
Chapter 11
Statistical Models to Explore the Exposome:
From OMICs Profiling to ‘Mechanome’
Characterization

Marc Chadeau-Hyam and Roel Vermeulen

Abstract Over the past decade, high-resolution molecular profiles using OMICS
technologies have accumulated and have given rise to an unprecedented source of
information to explore the effective biological effects of external stressors and to
detect drivers of subsequent disease risk. Although the volume, dimensionality, and
complexity of OMICs data are constantly increasing, several methods enabling their
analysis are now available. The exploration of these data relies on statistical
approaches including univariate models coupled with multiple testing correction,
dimensionality reduction techniques, and variable selection approaches. While these
methods are established, their application in an exposome context is raising specific
methodological challenges. In addition, the isolated exploration of an OMIC profile
offers the possibility to capture stressor-induced biological/biochemical alterations,
potentially impacting individual risk profiles, but this may only yield a fractional
picture of the complex molecular events involved, therefore limiting our understand-
ing of the effective mechanisms mediating the effect of the exposome. Despite
efficient developments over systems biological approaches, such integrations remain
at best data-specific, usually disease-specific, and more systematically restricted to
the exploration of (few) predefined hypotheses. The challenging task of exploring
the ‘mechanome’ as defined by the ensemble of stressor-induced molecular mech-
anisms occurring throughout the life course and determining the individual’s risk of
developing adverse conditions can be decomposed in three interdependent streams
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focusing on (1) OMICs profiling, (2) OMICs data integration, and (3) the exploration
of molecular mechanisms involved in the exposure effect mediation towards
(chronic) disease development.

Keywords Statistical models · Omics · Mechanome · Bioinformatics

Exposome and Statistical Challenges

The original definition of the exposome (Wild 2005) is broad and comprises all
external stressors, as defined by any nongenetic factor affecting, possibly at different
life stages, the individual risk of chronic diseases. Following-up on the exposome
concept, Rappaport and Smith (2010) complemented this definition by assuming that
any effective component of the exposome should be detectable in the internal
environment, hence defining the internal exposome. The internal exposome com-
prises biological responses to the external environment and interactions with exog-
enous compounds as well as exogenous compounds themselves entering the internal
environment.

With the rapid advances in molecular biology, cost-effective technologies have
emerged and enable the generation of high-resolution and high-quality individual
molecular profiles in large-scale studies. Resulting OMICs profiles can be defined as
high-throughput biochemical measurements of the abundance and/or structural
features of molecules involved in the main biological processes such as metabolism
and its regulation. As depicted in Fig. 11.1, OMICs data are supported by a large
range of molecules including DNA, RNA, proteins, as well as (potentially inorganic)
small molecules. By nature, OMICs data are heterogeneous in terms of their

1. Dimension: From tens to millions of features being measured
2. Nature: OMICs data are either binary, categorical, counts, or continuous.

Fig. 11.1 Overview of the main types of OMICs data available (from Chadeau-Hyam et al. 2013)
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3. Complexity: Both the intensity and the complexity of the correlation patterns
between features assayed within single OMICs can be simply distance-driven, or
involve distant and multivariate correlations.

4. Stability/volatility: OMICs data do not respond with the same intensity and
dynamics to external stresses.

These sources of heterogeneity define specific statistical challenges to enable the
full exploration of OMICs data. However, it also confers OMICs data a large level of
biological complementarity, which, coupled with their high dimensionality, provides
an agnostic view of the cellular activity and its regulation at different molecular
levels, and therefore has the potential to identify effective and functional alterations
induced by external stressors.

The characterization of the internal exposome then first relies, through OMICs
profiling, on the identification of biological/physiological signals that are associated
to the development of adverse health outcomes and, second, on the identification of
potential (sets of) exposures driving these alterations. Hence, to fully characterize the
internal exposome it needs to be complemented by the external exposome, which
includes the full set of external exposures and experiences potentially triggering the
biology and health-relevant factors.

The analysis of OMICs profiles in relation to exposome factors imposes specific
methodological constraints first relating to the fact that (sets of) exposures are
expected to have subtle and complex effects, hence challenging the statistical
power of the screening models. To improve statistical power, complex study designs
featuring multiple observations per participants such as experimental crossover
designs are warranted (Vineis et al. 2016). In addition, exposure mixtures are
supposed to play a more important role than each of the exposures taken separately
(Carlin et al. 2013; Dominici et al. 2010; Rider et al. 2013), which calls for these
models to be able to handle multivariate predictors, to account for the complex
biological responses to sets of exposures, multivariate outcomes, and possibly
include interactions between exposures.

As a result, a full exposome dataset is complex and, for a given health outcome
and a given age range, it comprises three compartments: one health outcome, one set
of exposures, and one set of OMICs profiles (Fig. 11.2).

The full exploration of an exposome dataset involves three main sets of analyses.
First, Exposures–health outcome analyses aiming at identifying (sets of) exposures
that are involved in the development of an adverse condition. Similarly, OMICs–
health outcome profiling is seeking to identify molecular alterations that are related
to the development of the condition of interest. Resulting associations comprise
putative early disease manifestations, effective physiological changes affecting the
risk of the outcome, or exposure-related marks that are (directly or within a pathway)
affecting the health outcome of interest. Finally, OMICs–exposure profiling aims at
characterizing the internal exposome as defined by the physiological response to sets
of external stressors.

To fully exploit the entire dataset, several levels of integration are warranted.
First, when multiple OMICs profiles are available in the same individuals, ‘cross-
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OMICs’ analyses investigate how disease or exposure-related signals found at one
molecular level correlate to those found at another level. As such, these multi-OMIC
analyses have the potential to disentangle redundant and complementary molecular
signals, and have the potential to inform the molecular cascades triggered by
exposure(s) and/or involved in the development of an adverse condition. A second
level of integration involves the investigation of the common information between
markers of exposures and markers of the health outcome. This idea has been
formalized as the “meet-in-the-middle” concept (Assi et al. 2015; Vineis and Perera
2007; Chadeau-Hyam et al. 2011) and may help identifying intermediate biomarkers
that are on the molecular pathway linking exposure to health outcome.

The complexity of the exposome characterization is further challenged by its
dynamic nature. First, exposure levels naturally vary in time and at different time
resolution scales: for example, chronically, within a day or following environmental
changes, or across historical periods. Furthermore, the effect of exposures may
respond to different dynamics (e.g., acute or chronic effect), and there are possible
age-related effect modifications and susceptibility functions that may regulate the
effect of exposures during the life course, defining critical life stages where expo-
sures have a greater effect.

To account for the dynamics of the exposome, study designs must be adapted.
This includes the implementation of experimental designs in which the participants
are exposed to different levels of exposure, to enable the exploration of acute effects
of exposures (Font-Ribera et al. 2010; McCreanor et al. 2007). Personal exposure
monitoring campaigns capture effect of exposures at the scale of days and weeks,
and long-term effect of exposure relies on exposure modeling applied to cohort
studies.
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Age-related susceptibility functions and effect modification could be formally
modeled, but in the absence of either a single study covering all ages or studies with
multiple measurements in the same individuals at different life stages, it could be
restricted to investigating OMICs-Exposure-Health outcomes relationship in each
age class separately (see Fig. 11.2) and subsequently seeking for signals that are
common or specific to certain age classes.

Altogether, the analysis of a full exposome dataset can be decomposed in three
main analytical streams which will be detailed in the reminder of this chapter:
OMICs and Exposure profiling techniques, methods to improve results interpretation
notably through the integration of prioritized OMICs signals, and methodological
developments to ensure higher dimensional OMICs integration. In a concluding
section of this chapter, we will define the notion of the “mechanome” and will
present possible analytical framework enabling its exploration.

Main Approaches for OMIC-Exposure Profiling

Over the past decade, technological developments in molecular biology have given
rise to a large amount of complex OMICs datasets enabling in-depth investigation of
both physiological responses to external exposures (e.g., biomarkers of exposure and
early effect), and of internal signatures of health outcomes (e.g., biomarkers of
disease risk and onset). Concurrently to the emergence of this high-resolution data,
strong methodological efforts have been carried out to enable their exploration.
Resulting methods are now established and have been reviewed (Balding 2006;
Chadeau-Hyam et al. 2013; Agier et al. 2016).

As mentioned above, one key feature to be accounted for while analyzing OMICs
and exposome data is the correlation structure existing across the variables. For
OMICs data, both the strength and the complexity of correlation structure are
heterogeneous across different types of OMICs data. For instance, correlation
between genetic markers is mainly distance-driven resulting in nearby genetic
variants being strongly correlated. For other OMICs data such as NMR-based
metabolomics data, the correlation patterns respond to more complex patterns
including (1) a local component resulting in two nearby features relating to the
same compound, (2) a nonlocal component resulting from the fact that a single
compound could be reflected at different spectral regions, and (3) a functional
component reflecting that an observed biological phenomenon is unlikely to be
driven by a single compound. Similarly, external exposome data comprise large
ranges of data sets including for instance biomarkers, exposure measurements, and
behavioral factors. As a result, the correlation patterns within and across families of
exposures are complex (Fig. 11.3).

Despite their specificity, most OMICs data, and in a lesser extent, external
exposome data share a high-dimensional nature corresponding to the so-called
“small n, large p” situation, in which the number of measurements p is large and
can even exceed the number of observations n (Fig. 11.4).
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In this setup, statistical inferences based on classical approaches are at best
biased, and generally numerically intractable. Three main approaches have been
proposed to accommodate this situation:

Fig. 11.3 Circos plot representation of the correlations within external exposome data (from
Robinson et al. 2015)
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Fig. 11.4 Illustration of the “small n, large p” situation (from Chadeau-Hyam et al. 2013)
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1. Univariate approaches assessing separately the association between each vari-
able in the predictor matrix (exposures or OMICs data) and the outcome of
interest. These are coupled with multiple testing correction strategies.

2. Dimensionality reduction techniques building upon the correlation within the
data to construct a summary of lower dimension at the cost of a minimal loss of
information.

3. Variable selection techniques assuming that not all predictors are relevant to the
outcome of interest and seek for a sparse subset of predictors mostly related to the
outcome.

Univariate Models and Multiple Testing Correction

A first approach to accommodate the “large p, small n” situation consists in
considering each variable in the predictor matrix separately. The association between
each predictor and outcomes of interest is assessed and tested using the same
statistical model. For a set of p predictors regressed against a single outcome, a
total of p tests are then being performed, each with the same per-test significance
level α0 measuring the risk of rejecting the null hypothesis of no association while it
is true (type I error). Conducting p tests results in an inflated number of expected
false positive findings, which, assuming independence of the tests, equals α0 � p. In
order to control the inflated number of associations that are falsely declared as
statistically significant across all performed tests, techniques to control the Family-
Wise Error Rate (FWER) and the False Discovery Rate (FDR) have been proposed.

The outcome of p tests can be summarized by the following table, where V is the
number of false positive findings: the number of times the null hypothesis has been
rejected while it was true, S is the number of true positive findings, and R is the
number of positive calls across the p tests performed.

H0 True H0 False Total

H0 rejected V S R

H0 not rejected U T W

The FWER is defined as

FWER ¼ p V � 1ð Þ:
It represents the probability of drawing at least one false positive conclusion

across the p tests. Methods to control FWER can involve the calculation of the
per-test significance level α

0
to be applied to each of the p tests to ensure that the

actual FWER� α, which is equivalent to ensure that 1-FWER, the probability not to
draw any false positive, is greater than 1- α. In order to control the FWER, one
intuitive approach is to adjust (i.e., reduce) the per-test significance level α0 to be
applied to each test, as proposed by the Bonferroni or Šidák corrections where
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α0 ¼ α
p and α0 ¼ 1� 1� αð Þ1

m, respectively. Both correction strategies are known to

be stringently protecting against the type I error. However, due to the correlations
existing across the predictors (OMICs data or exposome features), across the actual
p tests performed, the same information is (at least partially) tested several times.
Less conservative corrections account for this redundancy and some rely on calcu-
lation of the effective number of tests (ENT) as defined by the virtual number of
independent tests performed across the actual p tests performed. One direct way to
approach the ENT estimation is to perform eigen analysis of the variance–covariance
matrix and subsequently apply either a Bonferroni or a Šidák correction using the
estimated ENT (Patterson et al. 2006). While this approach is computationally
efficient, it is numerically limited as the estimated ENT will be upper-bounded by
the number of observations (Schafer and Strimmer 2005). As an alternative method,
which is scalable to smaller sample sizes, estimation via resampling procedures such
as permutations have been proposed (Castagne et al. 2017; Chadeau-Hyam et al.
2010; Hoggart et al. 2008; Westfall and Young 1993). In practice, for a given set of
predictors and a given statistical model, the responses(s) are randomly shuffled. The
resulting permuted data set mimics the null hypothesis of no association. Regressing
the p predictors against the permuted (set of) outcome, the minimal p-value (noted q)
represents the maximal per-test significance to be applied not to draw any false
positive conclusion. Repeating that permutation procedure, one can estimate the
distribution of q, from which the per-test significance to ensure a control of the
FWER at a desired level can be derived. This type of approach has been successfully
applied in genetics (Zou et al. 2004; Dudbridge and Gusnanto 2008; Hoggart et al.
2008) and metabolomics (Chadeau-Hyam et al. 2010) but can become computation-
ally intensive.

The False Discovery Rate is the proportion of false positive findings among the
significant association:

FDR ¼ E
V

R

� �
,

and its control defines the expected proportion of positive findings that are allowed
to be false. Methods to control the FDR are iterative procedures looking at the
ordered set of p p-values and comparing them to a cutoff value which depends on the
rank of the considered p-value. For instance, Benjamini and Hochberg (1995)
procedure compares p-values sorted in descending order to the increasingly stringent
cutoff value. It returns a list of associations declared statistically significant ensuring
that the FDR is upper-bounded by the desired value.

It can be shown that controlling the FWER also provides control of the FDR, and,
intuitively, the FDR control is less stringent than that of the FWER. If one runs
100 experiments controlling the FWER at a 0.05 level, on average, less than
5 experiments will result in one or more false positive findings, while the FDR
control over these experiments will allow that all experiments can include on average
5 false positives.
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The use of univariate approaches using (generalized) linear models to analyze
high dimensional data has been extremely successful mainly because (1) they are
computationally efficient; (2) they are extremely flexible and can accommodate a
large range of parametric and nonparametric relationships; (3) they can accommo-
date all types of predictors and outcomes; (4) they are readily available in most
statistical packages.

However, by design, these approaches only assess the marginal effect of each
predictor on the outcome of interest, and do not consider a potential joined effect of
the predictors.

Multivariate Models: Dimensionality Reduction and Variable
Selection

Owing to the complexity of the effect of exposures and the possible pleiotropy of
their downstream consequences, there is a need to model jointly the OMICs or
exposome data in relation to exposures and/or health outcomes.

Dimensionality Reduction Techniques

Dimensionality reduction techniques use the correlation among the predictors to
define summary of the original variables into a few(er) synthetic variables (the
principal components, PCs) that capture the latent structure of the data. This is
achieved by searching for linear combinations of variables that optimize some
measure of diversity among observations. The ith principle component PCi is then
defined as

PCi ¼ αi1X1 þ αi2X2 þ . . .þ αipXp,

where X1, . . ., Xp denote the p original variables in the predictor matrix and αi1,. . .,
αip, the vector of linear coefficients or weights defining the contribution of each of
the original variables to the ith component.

Hence, the use of dimensionality reduction techniques can be reduced to the
search of the p weights vectors, which relies on eigen analysis. While considering
p components, a simple rotation of the original dataset is performed (i.e., no loss of
information). The principle of dimensionality reduction techniques is to identify the
fewest components that minimally distort the original dataset. Across the dimen-
sionality reduction techniques, different measures of the information are considered:
the variance for Principal Component Analysis (PCA) (Hotelling 1933a, b; Pearson
1901), or the χ2 distance for Correspondence Analysis (CA) (Greenacre 1984). From
the eigen decomposition, it is possible to rank the components with respect to the
proportion of information they explain. For instance, for PCA, scree plots (see
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Fig. 11.5) represents the information restitution, as measured by the proportion of the
variance of the original dataset explained by each component.

From Fig. 11.5a, it is then possible to identify the number of PCs that are required
to explain more than a certain proportion of the original variance: 25 and 72 com-
ponents are necessary to explain 80% and 90% of the variance, respectively. The
individual contribution of each PC shows that from the 4th component onward, the
proportion of the variance explained is marginal. Projection of the data on the two
first components (score plot in Fig. 11.5b) suggests that the 45% explained variance
by these two sole components yield good discrimination between cases and controls.

Those latent variables can subsequently be used in a (possibly multivariable)
regression model to assess how the main drivers of the variation in the original set of
variables are related to an outcome of interest. While these may result in numerically
tractable inferences, the characterization of potential associations remains condi-
tional on the interpretability of the components. Loadings plots (Fig. 11.6) precisely
represent the contribution of each of the original variables to the PCs and can help in
understanding the latent structure captured by each component.

In the example presented in Fig. 11.6, while the first two component discrimi-
nated cases from controls, none of the first two components were driven by a specific
set of transcripts, which hampers the biological understanding of the underlying
associations. One way to improve interpretability of the components is to ensure
sparsity in the loadings coefficients which can be done through penalization (see
below).
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Principal Components Analysis (PCA) (Hotelling 1933a, b; Pearson 1901) has
proved useful in genetics (Jombart et al. 2009) and has become a standard in
genome-wide association studies (GWAS), where it is used to correct for population
stratification (Price et al. 2006; Reich et al. 2008). PCA can accommodate both
continuous and discrete data, and is not affected by the potential correlation between
predictors or by a larger number of variables than observations.

However, while PCA has proven efficient in summarizing large datasets in (far)
fewer dimensions, representing the latent structures in the data driving most of the
variability in the original dataset, nothing guarantees that this variation is relevant to
an outcome of interest. As a supervised alternative to PCA, Partial Least-Square
(PLS) approaches have been proposed (Wold et al. 1984). PLS components are
defined such that they maximize the covariance between the predictors and response
variables. As such, PLS components not only capture as much variance of the
original variable as possible, but also focus on the variance that is relevant to the
outcome of interest. PLS-based methods are extremely popular in chemometrics and
have been successfully applied in metabolomics (Holmes et al. 2008; Fonville et al.
2010; Yap et al. 2010). Application to other OMICs data were successful in
epigenomics (Belshaw et al. 2010), transcriptomics (Musumarra et al. 2011; Fasoli
et al. 2012), and proteomics (Wang et al. 2011).

Irrespective of the type of analysis, the use of latent variables in a regression
context requires the specification of the number of latent variables to be considered,
which usually relies on cross-validation procedures aiming at the identification of the
number of components that optimizes both interpretability and prediction error.
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Fig. 11.6 Loadings plots for the first two componenents of the PCA of the 745 CLL-associated
transcripts (from Chadeau-Hyam et al. 2014b)
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Penalization

As mentioned above, one intuitive way to improve results interpretability in multi-
variate models is to ensure that the number of variables found relevant to the
outcome is as sparse as possible. Inducing sparsity hence relies on favoring a
minimal set of nonredundant variables jointly associated to the outcome and penal-
izes irrelevant and/or irrelevant ones.

Penalization techniques have been introduced in regression models to induce
sparsity in the vector of regression coefficients. The principle of penalized regression
is to estimate all regression coefficients under the constraint that a function of these
regression coefficients, the penalty, is bounded by a fixed value.

Of the different penalized regression approaches, Ridge Regression uses as
penalty the L2 norm (Hoerl and Kennard 1970):

L2 ¼
Xp
i¼1

β2i ,

where βi
2 is the ith regression coefficient linking the outcome and the ith variable in

the predictor matrix. It can be demonstrated that the least influential predictors will
see their effect size estimate shrunk toward 0, while the estimates for the most
important variables will remain unchanged.

LASSO models use the L1 norm as defined by the sum of the absoluted value of
the p regression coefficients (Tibshirani 1996):

L1 ¼
Xp
i¼1

βij j

Intuitively, upper-bounding the L1 penalty is more demanding than constraining
the L2 norm (in which regression coefficients are squared). It can be demonstrated
that LASSO penalization, for geometric reasons, is able to perform variable selection
and shrinks irrelevant regression coefficients exactly to 0. Conversely, while ridge
regression provides stable coefficient estimates for ill-posed problems (i.e., when
n < p), it does not guarantee sparsity. Moreover, one major limitation of LASSO
methods is that the number of non-penalized variables is upper-bounded
by the number of observations: LASSO model cannot select more than n variables
(i.e., provide more than n variables with nonzero regression coefficients). To provide
a more general approach, combining advantages of both Ridge and LASSO regres-
sion, the Elastic Net has been developed (Zou and Hastie 2005) and uses a penalty
which is a weighted sum of the L1 and L2 norms according to a calibration
parameter λ.

In practice, penalized regression requires a preliminary calibration of the penalty
parameter(s), which directly affects the number of selected variables, the estimates of
the regression coefficients, and thus the statistical performance of the models.
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Calibration procedures usually involve the minimization of the mean square error of
prediction by cross-validation.

The calibrated model will return a list of shrunk regression coefficients, and for
LASSO and Elastic Net, the variables with non-null shrunk coefficients are those
found to be jointly associated to the outcome. Generalized version of both LASSO
and Elastic Net accommodates linear, logistic (binary responses) and multinomial
(categorical responses), Poisson (count data as response), and Cox (survival models)
regression models (Friedman et al. 2010; Simon et al. 2011).

The penalization paradigm applies outside the scope of linear regression models
and has been used to provide shrunk loadings coefficients for dimensionality
reduction techniques, hence defining sparse versions of both PCA and PLS. These
models ensure a sparse definition of the latent variables, thus improving their
interpretability. Sparse PCA (sPCA) and sparse PLS (sPLS) have been used to
analyze OMICs data (Zou et al. 2006; Shen and Huang 2008; Witten et al. 2009;
Boulesteix and Strimmer 2007; Le Cao et al. 2008, 2009; Chun and Keles 2009,
2010).

Bayesian Variable Selection Approaches

Full Bayesian variable selection (BVS) procedures have been proposed to cope with
the “large p, small n” framework (West 2003), and these rely on the estimation of the
posterior distribution of the following latent binary vector:

γ ¼ γ1, γ2; . . . ; γp
� �2 0; 1f gp,

where γi is a binary variable indicating if the ith variable is in the model.
In that setup, a model is defined by the subset of variables it includes, and hence

by a given vector gamma (e.g., the null model corresponds to a vector γ comprising
p 0’s).

The objective of BVS is to identify the best sets of variables that jointly associate to
the outcome of interest, and the main challenge underlying BVS inference resides in
the dimensionality of the space in which to search for the best models, which grows
exponentially with p (2p). While there is an extensive theoretical literature on the
parameterization and numerical estimation of BVS models, few implementations offer
a ready-to-use interface for high-dimensional profiling. These rely on linear or gener-
alized linear models. Shotgun Stochastic Search (SSS) was one of the first packages to
be made available that enabled Bayesian large-scale genome screening through BVS
(Hans et al. 2007). The search in the model space is iteratively performed such that, if
at a given iteration q features are selected, all the models (1) of size (q-1); (2) of size
q (i.e., replacing any of the variables in the current model by any of the p-k remaining
ones); (3) of size (q þ 1) will be evaluated and compared. In order to favor the
evaluation of meaningful models, piMASS (Guan and Stephens 2011) optimizes the
search strategy by specifying a proposal distribution (i.e., defining, for a given
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predictor, the probability to be proposed for inclusion in a model) that accounts for the
correlation between the predictor and outcome.

Both SSS and piMASS are able to accommodate binary, categorical, and contin-
uous outcomes, and SSS additionally implements survival models.

GUESS and its R implementation R2GUESS is an alternative approach which
accommodates multivariate outcomes through the use of a multivariate linear model
(Liquet et al. 2016a; Bottolo et al. 2011). Its search algorithm is based on multiple-
chain genetic algorithms, and its latest version makes use of graphics processing unit
(GPU) linear algebra libraries, thus enabling its application to genome-wide scale
analyses (hundreds of thousands of predictors simultaneously) (Bottolo et al. 2013).

In practice, BVS models return a list of models that have higher posterior
probability. Integrating the posterior probabilities of the best models, it is also
possible to infer the marginal probability of inclusion (MPPI) of a given variable
in the best models. These MPPIs (see Fig. 11.7) can be viewed as a measure of the
strength of association of the (set of) predictors with the outcome of interest.

In Fig. 11.7a, it is apparent that both SNPs used for the simulation were detected
by the model and were always included in the best models. For the simulation using
eight SNPs (Fig. 11.7b), only seven SNPs were recovered (with MPPI > 0.95), and
one SNP was missed, due, notably, to its correlation with the other included SNPs.

OMIC–Exposure Profiling in Practice: Use and Extensions

Quantitative Assessment of the Profiling Techniques

In order to quantitatively assess statistical performances of the main profiling
approaches, simulation studies were conducted (Agier et al. 2016; Liquet et al.
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Fig. 11.7 Marginal Posterior Probability of Inclusion (MPPI) of the variables in one of the best
models, from the R2GUESS model. Results are presented for 2 simulations using 5,000 SNP of
which 2 (a) and 8 (b) are assumed to have an effect on the simulated outcome (from Liquet et al.
2016a)
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2016a). Of these, one exposome-focused study used real correlation matrices among
237 prioritized exposome features from the INMA study (Guxens et al. 2012). The
wide range of simulation scenarios comprised (1) several levels of explained vari-
ance, (2) different number of “causal” exposures k ¼ 1, 2, 3, 5, 10, or 25, and
(3) different effect sizes.

Across all scenarios investigated, each of the simulated dataset was analysed using
a preselected set of 6 methods borrowed from the three main families defined in the
previous section:

1. Univariate models:

(a) “GWAS”-type approaches, EWAS with multiple testing correction via FDR
control

(b) EWAS followed by a multivariate regression step to limit confounding:
EWAS-MLR

2. Dimensionality Reduction Techniques:

(a) Sparse Partial Least-Square s-PLS

3. Variable Selection Approaches:

(a) Elastic Net E-NET
(b) Bayesian Variable Selection R2GUESS
(c) Deletion/Substitution/Addition algorithm DSA, a penalized stepwise model

selection approach (Haight et al. 2010).

In that simulation context, the statistical performances of the different models can
be quantified and compared based on both their ability to identify the “true” pre-
dictors, used to simulate the outcome (sensitivity), and their ability not to include
irrelevant exposures (specificity). In Fig. 11.8, the latter is measured using the False
Discovery Proportion (FDP).

Simulation showed that across the large number of scenarios investigated, mul-
tivariate methods systematically outperformed univariate approaches to explore
external exposome–outcome relationships in the presence of complex correlations
(Fig. 11.8). Although these approaches did not achieve low false discovery perfor-
mances, they yielded a better balance between sensitivity and FDP. Based on refined
performance metrics (i.e., accounting for the correlation among predictors), DSA
and R2GUESS were identified as providing somewhat better performances. From
this work, it was also concluded that in real case analyses, methodological choices
should also be guided by computational complexity and feasibility, as well as
flexibility considerations such as the ability to accommodate confounders.

These results are in-line with additional simulation studies carried out for OMICs
data (i.e., larger number of variables) in relation to simpler outcomes (Liquet et al.
2016a). These simulations showed the superiority of R2GUESS over multivariate
alternatives but showed better performances overall of methods under investigation,
in the absence of complex correlation across predictors (Fig. 11.9).
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Modeling and Correcting for Nuisance Variation

As mentioned above, both the acquisition of OMICs profiles and exposure measure-
ments are prone to measurement error, resulting in part of the observed variability
being related to technical factors during data generation rather than to the variables
of interest. As a consequence, such technical variability has the potential to dilute the
effects of interest and is referred to as nuisance variation. Several preventive
approaches can be implemented to limit such dilution effects. First, during data
acquisition through careful randomization of the samples, and notably ensuring that
analytical entities (e.g., case–control pairs) are processed within the same analytical
batch, and that entities are randomly distributed across batches. Second, through the
preprocessing of the data, using specific normalization techniques, generally relying
on quality control samples.

Fig. 11.8 Sensitivity and False Discovery Proportion (FDP) yielded by six different approaches to
perform exposome–outcome association study. Results are based on simulated data using realistic
exposome data and considering a number of “true” predictors ranging from 1 to 25 (from Agier
et al. 2016)
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Despite these preventive measures, technically induced noise can persist in the
data, and may therefore be accounted for during the statistical analyses of the data.

Linear mixed models can be implemented to account for nuisance variation
(McHale et al. 2011; Chadeau-Hyam et al. 2014b). These include random effects
in the statistical model to account for a structure in the variance of observations. This
structure and its strength are assumed to depend on nuisance parameters (e.g.,
technical covariates) and enter the linear model in the form of additional terms that
depend on the nuisance parameters. These additional terms can be estimated by
likelihood or restricted likelihood maximization (Lindstrom and Bates 1990). One
possible formulation of mixed models for a given variable (Y ) (e.g., one OMICs
measurement) is, for one individual i:
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Yi ¼ αþ uAið Þ þ β1 þ βAið ÞXi þ β2FE
i þ εi 1ð Þ,

where α is the intercept of the model, εi is the residual error, and Xi is the outcome of
interest (e.g., case–control status). The resulting effect size estimate β1can be
interpreted as the change in the response variable (Yi) per unit change in the variable
of interest Xi. FEi is a vector of fixed effects (typically confounders) observed for
individual i and corresponding regression coefficients are compiled in the vector β2.
Nuisance variation is modeled through a random interceptuAi and a random slopeβAi ,
where the grouping factor Ai compiles the technical factors describing how data from
sample i were generated. In that setup, the random intercept captures a systematic
shift in the measurement of Yi, which is related to experimental conditions, while the
random slopes would account for a systematic experimentally induced attenuation
(or amplification) of the relationship linking the measurement and the variable of
interest. Nuisance variation is generally modeled through a random intercept (i.e.,
neglecting the random slope), and the random intercept uAi represents the shift
associated to Ai, the value of the random effect variable(s) A observed for individual
i. For example, in a study of microarray-based gene expression data (Chadeau-Hyam
et al. 2014b), the dates of the three main steps of sample processing were used as
random effect variables: RNA isolation, hybridization, and dye labeling.

Random intercept estimates over all assayed transcripts can be summarized by
their variance, and more specifically the number of times each of the isolation,
hybridization, and labeling steps was estimated to generate marginal noise (i.e.,
null variance). In this example, the proportion of null variance estimates was 19, 13,
and 2% for isolation, labeling, and hybridization, respectively, suggesting that
hybridization generated more noise than the two other processing steps. Random
effect estimates can be further investigated by analyzing, for each of the three
random effect covariates, the ranking of each date with respect to the estimated
random intercept, as depicted in Fig. 11.10.

Estimates suggest that some dates were yielding higher variances (i.e., more
noise), for instance, it seems that samples whose RNA was isolated on the May
12, 2010, were associated to higher noise. The impact of the nuisance variation on
subsequent inferences can be assessed by comparing the distributions of p-values
from the linear mixed models to those from a linear model (i.e., setting the random
intercept to 0). In Fig. 11.11, linear models exhibit a typically null p-value distribu-
tion while the inclusion of a random intercept provides a stronger support for the
alternative hypothesis, with a sharper peak at smaller p-values.

The inclusion of random effects to model and correct for nuisance variation is not
restricted to univariate models and can be used for penalized regression, and BVS.
While theoretically, these models could natively be used to account for nuisance
variation, they may become computationally demanding and may yield convergence
and calibration issues. Moreover, there is no integrative solution to explicitly model
technical confounding while using dimensionality reduction techniques. In both
cases, one possibility is to adopt a two-step strategy first fitting a linear mixed
model as defined in (1). Once fitted, the model will return estimates of the random
effects, and subtracting from the observed value (Yi) the random effect estimates uAi
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Fig. 11.10 Summary of the random intercept estimates from a linear mixed model investigating the
relationship between (N ¼ 29,662) transcripts and future onset of lymphoma. Random effects
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Fig. 11.11 P-value distribution from a linear mixed model (plain line) and a linear model (dotted
line) assessing the relationship between gene expression level and future onset of lymphoma.
Results are based on the 29,662 p-values from both models (from Chadeau-Hyam et al. 2014b)
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provides measurement in which the effect of the potential technical confounder has
been removed. Resulting “denoised” data can subsequently enter any statistical
model and will provide results corrected for nuisance variation (Castagne et al.
2016; Chadeau-Hyam et al. 2014b; Guida et al. 2015).

Accommodating Complex Study Designs

In order to improve statistical power to detect the possibly complex (and hence
multivariate) biological responses to external stressors, more complex study designs
are warranted. These include intervention studies where participants are placed in
several controlled environments, presenting exposure contrasts. Developments over
these designs can also account for differential response time and may feature in each
environment, multiple bio-sampling at different time points.

Irrespective of the detailed design, all such study features repeated measures
(of exposure and/or OMICs data) for each participant. One natural way of modeling
repeated measurement data is to adopt, in a univariate context, a linear mixed model
approach, setting the participant ID as a random effect variable. This model will
decompose the within and across individual variation to identify OMICs changes
related to changes in exposure. In that context, k observations per participants are
considered. The linear mixed model setting the individual ID as random effect
assumes a simple variance–covariance structure across the k observations which
only depends on the individual (see below for k ¼ 6).

σ2 δ δ δ δ δ
δ σ2 δ δ δ δ
δ δ σ2 δ δ δ
δ δ δ σ2 δ δ
δ δ δ δ σ2 δ
δ δ δ δ δ σ2

0
BBBBBB@

1
CCCCCCA

The advantage of the linear mixed model approach is that it can be scaled to any
other type of models using linear mixed versions of univariate models or variable
selection approaches, or adopting a multilevel extension for dimensionality reduc-
tion techniques (Liquet et al. 2012).

Additional flexibility could be gained by adopting a multivariate normal (MVN)
model where the variance–covariance matrix depends not only on individuals, but
also on each of the k experimental conditions:
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σ211 δ12 δ13 δ14 δ15 δ16
δ21 σ222 δ23 δ24 δ25 δ26
δ31 δ32 σ233 δ34 δ35 δ36
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δ51 δ52 δ53 δ54 σ255 δ56
δ61 δ62 δ63 δ64 δ65 σ266

0
BBBBBB@

1
CCCCCCA

Both approaches have been successfully used to identify OMICs biomarkers
related to acute changes in environmental exposures. Despite limited sample sizes,
the MVN approach is showed to be efficient in identifying metabolomic,
transcriptomic, and inflammatory changes due to acute experimentally induced
changes in exposure to water disinfection by-products (van Veldhoven et al. 2017;
Vlaanderen et al. 2017; Espin-Perez et al. 2018).

Exposome studies investigate complex effects of exposures that may act jointly to
generate a complex biological response. Such exploration calls for the use of
methods handling multivariate exposures and multivariate responses. PLS
approaches are able to handle that situation, and multilevel extensions of these
approaches further accommodate multiple observations per participant. In essence,
multilevel PLS first decomposes the observed variability into within- and between-
individual variability (Liquet et al. 2012). The former captures differences between
individuals, including confounding factors, and the within-individual variability is
measuring the changes in both exposures and responses between the different mea-
surements, hence measuring the effect of the experiment. The latter is subsequently
included into a standard PLS model to identify linear combinations of exposures that
are best able to explain effects on responses. A recent proof of principle analysis
focused on the inflammatory response (measured through blood levels of 13
inflammatory-related proteins) to acute exposure to disinfection by-products
(DBP) while swimming in a chlorinated pool (Jain et al. 2018).

PLS identifies the latent variable in X capturing most of the variability in
exposures that is relevant to the inflammatory profile. The PLS components of
exposures can be ordered as per their relevance to the full set of proteins, and
symmetrically, the components of proteins are defined and ordered according to
their covariance with exposures. The relevance of each component can be quantified
by the proportion of variation it explains. The proportion of variance in X (or Y )
explained by a given component of X (or Y ) measures how accurately that single
component summarizes the entire information contained in the original X (or Y )
matrix. The percentage of variance of Y explained by the components of X measures
the relevance of the information summary provided by the PLS components to the
outcome matrix. This does not only depend on the quality of the component
summary but also on the correlation between X and Y. In addition, Variable Impor-
tance in Projection (VIP) scores quantify the contribution of each original predictor
(here exposure) to the overall explanatory performances of a given PLS component.
Empirically, a VIP score < 1 indicates low-to-moderate contribution of a variable
(Fig. 11.12a). Sparsity can be induced through penalization in the definition of the
PLS components (Chun and Keles 2010). When penalization is applied to PLS

11 Statistical Models to Explore the Exposome: From OMICs Profiling to. . . 299



C
1X

 (
10

.1
3%

)
C

2X
 (

1.
33

%
)

C
3X

 (
1.

87
%

)
C

4X
 (

1.
33

%
)

C
l3

C
H

B
D

C
M

D
B

C
M

B
r3

C
H

V
ar

ia
b

le
 Im

p
o

rt
an

ce
 

0.00.20.40.60.81.0

C
1X

 (
10

.1
3%

)
C

2X
 (

1.
33

%
)

C
3X

 (
1.

87
%

)
C

4X
 (

1.
33

%
)

C
C

L2
IL

-8
E

G
F

M
P

O
V

E
G

F
IL

-1
7

C
C

L2
2

G
-C

S
F

C
C

L1
1

C
R

P
C

X
C

L1
0

P
er

io
st

in
IL

-1
ra

E
xp

la
in

ed
 V

ar
ia

n
ce

0.00.10.20.30.4

C
1X

 (
10

.3
8%

)

V
ar

ia
b

le
 Im

p
o

rt
an

ce

0.00.20.40.60.81.01.2

E
xp

la
in

ed
 V

ar
ia

n
ce

0.00.10.20.30.4

C
1X

 (
16

.1
%

)

0.00.20.40.60.81.01.2

0.00.10.20.30.4

a
b

c

C
1X

 (
14

.1
9%

)

0.00.20.40.60.81.0

0.00.10.20.30.4

d

CCL2
IL

-8
EGF
M

PO VEGF
IL

-1
7 CCL2
2 G-C
SF CCL1

1
CRP CXCL1

0 Per
ios

tin
IL

1r
a

CCL2
IL

-8
EGF
M

PO VEGF
IL

-1
7 CCL2
2 G-C
SF CCL1

1
CRP CXCL1

0 Per
ios

tin
IL

1r
a

CCL2
IL

-8
EGF
M

PO VEGF
IL

-1
7 CCL2
2 G-C
SF CCL1

1
CRP CXCL1

0 Per
ios

tin
IL

1r
a

F
ig
.
11

.1
2

R
es
ul
ts

fr
om

a
m
ul
til
ev
el

P
L
S
an
al
ys
is

of
th
e
ex
po

su
re

to
4
D
B
P
w
hi
le

sw
im

m
in
g
in

a
ch
lo
ri
na
te
d
po

ol
in

re
la
tio

n
to

th
e
bl
oo

d
le
ve
l
of

13
in
fl
am

m
at
or
y-
re
la
te
d
pr
ot
ei
ns
.
V
ar
ia
bl
e
Im

po
rt
an
ce

in
P
ro
je
ct
io
n
(V

IP
)
pl
ot
s
an
d
pr
op

or
tio

n
of

va
ri
an
ce

ex
pl
ai
ne
d
by

pr
ot
ei
n.

R
es
ul
ts
ar
e
pr
es
en
te
d
fo
r
P
L
S

m
od

el
(a
),
fo
r
sp
ar
se

P
L
S
pe
rf
or
m
in
g
va
ri
ab
le
se
le
ct
io
n
on

ex
po

su
re
s
(b
),
on

pr
ot
ei
ns

(c
),
an
d
bo

th
on

ex
po

su
re
s
an
d
pr
ot
ei
ns

(d
)
(f
ro
m

Ja
in

et
al
.S

ub
m
itt
ed
)

300 M. Chadeau-Hyam and R. Vermeulen



components of X (Fig. 11.12b), the resulting sparse PLS (sPLS) model shrinks the
loadings coefficients towards zero for the least informative variables (exposures) and
hence helps identifying the exposures mostly affecting inflammatory profiles. Sym-
metrically, variable selection can be performed on the responses (proteins,
Fig. 11.12c), in order to identify the proteins whose expression is mostly affected
by exposures. In a final step, variable selection can be performed on both exposures
and proteins (Fig. 11.12d).

These results suggest that BrCH3 contributed less than other exposures to the
inflammatory response to the swimming experiment and that among the 13 assayed
proteins, 8 were more affected by the experiment. The application of multilevel-PLS
models was successful, despite strong correlation and co-occurrence of the expo-
sures, in identifying the most relevant exposures, and the proteins mostly affected by
exposures.

From Improved Interpretability to Mechanome
Characterization

Full exploitation of the rich sets of results yielded by OMICs and exposome profiling
techniques relies on their biological interpretation (and potentially, validation).
While for some molecular entities, interpretation can be eased by knowing the
functional role of the molecule (e.g., proteins, or in a lesser extent, transcripts),
interpretability can become challenging when the function of the putative biomarker
is unknown. Interpretability becomes even more challenging when OMICs profiles
are related to complex exposures as they encompass a multivariate combination of
environmental and biochemical factors.

To address this issue, a natural approach is to adopt the “meet-in-the-middle”
paradigm (Vineis and Perera 2007) and explore as exhaustively as possible which
factors may affect the level of exposure-related biomarkers. This two-step strategy
can help in identifying molecular alterations that are associated to external stressors
and health outcomes. While a natural way to identify “meet-in-the-middle” associ-
ations is through univariate models, several examples and recent developments used
multivariate approaches (Assi et al. 2015; Chadeau-Hyam et al. 2011).

Biological interpretability of molecular alterations/features identified in high-
throughput profiling is highly dependent on the functional characterization of the
assayed molecules. Typically, interpretation of the results of a targeted proteomic
assay is easier as the biological functionality is documented. While gene expression
profiles govern RNA translation, the overall gene expression regulation may be
multivariate (i.e., involve several transcripts) and pleiotropic (i.e., through a complex
cascade involving other genes and transcripts). Hence, direct interpretation of the
results from a transcriptome-wide association study (i.e., based only on the genomic
location of the identified transcripts) should be complemented by an investigation of
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biological pathways potentially affected by differential expression. Ontology-based
tools interrogating existing databases are rich sources of information to infer bio-
logical pathways corresponding to the candidate biomarkers identified. Specifically,
gene enrichment analyses assess if, and to what extent, the list of candidate tran-
scripts is enriched for specific pathways, basically checking if the distribution of
identified transcripts is significantly different from what would be expected if
candidate transcripts were chosen at random (The Gene Ontology Consortium
2017; Ashburner et al. 2000; Huang et al. 2008).

For metabolomic data, feature annotation and signal interpretation can also rely
on database interrogation and pathway identification. Recent developments include
an efficient and reliable tool (Li et al. 2013), which has proven efficient in identifying
molecules and corresponding pathways from full-resolution mass-spectrometry
profiles.

For other OMIC profiles, such as DNA methylation data, results interpretation
can be more challenging, as there is, to date, no established database linking the CpG
site-specific levels to their downstream consequences or to sets of general biological
pathways. In the absence of such information, biological interpretation of CpG sites
found differentially methylated can be done by linking them to other OMIC data
measured in the same individuals, and whose functional role is better characterized.

OMICs Integration: An Intuitive Approach

One intuitive approach to OMICs integration relies on the following two-step
strategy corresponding to a targeted OMIC integration (Fig. 11.13):

1. Regressing the first matrix (X1, e.g., methylation data) against the outcome (Y ) in
order to identify X1γ, a subset of variable of size p1γ associated to Y. That list of
p1γ candidate biomarkers can be derived from p1 univariate models or a single
multivariate model.

2. Regressing the p1γ outcome-associated OMICs (e.g., smoking-related CpG sites)
against the full-resolution second OMIC profile (X2, e.g., transcripts). Adopting a
univariate approach that would correspond to p1γ � p2 tests.

This strategy has been applied in several studies, and in particular in the study of
smoking-induced DNA methylation alterations (Guida et al. 2015), where blood-
derived DNA methylation profiles from Illumina Infinium HumanMethylation450
BeadChip from (N ¼ 745) participants of EPIC and NOWAC cohorts were used to
identify 751 differentially methylated CpG sites in relation to smoking history. In a
subset of that study population (N ¼ 271), genome-wide gene expression profiles
obtained from the Illumina HumanWG-6 array (assaying N¼ 8952 genes) were also
available.

Using a univariate linear approach, each of the 751� 8952¼ 6.72� 106 pairwise
associations were tested and 5,636 CpG-transcript pairs (corresponding to
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265 unique CpG sites, and 426 genes) were found significantly associated. Most
CpG-transcript pairs were inversely associated suggesting that hypermethylation is
associated to a gene down-regulation, and in case a CpG site was associated to
several transcripts, the sign on these associations is generally consistent across
transcripts.

The list of transcripts found associated to the smoking-related differentially
methylated sites can be used as input for gene enrichment analyses, which, in that
example, identified relevant biological pathways involved in the effect mediation
(through methylation changes) of the exposure to tobacco smoke.

Another striking result from this analysis is that of the 5,636 statistically signif-
icant CpG transcript pairs, only 5 involved a CpG and a transcript located on the
same gene. This suggests that regulatory cascades affected by exposure-induced
methylation changes are complex and involve distant (trans) associations.

This supports the fact that there is no justification for reducing OMICs integration
to local interactions or correlations, and there is a clear need to extend screening
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Fig. 11.13 OMICs integration, a two-step strategy
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approaches to explore long-distance relationships. In that context, dimensionality
reduction techniques, and Bayesian variable selection approaches handling multi-
variate X and Y, may be considered, and already exist in a sparse version. However,
while interpretability is classically sought for by inducing sparsity, it may not be
sufficient to ensure a detailed understanding of the complex patterns exhibited by
OMICs data integration, and the inclusion of prior knowledge about functionally
relevant structures within and across OMICs profiles may be necessary.

Further Approaches to OMICs Integration

PLS algorithms have proven efficient in the task of selecting correlated sets of
signals across two blocks of high-throughput data (Le Cao et al. 2008; Parkhomenko
et al. 2009). In order to exploit prior knowledge on the structure existing in the data,
potential grouping of the covariates within each block of data can be envisaged
(Zhou et al. 2010). Recently, based on a novel penalty function controlling the
number of groups to be selected and the sparsity within each group, a group and
sparse group PLS (gPLS and sgPLS, respectively) method has been proposed that
improves both sparsity and interpretability (Liquet et al. 2016b). In practice, for
sparse PLS models, the components are defined as

CX ¼ α1X1|ffl{zffl}
6¼0

þ α2X2|ffl{zffl}
¼0

þ . . .þ αkXk|ffl{zffl}
6¼0

þ αkþ1Xkþ1|fflfflfflfflffl{zfflfflfflfflffl}
6¼0

þ . . .þ αkXk|ffl{zffl}
¼0

where loadings for the unimportant variables are shrunk to 0 (e.g., X2 and Xk in the
example). For group PLS, the model is given a priori a group structure and will
select the entire group (groups i and j in the example below):

CX ¼ α1X1|ffl{zffl}
¼0

þ α2X2|ffl{zffl}
¼0

þ α3X3|ffl{zffl}
¼0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{group 1

þ . . .þ αkXk|ffl{zffl}
6¼0

þ αkþ1Xkþ1|fflfflfflfflffl{zfflfflfflfflffl}
6¼0

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{group i

þ . . .þ αp�2Xp�2|fflfflfflfflffl{zfflfflfflfflffl}
6¼0

þ αp�1Xp�1|fflfflfflfflffl{zfflfflfflfflffl}
6¼0

þ αpXp|ffl{zffl}
6¼0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{group j

:

For sparse group PLS models (sgPLS), the component will be defined by
selecting or not a given group, and within the selected groups it will only select
the most relevant variables (Xk in group i and Xp in group j in the example below):
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CX ¼ α1X1|ffl{zffl}
¼0

þ α2X2|ffl{zffl}
¼0

þ α3X3|ffl{zffl}
¼0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{group 1

þ . . .þ αkXk|ffl{zffl}
6¼0

þ αkþ1Xkþ1|fflfflfflfflffl{zfflfflfflfflffl}
¼0

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{group i

þ . . .þ αp�2Xp�2|fflfflfflfflffl{zfflfflfflfflffl}
¼0

þ αp�1Xp�1|fflfflfflfflffl{zfflfflfflfflffl}
¼0

þ αpXp|ffl{zffl}
6¼0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{group j

:

These features are key to improve the interpretability of results from OMICs
profiling and can facilitate the integration of data arising from different platforms. In
order to realistically and functionally define these groups, developments can be
considered to use external information (e.g., empirical information from external
studies), or to automatically define discriminant groupings of the features within
each of the OMICs data. That could involve a preliminary topological investigation
of the network within each type of OMICs data. The combined use of variable
grouping and penalization can also be applied to penalized regression (e.g., through
the group LASSO) (Simon et al. 2013).

OMICs profiling and their integrative alternatives produce a prioritized list of
(multi-)OMIC markers that jointly reflect the molecular effects of exposures. Insight
into their mode of action could be gained by exploring their inter-connections, the
regulatory cascades they are involved in.

The inference of network topologies can identify nodes, as defined by (combi-
nation of) exposure-related biomarkers, which will be interconnected if they are
related (typically with high pairwise correlations). Supervised alternatives, as
defined by differential networks (Salamanca Beatriz et al. 2014; Valcarcel et al.
2011, 2014), will account for differences in subpopulations by linking two nodes if
their relation is not the same in the two populations (e.g., cases and controls).

As a proof-of-principle example, we applied these models to the smoking-related
markers (265 differentially methylated sites and 425 associated transcripts) of
smoking exposures presented above (Chadeau-Hyam, personnal communication).
The application of the differential networks requires to carefully choose the metrics
used to measure pairwise correlation (e.g., Spearman correlation, partial correlation,
shrinkage correlation), as well as the way to select influential edges (e.g., signifi-
cance assessment via permutations, or stability analyses). Once these choices are set,
differential networks provide a visualization of the features that are differentially
related in two subpopulations of interest. After strong shrinkage of the network
topology, the analysis of smoking-related CpG sites and associated transcripts
showed sets of independent modules combining CpG sites and transcripts
(Fig. 11.14), hence facilitating their functional interpretation.

This type of methodology can directly be generalized to experimental studies. For
instance, differential network methodology can be applied to the metabolites and
transcripts found associated to DBP exposure while swimming in a chlorinated pool
(van Veldhoven et al. 2017). The preliminary screening for these two sets of OMICs
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profiles typically gives rise to two correlation heatmaps before and after swimming. In
both heatmaps, correlation levels within each class of biomarkers (metabolic features
on the one hand, and transcripts on the other hand) are higher than across classes and
seem to be strengthened after the swimming experiment (Fig. 11.15).

The application of differential network comparing the correlation before and after
the swim clearly shows no evidence of correlated/interacting responses at both
molecular levels to the experimentally induced changes in exposure (Fig. 11.16).

Perspectives: Toward Mechanome Characterization

The set of methods described in this chapter represents a non-exhaustive list of
approaches that have successfully been used in exposome studies. One primary
methodological challenge raised by exposome characterization relates to high
dimensionality of the data and the complexity of the effects of interest, which are
usually multivariate and pleotropic. Models handling the dimensionality of such data
are now established and have been successfully applied. Models to integrate the

Fig. 11.14 Differential network including 265 smoking-related differentially methylated CpG sites
and 426 correlated transcripts
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Fig. 11.15 Correlation heatmaps of the (N ¼ 293) metabolic features and (N ¼ 721) transcripts
found associated to DBP exposure during an experimental swim in a chlorinated pool

Fig. 11.16 Differential network of the metabolic features and transcripts found associated to DBP
exposure during an experimental swim in a chlorinated pool
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diversity of exposome data are developing and have been applied in a targeted
setting (i.e., applied to preselected sets of exposures and biomarkers). While, from
a computational standpoint, these approaches could be scaled up to full-resolution
data, interpretability of the results will remain rate limiting in the absence of
additional information describing the functional role of molecular markers of
exposures.

The mechanome can be defined as the ensemble of exposure-triggered regulatory
cascades affecting the individual’s risk of developing an adverse condition. While its
full exploration is not feasible, the combined use of profiling techniques and network
inference as presented in this chapter have the potential to provide a prioritized list of
biomarkers involved in the mechanome of a given condition.

Assuming that the strength of correlation/association among the OMICs signals is
reflecting their functional proximity in the molecular pathway, sequential
approaches can be used to identify a prioritized, sparse and nonredundant subset
of OMICs signals potentially involved in the molecular mechanisms of interest
(Fig. 11.17).

Starting with either the exposure or the health outcome, using the same pool of
profiling techniques, one can identify a core set of OMICs markers of exposure and
outcome, respectively. By using conditional modeling approaches, “first order” sets
of biomarkers can be defined as those associated to at least one core biomarker but
not directly to either exposure or disease endpoint. Repeating this sequential proce-
dure will generate a list of ordered sets of biomarkers with respect to their “distance”
to exposure or disease, which can potentially inform the structure about causal
structures and relationships.

These structures can be explored by means of network topological investigations
first within classes of markers to inform about the multivariate physiological
(1) response to exposure, and (2) changes leading to disease onset, at different stages
of the molecular pathway and at different molecular levels, through the identification
hubs playing a pivotal role in functional translation of the effect of exposure or
leading to increased risk of the outcome.

Topological investigations can be extended across classes of biomarkers by
considering each order of biomarkers as a distinct subnetwork and seeking for the
most likely (or the shortest) path across classes of markers. The identified path
(s) linking central nodes across classes from core exposure, to core disease bio-
markers, can provide a visualization of the molecular pathways involved in the
exposure-induced development of the outcome. In that setting, OMICs integration

E D

Distance to exposure Distance to DiseaseFig. 11.17 Schematic
representation of the
sequential approach to
explore the mechanome.
The approach can start from
exposures (E) and/or disease
endpoint (D)
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will be achieved by either (1) running the full approach on each set of OMICs data
separately and combining each OMIC specific network using, for instance, a mul-
tilayer network (Kivelä et al. 2013), or (2) pooling OMICs data (or sets of prioritized
thereof) in a single network.

The resulting list of prioritized and ordered sets of biomarkers can subsequently
be fed into probabilistic graphical models, where the inclusion of directed edges
within the graph can help in addressing causality. In this setting, the mechanistic
exploration of the data can be viewed as a search for the most relevant causal graph
(s). To ensure computational feasibility, numerical algorithms to efficiently explore
such a vast model space (e.g., stochastic search algorithms, and importance sam-
pling) can be implemented.

Longitudinal data provide a gold-standard setting to investigate mechanisms as
they enable the explicit modeling of the processes leading to the observation and
allow formal causal assessment. Longitudinal models include multistate models,
which are defined by a set of ordered states reflecting the evolution of the health
status, and can be fully characterized by the set of transition probabilities between
each compartment. Model estimation aims at quantifying the transitions ensuring the
best reconstruction of the pathological trajectories in each subject, hence adding to
the classification problem (discriminating healthy and diseased subjects) a dynamic
component (estimating the time of onset). While these models were initially devel-
oped to accommodate data from longitudinal studies, they can fruitfully be general-
ized to cross-sectional data and history of exposure to external stressors (e.g.,
smoking history), as exemplified by a recent proof-of-principle publication on
smoking-induced lung cancer (Chadeau-Hyam et al. 2014a). Including biomarkers
in the definition of the transition probabilities may help identify the step(s) of the
pathological pathway they may exert their effect on, and may therefore help in
understanding their functional role.

This methodological framework will also be able to accommodate OMICs
trajectories in case of repeated measurement of OMICs profiles. As such, this
approach will define a quantitative complement to trajectory classification proce-
dures (e.g., manifold and dynamic time warping algorithms) to identify OMICs
evolution patterns that are characteristic of the exposure to external stressors and/or
of future disease risk, by leveraging off the information brought about by the auto-
correlation structure embedded in OMICs trajectories.

Overall the characterization of the mechanome relies on the elucidation of causal
structures existing among prioritized sets of exposure-related biomarkers. Because
formal causal assessment can only be achieved in a longitudinal setup, a deeper
understanding of the mechanisms involved in the exposome, as formalized in the
mechanome concept, will undoubtedly rely on the generation and exploitation of
exposome data measured in the same individuals at different life stages. The
inclusion of this temporal component in exposome data will define a new set of
statistical challenges that should represent one of the key methodological priorities
of exposome research in the coming years.
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