specifying N = 1 was incorrect for these datasets, as
PIESNO identified about 10 noise only voxels.

Fig. 5.9 shows an axial slice around the cerebellum and the top of the head which are cor-
rupted by acquisition artifacts likely due to parallel imaging. Voxels containing artifacts were
automatically discarded by both methods, preventing misestimation of o, and N. The values
computed from these voxels also offer a better qualitative fit than assuming a Rayleigh distribu-
tion or selecting non-brain data. We also timed each method to estimate o, on one of the GE
datasets using a standard desktop computer with a 3.5 GHz Intel Xeon processor. The runtime
to estimate o, (and N) was around 5 seconds for the maximum likelihood equations, 9 seconds
for the moments equations, 11 seconds for PIESNO, 3 minutes for MPPCA and 18 minutes for
LANE.

A) Estimated g for the GE datasets Estimated N for the GE datasets
st = eanno ) 0.500 X . . —_—
b 0475
1.00 et
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5 z
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Algorithm Algorithm
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Figure 5.8: Estimation of the noise profiles on four repetitions of a single subject from a GE scanner. In
A), the baseline signal values of a b = 3000 s/mm? volume and estimated values of ¢, for all methods
inside a brain mask and B) estimated values of N by the proposed methods are shown. Note that the
values for LANE and the b = 3000 s/mm? volume were truncated at the 99 percentile to remove extreme
outliers. In C), an axial slice of a b = 3000 s/mm? image from one dataset and the estimated values of
o, for MPPCA and LANE. For the proposed methods and PIESNO, a mask of the identified background
voxels (in yellow) overlaid on the data.

Estimation with a Connectom dataset  Fig. 5.10 shows in A) the estimated values of o, inside
a brain mask and in B) the values of N computed by the proposed methods. Estimated values
of o, vary by an order of magnitude between the different methods. In the case of MPPCA and
LANE, the median of the estimates is higher than the reference b = 5000 s/mm? data, while
PIESNO and the proposed methods estimate values lower than the reference and have lower
variability in their estimated values. For the estimation of N, recovered values are distributed
close to 1 as is expected from an adaptive combine reconstruction providing a Rician distribution.
Values estimated with the maximum likelihood equations have a lower variability than with the
moments equations. In C), the top row shows the b = 5000 s/mm? volume and spatial maps of
o, as estimated by MPPCA and LANE. The bottom row shows voxels identified as pure noise
(in light purple) using the moments, the maximum likelihood equations and PIESNO. Ghosting
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Figure 5.9: An axial slice in the cerebellum from one of the GE datasets. Voxels identified in A) as
noise only (yellow) are free of artifacts in a single slice in B) or along the sum of all volumes in C). In
D), the normalized density histogram using the selected voxels from A) (green) fit well a chi distribution
(black dashed lines), while assuming a Rayleigh distribution (red dashed lines) or using all non brain voxels
(orange) leads to a worse visual fit.

artifacts are excluded, but presumably affect estimation using the entire set of DWIs shown in
the top row. Fig. 5.11 shows in A) the signal intensity after applying bias correction (left column)
and after denoising (right column) for each volume ordered by increasing b-value. The top row
(resp. bottom row) shows the mean (resp. standard deviation) as computed inside a white and
gray matter mask. The mean signal decays with increasing b-value as expected, but the standard
deviation of the signal does not follow the same trend in the cases of LANE. After denoising,
the mean signal and its standard deviation decays once again as for the original data. Panel B)
shows the average DWT at a given b-value for the original dataset and after denoising using the
noise distribution from each method. Results are similar for all methods for the b = 0 s/mm?
datasets, but the overestimation of o, by LANE produces missing values in the gray matter
for b = 3000 s/mm? and b = 5000 s/mm?®. In general, averaging reduces the noise present at
b = 0 s/mm? and b = 1200 s/mm? while only denoising is effective at b = 3000 s/mm? and
b = 5000 s/mm?. At b = 5000 s/mm?, the MPPCA denoised volume is of lower intensity than
when obtained by the moments, maximum likelihood equations or PIESNO. This is presumably
due to LANE and MPPCA estimating higher values of o, than the three other methods. Finally,
panel C) shows the absolute difference between the or1g1nal and the denoised dataset obtained
by each method. At b = 5000 s/mm?, LANE removes most of the signal in the gray matter
mistakenly due to overestimating o,. Other methods perform comparably well on the end result,
despite estimates of o, of different magnitude.

5.5 Discussion

We have shown how a change of variable to a Gamma distribution Gamma(N,1) can be used
to robustly and automatically identify voxels belonging only to the noise distribution. At each
iteration, the moments (Egs. (5.8) and (5.9)) and maximum likelihood equations (Egs. (5.11)
and (5.12)) of the Gamma distribution can be used to compute the number of degrees of freedom
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A) Estimation of the noise standard deviation B) Estimation of N
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Figure 5.10: Estimation of noise distributions for the Connectom dataset. In A), signal distribution of
the original data and noise standard deviation a, for all methods, where data above the 99th percentile
for the b = 5000 s/mm? volume and LANE were discarded. In B), values of N as estimated using the
moments (in red) and by maximum likelihood (in purple). In C) on the top row, a b = 5000 s/mm?
volume and spatial estimation of o, as measured by MPPCA and LANE. On the bottom row, voxels
identified as containing only noise (in white) by the moments, maximum likelihood and PIESNO overlaid
on top of the sum of the b = 0 s/mm? volumes. Note how each algorithm identifies different voxels, while
automatically ignoring voxels belonging to the data or contaminated with signal leakage from multiband
imaging.

N and the Gaussian noise standard deviation o, relating to the original noise distribution. Voxels
not adhering to the distribution are discarded, therefore refining the estimated parameters until
convergence. One of the advantage of our proposed methods is that no a priori knowledge is
needed from the acquisition or the reconstruction process itself, which is usually not stored
or hard to obtain in a clinical setting. Results from Section 5.4.1 show that we can reliably
estimate parameters from the magnitude data itself in the case of stationary distributions. For
spatially varying distributions without parallel acceleration, the proposed methods achieve an
average relative error of approximately 10% when estimating o,, which is equal or better than
the other methods compared in this work. Estimated values of N are around the true values,
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Figure 5.11: Bias correction and denoising of the Connectom dataset from the noise distributions es-
timated by each method. In A), the left column (resp. right column) shows the result of noncentral
chi bias correction (resp. denoising) on the signal value. The top row (resp. bottom row) shows the
mean (resp. standard deviation) of the signal inside a white and gray matter mask for each volume.
Note how the bias corrected value of LANE goes below 0 (dashed line) due to its high estimation of o .
After denoising, the standard deviation of the signal decreases as the b-value increases, an effect which
is less noticeable for the bias corrected signal only. However, this effect is less pronounced for the bias
corrected signal only in the case of LANE and MPPCA. In B), spatial maps of the original data and after
denoising (in each column) from averaged datasets at b = 0 s/mm?, b = 1200 s/mm?, b = 3000 s/mm?
and b = 5000 s/mm? (in each row) for each method. Note how each b-value uses a different scale to
enhance visualization even though the signal intensity is lower for increasing b-values. Panel C) shows
the difference in percentage between the original data and after denoising using parameters as estimated
by each algorithm.
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even when o, is misestimated. While these experiments may still be considered simplistic when
compared to modern scanning protocols where parallel acceleration is ubiquitous, they highlight
that even textbook cases can lead to misestimation if the correct signal distribution is not taken
into account. Practical tasks taking advantage of the signal distribution such as bias correction
(Pieciak et al., 2018), noise floor removal (Sakaie and Lowe, 2017), deep learning reconstruction
with various signal distributions (Lenning et al., 2019) or diffusion model estimation (Collier et
al., 2018; Landman et al., 2007; Zhang et al., 2012) may be tolerant, but not perform optimally,
to some misestimation of the noise distribution. See e.g. Hutchinson et al. (2017) for discussions
on the impact of noise bias correction on diffusion metrics in an ex vivo rat brain dataset.

Effects of misspecification of the noise distribution Experiments with SENSE from Sec-
tion 5.4.1 reveal that using a local estimation with noise maps provides the best estimates for
the proposed methods and PIESNO. MPPCA and LANE perform better when using DW1Is as
the input rather than noise maps, but at the cost of a broader range of estimated values for o,
and still underperform when compared to the three other methods. This is presumably because
the signal diverges from a Gaussian distribution at low SNR (Gudbjartsson and Patz, 1995) and
especially in noise maps, leading to a misspecification of its parameters when the assumed noise
distribution is incorrect. Phantom experiments carried with GRAPPA show similar trends except
for PIESNO, which overestimates o, as shown in Fig. 5.2. When erroneously fixing N = 1, low
intensity voxels where 7 > 0 (e.g. gray matter) may be mistakenly included in the distribution
after the change of variables, leading to overestimation of .

The presence of tissue in voxels used for noise estimation might compromise the accuracy of
the estimated distributions as shown in Section 5.4.1. This can be explained by the lower number
of noise only voxels available to the proposed methods and PIESNO and to difficulty in separating
the signal from the noise for MPPCA and LANE at low SNR. Using measured noise maps is not
a foolproof solution as by definition they set = 0, while the (unknown) noiseless signal from
tissues is 7 > 0. As the noise distribution may depend on 7 (Aja-Ferndndez, Vegas-Sénchez-
Ferrero, et al., 2014), this means that its parameters (e.g. from a GRAPPA reconstruction) will
be inherently different than the one estimated from noise maps. This effect can be seen in
Fig. 5.6, where the estimated values of N from noise maps and DWIs are close to 1 for SENSE
as expected in theory. For GRAPPA, they are either overestimated and underestimated in regions
of the phantom and overestimated in background regions as N locally depends on 7. Accurate
estimation of o, and NV over signal regions still remains an open challenge. Nevertheless, the
median of the estimated distribution of o, is closer to the true distribution when using noise
maps than when using DWIs for the proposed methods. Such noise map measurements could
therefore provide improved signal distribution estimation for, e.g. body or cardiac imaging, where
no intrinsic background measurements are available.

Effects of parallel imaging and multiband in a phantom  Section 5.4.2 presented results from
a scanned phantom using SENSE coupled with multiband imaging. While no ground truth
is available, 2 SENSE acceleration should provide a Rician signal distribution (N = 1) and o,
should increase with VR (Aja-Fernidndez, Vegas-Sinchez-Ferrero, et al., 2014). Fig. 5.7 shows
that for a common SENSE factor, all values of o, estimated with MB = 3 are larger than at
lower factors. The use of multiband imaging should not influence the estimation of o, as it
only reduces the measured signal, and not the noise component unlike SENSE does. Indeed,
estimated values of o, are stable until MB = 3 or R = 2 and MB = 2 is used; this is possibly
due to signal leakage and aliasing signal from multiband folding over from adjacent slices with
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higher factors (Barth et al., 2016; Todd et al., 2016). Noise maps are less affected by this artifact,
which is already present when R = 2 and MB = 2, as adjacent voxels have low values, similarly
to unaffected voxels. However, leaking signal in DWIs might impact parameters estimation
as it can be interpreted as an increase in SNR and therefore a lower noise contribution than
expected. Estimation of & y 18 also increasing approximately with V'R for all methods as expected
(Aja-Fernindez, Vegas-Sanchez-Ferrero, et al., 2014). While we can not quantify these results,
this follows the synthetic experiments with SENSE shown in Fig. 5.4, where PIESNO and the
proposed methods were more precise in estimating o from noise maps.

In the case of estimation using DWTs as input, this expected increase in o, for increasing
SENSE factor is less obvious e.g. LANE estimates of o, decrease from R = 2 to R = 1 for the
no multiband case. As MPPCA and LANE also estimate 7, it could explain the larger variance
of o, as 17 fundamentally depends on the microstructural content of each voxel, which is complex
and subject to large spatial variations, e.g. notably across DWTs. This also means that estimation
over DWIs is susceptible to signal leakage, which would explain the increased estimated values of
o, for MB =2 and MB = 3 for a given SENSE factor. In the noise maps, we have observed that
MPPCA and LANE estimated 77 > o, in all cases (results not shown). Overestimating the true
value of n = 0, which is an implicit assumption in PIESNO and the proposed methods, could
explain underestimation of o, when using noise maps. This overestimation of 7 in turn leads
to lower estimates of o,. The use of multiband and the inherent signal leakage at high factors
could explain this overestimation of 7 and underestimation of o, for all tested cases. In the
case of SENSE, the proposed methods estimated approximately N = 1 in all cases, suggesting
robustness to multiband artifacts.

Estimation of noise distributions for in vivo datasets To complement earlier sections, two
datasets acquired on different scanners combining parallel and multiband imaging were analyzed
in Section 5.4.3. Fig. 5.8 shows that assuming a Rician distribution with N = 1 can prove
inadequate in some situations. The four repetitions of a single subject acquired on a GE scanner
point towards a half Gaussian distribution instead as evidenced by the computed values of N
around 0.5. This is further evidenced by the low number of voxels (less than 10) detected by
PIESNO while assuming N = 1. In the preliminary results of our MICCAI submission (St-
Jean, De Luca, Viergever, et al., 2018), using N = 0.5 for PIESNO gave similar results to
the proposed methods, suggesting the departure of the data from a pure Rician distribution.
Additionally, Fig. 5.9 shows that those voxels identified automatically as pure noise also adhere
closer to a chi distribution than a Rayleigh distribution (where n = 0 in both cases). Considering
the whole distribution of the data, which is contaminated by artifacts, would also lead to a
different distribution. Even if local methods can consider spatially varying noise profile, the local
estimation of o, will invariably be affected whenever those same artifacts repeat over the data.
This introduces a compromise between avoiding artifacts at the cost of reduced spatial specificity
and local methods which may not be able to exclude artifacts, but provide local estimations of o,
Measurements from noise maps, if available, could therefore offer a middle ground if N is low
or does not depend locally on the coil geometries (e.g. SENSE or homodyne reconstruction) as
shown in Section 5.4.1.

Fig. 5.10 shows a large range of estimates for o, across methods. In particular, the moments
and maximum likelihood equations estimate smaller values of o, than MPPCA and LANE,
but larger than PIESNO, while still recovering values of N close to 1 and successfully discard
voxels contaminated by multiband artifacts. The correct value of o, most likely sits between
these two results as parallel MRI produces spatially varying noise profile, which is higher in the
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center and not fully captured by the background signal, but the local estimation methods also
overestimated o, in our synthetic simulations. In panel A), MPPCA and LANE estimates of
o, with DWIs are likely affected by multiband artifacts, as the median is larger than the signal
level at b = 5000 s/mm?. This indicates a possible overestimation as o, should be lower than the
measured signal at the highest b-value. For PIESNO and the proposed methods, the median
o, is lower than the median of the reference b = 5000 s/mm? data. An overestimation of N
could explain the low values of o, estimated by the proposed methods just as misestimation
of n by MPPCA and LANE could affect their respective estimate of o, by balancing out the
misestimated values.

Fig. 5.11 shows the result of each method on a bias correction and denoising task on the
Connectom dataset. In panel A), the standard deviation of the signal (bottom left panel) is
increased after bias correction for LANE (green line) and decreased (around the same level) for
the other methods when compared to the uncorrected data (blue line). The situation is similar
after denoising, but to a lesser extent, while the moments, maximum likelihood equations and
PIESNO follow the same signal level as the unprocessed data on average. Regarding the mean of
the signal itself, LANE is on average lower or close to 0 after bias correction, indicating potential
degeneracies due to overestimation of o, From panels B) and C), the results of all methods are
visually similar except for LANE (especially at b = 3000 s/mm? and b = 5000 s/mm?), indicating
that the NLSAM denoising algorithm treated different values of o, in the same way. This
is because the optimal regularized solution (which depends on O'g) is piecewise constant (St-
Jean, Coupé, et al., 2016; Tibshirani and Taylor, 2011) and can tolerate small deviations in
o, Finally, MPPCA, the moments and maximum likelihood equations and PIESNO perform
similarly, even if they estimated different values of o, and N, with MPPCA showing slightly lower
signal intensity at b = 5000 s/mm?. This could be due to the bias correction having a larger effect
when o is larger, increasing the standard deviation of the resulting signal. As shown in panel
C), the difference with the original dataset for MPPCA is lower than the proposed methods or
PIESNO, even though the estimated value of o, was larger.

5.6 Conclusions

We presented a new, fully automated framework for characterizing the noise distribution from
a diffusion MRI dataset using the moments or maximum likelihood equations of the Gamma
distribution. The estimated parameters can be subsequently used for e.g. bias correction and
denoising as we have shown or diffusion models taking advantage of this information. This
requires only magnitude data, without the use of dedicated maps or parameters intrinsic to the
reconstruction process, which may be challenging to obtain in practice. The proposed framework
is fast and robust to artifacts as voxels not adhering to the noise distribution can be automatically
discarded using an outlier rejection step. This makes the proposed methods also applicable
on previously acquired datasets, which may not carry the necessary information required by
more advanced estimation methods. Experiments using parallel MRI and multiband imaging
on simulations, an acquired phantom and in vivo datasets have shown how modern acquisition
techniques complicate estimation of the signal distribution due to artifacts at high acceleration
factor. This issue can be alleviated with the use of noise only measurements or by limiting the
acceleration factor to prevent signal leakage. Moreover, different vendors implement different
default reconstruction algorithms which leads to different signal distributions, challenging the
strategy of assuming a Rician distribution or approximations of N based on the physical amount
of channels in the receiver coil. We also have shown how signal bias correction and denoising
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can tolerate some misestimation of the noise distribution using an in vivo dataset. Noteworthy
is that the theory we presented also applies to any other MRI weighting using large samples
of magnitude data (e.g. functional MRI, dynamic contrast enhanced MRI). This could help
multicenter studies or data sharing initiatives to include knowledge of the noise distribution in
their analysis in a fully automated way to better account for inter-scanner effects.

5.7 Appendix

5.7.1 Estimating parameters of the Gamma distribution

Estimation using the method of moments For any given distribution, we can estimate its
parameters by relating the samples and the theoretical expression of its moments. The Gamma
distribution is parametrized as Gamma(c, 8) and has a probability distribution function of

a—1

P = Fiag

—exp (—t/B)dt (5.15)

with ¢,a, 8 > 0 and I'(z) the gamma function. The first moments are analytically given by
(Chap. 5 Papoulis, 1991; Weisstein, 2017).

Hgamma = af, U;ammu’ = af?, (5.16)

In this paper, the Gamma distribution parameters are Gamma(a = N, = 1) after the
change of variable t = m?/(207) for our particular case. Since we have 8 = 1, this leads to a
special case where the mean and variance are equal with a value of @ = N and can be expressed
only in terms of the magnitude signal m. For simplicity, we will only use the mean 1,
and variance 07,4
could also be used. However, in practice, they might accumulate numerical errors due to the
higher powers involved and are not used here since two equations are enough to estimate the
two parameters. Starting from the analytical expression given by Eq. (5.16), we have for the

special case Gamma(N, 1)

to estimate the required parameters N and 03, but higher order moments

=a, o2 =« (5.17)

:u’gammaf Y gamma

Which we can compute using the sample mean and sample variance formulas such that

aKZtkKZti—<;<Ztk> (5.18)
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Substituting the equation for the moments in terms of t = m? /207, we obtain

2 2
1 &E mi 1 &E mi 1 E mi
Klae w2\ ) KX (5.19)
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! ﬁ\J Zszl mi ; !

Therefore, it is possible to estimate the Gaussian noise standard deviation using Eq. (5.24) and
the values of magnitude data m,, assuming that the voxels considered here do not contain any
object signal. With the value of the noise variance 03 now known, going back to the original
Gamma distribution Gamma(a = N, 3 = 1) yields the number of coils N as previously shown
by Eq. (5.9)

1

K
N=a= = 5.25
a ‘ugamma 2K0‘2 ;’m ( )

Estimation using maximum likelihood equations An alternative to the method of moments to
estimate parameters from a given distribution is to solve the equations derived from its likelihood
function for each unknown parameter. Given a set of observed data, maximizing the likelihood
function from a known distribution (or equivalently, the log of the likelihood function) yields a
set of equations to estimate its parameters. For the Gamma(«, 8) distribution, maximizing the
log likelihood by equating the partial derivative to 0 for each parameter yields (Thom, 1958)

1 K
K—ﬂ;tk—azo (5.26)
log(B) + % log(T'(ar)) — %Z log(t,) =0 (5.27)

Since we have & = N and 8 = 1, in this special case Eq. (5.26) is the same as Eq. (5.25).

Combining Egs. (5.26) and (5.27) yields an implicit equation to estimate o, which can be
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written as
flo,) = (2;02 imi) - %Zlog(mi) + log(202) = 0 (5.28)
g k=1 k=1
1 1 K K
flo,) = ol {W (zKag ;mi ;mi 2KU§] =0 (5.29)

i log(mj /207) = 0 (5.30)
(5.31)

where ¥(z) = % log(T'(z)) is the digamma function and ¢’ is the derivative of ¢, called the
polygamma function. Egs. (5.29) and (5.31) can be solved numerically using Newton’s method
provided we have a starting estimate z,. The update rule for Newton’s method at iteration n is
therefore

n+tl — Tp — f/('ln)
For the first iteration, a starting estimate z, to approximate the solution is needed. For Eq. (5.29),
we use =0, while a starting estimate for Eq. (5.31) is given by (Minka, 2012) considering

y= 10 log(m?/202).

(5.32)

T

if —2.
v = () ~ {exp(y) +1/2  ify>—222 (5.33)

—1/(y+v(1)) ify < —222

In practice, we have observed that 5 iterations of Eq. (5.32) were sufficient to reach
|z, —x, 4| < 10713

5.7.2 Generalized bias correction

As an application that requires knowledge of both o, and N, we now present a general version
for non integer values of N of the signal bias correction from Koay and Basser (2006) and Koay,
Ozarslan, and Basser (2009). The correction factor & (nlo,, N) can be used to obtain 7 from the
magnitude measurement m  given the values of o, and N such that

2 2 2
Enlo,, N) = 2N + 2—2 - (m F (—1/2, N, ")) (5.34)

2
9 204
where | F} is Kummer’s function of the first kind. By defining
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By = /)2 (N - 1/2> (5.35)

1/2
B (N +1/2)
=/7/2 <73/2 i ) (5.36)
(N +1/2)
3 < F(N)7> (5.37)

where () is a binomial coeficient, we obtain a generalized version of Eq. (5.34) which can now
be applied for non integer values of N, such as in the case of a half Gaussian signal distribution
(N = 0.5) which occurs when employing half-Fourier reconstruction techniques (Dietrich et al.,
2008). Estimation of 7 is finally done with

n = \/m (E(lo,, N) —2N)o? (5.38)

where m is an estimate of the first moment of a noncentral chi variable and is estimated from a
spherical harmonics fit of order 6 in the present work. Eq. (5.38) can be solved iteratively w.r.t.
n until convergence, see (Koay, Ozarslan, and Basser, 2009) for further implementation details.

5.7.3 Automated identification of noise only voxels

This appendix outlines the proposed algorithm and details for a practical implementation. Our
implementation is also freely available at https://github.com/samuelstjean/autodmri (St-Jean, De
Luca, Tax, et al., 2019) and will be a part of ExploreDTI (Leemans et al., 2009). The synthetic
and acquired datasets used in this manuscript are also available (St-Jean, De Luca, Tax, et al.,

2018).
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Algorithm 5.1: Main algorithm to identify voxels belonging to the Gamma distribution

Data: 4D DWIs data, probability level p = 0.05, length of the search interval I = 50, N,
Result: o, N, mask of background only voxels

=1,

Compute the median of the whole dataset;
foreach 2D Slice of the 4D dataset do
Compute the upper bound oy = median/\/2 icdf( N 1/2);

Compute the search interval ® = oy, . Jl20, [l log [l

max?

while o, N not converged do
Compute A_ = icdfla, p/2) and X, = icdfla, 1 — p/2);
foreach o € ®do

data? .

Apply change of variable ¢ = 557

’
candidate

candidate

Find voxels from the gamma distribution;

K K
mask_current = (A7 < Etk> ﬂ (Z t, < )\+>;
k=1 k=1

if number of voxels in mask_current > mask then
‘ mask = mask_current;
end

end
Compute o, with the voxels inside the mask using Eq. (5.8) or Eq. (5.12);

Compute N with the voxels inside the mask using Eq. (5.9) or Eq. (5.11);
Set Nmin = Nmaz = N;

Set & = [0.955,,0.960,, ..., 1.050,];

end
end
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Abstract

Diftusion weighted magnetic resonance imaging is a noninvasive imaging technique
that can indirectly infer the microstructure of tissues and provide metrics which are
subject to normal variability across subjects. Potentially abnormal values or features
may yield essential information to support analysis of controls and patients cohorts,
but subtle confounds affecting diffusion MRI, such as those due to difference in scan-
ning protocols or hardware, can lead to systematic errors which could be mistaken
for purely biologically driven variations amongst subjects. In this work, we propose
a new harmonization algorithm based on adaptive dictionary learning to mitigate the
unwanted variability caused by different scanner hardware while preserving the natural
biological variability present in the data. Overcomplete dictionaries, which are learned
automatically from the data and do not require paired samples, are then used to re-
construct the data from a different scanner, removing variability present in the source
scanner in the process. We use the publicly available database from an international
challenge to evaluate the method, which was acquired on three different scanners and
with two different protocols, and propose a new mapping towards a scanner agnos-
tic space. Results show that the effect size of the four studied diffusion metrics is
preserved while removing variability attributable to the scanner. Experiments with al-
terations using a free water compartment, which is not simulated in the training data,
shows that the effect size induced by the alterations is also preserved after harmoniza-
tion. The algorithm is freely available and could help multicenter studies in pooling
their data, while removing scanner specific confounds, and increase statistical power
in the process.

Keywords: Diffusion MRI, Harmonization, Scanner variability, Dictionary learning, Cross-
validation, Akaike information criterion
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Chapter 6. Harmonization of diffusion MRI datasets

6.1 Introduction

Diffusion weighted magnetic resonance imaging (AMRI) is a noninvasive imaging technique that
can indirectly infer the microstructure of tissues based on the displacement of water molecules.
As dMRI only offers an indirect way to study, e.g. the brain microstructure, analysis of dMRI
datasets includes multiple processing steps to ensure adequate correction of acquisition artifacts
due to subject motion or eddy current induced distortions, amongst others (Tournier et al., 2011).
Quantitative scalar measures of diffusion can be extracted from the acquired datasets, such as the
apparent diffusion coefficient (ADC) or fractional anisotropy (FA) as computed from diffusion
tensor imaging (DTI) (Basser, Mattiello, et al., 1994; Basser and Pierpaoli, 1996), with a plethora
of other measures and diffusion models nowadays available (Assemlal et al., 2011; Tournier, 2019).
These measures are subject to normal variability across subjects and potentially abnormal values
or features extracted from dMRI datasets may yield essential information to support analysis of
controls and patients cohorts (Johansen-Berg and Behrens, 2009; Jones, 2011).

As small changes in the measured signal are ubiquitous due to differences in scanner hardware
(Sakaie et al., 2018), software versions of the scanner or processing tools (Gronenschild et al.,
2012; Sakaie et al., 2018), field strength of the magnet (Huisman et al., 2006) or reconstruction
methods in parallel MRI and accelerated imaging (Dietrich et al., 2008; St-Jean, De Luca, et al.,
2018), non-negligible effects may translate into small differences in the subsequently computed
diffusion metrics. Subtle confounds affecting dMRI can even be due to measuring at different
time points in the cardiac cycle, leading to changes in the measured values of pseudo-diffusion
over the cardiac cycle (De Luca et al., 2019; Federau et al., 2013). In the presence of disease,
these small variations in the measured signal are entangled in the genuine biological variability,
which is usually the main criterion of interest to discover or analyze subsequently. This can
lead to confounding effects and systematic errors that could be mistaken for purely biologically
driven variations amongst subjects. To mitigate these issues, large-scale studies try to harmonize
their acquisition protocols across centers to further reduce these potential sources of variability
(Duchesne et al., 2019) or may only use a single scanner without upgrading it for long term stud-
ies (Hofman, Grobbee, et al., 1991; Hofman, Brusselle, et al., 2015). The stability brought by
keeping the same scanning hardware is however at the cost of potentially missing on improved,
more efficient sequences or faster scanning methods becoming common in MRI (Feinberg et al.,
2010; Larkman et al., 2001; Lustig et al., 2007). Even by carefully controlling all these sources
of variability as much as possible, there still remain reproducibility issues between scanners of
the same model or in scan-rescan studies of dMRI metrics (Kristo et al., 2013; Magnotta et al.,
2012; Vollmar et al., 2010). Over the years, many algorithms have been developed to mitigate the
variability attributed to non-biological effects in dMRI, e.g. in order to combine datasets from
multiple studies and increase statistical power, see e.g. (Tax et al., 2019; Zhu et al., 2019) for
reviews. Common approaches consist in harmonizing the raw dMRI datasets themselves (Cetin
Karayumak et al., 2019; Mirzaalian et al., 2016) or the computed scalar metrics (Fortin et al.,
2017; Pohl et al., 2016) to reduce variability between scanners. Recently, a dMRI benchmark
database containing ten training subjects and four test subjects datasets acquired on three scan-
ners with two acquisition protocols was presented at the computational diffusion MRI (CDMRI)
2017 challenge (Tax et al., 2019). The publicly available CDMRI database was previously used to
compare five harmonization algorithms, including a previous version of the algorithm we present
here, which we use for evaluation.

In this work, we propose a new algorithm based on adaptive dictionary learning to mitigate
the unwanted variability caused by different scanner hardware while preserving the natural bio-
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logical variability present in the data. Expanding upon the methodology presented in St-Jean,
Coupé, et al. (2016) and St-Jean, Viergever, et al. (2017), overcomplete dictionaries are learned
automatically from the data for a given target scanner with an automatic tuning of the regulariza-
tion parameter. These dictionaries are then used to reconstruct the data from a different source
scanner, removing variability present in the source scanner in the process. Mapping across dif-
ferent spatial resolutions can be obtained by adequate subsampling of the dictionary. Additional
experiments beyond the original challenge show that the harmonization algorithm preserves al-
terations made on the test subjects while removing scanner variability, but without altering the
training datasets, by mapping all the datasets towards a global “scanner space”. The algorithm
does not require paired datasets for training, making it easy to apply for hard to acquire datasets
(e.g. patients with Alzheimer’s, Parkinson’s or Huntington’s disease) or when pooling datasets
from unrelated studies that are acquired in separate centers. This makes our proposed method
readily applicable for pre-existing and ongoing studies that would like to remove variability caused
by non-biological or systematic effects in their data analyzes.

6.2 Theory

6.2.1 The dictionary learning algorithm

Dictionary learning (Elad and Aharon, 2006; Mairal, Bach, Ponce, and Sapiro, 2010) aims to find
a set of basis elements to efficiently approximate a given set of input vectors. This formulation
optimizes both the representation D (called the dictionary or the set of atoms) and the coeflicients
a of that representation (called the sparse codes) as opposed to using a fixed basis (e.g. Fourier,
wavelets, spherical harmonics). A dictionary can be chosen to be overcomplete (i.e. more column
than rows) as the algorithm is designed to only select a few atoms to approximate the input vector
with a penalization on the ¢,-norm of a to promote a sparse solution. Applications in computer
vision with the goal to reduce visual artifacts include demosaicking (Mairal, Bach, Ponce, Sapiro,
and Zisserman, 2009), inpainting (Mairal, Bach, Ponce, and Sapiro, 2010) and upsampling (Yang,
Wang, et al., 2012; Yang, Wright, et al., 2010) amongst others.

In practice, local windows are used to extract spatial and angular neighborhoods of diffusion
weighted images (DW1Is) to create the set of vectors required for dictionary learning as in St-Jean,
Coupé, et al. (2016). This is done by first extracting a small 3D region from a single DWI, which
we now refer to as a patch. To include angular information, a set of patches is taken at the same
spatial location across DWIs in an angular neighborhood (as defined by the angle between their
associated b-vector on the sphere). This considers that patches from different DWIs at the same
spatial location, but which are in fact not too far on the sphere, exhibit self-similarity that can be
exploited by dictionary learning. Once this process is done, every set of patches is concatenated
to a single vector X. All of these vectors X,, are then put in a 2D matrix Q = {X,,..., X, ,...},
where n denotes one of the individual set of patches.

Once the set of patches © has been extracted, D can be initialized by randomly selecting
N vectors from Q (Mairal, Bach, Ponce, and Sapiro, 2010). With this initial overcomplete
dictionary, a sparse vector a,, can be computed for each X, such that D is a good approximation
to reconstruct X, that is X, ~ De,,. This initial approximation can be refined iteratively by
sampling randomly N new vectors X,, € 2 and updating D to better approximate those vectors.
At the next iteration, a new set X,, € Q is randomly drawn and D is updated to better approximate
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this new set of vectors. This iterative process can be written as

N o1 2 2
> (51, = Dalf+ Al ) s D[ =1 (6.1

n=1

1
ztrgD sz ~
with o, € RP*! an array of sparse coefficients and D the dictionary where each column is
constrained to unit £,-norm to prevent degenerated solutions. ); is a regularization parameter
used at iteration 7 (which is further detailed in Section 6.2.2) to balance the ¢,-norm promoting
data similarity and the ¢,-norm promoting sparsity of the coeflicients cv,,. Iterative updates using
Eq. (6.1) alternate between refining D (and holding « fixed) and computing « (with D held
fixed) for the current set of X,,. As updating a needs an optimization scheme, this can be
done independently for each a,, using coordinate descent (Friedman et al., 2010). For updating
D, we use the parameter-free closed form update from Mairal, Bach, Ponce, and Sapiro (2010,
Algorithm 2), which only requires storing intermediary matrices of the previous iteration using
o and X, to update D. Building dictionaries for the task at hand has been used previously
in the context of diffusion MRI for denoising (Gramfort et al., 2014; St-Jean, Coupé, et al.,
2016) and compressed sensing (Gramfort et al., 2014; Merlet et al., 2013; Schwab et al., 2018)
amongst other tasks. Note that it is also possible to design dictionaries based on products of
fixed basis or adding additional constraints such as positivity or spatial consistency to Eq. (6.1),
see e.g. (Schwab et al., 2018; Vemuri et al., 2019) and references therein for examples pertaining
to diffusion MRI.

6.2.2 Automatic regularization selection

Eq. (6.1) relies on a regularization term \; which can be different for each set of vectors X, at
iteration 7. It is, however, common to fix A, for all X, depending on some heuristics such as
the size of X,, (Mairal, Bach, Ponce, and Sapiro, 2010), the local noise variance (St-Jean, Coupé,
et al., 2016) or through a grid search (Gramfort et al., 2014). In the present work, a search
through a sequence of candidates {), ..., A, ..., A}, Which is automatically determined for
each individual X, is instead employed using either 3-fold cross-validation (CV) and minimizing
the mean squared error or by minimizing the Akaike information criterion (AIC) (Akaike, 1974;
Zou et al., 2007). For the AIC, the number of non-zero coeflicients in «,, provides an unbiased
estimate of degrees of freedom for the model (Tibshirani and Taylor, 2012; Zou et al., 2007).
We use the AIC for normally distributed errors in least-squares problems from Burnham and
Anderson (2004)

2
[%. —De [,

AIC, = argmin mlog () +2df(ex, ) (6.2)
; N m .

with m the number of elements of X,,. In practice, this sequence of A, is chosen automatically on
a log scale starting from ), (providing the null solution &, = 0) up to A, = € > 0 (providing
the regular least squares solution) (Friedman et al., 2010). The solution «,, at A, is then used
as a starting estimate for the next value of A ;. The process can be terminated early if the cost
function Eq. (6.1) does not change much (e.g. the difference between the solution at A, and
Ay+1 is below 107°) for decreasing values of A, preventing computation of similar solutions.
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6.3 Methods

6.3.1 Building an optimal representation across scanners

For harmonization based on dictionary learning, all 3D patches of small spatial and angular local
neighborhoods inside a brain mask were extracted from the available training datasets for a given
scanner as done in (St-Jean, Coupé, et al., 2016; Tax et al., 2019). Since different patch sizes
are used depending on the reconstruction task, Sections 6.3.2 and 6.3.5 detail each case that we
study in this manuscript. Only patches present inside a brain mask were used for computation
and reconstruction. These patches were reorganized as column arrays Q = {X,, ..., X,,, ...} with
each X, € R™*! represented as vectors of size m. Each volume was mean subtracted and each
patch X, was scaled to have unit variance (Friedman et al., 2010). Subsequently, features were
automatically created from the target scanner datasets using dictionary learning as detailed in
Section 6.2.1. A dictionary D € R™*? was initialized with p vectors X, ; € © randomly chosen,
where D is set to have twice as many columns as rows (i.e. p = 2m). Updates using Eq. (6.1)
were carried for 500 iterations using a batchsize of N = 32. The coeflicients e, were unscaled
afterwards.

Once a dictionary D has been computed, the new, harmonized representation (possibly from
a different scanner) can be obtained by computing «,, for every X, € Q. As D was created to
reconstruct data from a chosen target scanner, it contains generic features tailored to this specific
target scanner that are not necessarily present in the set of patches 2 extracted from a different
scanner. As such, reconstruction using D created from Q can be used to map Q

targct tflrget source
thatis X,, = Dy, by using X, and holding D, fixed while
solving Eq. (6.1) for v,,. These specially designed features from Qargec are not necessarily present
in
Dtarget‘

Downsampling D, into Dy, can also be used to reconstruct data at a different resolution
than initially acquired by creating an implicit mapping between two different spatial resolutions.
This is done by finding the coefficients a by holding D, fixed when solving Eq. (6.1), but
using D, for the final reconstruction such that X,, =D, . This reconstruction
with the full sized dictionary provides an upsampled version of X,,, the 1mp11c1t mapping being
guaranteed by sharing the same coeflicients e, for both reconstructions. A similar idea has
been exploited previously for the 3D reconstruction of T1w images by Rueda et al. (2013) and in
diffusion MRI by St-Jean, Viergever, et al. (2017) in the context of single image upsampling. The
general reconstruction process for the harmonization of datasets between scanners is illustrated
in Fig. 6.1. Our implementation of the harmonization algorithm is detailed in Section 6.7 and

also available in both source form and as a Docker container! (St-Jean, Viergever, et al., 2019).

towards Qe

source> therefore ehmlnatmg the source scanner specific effects, as they are not contained in

6.3.2 Reconstruction tasks of the challenge

For the reconstruction in task 1 (matched resolution scanner-to-scanner mapping), the dic-
tionary D, was created using patches of size 3 x 3 x 3 with 5 angular neighbors and one
b = 0 s/mm? image in each block. Optimization for constructing D rgec with Eq. (6.1) was
performed using 3-fold CV and reconstruction of the final harmonized datasets was done with
either CV or minimizing the AIC with Eq. (6.2) in two separate experiments. The datasets from
the GE scanner were reconstructed using the dictionary built from the Prisma or Connectom

1 https://github.com/samuelstjean/harmonization
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Figure 6.1: Schematic representation of the harmonization between scanners with adaptive dictionary
learning. A) Local patches are decomposed into vectors X, and a random subset is used to initialize
the dictionary D. B) A new set of patches is drawn at every iteration and the dictionary is refined
iteratively by alternating updates for the coefficients a and the dictionary D using Eq. (6.1). C) After a
set number of iterations, this target dictionary D can now be used to reconstruct data from a potentially
different dataset. D) A set of coefficients is computed for each patch X, of the input dataset with a
source dictionary. For harmonization tasks, the source and target dictionary from step C) are identical.
For upsampling tasks, the source dictionary is a downsampled version of the target dictionary. E) The
harmonized reconstruction for each patch X,, is obtained by multiplying the target dictionary D and the
coefficients c,,.

scanner datasets for their respective harmonization task. For the reconstruction in task 2 (spatial
and angular resolution enhancement), patches of different spatial sizes were extracted from the
images at higher resolution (patches of size 5 x 5 x 5 for the Prisma scanner and 6 x 6 x 6 for the
Connectom scanner) and used for the dictionary learning algorithm as described in Section 6.2.1.
Under the hypothesis that a larger patch is a good representation for its lower resolution counter-
part when downsampled, each column of the optimized dictionary D, was resized to a spatial
dimension of 3 x 3 x 3 and the coefficients o computed for this lower resolution dictionary
D,q1- The patches were finally reconstructed by multiplying the original dictionary D, with
the coeflicients . This creates a set of upsampled patches from the GE scanner that are both
harmonized and at the same spatial resolution as either the Prisma or the Connectom datasets.
All reconstruction tasks were computed overnight on our computing server using 100 cores run-
ning at 2.1 GHz. On a standard desktop with a 4 cores 3.5 GHz processor, rebuilding one dataset
took approximately two hours and 30 minutes with the AIC criterion.
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6.3.3 Evaluation framework of the challenge

The original challenge requested from the participants to match the original gradient direc-
tions from the source to the target datasets and evaluated various scalar metrics on the diffusion
weighted images. In our original submission, this matching was done with the truncated spheri-
cal harmonics (SH) basis of order 6 (Descoteaux et al., 2007) on the source dataset and sampling
the basis at the gradient directions from the target scanner. In the present manuscript, we chose
instead to evaluate the metrics directly in the original gradient directions as they are rotationally
invariant, saving one interpolation step in the process as it could potentially introduce unwanted
blurring of the data. The metrics used in the original evaluation were the apparent diffusion
coeflicient (ADC) and the fractional anisotropy (FA) from diffusion tensor imaging (DTI) and
the rotationally invariant spherical harmonic (RISH) features of order 0 (RISH 0) and order 2
(RISH 2) of the SH basis, see Tax et al. (2019) for additional details. As our evaluation framework
is slightly different, we compare our new approach with our initial version of the harmonization
algorithm and with a baseline reference prediction created by trilinear interpolation from the
source to the target scanner in the spirit of the original challenge.

6.3.4 Datasets and experiments

We used the datasets from the MICCAI 2017 harmonization challenge (Tax et al., 2019), con-
sisting of ten training subjects and four test subjects acquired on three different scanners (GE,
Siemens Prisma and Siemens Connectom) using different gradient strength (40 mT/m, 80 mT/m
and 300 mT/m, respectively) with two acquisition protocols. Experiments are only reported for
the four test subjects, which are later on denoted as subjects 'H’, 'L’, 'M” and "N’. The standard
protocol (ST) consists of 30 DW1s acquired at 2.4 mm isotropic with a b-value of b = 1200 s/mm?,
3b =0 s/mm? images for the GE datasets, 4 b = 0 s/mm? images for the Siemens datasets and
TE = 98 ms. Note that the TR is cardiac gated for the GE datasets while the Siemens datasets
both use TR = 7200 ms. The state-of-the-art (SA) protocol for the Siemens scanners contains
60 DWTIs with a b-value of b = 1200 s/mm? and 5 b = 0 s/mm? images. The Prisma datasets
were acquired with a spatial resolution of 1.5 mm isotropic and TE / TR = 80 ms / 4500 ms. The
Connectom datasets were acquired with a spatial resolution of 1.2 mm isotropic and TE / TR
= 68 ms / 5400 ms. Most of the acquisition parameters were shared for the SA protocol which
are listed in Table 6.1 with full details of the acquisition available in Tax et al. (2019). Standard
preprocessing includes motion correction, EPI distortions corrections and image registration for
each subject across scanners. The SA protocols were additionally corrected for gradient nonlin-
earity distortions. These datasets are available upon request’from the organizers. Fig. 6.2 shows
an example of the acquired datasets for a single subject.

6.3.5 Simulations beyond the challenge

To further make our proposed harmonization algorithm widely applicable, we designed additional
experiments beyond the challenge to harmonize data towards a common scanner space. As the
MICCAI challenge focused on harmonization of datasets from a source scanner to a target scan-
ner, the organizers essentially provided matching datasets of all subjects across all scanners. This
data collection would be appropriate, for example, in a longitudinal study design with scanner

thtps: //www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-

and-cross-protocol-diffusion-MRI-data-harmonisation
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Figure 6.2: Example b = 0 s/mm? images (top row) and b = 1200 s/mm? images (bottom row) for a
single subject acquired on the three scanners after preprocessing. The standard protocol (ST) is shown
on the left and the state-of-the-art protocol (SA) is shown on the right. Note that the challenge asked
participants to harmonize the GE ST protocol towards the two other scanners, but no SA protocol is
available for the GE scanner. The figure is adapted from Tax et al. (2019), available under the CC-BY
4.0 license.

Scanner GE 40 mT/m Siemens Prisma 80 mT/m Siemens Connectom 300 mT/m
Protocol Standard (ST)  Standard (ST) State-of-the-art (SA)  Standard (ST) State-of-the-art (SA)
Sequence TRSE PGSE PGSE PGSE PGSE

# directions per b-value 30 30 60 30 60

TE [ms] 89 89 80 89 68

TR [ms] Cardiac gated 7200 4500 7200 5400

A/§ [ms] 41.4/26.0 38.3/19.5 41.8/28.5 31.1/8.5

8, = 8,/6, = b5 [ms] 11.23/17.84

Acquired voxel size [mm®] 2.4x24x24 24x24x24 1.5x1.5x 1.5 24x24x24 1.2x1.2x1.2
Reconstructed voxel size 1.8x1.8x24 18x1.8x2.4 1.5x1.5x 1.5 1.8x1.8x2.4 12x12x1.2
SMS factor 1 1 3 1 2

Parallel imaging ASSET 2 GRAPPA 2 GRAPPA 2 GRAPPA 2 GRAPPA 2
Bandwidth [Hz/Px] 3906 2004 1476 2004 1544

Partial Fourier 5/6 - 6/8 6/8 6/8

Coil combine Adaptive combine  Sum of Squares Adaptive combine  Adaptive combine
Head coil 8 channel 32 channel 32 channel 32 channel 32 channel

Table 6.1: Acquisition parameters of the datasets for the three different scanners. TRSE: twice-refocused
spin-echo, PGSE: pulsed-gradient spin-echo. The table is adapted from Tax et al. (2019).

hardware upgrades during the study and subsequent data analysis. However, such an experimen-
tal setup might not be available in practice when harmonizing datasets from multiple centers or
studies where data collection is done only once per subject e.g. to reduce costs associated with
scan time or reduce traveling of the participants.

The additional experiments consist of harmonizing all the datasets from the ST protocol at
once and predicting their harmonized version using this common basis instead of creating one
dictionary per scanner and per protocol. To ensure that the scanner effects are properly removed,
the test datasets were also altered in a small region with a simulated free water compartment
as described in Section 6.3.6. As these altered datasets were never “seen” by the harmonization
algorithm, we can now quantify if the induced effects are properly reconstructed, as they were
not present in the training set in the first place. This experiment is similar to creating a common
space on a larger set of healthy subjects and finally harmonizing data from the remaining healthy
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subjects and “patients” towards this common space. In our current setup, the harmonization
algorithm is not aware that the datasets are in fact from matched subjects and, by design, could
also be used on unpaired training datasets.

6.3.6 Alterations of the original datasets

To create the altered version of the test datasets, a region of 3000 voxels (15 x 20 x 10 voxels)
in the right hemisphere was selected at the same spatial location in image space. Every voxel in
the selected region was separately affected by a free water compartment to mimic infiltration of
edema according to

Sp,.., = Sy + [Syexp (—bDy) (6.3)
with S, the new signal in the voxel, S, the original signal in the voxel at b-value b and S the
signal in the b = 0 s/mm? image, f is the fraction of the free water compartment, which is drawn
randomly for every voxel from a uniform distribution U/(0.7,0.9) and D¢ = 3 x 107® mm?/s
is the nominal value of diffusivity for free water (e.g. cerebrospinal fluid (CSF)) at 37°celsius
(Pasternak et al., 2009; Pierpaoli and Jones, 2004). Since the individual subjects are not aligned,
but all scans from a given subject are registered, this introduces normal variability in terms of
the number of white matter and gray matter voxels that would be affected by edema and their
location in a patient subject.

6.3.7 Evaluation metrics

Error and accuracy of predicted metrics We reproduced parts of the analyses conducted in the
original CDMRI challenge from Tax et al. (2019), namely the per voxel error for each metric as
computed by the mean normalized error (MNE) and the voxelwise error. Denoting the target
data to be reproduced as acquired (Prisma or Connectom scanners) and the source data to be
harmonized as predicted (GE scanner), the MNE is defined as MNE = |(predicted - acquired)| /
acquired and the error is defined as error = predicted - acquired. The original challenge reports
values taken either globally in a brain mask, in FreeSurfer regions of interest (ROI) and excluding
poorly performing regions or the median value computed in sliding windows. Since the masks
of these ROIs were not released for the challenge, we instead report boxplots of the two metrics
using the brain masks from the challenge as this reports the global median error in addition to
the global mean error and additional quantiles of their distribution. To prevent outliers from
affecting the boxplots (particularly located at the edges of the brain masks), we clip the MNE
and error values at the lowest 0.1% and largest 99.9% for each dataset separately.

Kullback-Leibler divergence as a measure of similarity ~As the voxelwise difference may not
be fully indicative of the global trend of the harmonization procedure between datasets (e.g. due
to registration errors), we also computed the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) between the distributions of each harmonized dataset from the GE scanner and
its counterpart from the target scanner for each of the four metrics. The KL divergence is a
measure of similarity between two probability distributions P(z) and Q(z) where lower values
indicate a higher similarity and KL(P, Q) = 0 when P(z) = Q(z). In its discrete form, the
Kullback-Leibler divergence is given by

KL(P,Q) =) _P,log (%) , (6.4)
k k
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where P, is the “candidate” probability distribution, @, the true probability distribution and
k represents the number of discrete histogram bins. The measure is not symmetric, that is
KL(P,Q) # KL(Q, P) in general. We instead use the symmetric version of the KL divergence
as originally defined by Kullback and Leibler (1951)

KL,,,, = KL(P,Q) + KL(Q, P). (6.5)

In practice, a discrete distribution can be constructed from a set of samples by binning and count-
ing the data. By normalizing each bin so that their sum is 1, we obtain a (discrete) probability
mass function. For each metric, the discrete distribution was created with k£ = 100 equally spaced
bins. We also remove all elements with probability 0 from either P, or @, (if any) to prevent
division by 0 in Eq. (6.4).

Statistical testing and effect size in the presence of alterations We conducted Student’s t-test
for paired samples for each subject separately between each scanner in the predefined region of
3000 voxels with simulated changes (Student, 1908). This was done on both the normal datasets
(testing between scanners) and the altered datasets (testing between scanners and additionally be-
tween the normal and altered datasets). The p-values from the tests were subsequently corrected
for the false discovery rate (FDR) at a level of & = 0.05 (Benjamini and Hochberg, 1995). In
addition, we also report the effect size of those paired t-tests as computed by Hedges’ g (Hedges,
1981; Lakens, 2013), which we redefine as

QZMXQ_%), (6.6)

(o) +0y)/2 ny +ny) —9

where y;, o; and n, are the mean, the standard deviation, and the size of sample 4, respectively. A
value of ¢ = 1 indicates that the difference between the means is of one standard deviation, with
larger values indicating larger effect sizes as reported by the difference in the group means. In
the original definition of Hedges (1981), g is not enforced to be positive. We instead report the
absolute value of g as we do not know a priori which mean is larger than the other, but are only
interested in the magnitude of the effect rather than its sign. With this definition, values of ¢
reported for the test between a given subject for two different scanners which are lower than the
reference method indicate an improvement by removing scanner specific effects. On the other
hand, similar values of g between the reference and the harmonized dataset for a given subject
and its altered counterpart on the same scanner indicates preservation of the simulated effects as
it is the only difference between these two datasets by construction.

6.4 Results

6.4.1 Results from the challenge

Mapping between scanners for matched acquisition protocols  Fig. 6.3 shows the KL symmet-
ric divergence as presented in Section 6.3.7 for the standard protocol. In general, the baseline has
a higher KL value than the other methods on the Connectom scanner. The CV based method
is generally tied or outperforms the AIC based method. For the Prisma scanner, results show
that the AIC performs best with the CV based method following the baseline reference. In the
case of the ADC metric, our initial algorithm outperforms the three other methods for some
subjects.
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Figure 6.3: KL symmetric divergence (where lower is better) for the harmonization task at the same
resolution between the GE ST datasets and the Connectom ST (top row) or the Prisma ST (bottom row)
datasets on the four test subjects ("H’, 'L’, ‘"M’ and 'N’). Each metric is organized by column (ADC, FA,
RISH 0 and RISH 2) for the four compared algorithms (AIC in blue, CV in orange, our initial version of
the harmonization algorithm in green and the baseline comparison in red).

Fig. 6.4 shows the distribution (as boxplots) in the absolute mean normalized error and mean
error of the four metrics for the standard protocol. The MNE is almost tied or slightly higher
for the baseline method than the alternatives for both scanners. For the FA and RISH 2 metrics,
the baseline error is tied or larger than the other methods. For the voxelwise error, all methods
underestimate the ADC and overestimate the RISH 0 on average while the FA and RISH 2
metrics show a different pattern depending on the scanner. For the Connectom scanner, the
CV based method generally has an average error around 0 for the FA while the AIC and our
initial algorithm generally overestimate the metric. The baseline is on the other spectrum and
generally underestimates the FA. On the Prisma scanner, the effect is reversed; there is a general
overestimation of the FA while the error committed by the AIC based method is in general close
to 0. The RISH 2 error follows the same pattern as the FA error on both scanners for the four
compared methods.

Mapping between scanners across spatial resolutions Fig. 6.5 shows the KL symmetric di-
vergence for the second task of the challenge, mapping the GE ST protocol datasets to the SA
protocols of the Prisma or Connectom scanners. For the Connectom scanner, the AIC based
algorithm and our initial algorithm, which is also AIC based, performs best in most cases. The
CV based algorithm also outperforms the baseline method for the ADC and RISH 0 metrics.
For the Prisma scanner, the AIC outperforms most of the compared methods or is tied with
the CV. Notably, the baseline ranks second for the FA and RISH 2 metrics, but is the worst
performer for the ADC and the RISH 0 metrics.

Fig. 6.6 shows results for the absolute mean normalized error and mean error for all algo-
rithms on harmonizing the SA protocol. For the Connectom scanner, the baseline ranks last
for most subjects on the isotropy metrics (ADC and RISH 0) while it only performs slightly
better than the CV based algorithm for the anisotropy metrics (FA and RISH 2). On the Prisma
scanner, results are similar for the ADC and RISH 0 metrics. For the FA metrics, the best per-
formance is obtained with the AIC based method while the baseline is better for harmonizing
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Figure 6.4: Boxplots of the voxelwise mean normalized error (top) and error (bottom) for each metric,
following the same conventions detailed in Fig. 6.3. The black dot shows the mean error and the dashed
line indicates an error of 0, representing a perfect match between the harmonized GE dataset and the
dataset for the target scanner.

the RISH 2 metric for three of the subjects.

Now looking at the mean error, results show that the ADC metric is underestimated for
all methods and on both scanners with the three methods usually outperforming the baseline
comparison. The FA, RISH 0 and RISH 2 metrics are instead overestimated. For the FA
metric, the AIC and our initial algorithm commit less error on average than the baseline on the
Connectom scanner. On the Prisma scanner, only the AIC has an average error lower than the
baseline. All methods perform better or almost equal on average to the baseline comparison for
the RISH 0 metric. The RISH 2 metric shows a scanner dependent pattern; on the Connectom
scanner, the best performing method is our initial algorithm followed by the AIC based algorithm
while on the Prisma scanner, the lowest error is achieved by the AIC based method.

In general, results show that the isotropy metrics (ADC and RISH 0) are subject to global
scanner effects while the anisotropy metrics (FA and RISH 2) may be subject to orientation
dependent effects. These effects are also likely different for each scanner since the gradient
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Figure 6.5: Symmetric KL divergence (where lower is better) for the harmonization task across resolution
between the GE ST datasets and the Connectom SA (top row) or the Prisma SA (bottom row) datasets.
The organization is the same as previously used in Fig. 6.3.

strength and timings are different, even if the b-values are matched. In these experiments, the
target scanner is untouched and therefore still contains its own scanner effect when computing
the voxelwise error of each harmonization algorithm.

6.4.2 Mapping original and altered datasets towards a common space

In these experiments, alterations were made to the test set as previously described in Section 6.3.6.
As these altered datasets were never used for training, we can quantify the removal of scanner
effects and the preservation of the alterations by comparing solely the altered regions with their
original counterpart in each subject, free of processing effects. In these experiments, the baseline
comparison is to not process the datasets at all since the datasets are altered versions of themselves,
therefore not requiring any interpolation or resampling. As these experiments are outside of the
challenge’s scope, they are not covered by our initial algorithm and therefore the “previous” cate-
gory is not presented in this section. Fig. 6.7 shows the original and altered metrics for one sub-
ject on the raw data and after harmonization with the AIC and CV based algorithms and Fig. 6.8
shows the relative percentage difference between the raw datasets and their harmonized counter-
part. We define the relative percentage difference as difference = 100 x (harmonized - raw) / raw.
The alterations is mostly visible on the b = 0 s/mm? image while the b = 1200 s/mm? image
is only slightly affected due to the high diffusivity of the CSF compartment. However, the dif-
ferences are visible on the diffusion derived maps, seen as an increase in ADC and a reduction
for the FA, RISH 0 and RISH 2 metrics. Visually, harmonized datasets do not seem different
from their original counterpart, but the difference maps show that small differences are present
with the CV method generally showing larger differences than the AIC method. Notably, the
anisotropy metrics (FA and RISH 2) are lower after harmonization while the difference for the
isotropy metric (ADC and RISH 0) is distributed around 0.

Fig. 6.9 shows boxplots of the effect size as computed by a paired t-test after harmonization
towards a common space for all scanners. Tests were conducted for every subject between each
scanner in addition to the altered versions of the datasets as previously described in Section 6.3.7.
For the ADC metric, both methods yield a lower effect size on average than the raw, unprocessed
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Figure 6.6: Boxplots of the voxelwise mean normalized error (top) and error (bottom) of each metric for
the four algorithms. The black dot shows the mean error and the dashed line indicates an error of 0. The
organization follows the conventions of Fig. 6.4.

data and preserve the effect size due to the alterations as shown in the middle row. The RISH 0
metric shows similar behavior with the CV based method producing an average effect size slightly
higher than the raw datasets. Now looking at the anisotropy metrics (FA and RISH 2), the effect
size is reduced or equal on average in most cases (except for subject 'H’ when only one scan is
altered) when scans are harmonized with the AIC algorithm. The CV based algorithm shows
a higher effect size for harmonization between scans and a lower effect size when both scans
are altered. As we only report the absolute value of the effect size, this is due to both a lower
group mean and group standard deviation than the raw datasets. The harmonization process is
likely only removing scanner effects present in each dataset as the middle row (where only one of
the compared dataset is affected) shows similar reductions in effect size, but is still on the same
magnitude as the raw datasets since the alteration is preserved.

Fig. 6.10 shows the effect size, with a 95% confidence interval (CI), for the paired t-test
between the original and altered datasets on each scanner. While Fig. 6.9 showed the general
trend for all results, we instead now focus on the effect size attributable solely to the alterations
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Figure 6.7: Examplar slice of subject 'H’ on the GE scanner as original (left half) and altered (right
half) metrics. Only the affected portion of the data (yellow box) is analyzed in paired statistical testing
against the same location in the original dataset. Each column shows (from left to right) a b = 0 s/mm?
image, a DWI at b = 1200 s/mm?, the FA, ADC, RISH 0 and RISH 2 metrics with a common colorbar
per column. The top row shows the raw data, the middle row shows the data harmonized using the AIC
and the bottom row shows the harmonized data using the CV. The b = 0 s/mm? image, the DWI and
the ADC map are increased after adding the free water compartment while the FA, RISH 0 and RISH 2
metrics are instead lower in their altered counterpart.
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Figure 6.8: Examplar slice of subject 'H’ on the GE scanner as original (left half) and altered (right half)
metrics. Each column shows (from left to right) a b = 0 s/mm? image, a DWI at b = 1200 s/mm?, the
FA, ADC, RISH 0 and RISH 2 metrics with a common colorbar per column as in Fig. 6.7. The top row
(resp. the bottom row) shows the relative percentage difference between the harmonized data using the
AIC (resp. the CV) and the raw data.

we previously induced. Results show that the ADC and RISH 0 metrics have the smallest CI,
showing the lowest variability in the 3000 voxels in the altered region. All CI are overlapping
and therefore have a 95% chance of containing the true mean effect size for every case. The FA
and RISH 2 metrics have both larger CI, showing larger variability in their sample values, but are
overlapping with the raw datasets CI in most cases. Only the CV based harmonization method
Cl is outside the raw datasets CI for two cases. This shows that the effect size is likely preserved
after applying the harmonization algorithm in most cases since the only source of variability is
the effects we induced in that region to create the altered datasets. Supplementary materials
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Effect size for the paired t-tests before and after harmonization
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Figure 6.9: Boxplots of Hedges' g effect size for each metric with the mean value as the black dot. The
raw data is shown in red (no harmonization), the data harmonized with the AIC in blue and finally the
data harmonized with the CV in orange, similarly to the previous figures. The top row shows the effect
size when both datasets are in their original version (None of the datasets are altered), the middle row
when only one of the dataset is altered and the bottom row when both datasets are altered as indicated
on the right of each row. The top and bottom row are only affected by scanner effects. The middle
row shows larger effects size due to one of the compared dataset being altered in addition to the scanner
effects.

1 contains the individual effect sizes, p-values and other intermediary statistics for every tested
combination that generated the boxplots shown in Fig. 6.9.

6.5 Discussion

6.5.1 Reducing variability across scanners

We have presented a new algorithm based on dictionary learning to harmonize datasets acquired
on different scanners using the benchmark database from the CDMRI 2017 harmonization chal-
lenge (Tax et al., 2019). The flexibility of the method lies in its ability to adapt the regularization
parameter )\, automatically to each subset of training examples in Eq. (6.1), ensuring that the
relevant information to reconstruct the data is encoded in the dictionary D. Only features
deemed important to the reconstruction are stored as the ¢, norm on the coefficients o encour-
ages a sparse reconstruction and forces most of the coeflicients to zero (Candés et al., 2008;
Daubechies et al., 2010; St-Jean, Coupé, et al., 2016). In the reconstruction step, a new value
of )\, is automatically selected for each reconstructed patch, ensuring that the regularization is
tuned uniquely so that the reconstruction matches the original patch, but using only features
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Effect size for paired t-tests in matched scans
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Figure 6.10: Hedges' g effect size for each metric between the original and altered datasets on the same
scanner with a 95% Cl. The top row shows the effect size between the original and altered dataset on
the GE scanner, the middle row for the Prisma scanner and the bottom row for the Connectom scanner.
Most of the CI are overlapping except for the CV in the cases of subject 'L’ on the GE scanner and subject
'H’ on the Prisma scanner. This effect size is only due to the alterations performed in the experiments
and is free of any other source of variability, such as registration error or scanner effects.

found in the target scanner. This is of course at the cost of additional computations since a
least-square problem needs to be solved for each candidate value );, but convex and efficient
numerical routines reusing the previous solution as a starting point can be used to alleviate com-
putational issues (Friedman et al., 2010). To the best of our knowledge, this is the first case
where an automatic search of the regularization parameter has been used in both stages of the
optimization.

For the reconstruction step, we introduced two alternatives to compute A, through the AIC
or CV using held out parts of the signal. While other choices are possible, such as the Bayesian
information criterion (Schwarz, 1978), we chose here the AIC for simplicity and because it is in
fact equivalent to leave one out CV in the asymptotic limit (Stone, 1977). Cross-validation was
done with a classical approach as done in statistics, predicting the signal on parts of the current
reconstructed patch as opposed to e.g. reconstructing a completely separate patch with the same
value of \; as may be done in machine learning. This could explain why the AIC based method
performed better than the CV criterion for the anisotropy metrics in the SA protocol since the
held out data, which is selected at random for every case, may sometimes unbalance the angular
part of the signal because of the subsampling. The AIC would not be affected as it can access the
whole data for prediction but instead penalizes reconstructions that do not substantially reduce
the mean ¢, error and are using too many coeflicients—a likely situation of overfitting. This
also makes the AIC faster to compute since there is no need to refit the whole model from the
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beginning unlike the CV.

One major advantage of the harmonization approach we presented is that raw datasets are
directly harmonized without the requirement of paired samples during training. In fact, the
data was given at random for the training phase and we mixed patches from all subjects and
all scanners altogether in the additional experiments we described in Section 6.3.5, preventing
overfitting to a particular scanner in the process. While other harmonization approaches have
been developed, most of them require paired samples (Cetin Karayumak et al., 2019; Mirzaalian
et al., 2016) or harmonize only the extracted scalar maps from diffusion MRI instead (Alexander
et al., 2017; Fortin et al., 2017), limiting their applicability in studies that do not account for
these requirements at first in their design. Moreover, it is not clear if the mapping developed
for a particular scalar map is in fact similar between metrics as scanner effects may behave differ-
ently, e.g. isotropy metrics may be subject to global effects while anisotropy metrics may exhibit
orientational bias due to low SNR in some given gradient directions. We also observed in our
experiments that the error for the ADC and RISH 0 metrics were similar for most methods
while the error was larger for the FA and RISH 2 metrics for the baseline method, which are
orientation dependent. This shows that the “optimal” mapping function could likely be task
dependent if one wants to harmonize directly the scalar maps between scanners, which could
complicate interpretation between studies that are not using a matched number of b-values or
gradient orientation.

In the additional experiments, we introduced the idea of creating a neutral “scanner space”
instead of mapping the datasets towards a single target scanner. We also harmonized datasets
that had been altered towards that common space and shown that the induced effect sizes are
preserved while at the same time preserving normal anatomical variability. This approach has
the benefit of removing variability attributable to both scanners, instead of trying to force the
source scanner to mimic variability that is solely attributable to the target scanner. It is also
important to mention here that a good harmonization method should remove unwanted variabil-
ity due to instrumentation, all the while preserving genuine anatomical effects as also pointed
out previously by Fortin et al. (2017). While this statement may seem obvious, success of har-
monization towards a common space is much more difficult to quantify than between scanners
since we can not look at difference maps between harmonized datasets anymore. since we can
not look at difference maps between harmonized datasets anymore. As a thought experiment, a
harmonization method that would map all datasets towards a constant value would show no dif-
ference between the harmonized datasets themselves, therefore entirely removing all variability.
It would however commit very large errors when compared against the original version of those
same datasets. From Fig. 6.7, we see that the harmonized datasets are similar to their original
version, but Fig. 6.8 shows that the CV based algorithm has larger relative differences with the
data before harmonization. It is however not obvious if the CV based algorithm is removing too
much variability by underfitting the data or if the AIC based method is not removing enough,
overfitting the data. Fig. 6.10 suggests that the CV criterion might underfit the data due to
the lower effect size, but this could be due to using only 3 fold CV in our experiments to limit
computation time. Results might be improved by using more folds as the AIC approximates the
CV as we have previously mentioned.

6.5.2 Dependence of isotropy and anisotropy metrics on scanning parameters

While it is usually advocated that protocols should use similar scanning parameters as much as
possible to ensure reproducibility, this is not always easily feasible depending on the sequences
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readily available from a given vendor and differences in their implementations. Subtle changes
in TE and TR influence the measured signal as shown in Fig. 6.11 by changing the relative T2
and T1 weighting of the measured diffusion signal, respectively. While dMRI local models are
usually applied on a per voxel basis, changes in these weightings will yield different values of
the diffusion metrics, which makes comparisons between scans more difficult as the weighting
depends on the different (and unknown) values of T1 and T2 of each voxel (Brown et al., 2014,
Chap. 8). Even if these changes are global for every voxels, matched b-values are not sufficient
to ensure that the diffusion time is identical between scans as changes in TE influence diffusion
metrics such as increased FA (Qin et al., 2009), but this effect may only manifest itself at either
long or very short diffusion times in the human brain (Clark et al., 2001; Kim et al., 2005).
Proper care should be taken to match the diffusion time beyond the well-known b-value, which
may not always be the case if different sequences are used e.g. PGSE on the Siemens scanners
and TRSE on the GE scanner as used in this manuscript. Additional effects due to gradients and
b-values spatial distortions (Bammer et al., 2003) could also adversely affect the diffusion metrics,
especially on the Connectom scanner as it uses strong gradients of 300 mT/m (Tax et al., 2019).
Isotropy metrics are not necessarily free of these confounds as gradients nonlinearity create a
spatially dependent error on the b-values (Paquette et al., 2019). This could explain the larger
mean error for the CV and baseline methods on the Connectom scanner harmonization task,
especially for the anisotropy metrics. While correcting for these effects is not straightforward,
gradient timings should be reported in addition to the usual parameters (e.g. TE, TR, b-values
and number of gradient directions) in studies to ease subsequent harmonization. Accounting for
these differences during analysis could be done e.g. by using a (possibly mono-exponential) model
including diffusion time and predicting the diffusion metrics of interest at common scanning
parameters values between the acquisitions to harmonize.

GE Prisma Connectom
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Figure 6.11: Example b = 0 s/mm? images for the standard protocol (top row) and the state-of-the-art
protocol (bottom row) for a single subject acquired on the three scanners at different combinations of
TE and TR. Note that the b = 0 s/mm? image for the GE scanner was only acquired at a single TE with
a cardiac gated (CG) TR. The figure is adapted from Tax et al. (2019), available under the CC-BY 4.0
license.
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6.5.3 Limitations

Limitations of harmonization As Burnham and Anderson (2004) stated, “in a very important
sense, we are not trying to model the data; instead, we are trying to model the information
in the data”. This is indeed the approach taken in the challenge by the participants, the four
other entries relying on deep learning and neural networks for the most part with all methods
(including ours) optimizing a loss function which considered the difference between the original
and the harmonized dataset. With the rapid rise of the next generation of deep learning methods
such as generative adversarial networks (GAN) and extensions (Goodfellow et al., 2014), it is now
possible to instead model directly the distribution of the data. This allows generation of datasets
from a completely different imaging modality such as synthesizing target CT datasets from source
MRI datasets (Wolterink et al., 2017). However, if proper care is not taken to represent truthfully
the distribution of the data (e.g. not including enough tumor samples in a harmonization task
between datasets with pathological data), this can lead to severe issues. Cohen et al. (2018)
recently showed that in such a case, GAN based methods could try to remove the pathology
in the data to match the distribution of healthy subjects that the method previously learned,
precluding potential applications to new datasets or pathological cases not represented “well
enough” in the training set. The same concept would likely apply to systematic artifacts; if every
dataset from a target scanner is corrupted by e.g. a table vibration artifact, it may very well be
possible that a harmonization algorithm will try to imprint this artifact to the source datasets
to match the target datasets. The same remark would apply to our harmonization algorithm; if
systematic artifacts are in the data, the learned dictionary may very well try to reconstruct these
systematic artifacts. However, when rebuilding the source dataset using this corrupted target
dictionary, we expect that the artifact would be mitigated since it would not appear in the source
dataset and hence should not be reconstructed by Eq. (6.1) as it would penalize the ¢, norm part
of the cost function. While offering a promising avenue, care must be taken when analyzing
harmonization methods to ensure that they still faithfully represent the data as optimal values
of the cost functions themselves or “good” reconstruction of the diffusion metrics only may not
ensure this fact (Rohlfing, 2012).

Limitations of our algorithm and possible improvements Our additional experiments with
simulated free water have shown how harmonization can, to a certain extent, account for data
abnormalities not part of the training set. However, the presence of CSF and the boundary
between gray matter and CSF (or a linear combination of those elements) may yield enough
information for the reconstruction to encode these features in the dictionary. This can provide
new elements that are not used for the reconstruction of normal white matter but may be useful
for the altered data in the experiments. It is not necessarily true that this property would also
be valid for other neurological disorders such as tumors, especially if their features are not well
represented in the training data as we have mentioned previously in Section 6.5.3. Another aspect
that we did not explicitly cover is multishell data i.e. datasets acquired with multiple b-values,
which was in fact part of the following CDMRI challenge (Ning et al., 2019). Nevertheless,
our method can still be used on such datasets, but would not be aware of the relationship
between DWIs beyond the angular domain. Other approaches to build the dictionary could be
used to inform the algorithm and potentially increase performance on such datasets by explicitly
modeling the spatial and angular relationship (Schwab et al., 2018) or using an adaptive weighting
considering the b-values in the angular domain (Duits et al., 2019) amongst other possible
strategies. Modeling explicitly the angular part of the signal could also be used to sample new
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gradients directions directly, an aspect we covered in the original CDMRI challenge by using
the spherical harmonics basis (Descoteaux et al., 2007). Correction for the nature of the noise
distribution could also be subsequently included as a processing step before harmonization since
reconstruction algorithms vary by scanner vendor (Dietrich et al., 2008; St-Jean, De Luca, et al.,
2018), leading to differences between scans due to changes in the noise floor level (Sakaie et
al., 2018). Improvements could also potentially be achieved by considering the group structure
shared by overlapping patches when optimizing Eq. (6.1) (Simon et al., 2013). While this
structure would need to be explicitly specified, optimizing jointly groups of variables has recently
led to massive improvements in other applications of diffusion MRI such as reduction of false
positive connections in tractography (Schiavi et al., 2019).

6.6 Conclusions

In this paper, we have developed and evaluated a new harmonization algorithm to reduce intra
and inter scanner differences. Using the public database from the CDMRI 2017 harmonization
challenge, we have shown how a mapping from one scanner to another can be constructed au-
tomatically through dictionary learning using unpaired training datasets. This can also be done
for different spatial resolutions through careful matching of the spatial patch size used to build
the dictionary from the target scanner. We also introduced the concept of mapping datasets
towards an arbitrary “scanner space” and used the proposed algorithm to reconstruct altered ver-
sions of the test datasets corrupted by a free water compartment, even if such data was not part
of the training datasets. Results have shown that the effect size due to alterations is preserved
after harmonization, while removing variability attributable to scanner effects. We also provided
recommendation when harmonizing protocols, such as reporting the gradient timings to inform
subsequent harmonization algorithms that could exploit these values across studies. As perfect
matching of scanner parameters is difficult to do in practice due to differences in vendor imple-
mentations, an alternative approach could be to account for these differences through models of
diffusion using these additional parameters. Nevertheless, as the algorithm is freely available, this
could help multicenter studies in pooling their data while removing scanner specific confounds
and increase statistical power in the process.

6.7 Appendix: The harmonization algorithm

This appendix outlines the harmonization algorithm in two separate parts. Algorithm 6.1 first
shows how to build a target dictionary as depicted in the top part of Fig. 6.1. The bottom part of
the diagram shows how to rebuild a dataset given the dictionary and is detailed in Algorithm 6.2.
Our implementation is also freely available at https://github.com/samuelstjean/harmonization (St-
Jean, Viergever, et al., 2019).
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Algorithm 6.1: The proposed harmonization algorithm - building a target dictionary.

Data: Datasets, patch size, angular neighbor
Result: Dictionary D

Step 1 : Extracting patches from all datasets;
foreach Datasets do
Find the closest angular neighbors;
Create a 4D block with a b = 0 s/mm? and the angular neighbors;
Extract all 3D patches and store the result in an array Q;
end
Step 2 : Build the target dictionary;
while Number of max iterations not reached do
Randomly pick patches from €;
Solve Eq. (6.1) for o with D fixed;
Solve Eq. (6.1) for D with o fixed;

end

Algorithm 6.2: The proposed harmonization algorithm - reconstruction of the harmo-
nized data.

Data: Dataset, dictionary
Result: Harmonized dataset

Step 1 : Extracting patches from the dataset to harmonize;

foreach Dataset do
Find the closest angular neighbors;
Create a 4D block with a b = 0 s/mm? and the angular neighbors;
Extract all overlapping 3D patches and store the result as Q;

end

if Matching across spatial resolution then

| Downsample D into D,y spatially before reconstruction;
else

| D
end

D;

small =

Step 2 : Find the harmonized patch;
foreach patches € Q do
Find the coefficients c by solving Eq. (6.1) for Dy fixed;
Find the harmonized representation X = Day;
end
foreach patches € Q2 do
| Put back each patch at its spatial location and average overlapping parts;
end
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Summary and discussion

7.1 Summary

Through this thesis, we have seen how diffusion MRI can complement anatomical MRI by
providing information about the diffusivity of in vivo tissues in a noninvasive way. By devising
adequate biophysical models explaining the measured signal, these diffusivity values can then
be used to produce scalar maps and infer the architecture and abnormalities of the underlying
tissues. Analysis of the statistical properties of the signal (e.g., the moments and the kurtosis)
can also be used to produce scalar maps that are not intrinsically tied to a particular model but
can still reveal abnormalities in the underlying tissues.

Chapter 2 showed how high resolution diffusion MRI datasets acquired on a standard scan-
ner can be used to improve anatomical accuracy, even though the low signal level associated with
smaller voxels would normally preclude a direct analysis. Through a new denoising algorithm
exploiting spatial and angular redundancy of the multiple volumes obtained in routine diffusion
MRI acquisitions, we have employed a dictionary learning algorithm coupled with signal bias
correction and an iterative ¢; reweighting scheme. The reconstruction naturally discards the
unwanted noise associated with low SNR through using an upper bound on the ¢, norm, which
depends on the local noise variance. Experiments on synthetic datasets have shown that the
error in the recovered diffusion metrics (such as the FA and the ADC) by the method is lower
than the error produced by the compared denoising algorithms. This property of the algorithm
qualitatively transferred to in vivo data, where additional anatomical details and enhanced trac-
tography are easily identifiable on a 1.2 mm isotropic dataset when compared to the original,
noisy 1.2 mm version or on a comparable (in terms of acquisition time) 1.8 mm dataset of the
same subject. Note that the lower resolution dataset had an increased SNR and 64 diffusion
volumes, whereas the 1.2 mm dataset only contained 40 diffusion volumes.

Chapters 3 and 4 presented an enhancement to along-tract types of analysis. Chapter 3
first showed that direct geometrical averaging based on the Cartesian coordinates of metrics
extracted along-tract can lead to a mismatch notably in the presence of splitting (e.g. arcuate
fasciculus) or fanning (e.g. corticospinal tract) fiber bundle configurations. Assigning values
using orthogonal cross-sections instead can help to resolve this issue since points are now assigned
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locally towards a representative streamline instead of considering their absolute coordinates in
space. After extraction of a representative streamline for each subject, Chapter 4 presented a
new algorithm for the realignment of those representative streamlines. As tractography and
subsequent extraction of bundles of interest are realized on every subject separately, there is no
guarantee that coordinates in the 1D space of analysis are matching for every subject. By finding
a template candidate amongst all subjects, only the overlapping segments (up to a user-defined
threshold) are kept after realignment for further statistical analysis. We have shown that such
a strategy reduces the coeflicient of variation of the metrics of interest (in this case the mean
diffusivity, fractional anisotropy and apparent fiber density) in synthetic experiments and on a
database of 100 in vivo datasets. On those same in vivo datasets, experiments inducing alterations
on half of the subjects conducted on realigned profiles helped to uncover the region affected by
those alterations, which was not always possible in the non-realigned case. This conclusion also
holds when the alterations in the extracted scalar values are large and only cover a small region
of the whole tract length.

Chapter 5 brought us back to the acquisition by presenting a new automated method to esti-
mate the signal distribution from repeated magnitude MRI measurements, such as the multiple
diffusion weighted images required for local modeling in diffusion MRI. The main advantage of
the method lies in the fact that it does not rely on external measurements, such as coil sensitivities
or reconstruction matrices, which are usually not recorded at acquisition time. Multiple experi-
ments on simulated phantoms with different coil simulations (including two different accelerated
parallel imaging algorithms) have shown that the noise distribution can be recovered successfully
without information about the acquisition process. Experiments on an acquired phantom of a
water bottle showed that the method is robust to signal leakage due to multiband imaging as long
as the acceleration factor is not too high i.e. about 3 in our experiments. We also analyzed two
in vivo datasets acquired in two separate centers, including four repetitions of the same subject,
which are publicly available online. Results showed that the proposed method is stable on those
four datasets and identified the expected signal distribution, while at the same time discarding
voxels contaminated by artifacts. The second in vivo dataset also gave results in line with the
expected theoretical signal distribution according to the parallel MRI reconstruction that was
used during the acquisition.

Finally, Chapter 6 presented a new algorithm to harmonize diffusion MRI datasets acquired
with different scanners. Using dictionary learning, we have shown how features can be auto-
matically extracted from datasets acquired on a target scanner and used to reconstruct datasets
from a different source scanner, removing variability attributable to both scanners in the process
while preserving anatomical variability. Experiments with a publicly available database showed
how the algorithm reduces variability on common diffusion MRI metrics and can even be used
if the spatial resolution of the scanners is not identical through adequate spatial subsampling of
the dictionary. To verify if the removed variability was not due to genuine anatomical differences,
we also generated altered datasets contaminated artificially by free water and mimicking edema.
The results supported the hypothesis of the variability originating solely from the scanner as it
decreased between scanners while preserving the effect size when comparing the altered dataset
with their original, unaltered counterpart using paired t-tests on the four studied diffusion met-
rics. The effect size was, on average, also in the same 95% confidence interval as the untouched
datasets, confirming that the harmonization process did not remove anatomical variability in its
reconstruction when comparing harmonized versus original datasets.
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7.2 Discussion

7.2.1 Theory

Each chapter of this thesis introduced a new method or algorithm to enhance the analysis and
comprehension of diffusion MRI datasets. While the results contained in this thesis are a good
first step, it is obviously not the last stopping point for diffusion MRI in general. One of the
central goals of diffusion MRI is to predict the diffusivity of the tissues, namely through local
models applied in each voxel. While there is no shortage of said models, there is unfortunately no
consensus on one model to use in particular. A few models are the usual “go to” candidates such as
diffusion tensor imaging (DTI) (Basser et al., 1994), diffusion kurtosis imaging (DKI) (Jensen et
al., 2005) and constrained spherical deconvolution (CSD) (Tournier et al., 2007) as they provide
easy to understand metrics or orientational information, respectively. More advanced choices
such as the neurite orientation dispersion and density imaging (NODDI) (Zhang et al., 2012) or
the mean apparent propagator (MAP) MRI (Ozarslan, Koay, Shepherd, et al., 2013) can further
provide specific measures not covered by the earlier models. Interestingly, those four models
besides NODDI are in fact an approximation of the diffusion signal as measured in q-space, with
NODDI instead explicitly modeling the diffusivities using a compartmental model. Nevertheless,
the denoising and harmonization methods presented in Chapters 2 and 6 are applied directly on
the DWIs and are therefore compatible with any model of interest. While we primarily used
DTI and CSD throughout this thesis for their stability and ability to work with single shell
datasets, the release of high-quality multishell datasets such as the human connectome project
(HCP) database (Van Essen, Ugurbil, et al., 2012; Van Essen, Smith, et al., 2013) can use (and
benefit from) advanced models (e.g., DKI, MAP MRI) and the additional information, such
as additional scalar maps, which can be extracted using those models. However, usage of such
advanced datasets is not necessarily common outside of the circles developing new dMRI methods
due to the inherently longer scan times needed to collect more data and the longer TE required
to achieve higher diffusion weighting, leading to a further decrease in SNR for the higher b-value
images (Froeling et al., 2017).

This chicken-and-egg problem leads to conservative usage of DTT in clinical studies, or even
only measuring the ADC by geometrically averaging measurements, as these measures are ro-
bust due to their lower number of parameters. Advanced models are harder to analyze for the
uninitiated scientist and can be subject to numerical issues due to the complexity and interde-
pendence of the parameter space (Jelescu et al., 2016; Novikov, Veraart, et al., 2018). To widen
the usage of advanced models and their promise of increased specificity, more work is needed
by the diffusion community to validate their usage, applicability and showcase how they can be
used in e.g. diseased population by providing specific biomarkers. We are not there yet as no
consensus in the community exists to suggest a default model to use, much less on the acquisi-
tion strategy required to support such a hypothetical model. Providing “textbook” acquisition
schemes that are agreed upon for a few models could be a great start to widen their usage, just
as it is usually recommended to acquire at least 30 DWTIs for DTT acquisitions (Jones and Basser,
2004). Acquiring a lower number of DWIs is also possible as long as it can support the desired
diffusion model (Lebel et al., 2012). Nevertheless, collecting additional DWIs helps in reducing
variability due to measurements, but the tipping point where acquiring more data only lengthens
the acquisition is not always clear, especially e.g. in the presence of motion, signal dropouts or
artifacts as they may render useless a portion of the collected datasets (Jones, Knosche, et al.,
2013; Tax et al,, 2015). The denoising algorithm presented in Chapter 2 of this thesis can how-
ever be used on these single-shell datasets with nothing precluding its application, from a theory
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point of view, to more advanced acquisitions. Since the algorithm presented in Chapter 6 also
uses the same foundation, applicability to multishell datasets should also be straightforward, al-
though some extensions to exploit this new information are discussed in the chapter itself. This
would obviously require further validation to ensure that the improvements showcased here for
single-shell datasets apply as well to multishell datasets. As for the noise estimation algorithm
from Chapter 5, it has already been shown to work on both single- and multishell datasets. This
is because it will automatically identify voxels from the background distribution, which are sim-
ilar since the signal is independent of the diffusion weighting in these regions. While it would
indeed be useful to have a version that is additionally valid over signal regions, the distribution of
each and every voxel would be different, especially across diffusion weighting. Such an extension
would be easier to include in the context of local modeling, as its goal is to explain the measured
diffusion signal itself, by replacing the value of the signal by its desired parametric formulation.
It could be possible, for example, to initialize such an algorithm with the values computed from
our proposed algorithm as a first step and refine the estimation of the signal distribution locally
afterward. Finally, the optimal assignment strategy and realignment algorithm from Chapters 3
and 4 can also be used with any diffusion model as they come into play after tractography, making
them both independent of prior choices regarding data processing steps.

Unfortunately, the perfect “press button” acquisition scheme and assorted local model that
tells us everything we would like to know from diffusion MRI with a two minutes acquisition
protocol does not exist yet. While new developments using deep learning may enable faster imag-
ing (Golkov et al., 2016), there is still prior work to be done in validation (e.g. in tractography
to reduce false positive connections (Maier-Hein et al., 2017)), and in fundamental theoreti-
cal modeling of diffusion MRI (Novikov, Kiselev, et al., 2018), which may come through new
sequences beyond the original 1965 Stejskal-Tanner experiment (Stejskal and Tanner, 1965).

7.2.2 Recent developments in diffusion MRI

Recently, new developments in diffusion MRI acquisition have highlighted limitations in the
classical Stejskal-Tanner sequence (Westin et al., 2016). Designed under the umbrella term of
multidimensional diffusion MRI, these sequences allow, e.g., measuring the covariance of a dis-
tribution of diffusion tensors, instead of the classical measures which result in the average of
the distribution over each voxel. Additional information can be obtained through higher mo-
ments of the diffusion propagator, which is not available to the classical single diffusion encoding
sequence (Novikov, Fieremans, et al., 2019). While it may help to provide more specific infor-
mation about the macroscopic content of a given voxel through new metrics such as the micro
FA, preliminary results on clinical scanners have shown encouraging results in, e.g., differen-
tiating meningioma from glioblastoma. Szczepankiewicz et al. (2015) have shown that the FA
maps were lower for both type of tumors, but the micro FA map showed that the meningioma
exhibited coherent structure, whereas the glioblastoma did not, resulting in high and low micro
FA values, respectively.

The sequence from Szczepankiewicz et al. (2015) was using a gradient strength of 80 mT/m
and a voxel size of 3 mm isotropic to preserve acceptable SNR due to the much larger TE of 160
ms and b-value up to b = 2800 s/mm? required for the encoding. For comparison, the experi-
ments from Chapter 2 used a gradient strength of 45 mT/m and a voxel size of 1.8 mm isotropic
with a TE of 63 ms for the baseline scan. Furthermore, the 1.2 mm isotropic sequence still only
required a TE of 104 ms while keeping the b-value at b = 1000 s/mm?. These multidimensional
encoding sequences still require stronger diffusion gradients hardware than available on most
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current clinical scanners (about 40 mT/m) to achieve an acceptable SNR, but are still fairly new
and could be further optimized for efficiency (Westin et al., 2016). As they also enable access to
additional scanning parameters, these sequences are prime candidates for the harmonization al-
gorithm presented in Chapter 6 if they are to be used for large-scale studies with various scanners
and reconstruction methods. The denoising algorithm from Chapter 2 could also be employed
to circumvent the rather large voxel size and increase the spatial sensitivity of the method, simi-
larly to the processing used on the high spatial resolution dataset of 1.2 mm isotropic to recover
additional anatomical details which were hidden by the low SNR. The noise estimation method
from Chapter 5 could also be used to inform the denoising algorithm or even the model fitting
procedure subsequently used in multidimensional diffusion MRI.

A 3 minutes protocol has also recently been presented on a database of 42 patients with
intracranial tumors to measure anisotropic and isotropic kurtosis, bringing these new develop-
ments closer to clinical applications (Nilsson et al., 2019). As orientational information required
for tractography is, so far, not obtained from these sequences, relying on other algorithms us-
ing multiple b-values such as multi-tissue CSD (De Luca et al., 2019; Jeurissen et al., 2014)
can be used as a substitute since the multidimensional encoding also typically uses multiple b-
values. Combining tractography with these additional covariance measures of diffusion could
be analyzed using the along-tract framework extensions presented in Chapters 3 and 4 instead
of the classical ROI analysis (Nilsson et al., 2019). This would provide additional information
(e.g. for neurosurgical applications) such as the location of the affected region in a white matter
bundle or even if a tumor is infiltrative or is instead “pushing back” the white matter structure

(Chamberland et al., 2014).

7.2.3 Future directions

While there is recently renewed interest in revisiting the standard pulse sequences used in diffu-
sion MRI, another aspect worth exploring is the field of numerical methods and optimization.
Indeed, newer models oftentimes require nonlinear optimization due to the complexity and rela-
tionship between their parameters, requiring additional constraints to increase numerical stability
(Novikov, Kiselev, et al., 2018; Novikov, Veraart, et al., 2018). Recent analytical developments
have shown how a single fiber population can be written as the product of the spherical har-
monics (SH) basis and a Legendre polynomial representation of the kernel for this single fiber
population (Novikov, Veraart, et al., 2018). This leads to a set of nonlinear equations based on
the moments with fewer parameters, but still describing the full single fiber population and the
extracellular space around it for each voxel. Unfortunately, this representation also highlighted
a fundamental degeneracy in the parameter estimation space where parameters are in fact cor-
related and interdependent, yielding spurious solutions that are invalid, but still biophysically
plausible. Determining which set of parameters is correct, as it likely varies for each voxel, is
currently an active topic of research.

Representation of the signal using the SH basis has applications in diffusion MRI such
as modeling the orientation distribution function (ODF) (Descoteaux, Angelino, et al., 2007;
Tournier et al., 2007) or the diffusion propagator (Descoteaux, Deriche, et al., 2011; Ozarslan,
Koay, and Basser, 2013). These approaches rely on linear algebra, which can be solved using
classical least-squares methods, and scalar maps of interest are subsequently derived from the
coeflicients. Explicit products of the SH part with Legendre polynomials can also be used to
model directly the diffusion signal instead of separating the kernel and ODF (Jespersen et al.,
2007). The spherical mean technique (SMT) instead factors out the ODF by averaging the mea-
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surements, enabling quantification of diffusivity of the fiber population without confounds due
to dispersion (Kaden et al., 2016). The SMT and the approach of Jespersen et al. (2007), how-
ever, rely on nonlinear optimization, which is prone to degeneracies and numerical issues since
changing one parameter will affect differently the values of the remaining parameters, in addi-
tion to the increased computational burden when compared to linear methods. However, it may
very well be possible to combine these ideas in a framework that relies on linear optimization,
thereby reducing the complexity and simplifying analysis of the error propagation. The answer
to these questions may in fact come from other domains of research where fitting of exponential
data is ubiquitous. Namely, approaches using a polynomial representation (such as Legendre
polynomials) to fit exponential decays through differential equations (Knisley and Glenn, 1996;
Martin et al., 1994) may offer new insights about the difficulties faced currently in diffusion
MRI. It is possible, using solely the coefficients of the polynomial, to solve a linear system of
equations and obtain the exponential decay rate associated with the original signal. In the case
of diffusion MRI, the 1D signal can be represented as a Legendre polynomial. Coefficients of
the polynomial can be used to derive the diffusivities with a combination of linear algebra and
root finding. Preliminary results (St-Jean, 2019) have shown how this approach can be used to
obtain ADC maps for a two compartments model in the whole brain in about 2 minutes. This
is done on a 1D version of the diffusion signal obtained by geometrically averaging the DWIs
at each b-value. Solving explicitly the same equation with traditional nonlinear optimization
requires about 10 hours and yields visually identical results. Using the SH basis, this 1D prelim-
inary approach could likely be extended to also incorporate the ODF since the product of the
SH basis and Legendre polynomials results in another set of Legendre polynomials (Jespersen
et al., 2007). This would lead, in theory, to a per-tissue diffusivity measure (and assorted scalar
maps) and ODF, without the need to fix a per-tissue kernel as is done in spherical deconvo-
lution (De Luca et al., 2019; Jeurissen et al., 2014). As the process is fully determined once
the polynomial coeflicients have been computed, designing time-optimal acquisition schemes
regarding the number of required DWIs and the set of optimal b-values to ensure the stability
of the fitting procedure becomes feasible. This could help widen usage of the concepts discussed
previously since it is both faster than traditional nonlinear fitting and the numerical stability of
the process is easier to understand as only linear sets of equations are involved. Coupled with
multidimensional MRI, these ideas could offer new and promising insights in studying the brain
while reducing the acquisition burden at the scanner and subsequent processing time to obtain
relevant information from diffusion MRI.
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Samenvatting

Dit proefschrift laat zien hoe diffusie MRI een aanvulling kan zijn op anatomische MRI door
informatie te verschaffen over de diffusie van in vivo weefsels op een niet-invasieve manier. Door
geschikte biofysische modellen te ontwikkelen die het gemeten signaal verklaren, kunnen deze
diffusie eigenschappen vervolgens worden gebruikt om de architectuur en afwijkingen van de
onderliggende weefsels af te leiden. Analyse van de statistische eigenschappen van het signaal
(bijvoorbeeld de momenten en de kurtosis van dit signaal) kan ook worden gebruikt om in-
formatie te verkrijgen die niet intrinsiek gekoppeld is aan een bepaald model, maar nog steeds
afwijkingen in de onderliggende weefsels kan onthullen.

Na het inleidend Hoofdstuk 1, laat Hoofdstuk 2 zien hoe hoge-resolutie diffusie MRI data-
sets, verkregen met een klinische scanner, kunnen worden gebruikt om de anatomische nauw-
keurigheid van afgebeelde structuren te verbeteren, ondanks het lage signaalniveau gerelateerd
aan kleinere voxels, wat een directe analyse uitsluit. Door een nieuwe methode van ruisonder-
drukking, die gebruik maakt van ruimtelijke en angulaire redundantie van informatie van de
meerdere diffusie MRI volumes verkregen bij diffusie MRI acquisities, hebben we een “dictio-
nary learning” algoritme kunnen combineren met signaalbiascorrectie en een iteratief ¢, -weging
schema. De reconstructie negeert de ongewenste ruis geassocieerd met lage SNR door gebruik te
maken van een limiet op de ¢,-norm die athankelijk is van de lokale ruisvariantie. Experimenten
met synthetische datasets tonen aan dat de fout in de door de methode gevonden diffusiematen
(zoals FA en ADC) lager is dan die verkregen uit de andere algoritmen voor ruisonderdrukking.
Deze eigenschap van het algoritme blijkt ook op te gaan voor isotrope 1.2 mm in vivo data,
waarbij meer anatomische details en verbeterde tractografie herkenbaar zijn dan in de originele,
ruizige versie van de 1.2 mm data of de vergelijkbare (wat betreft acquisitietijd) 1.8 mm data van
dezelfde proefpersoon. De dataset met lagere resolutie had een verhoogde SNR en 64 diffusie
MRI-volumes, terwijl de 1.2 mm dataset slechts 40 diffusie MRI-volumes bevatte.

Hoofdstukken 3 en 4 presenteren een verbetering van de analyse waarbij langs het traject van
de vezelbundels wordt gekeken. Hoofdstuk 3 toont eerst aan dat directe geometrische middeling
op basis van de Cartesiaanse codrdinaten van diffusie eigenschappen, geéxtraheerd langs het pad,
kan leiden tot een mismatch, met name in de aanwezigheid van splitsende (bijvoorbeeld bij de
fasciculus arcuatus) of uitwaaierende (bijvoorbeeld bij de corticospinale vezelbanen) vezelbundel-
configuraties. Door in plaats daarvan orthogonale doorsneden te gebruiken, kan dit probleem
worden opgelost: datapunten kunnen nu lokaal worden toegewezen aan een representatief pad
in plaats van dat hun absolute codrdinaten in de ruimte beschouwd worden.

Hoofdstuk 4 beschrijft een nieuw algoritme voor de herschikking van representatieve her-
senvezelpaden die niet gealigneerd zijn. Aangezien tractografie en daaropvolgende extractie van
specifieke bundels voor elke persoon afzonderlijk worden gerealiseerd, is er geen garantie dat
codrdinaten in de 1D analyseruimte tussen personen overeenkomen. Door het vinden van een
voor alle personen representatief sjabloon, wordt na het aligneren alleen het overlappend segment
(met een drempel door de gebruiker gedefinicerd) bewaard voor verdere statistische analyse. We
tonen met simulaties en een database van 100 personen aan dat een dergelijke strategie de varia-
tie van de relevante diffusie eigenschappen (e.g., gemiddelde diffusie en fractionele anisotropie)
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vermindert. Met diezelfde in vivo datasets kunnen we aantonen dat onze methode verschillen
tussen groepen kan identificeren, wat zonder deze correctie niet mogelijk was.

In Hoofdstuk 5 wordt een nieuwe geautomatiseerde methode gepresenteerd die de signaal-
verdeling van herhaalde magnitude MRI metingen, zoals de meerdere diffusie-gewogen beelden
die nodig zijn voor lokale modellering in diffusie MRI, kan schatten. Het belangrijkste voordeel
van de methode ligt in het feit dat deze niet athankelijk is van externe metingen, zoals spoelge-
voeligheden of reconstructiematrices, die meestal niet worden geregistreerd op het moment van
acquisitie. Meerdere experimenten met gesimuleerde fantomen met verschillende spoelsimula-
ties (inclusief twee verschillende versnelde parallelle beeldvormingsalgoritmen) tonen aan dat de
ruisverdeling met succes kan worden bepaald zonder informatie over het acquisitieproces. Expe-
rimenten met een fantoom van een waterfles tonen aan dat de methode robuust imperfecties als
gevolg van “multiband” beeldvorming kan signaleren, zolang de versnellingsfactor niet te hoog
is, d.w.z. ongeveer 3 in onze experimenten. We hebben ook twee publiek beschikbare in vivo
datasets geanalyseerd die zijn verkregen in verschillende instituten, waaronder een met vier ac-
quisities van dezelfde persoon. De resultaten tonen aan dat de voorgestelde methode stabiel is op
deze vier datasets en de verwachte signaalverdeling identificeert, terwijl voxels die door artefacten
zijn aangetast, worden weggelaten. De tweede in vivo dataset geeft ook resultaten die overeen-
komen met de verwachte theoretische signaalverdeling volgens de parallelle MRI reconstructie
die werd gebruikt tijdens de acquisitie.

Ten slotte laat Hoofdstuk 6 een nieuw algoritme zien voor het harmoniseren van diffusie
MRI datasets die op verschillende scanners zijn verkregen. Met behulp van “dictionary learning”
tonen we aan hoe eigenschappen automatisch kunnen worden geéxtraheerd uit datasets die zijn
verkregen op een specifieke MRI scanner en kunnen worden gebruikt om datasets van een an-
dere scanner te reconstrueren. Hierbij worden de variaties die aan de scanners kunnen worden
toegeschreven verwijderd, met behoud van de anatomische variaties. Experimenten met een in
vivo database laten zien hoe het algoritme de variaties in diffusie MRI eigenschappen vermindert
en zelfs kan worden gebruikt als de ruimtelijke resolutie van de scanners niet identiek is. Om
te controleren of de verwijderde variaties niet te wijten zijn aan echte anatomische verschillen,
hebben we datasets gegenereerd die kunstmatig zijn aangepast door vrije water diffusie en oe-
deem na te bootsen. De resultaten ondersteunen de hypothese dat de verwijderde variaties alleen
afkomstig waren van de reconstructie.
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Résume

Dans cette thése, nous avons vu comment 'TRM de diffusion peut complémenter 'TRM anato-
mique en présentant de I'information additionnelle concernant la diffusivité des tissus in vivo de
fagon non invasive. En développant des modéles biophysiques expliquant le signal, ces diffusivités
peuvent ensuite étre utilisées pour inférer I'architecture ou 'anormalité des tissus sous-jacents.
L’analyse des propriétés statistiques du signal (par exemple les moments ou le kurtosis) peut
aussi étre utilisée pour obtenir des cartes scalaires, cartes qui ne sont pas intrinséquement liées a
un modele particulier, mais peuvent tout de méme révéler les tissus anormaux.

Le Chapitre 2 montra comment une image d'TRM de diffusion a haute résolution spatiale
acquise sur un scanner standard peut étre utilisée pour accroitre la précision anatomique, méme si
le ratio signal sur bruit généralement associé avec des voxels plus petits prévient normalement une
analyse directe. Nous avons présenté un nouvel algorithme de débruitage exploitant la redondance
spatiale et angulaire des multiples volumes réguli¢rement acquis en IRM de diffusion, couplant
un algorithme d’apprentissage automatique de dictionnaire combiné a une correction du biais
du signal et un processus itératif pondéré de norme ¢,. Le processus de reconstruction écarte
naturellement le bruit non voulu associé & un faible ratio signal sur bruit en utilisant une borne sur
la norme £, du signal reconstruit dépendant de la variance locale du bruit. Les expériences sur des
données synthétiques ont démontré que 'erreur des métriques dTRM de diffusion (par exemple
I'anisotropie fractionnaire ou la diffusivité moyenne) calculée avec I'aide de la méthode proposée
est plus basse que l'erreur commise en utilisant les algorithmes comparés. Cette propriété de
Palgorithme est aussi validée qualitativement sur des données in vivo, oi l'on retrouve des détails
anatomiques additionnels. On remarque aussi que la tractographie est plus fidele a la réalité sur
des données a 1.2 mm isotrope lorsque comparée aux données bruitées originales 4 1.2 mm ou
encore sur des données comparables (en termes de temps d’acquisition) de 1.8 mm isotrope du
méme sujet. Nous notons également que les données a plus faible résolution spatiale avaient un
signal ratio sur bruit plus élevé et comprenant 64 volumes d'IRM de diffusion contre 40 volumes
pour les données a 1.2 mm.

Les Chapitres 3 et 4 présenterent une amélioration au concept d’analyse le long d’'un segment
de fibres. Le Chapitre 3 montra en premier lieu que la moyenne géométrique des coordonnées
cartésiennes des métriques extraites peut mener a une disparité, notamment en présence d’em-
branchement (par exemple dans le faisceau arqué) ou encore de configuration en éventail (par
exemple le faisceau corticospinal). Une affectation des valeurs utilisant des plans orthogonaux
permet au contraire de résoudre ce probléme puisque les points sont désormais assignés loca-
lement envers une fibre représentative au lieu de considérer leurs coordonnées absolues. Apres
avoir extrait une fibre représentative par sujet, le Chapitre 4 présenta un nouvel algorithme pour
réaligner ces fibres représentatives. Puisque la tractographie et 'extraction des faisceaux de la ma-
tiere blanche sont réalisées pour chaque sujet séparément, il n'existe pas de moyen garantissant
que les coordonnées de I'espace 1D correspondent pour chaque sujet. En trouvant automatique-
ment un candidat modele parmi tous les sujets disponibles, seulement les portions de segments
qui correspondent (selon un seuil défini par l'utilisateur) sont conservées aprés le réalignement
pour étre subséquemment analysées. Nous avons montré que cette stratégie permet de réduire
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le coefficient de variation des métriques de diffusion étudiées (diffusivité moyenne, anisotropie
fractionnaire et densité de fibres apparente) avec des expériences synthétiques et avec une base
de données composée de 100 sujets. Sur cette derniére, les expériences o la moitié des sujets
avaient été altérés ont démontré que I'algorithme de réalignement permet de retrouver les régions
affectées par ces mémes altérations, alors que ce n'était pas toujours possible dans le cas ou les
sujets ne sont pas réalignés. Cette conclusion est aussi valide lorsque les altérations réalisées sur
les valeurs scalaires sont majeures et couvrent seulement une petite région du faisceau complet.

Le Chapitre 5 nous ramena & l'acquisition en présentant une nouvelle méthode pour estimer
automatiquement la distribution du signal provenant d’'une série d’acquisitions dTRM de magni-
tude, tel que les multiples volumes acquis en IRM de diftusion qui sont requis pour supporter les
modeles locaux. L’avantage principal de 'algorithme repose sur le fait qu’il ne nécessite pas d’in-
formation externe, tel qu’'une carte de sensibilité de I'antenne ou une matrice de reconstruction,
qui n'est habituellement pas enregistrée lors de I'acquisition. Des expériences multiples sur des
données synthétiques avec un nombre varié de canaux (incluant deux algorithmes d’accélération
paralléle différents) ont démontré que la distribution du bruit peut étre retrouvée efficacement
sans nécessiter d’information a priori sur le protocole d’acquisition. Les expériences réalisées sur
les images d’une bouteille d’eau montrérent que la méthode est robuste aux contaminations du
signal causées par I'accélération multibande tant et aussi longtemps que le facteur d’accélération
reste modéré, cest-a-dire environ un facteur 3 pour nos expériences. Nous avons aussi analysé
deux jeux de données in vivo acquis dans deux centres différents, incluant quatre répétitions
d’'un méme sujet publiquement disponible en ligne. Les résultats ont démontré que la méthode
proposée est stable sur ces quatre jeux de données et permet d’identifier la distribution du signal
théorique, tout en évitant les voxels contaminés par des artéfacts. Les résultats du second jeu
de données in vivo indiquérent aussi que la distribution du signal calculée était similaire  celle
dictée par la théorie selon l'algorithme de reconstruction utilisé lors de I'acquisition.

Finalement, le Chapitre 6 présenta un nouvel algorithme pour harmoniser les données dTRM
de diffusion acquises sur différents scanners. En utilisant un algorithme d’apprentissage de dic-
tionnaire, nous avons montré comment des caractéristiques peuvent étre automatiquement ex-
traites des données acquises sur un scanner cible. Ces derniéres sont ensuite utilisées pour re-
construire les données d’'un scanner source différent, tout en éliminant la variabilité attribuée aux
deux scanners et en préservant la variabilité anatomique. Les expériences sur un jeu de données
publiquement disponible montrerent comment l'algorithme réduit la variabilité sur certaines mé-
triques couramment utilisées en IRM de diffusion et peut méme étre utilisé si la résolution spa-
tiale ne concorde pas entre les scanners grice a un sous-échantillonnage spatial du dictionnaire.
Pour vérifier si la variabilité retranchée n’était pas due a de véritables différences anatomiques,
nous avons aussi généré une version altérée des données en les contaminant artificiellement avec
de P'cedéme libre. Les résultats supporterent hypothese de la variabilité comme étant issue des
scanners, puisque cette derniére décrut tout en préservant la taille d’effet lorsque les données
altérées furent comparées avec leur version originale & l'aide d’un test t de Student pour échan-
tillons appariés sur les quatre métriques de diffusion étudiées. La taille d’effet était, en moyenne,
comprise dans le méme intervalle de confiance a 95% que les données non altérées, confirmant
ainsi que le procédé d’harmonisation n’a pas enlevé de variabilité due a 'anatomie lorsque I'on
compare les données harmonisées avec les données originales.
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