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Magnons in ferromagnets behave as a viscous fluid over a length scale, the momentum-relaxation length,
below which momentum-conserving scattering processes dominate. We show theoretically that in this
hydrodynamic regime viscous effects lead to a sign change in the magnon chemical potential, which can be
detected as a sign change in the nonlocal resistance measured in spin transport experiments. This sign
change is observable when the injector-detector distance becomes comparable to the momentum-relaxation
length. Taking into account momentum- and spin-relaxation processes, we consider the quasiconservation
laws for momentum and spin in a magnon fluid. The resulting equations are solved for nonlocal spin
transport devices in which spin is injected and detected via metallic leads. Because of the finite viscosity we
also find a backflow of magnons close to the injector lead. Our work shows that nonlocal magnon spin
transport devices are an attractive platform to develop and study magnon-fluid dynamics.
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Introduction.—Hydrodynamics has been a universal
theme across physics [1–3] due to its universal applicabil-
ity, and because novel systems that warrant a hydrody-
namic description keep on emerging. Recent examples of
new hydrodynamic systems are strongly interacting cold-
atom systems and the quark-gluon plasma [4–7]. Very
recently, it has been shown that electrons in almost defect-
free solid-state conductors can reach the hydrodynamic
regime where the electrons collide more frequently among
each other than with phonons or impurities [8–11]. In this
regime, the electron viscosity becomes important and has
been shown to lead, for example, to superballistic charge
transport through point contacts [12,13], to the possibility
of measuring the Hall viscosity [14,15], and, in the case of
finite spin-orbit coupling, to large current-induced spin
densities [16].
The realization of viscous electron systems begs the

question of whether there may be other solid-state plat-
forms for fluid dynamics. Based on the work of Halperin
and Hohenberg [17], Reiter [18] and Michel and Schwabl
[19,20] answered this question affirmatively by theoreti-
cally proposing magnons, the quanta of spin waves in
ferromagnets, as the entities for making up this fluid. Very
recently, Prasai et al. [21] have revived this direction by
proposing that the observed enhancement of the magnon
heat conductivity in their experiment is due to hydro-
dynamic Poiseuille flow of magnons. Even more recently,
Rodriguez-Nieva et al. [22] have proposed to measure the
second sound mode of magnons using spin qubit magne-
tometers [23,24] as a probe of magnon hydrodynamics.

FIG. 1. Schematics of a nonlocal transport device for the
detection of viscous magnon flow. Two metallic leads of width
wl (depicted in green) are placed on top of a ferromagnetic
insulator and are separated by a distance d. The ferromagnetic
insulator has dimensions W × L in the x̂-ŷ plane, while the
system is translational invariant along ẑ. The left lead hosts a
spin accumulation (μs > 0) and injects spin into the ferromag-
netic insulator. The right lead is modeled as a spin sink
(μs ¼ 0) and acts as spin detector. Because of viscous effects,
the current has nonzero vorticity close to the injector, which
leads to local changes in the direction of the magnon current
(jm) and to sign changes in the magnon chemical potential
(μm). The streamlines of the magnon current are depicted with
black arrows, while the color code indicates the behavior of the
normalized variations of the magnon chemical potential
around its spatial average, i.e., ½μm − hμmi�=μmax

m . The main
panel shows the result for a viscous magnon fluid (Dν ∼W)
while the inset shows the result for the diffusive regime
(Dν → 0). The change of sign of the spin current injected
into the detector provides evidence for the existence of a
viscous magnon fluid.
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These latter examples probe the spin transport of the
magnon fluid indirectly, either through heat transport or
through the existence of a hydrodynamic mode. In this
Letter, we give theoretical evidence that nonlocal spin
transport experiments [25] provide direct and unambiguous
signatures of magnon hydrodynamics. Our proposal is
motivated by recent developments in spintronics that have
shown that interfacial exchange interactions enable the
injection of spin from a normal metal into a magnetic
insulator across an interface that separates them. The
accumulation of spin in the normal metal can be addressed
electrically, via the spin Hall effect [26] and its inverse, in
materials in which spin-orbit coupling is sufficiently strong.
The first experiment in this direction was focused on the
demonstration of the spin Seebeck effect [27], in which a
thermally driven magnon spin current across the magnetic
insulator yttrium iron garnett (YIG) is injected into the
normal metal Pt, leading to an inverse spin Hall voltage
[28]. Here, we focus on nonlocal devices consisting of two
normal-metal leads placed on top of a magnetic insulator
(see Fig. 1), which act as reservoirs for spin injection and
detection. These devices, pioneered by Cornelissen et al.
[25], have been used to probe and influence magnon spin
transport across a variety of setups, regimes, and materials.
In this Letter, we show that the nonlocal voltage in spin

transport experiments on devices as in Fig. 1, i.e., the
voltage measured across the detector divided by current in
the injector, changes sign as the injector-detector distance
becomes comparable to the momentum-relaxation length of
the magnons. This relaxation length is the length scale
below which magnon-fluid dynamics arising from momen-
tum-conserving collisions manifests. Our results therefore
demonstrate that measurements on nonlocal magnon spin
transport devices are attractive to probe magnon-fluid
dynamics.
Bulk magnon hydrodynamics.—We consider a ferromag-

netic insulator with its equilibrium spin pointing in the −x̂
direction. At sufficiently low temperatures the relevant
excitations are Holstein-Primakoff magnons [29], which
carry ℏ spin in the x̂ direction (ignoring ellipticity). At
nonzero temperature T the equilibrium density ρ0 of mag-
nons scales like ρ0 ∝ ðT=TCÞ3=2, where TC is the Curie
temperature. We consider a magnon system in which
momentum-conserving and magnon-conserving magnon-
magnon collisions occur more frequently than momen-
tum-nonconserving scattering processes. The latter can be
both spin conserving, e.g., magnon-phonon interaction due
to modulation of exchange, and spin-nonconserving, e.g.,
magnon-phonon interaction due tomodulation of anisotropy.
The spin-nonconserving processes lead to decay of the
magnon number. We denote by 1=τmm the rate for momen-
tum-conserving and magnon-conserving magnon-magnon
interactions. The rate for momentum-nonconserving scatter-
ing processes is denoted by 1=τm, whereas the rate for spin-
nonconserving scattering processes is denoted by 1=τmr.

Because the latter typically contribute also to momentum
relaxation, one usually has 1=τmr ≪ 1=τm. We will come
back to estimates of the various timescales below. For the
time being, we remark that since exchange dominates
momentum-conserving magnon-magnon interactions and
is typically the strongest interaction in ferromagnets, it is
likely that the regime where 1=τmm ≫ 1=τm may be reached
experimentally. In this regime, effects due to magnon
viscosity may manifest for sufficiently small length scales
causing themagnons to behave as a fluid, as we discuss now.
We set up a hydrodynamic theory of magnon fluids in

terms of two quasiconserved quantities, namely, momen-
tum and spin (or magnon number). We do not consider the
energy. This is primarily because we consider spin transport
driven by spin accumulation in the metallic leads adjacent
to the magnetic insulator. As shown in Ref. [30], such spin
transport is described by introducing a magnon chemical
potential rather than temperature. Moreover, discarding
energy and thermal effects makes the resulting system of
equations much simpler to handle.
The quasiconservation laws for the magnon number and

momentum of the magnon fluid are given by

∂tρm þ∇ · ðρmvÞ ¼ −
ℏ
2e

σm
l2
m
μm ð1Þ

and

ρm½∂tvþ ðv ·∇Þv�

¼ −
ℏ
2e

σm
τm

∇μm þ η∇2vþ η0∇ð∇ · vÞ − ρm
τm

v; ð2Þ

where ρm is the magnon (particle) density, v the magnon
velocity, μm the magnon chemical potential, σm the magnon
spin conductivity, and lm the magnon spin diffusion length.
Here η0 ¼ χ þ η=3, where η is the dynamical shear vis-
cosity and χ is the bulk viscosity that both arise from the
momentum-conserving magnon-magnon interactions. The
bulk viscosity χ quantifies the stress related dissipation due
to time-dependent volume changes [3]. In the stationary
regime χ leads to a small renormalization of the magnon
spin diffusion length and the magnon spin conductivity,
which we neglect from now on [31]. Equation (1) is the
magnon continuity equation, which is augmented to
include magnon decay. Equation (2) is the Navier-Stokes
equation including a phenomenological term −ρmv=τm due
to relaxation of momentum. It also includes a term
corresponding to the effective force ∝ ∇μm on magnons
(note that σm ∝ τm).
Throughout this Letter, we consider the above equations

in the linearized and time-independent (i.e., steady-state)
regime so that the magnon fluid is described by

∇ · jm ¼ −
ℏσm
2el2

m
μm; ð3Þ
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D2
ν∇2jm −

ℏσν
2e

∇μm ¼ jm; ð4Þ

where jm ¼ ρ0v is the linearized magnon current with ρ0 the
average magnon density, Dν ¼ ffiffiffiffiffiffiffiffi

ντm
p

is the momentum-
relaxation length or, equivalently in the present isotropic
case, the vorticity diffusion length [32], ν ¼ η=ρ0 is the
kinematic viscosity, and σν ¼ σmð1þD2

ν=3l2
mÞ is the mag-

non spin conductivity that includes viscous effects.
A straightforward calculation using Eqs. (3) and (4) yields
a diffusion equation for the chemical potential ∇2μm ¼
μm=l2

ν, where lν ¼ lmð1þ 4D2
ν=3l2

mÞ is the magnon spin
diffusion length that includes viscous effects. In the absence
of viscosity, ν ¼ 0, we have that lν ¼ lm, σν ¼ σm, and
jm ¼ −ℏσm=2e∇μm, as expected. The presence of viscosity
together with momentum relaxation leads to the length scale
Dν. In the absence of viscosity we recover the diffusive
regime [30]. The magnon number decay leads, in addition to
a finite lm, also to a finite compressibility of the magnon
fluid, since ∇ · jm ≠ 0.
Nonlocal magnon transport.—We consider a nonlocal

device as depicted in Fig. 1, consisting of two metallic leads
on top of a ferromagnetic insulator. The left lead hosts a
nonzero spin accumulation μsjinj ¼ μ↑ − μ↓ that is pointing
in the x̂ direction. Experimentally, this is typically generated
by the spin Hall effect. The right lead is the detector and is
treated as an ideal spin sink, i.e., μsjdet ¼ 0. The injected
magnon current from (or into) the interface with the lead, in
the linear response regime, depends on the difference
between the spin accumulation and the magnon chemical
potential, i.e., jm · n̂jint ¼ gsðμs − μmÞjint, where gs is the
interfacial spin conductance [30] and n̂ is a unit vector
normal to the lead-ferromagnet interface. At all boundaries
where there is neither an injector nor a detector—which we
term open boundaries (OBs)—the normal component of the
current vanishes (jm · n̂jOB ¼ 0). The boundary conditions
for the tangential component of the current are characterized
by a phenomenological slip length lb [8,14]. This quantifies
the loss of momentum of magnons moving parallel to the
boundary. If lb → 0, the component of the magnon current
parallel to the boundary vanishes at the boundary leading to
a no-slip condition. In the opposite regime (lb → ∞),
magnons can be thought of as slipping along the boundary
with zero friction i.e., without exerting stress on the
boundary. The equation that encodes this behavior is
lbð∂yjx þ ∂xjyÞjOB ¼ jm · t̂jOB, where t̂ is a unit vector
tangent to the OBs, such that n̂ × t̂ ¼ ẑ.
Results.—We assume translational invariance along the ẑ

direction and solve Eqs. (3) and (4) in the x̂-ŷ plane,
applying the boundary conditions mentioned above.
Because of the coupling of the magnon current and the
magnon chemical potential in Eqs. (3) and (4), as well as in
the boundary conditions, finding an analytical solution of
our system of partial differential equations is, to the best of
our knowledge, not readily possible. We therefore resort to

numerics. The solution for the current streamlines is
depicted by black arrows in Fig. 1, both in the presence
and in the absence of viscosity (main panel and
inset, respectively). The color code in Fig. 1 shows the
behavior of the normalized variations of the magnon
chemical potential around its spatial average, i.e.,
½μm − hμmi�=μmax

m . We focus our analysis on the ratio
between detected and injected magnon currents,

jdet
jinj

¼
R

Sdet
ðjm · n̂Þjdet

R

Sinj
ðjm · n̂Þjinj

; ð5Þ

where the integration is over the interfaces between the
ferromagnetic insulator and the metallic leads. Assuming
both leads have the same spin Hall angle and spatial
dimensions, this ratio is proportional to Rnl=R0, where Rnl
is the nonlocal resistance that is measured experimentally,
i.e., the voltage across the detector divided by the current
through the injector, and where R0 is the resistance of the
leads. In nonlocal transport experiments involving YIG as
the magnetic insulator and Pt strips as leads, the values of the
parameters and dimensions of the device are of the following
order of magnitude [30]: Dν ∼ 0.1 μm, σm ∼ 105 S=m,
gs ∼ 1013 S=m2, wl ∼ 0.5 Dν, and μs ∼ 9 μV. We consider
these values in our numerical results. We fix the length of the
device to L ¼ 50Dν. We analyze the limit lb → ∞ (our
results do not change qualitatively if lb → 0). We observe a
change in the sign of μm as the injector-detector distance is
decreased,which occurs only in the presence of viscosity and
corresponds to a depletion ofmagnons. The result of the ratio
defined in Eq. (5) is shown in Fig. 2(a) for different values of
lm. The change of sign in the chemical potential is another
remarkable consequence of the viscous effects and is the
ultimate responsible of the negative signal. Different profiles
of the chemical potential are shown in Fig. 2(b). The change
of sign disappears in the absence of viscosity and we recover
the results of Ref. [25] in the diffusive regime.
The negative sign can be understood as a magnon

current flowing from the detector into the sample. The
current is dragged out of the detector because of the
nonzero viscosity, in rough analogy with the profile of
the flow in the Venturi effect.
The sign change discussed above is the main result of

this Letter, and gives a direct and unambiguous signature of
the magnon fluid regime, which can be readily probed in
currently available devices. We remark that in the limit
lm=Dν → ∞, our results are analogous to those obtained
for hydrodynamics of electrons in graphene [9].
We also observe the presence of whirlpools in the

magnon flow accompanying the sign change. We consid-
ered two limiting cases for the thickness of the magnetic
insulator. Namely, W ≪ fDν;lmg and W ≫ fDν;lmg,
which we call the thin-film and thick-film regime, respec-
tively. In the thin-film limit the whirlpools only appear
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when Dν ∼ lm. In the thick-film regime, the whirlpools are
only present when Dν > lm.
Discussion.—We have shown that nonlocal spin trans-

port measurements are able to probe the existence of the
viscous regime of magnon hydrodynamics. Let us now
estimate the parameters for YIG. Following Ref. [30], we
have that at room temperature τm ∼ τmp ∼ 1–100 ps,
τmr ∼ 1 ns, and τmm ∼ 0.1–1 ps. These estimates show
explicitly how these numbers fulfill the required conditions
for the hydrodynamic regime, and how YIG at room
temperature may well be in the regime where viscous
effects are important. Moreover, since 1=τmm and 1=τmp

have very different dependence on temperature, it is likely
that the hydrodynamic regime may be reached for suffi-
ciently clean YIG as a function of temperature. Note that
these estimates are supported by the results of Ref. [22].
The abovementioned timescales, however, are averages

over all magnon modes dominated by modes around

the thermal energy, and we have tacitly assumed that the
momentum-conserving magnon-magnon interaction rate is
the fastest process for all magnon modes. At elevated
temperature, this assumption is likely to be correct as for
magnons with energy around the thermal energy the
magnon-magnon interactions are dominated by the
exchange interactions which are typically strong.
We approximate the kinematic viscosity ν ¼ v2thτmm=3∼

ð0.5–5Þ × 10−5 m2=s, which leads to Dν ∼ 1–100 nm.
While being small, this length scale is not beyond the
reach of experiments. Moreover, since both ν and τmp are
expected to strongly increase upon lowering the temper-
ature, Dν is expected to increase upon lowering the
temperature as well.
We have solved our hydrodynamic equations in the

linear response regime. We now assess if the nonlinear
turbulent regime may be reached with nonlocal devices
based on YIG and Pt. With a simple rescaling of Eqs. (1)
and (2) we define the Reynolds number, which governs the
relative importance of nonlinear effects, as Re ¼ eμmWτm=
ðkBTlmτmmÞ, which, considering μm ∼ 1 μV, seems to be
larger than unity at room temperature for W > lm. To
assess the importance of nonlinear effects more quantita-
tively, future work should focus on stability analysis of the
linear solutions that we obtained. Another direction of
research would be to extend our model to include energy
conservation, which encodes thermal transport effects.
It would be straightforward to include energy transport

on top of the spin transport. In that case Eq. (4) needs to be
complemented with a term ∼∇T and a continuitylike
equation [similar to Eq. (3)] for the heat current needs
to be considered. In a real experiment the thermal and spin
contributions can be discriminated by analyzing the har-
monics of the measured signal using lock-in techniques.
The contribution arising from the electrically injected
magnons corresponds to the first harmonic of the measured
signal, while the thermally injected magnons are related
with its second harmonic [25].
The slip length lb is another interesting quantity that can

be explored in more detail. In particular, in this work the
slip length does not play a relevant role, but in devices with
narrow “bottlenecks” of ferromagnetic insulator it could be
possible to obtain strong Poiseuille flow of magnons in the
no-slip regime (lb → 0). In principle, the slip length can be
tuned by means of composition of adjacent materials and
interface, leading to changes in momentum transfer proc-
esses across the interface.
The experimental verification of our proposal in YIG is

challenging to realize, mainly due to the length scales below
where viscous effects are dominant (Dν ∼ 1–100 nm),
because placing two Pt leads on top of YIG separated by
distances below Dν is not easy to achieve.
The results in our Letter hopefully show that nonlocal

devices are an attractive platform for studying magnon-
fluid dynamics and for exploring, among others, the

(a)

(b)

FIG. 2. (a) Nonlocal signal as a function of injector-detector
distance d for a sample of width W ¼ 5Dν considering different
values of the magnon spin diffusion length. (b) Profile of the
normalized magnon chemical potential μ̄m ¼ μm=μmax

m along
the x̂ direction at different distances from the upper boundary
(see Fig. 1). We consider d ¼ 1.6Dν and lm=Dν ¼ 1. The dashed
lines depict the central position of the injector (left) and
detector (right).
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abovementioned directions for future experimental and
theoretical research.
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