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Abstract Biomass burning on the African continent is widespread, and interactions with climate,
vegetation dynamics, and biogeochemical cycling are complex. To obtain a better understanding of these
complex relationships, African fire history has been widely studied, although mostly on relatively short
timescales (i.e., years to kiloyears) and less commonly on long‐term scales. Here we present a 192‐kyr,
continuous biomass‐burning record from sub‐Saharan Northwest Africa based on the fire biomarker
levoglucosan in a marine sediment core offshore Guinea. Notable features of our record include an increase
in levoglucosan accumulation at 80 ka and two peaks at 50–60 ka. The event at 80 ka is likely related to an
overall increase in sedimentation rates rather than an increase in biomass burning in the Northwest
African savanna region. Our record indicates that glacial/interglacial changes in regional climate and
vegetation composition (C3 vs. C4 plants) were not a major influence on biomass burning over the last
192 kyr. However, we suggest that the burning events at 50–60 ka might be caused by increased occurrence
of C3 vegetation and human settlement in this region. At this time, the savanna region became wetter
and fuel loads likely increased. Therefore, the region was more hospitable for humans, who likely used fire
for hunting activities. Collectively, we hypothesize that on longer (glacial/interglacial) timescales, biomass
burning, regional climate, and African vegetation are not necessarily coupled, while around 50–60 ka,
higher fuel loads and human fire use may have influenced fire occurrence in sub‐Saharan Northwest Africa.

1. Introduction

Biomass burning on the African continent is widespread and has long been recognized to influence
biogeochemical cycling, vegetation dynamics, and climate (e.g., Bond & Keeley, 2005; Bowman et al.,
2009). However, the interactions between fire, climate, and environment are complex and vary greatly across
spatial and temporal scales (Whitlock et al., 2010). Fire is often discussed in terms of a fire regime, which
describes its frequency, intensity, season, type, and extent (Bond & Keeley, 2005; Whitlock et al., 2010).
Fire regimes are in turn dependent on climate, fuel, and landscape variables such as the amount and type
of vegetation, ignition frequency (natural or human‐induced), fuel wetness, and burning season (Whitlock
et al., 2010). To obtain a better understanding of the controls on biomass burning and its complex
interactions with climate, environment, and humans in Africa, fire regimes have been studied using
satellites (Archibald et al., 2010) and historical data (Mouillot & Field, 2005). However, these studies only
provide information on short‐term (i.e., years to decades) changes in biomass burning and therefore do
not capture the full range of fire variability in the ecosystem, which could lead to incomplete assumptions
about the drivers and role of biomass burning in the ecosystem (Whitlock et al., 2010).

To reconstruct African fire history on longer time scales, sedimentary records of fire proxies have been used
(e.g., Battistel et al., 2017; Dupont & Schefuß, 2018; Shanahan et al., 2016). One commonly used fire proxy is
charcoal, which is a carbonaceous material produced by heating of biomass during incomplete combustion
(Whitlock & Larsen, 2002) and is usually divided into two size classes: macroscopic charcoal
(particles ≥ 100 μm) and microscopic charcoal (particles ≤ 100 μm). The smaller particles are assumed to
be transported over longer distances compared to the larger particles, and therefore, macroscopic charcoal
is usually used to reconstruct local‐scale fires, while microscopic charcoal provides information on more
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regional‐scale fires (Marlon et al., 2016; Vachula et al., 2018). However, application of the charcoal proxy can
sometimes be challenging. For example, there are many factors determining quantities of charcoal accumu-
lating in sediments, such as the size of the deposition site or body of water, the type of vegetation burned, and
combustion temperatures (Hawthorne et al., 2017, and references therein; Kuo et al., 2008). Another fire
proxy is based on polycyclic aromatic hydrocarbons (PAHs), which can be formed during natural processes
such as volcanic eruptions and biomass burning but can also originate from anthropogenic sources such as
coal and wood burning, oil combustion and other industrial processes (Tobiszewski & Namieśnik, 2012, and
references therein). Furthermore, PAHs can also be formed during diagenesis rather than combustion (e.g.,
Koopmans et al., 1996; Peters et al., 2005; Wakeham et al., 1980). PAHs are thus not solely formed during
biomass burning, and therefore, PAH ratios have been mainly used to identify emission sources
(Tobiszewski & Namieśnik, 2012; Yunker et al., 2002) and certain PAH ratios have been used as biomass‐
burning indicators in marine (Elias et al., 2001) and lacustrine (Miller et al., 2017) sediments.

One of the most specific biomass‐burning proxies is levoglucosan (1,6‐anhydro‐β‐D‐glucose) and its isomers
mannosan (1,6‐anhydro‐β‐D‐mannopyranose) and galactosan (1,6‐anhydro‐β‐D‐galactopyranose). These
are thermal products of cellulose/hemicellulose combustion formed at a temperature range of 150–350 °C
(Kuo et al., 2011; Shafizadeh et al., 1979; Simoneit et al., 1999). The amount of levoglucosan emitted during
a fire event is dependent on burning conditions. Combustion temperature is the primary factor governing
levoglucosan yield, while combustion duration has no significant effect (Kuo et al., 2008). The type of vege-
tation burned also influences levoglucosan yield and is related to variations in the cellulose and hemicellu-
lose content across plant species and the presence of inorganic salts and lignin content in the plant tissue
(e.g., Kuo et al., 2008, 2011; Simoneit et al., 1999). Nevertheless, levoglucosan is considered to be a robust
tracer for biomass burning in aerosols because of its high emission and source‐specificity (e.g., Simoneit &
Elias, 2000) and has been used in numerous air‐quality studies (e.g., Iinuma et al., 2016; Monteiro et al.,
2018; Wang et al., 2007). Several studies have demonstrated that levoglucosan remains stable in the atmo-
sphere for several days under most atmospheric conditions (Fraser & Lakshmanan, 2000; García et al.,
2017; Hu et al., 2013; Mochida et al., 2003) and that levoglucosan can be transported through the atmosphere
over hundreds of kilometers (e.g., Fu et al., 2011; Schreuder et al., 2018).

To date, biomass burning in Africa using sedimentary fire proxies has mostly been studied on relatively short
timescales (i.e., years to kiloyears; e.g., Battistel et al., 2017; Dupont & Schefuß, 2018; Shanahan et al., 2016),
while long‐term fire dynamics are less commonly studied (e.g., Bird & Cali, 1998; Bird & Cali, 2002; Daniau
et al., 2013). The latter are relevant as Africa, the continent where modern humans evolved, has the longest
history of human fire use (Archibald et al., 2012). Furthermore, vegetation composition and climate on the
African continent have markedly changed on glacial/interglacial timescales (Castañeda et al., 2009;
deMenocal, 1995; Schefuß et al., 2003), which could influence biomass burning. It was recently shown for
the tropical North Atlantic that levoglucosan is transported to the ocean floor by sinking particulate matter
where it is preserved in surface sediments (Schreuder et al., 2018). This raises the potential to reconstruct the
fire history of Africa on long (glacial to interglacial) timescales using marine sediment cores, which can pro-
vide long‐term and continuous records.

Here we present a biomass‐burning record from sub‐Saharan Northwest Africa spanning the last 192 ka,
based on the accumulation rates of levoglucosan in a sediment core from the Guinea Plateau Margin off-
shore West Africa (Figure 1, yellow star). This core has previously been studied for changes in vegetation
and paleoceanography (Castañeda et al., 2009; Lopes dos Santos et al., 2010). Our new results shed light
on biomass burning in sub‐Saharan Northwest Africa and the complex interactions between fire, climate,
vegetation, and human activity.

2. Material and Methods
2.1. Core Location and Age Model

Sediment core GeoB9528‐3 was recovered from the Guinea PlateauMargin offshore West Africa at 09°09.96′
N, 17°39.81′W (Figure 1, yellow star) at 3,057‐mwater depth (Castañeda et al., 2009). The core has been pre-
viously shown to receive dust input from Northwestern Africa, where the modern vegetation zones are
Mediterranean (C3 dominated), Mediterranean‐Saharan transitional (mixed C3 and C4 plants), Sahara
desert (C4 dominated), Sahel (mixed C3 and C4 plants, predominantly C4 plants), Sudanian woodland
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(mixed C3 and C4 plants), Guinean forest (mixed C3 and C4 plants, predominantly C3 plants), and tropical
rainforest (C3 dominated; Figure 1b). The core site is today located near the transition from Guinean
forest to Sudanian woodland (Figure 1b), where more C4 vegetation reflects drier conditions (Castañeda
et al., 2009; Kuechler et al., 2013). Terrestrial material from this region is transported offshore by the
African Easterly Jet (AEJ). As previously discussed by Grousset et al. (1998), the direction of the AEJ
likely remained constant during previous glacial and interglacial periods, and therefore, the core
GeoB9528‐3 provides a continuous record of environmental changes at the forest‐woodland‐savanna
boundary in the Guinean area of sub‐Saharan Northwest Africa.

The age model for core GeoB9528‐3 is based on a graphic correlation of the benthic foraminifer C. wueller-
storfi δ18O record (Castañeda et al., 2009) with the Deep North Atlantic Stack by Lisiecki and Stern (2016)
and the global benthic stack by Lisiecki and Raymo (2005). Downcore age uncertainty was modeled with
the R script BACON (Blaauw & Christen, 2011) version 2.2 using the 1‐sigma age uncertainty assigned from
the Deep North Atlantic Stack. BACON was run with default parameters and a student t distribution, with
shape parameter (t.a.) of 10 and a scale parameter (t.b.) of 11. About 10,000 age‐depth realizations were
obtained to estimate the mean age and the standard deviation of the age ensemble at the sampling depth.
Sedimentation rates were calculated using the depths and mean ages of the tie points.

2.2. Geochemical Analyses of Core GeoB9528‐3

Sediment core GeoB9528‐3 was sampled at 5‐cm intervals for organic geochemical analyses. Sediment sam-
ples were freeze‐dried, homogenized, and extracted with a DIONEX Accelerated Solvent Extractor (ASE
200) using a solvent mixture of 9:1 (v:v) dichloromethane (DCM):methanol (MeOH), as described previously
by Castañeda et al. (2009).
2.2.1. Levoglucosan Analysis
A known amount (0.25 ng) of deuterated (D7) levoglucosan (C6H3D7O5; dLVG, from Cambridge Isotope
Laboratories, Inc.) was added to aliquots of the total lipid extracts as an internal standard to quantify

Figure 1. (a) Location of marine sediment core GeoB9528‐3 offshore Guinea (yellow star) and other marine and lacustrine cores cited in this study (red dots). The
African Easterly Jet (AEJ) is indicated with and orange arrow. (b) Zoom‐in of Northwest Africa with modern vegetation belts on the continent, adapted from
Kuechler et al. (2013). These maps were generated in Ocean Data View.
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levoglucosan and its isomers, after which the extracts were dried under
N2. All extracts were redissolved in acetonitrile: H2O (95:5, v:v) and fil-
tered using a polytetrafluoroethylene filter (0.45 μm) before analysis.
Levoglucosan and its isomers were analyzed by means of ultrahigh‐
performance liquid chromatography (UHPLC)‐negative ion electro spray
ionization/high resolution mass spectrometry (ESI/HRMS) using an
Agilent 1290 Infinity UHPLC coupled to an Agilent 6230 time‐of‐flight
mass spectrometer, as described previously (Schreuder et al., 2018).
Separation was achieved with two Aquity UPLC BEH amide columns
(2.1 × 150 mm; 1.7 μm, Waters Chromatography, at 30 °C) in series with
a 50‐mm guard column, and a mobile phase of acetonitrile, H2O, and
triethylamine (0.2 ml/min). The monitored mass range was m/z 150–
350. Injection volume was usually 10 μl. Levoglucosan, its isomers, and
dLVG were detected as their deprotonated molecules (M‐H)−.
Quantification was based on peak integrations of mass chromatograms
within 3‐ppm mass accuracy using a calculated exact mass of
161.0445 m/z for levoglucosan (C6H10O5) and its isomers and
168.0884 m/z (C6H3D7O5) for dLVG. Authentic standards for levogluco-
san, galactosan, and mannosan were all obtained from Sigma Aldrich.
Analytical performance and relative response factors for levoglucosan,
galactosan, and mannosan compared to dLVG were determined daily by
analysis of a standard mixture of levoglucosan, galactosan, mannosan,
and dLVG and varied between 1.20 and 1.29 for levoglucosan, between
0.53 and 0.72 for galactosan, and between 0.86 and 1.04 for mannosan.

Approximately 20% of the samples were analyzed in duplicate, which resulted in an average instrumental
error of 4%.
2.2.2. Long‐Chain n‐Alkane Analysis
Analyses of the stable carbon isotope composition of long‐chain n‐alkanes were reported by Castañeda et al.
(2009), while long‐chain n‐alkane quantifications will be described here. A known amount of squalane was
added to aliquots of the extracts as an internal standard to quantify the plant leaf waxes (n‐alkanes). The
extracts were separated into apolar, ketone, and polar fractions via alumina pipette column chromatography
using solvent mixtures of hexane/DCM (9:1, v:v), hexane/DCM (1:1, v:v), and DCM/MeOH (1:1, v:v), respec-
tively. The apolar fractions were redissolved in hexane, and all samples were injected on‐column with an
Agilent 7890B gas chromatography instrument at 70 °C. The oven temperature was programmed to
130 °C at 20 °C/min, and subsequently to 320 °C (held 10 min) at 4 °C/min; He was the carrier gas at a con-
stant 2 ml/min. Injection volume was 1 μl. The n‐alkanes were quantified by integrating the peak area in the
chromatogram and relating that to the peak area of the squalane internal standard, assuming similar
response factors on the flame ionization detector.

3. Results

Sediment core GeoB9528‐3 covers the last 192 ka and sedimentation rates varied between 1.2 and 9.5 cm/kyr
(Figure 2). Levoglucosan was detected in all samples at concentrations varying from 0.2 to 2.8 ng/g dry
weight sediment. Mannosan and galactosan were only present in trace amounts in 33 out of 187 samples
and will not be discussed further. This is in agreement with the findings of Schreuder et al. (2018), who also
detected mannosan and galactosan only in trace amounts in surface sediments close to our core location.
Using sediment accumulation rates and dry bulk densities, we converted levoglucosan concentrations to
accumulation rates. From 192 until 80 ka, the levoglucosan accumulation rate was relatively stable, with
an average value of 1.6 ng · cm−2 · kyr−1 (Figure 3b). At 80 ka, levoglucosan accumulation rates increased
to values around 4.0 ng · cm−2 · kyr−1, followed by two peaks of 11.0 and 17.1 ng · cm−2 · kyr−1 at 57 and
55 ka, respectively. After approximately 50 ka, levoglucosan accumulation rates decreased again to values
around 4.0 ng · cm−2 · kyr−1 and remained relatively constant until approximately 20 ka, after which levo-
glucosan accumulation decreased to values around 1.8 ng · cm−2 · kyr−1.

Figure 2. Age versus depth relationship as calculated for GeoB‐9528‐3 sedi-
ment core (red line) with 1σ error (grey line), plotted together with the tie
points (black circles), and the corresponding sedimentation rates (blue line).
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For comparison with the levoglucosan accumulation rate, we also deter-
mined accumulation rates of odd carbon numbered C29‐C33 n‐alkanes,
as a proxy for aeolian transported plant leaf waxes. Long‐chain n‐alkane
concentrations varied between 2.3 and 37.7 ng/g dry weight sediment
and, similar to levoglucosan, n‐alkane concentrations were converted to
accumulation rates. In the period between 192 and 80 ka, the n‐alkane
accumulation rate was approximately 32 ng · cm−2 · kyr−1 (Figure 3c).
At 80 ka, the n‐alkane accumulation rate increased to values around
65 ng · cm−2 · kyr−1 and remained relatively stable until approximately
20 ka, except for a peak at 50 ka, after which it decreased to approximately
20 ng · cm−2 · kyr−1 (Figure 3c).

4. Discussion
4.1. Factors Controlling Levoglucosan Accumulation Rates

Our levoglucosan record displays an increase in accumulation rate at
80 ka (Figure 3b), when the sedimentation rate as well as the long‐chain
n‐alkane accumulation rate increased (Figures 3a and 3c). Since levoglu-
cosan concentration remained constant at this time (Figure S1), it seems
likely that increased levoglucosan accumulation rates were caused by an
overall increase in sediment accumulation at this time rather than by
increased biomass burning. Similarly, when levoglucosan accumulation
rate decreased at 20 ka, sedimentation rate as well as the long‐chain n‐
alkane accumulation rate also decreased and levoglucosan concentration
remained constant (Figure S1), indicating that this decrease is also related
to a change in sedimentation rate and not to biomass‐burning changes.
However, other variations in levoglucosan accumulation rate, such as
the peaks at the onset of marine isotope stage (MIS) 3 (Figure 3b), do
not coincide with changes in sedimentation rate and thus are interpreted
to reflect variations in biomass burning.

Preservation conditions (i.e., oxygen exposure time; Hartnett et al., 1998)
can markedly influence biomarker accumulation rates preserved in sedi-
mentary archives (Sinninghe Damsté et al., 2002; Zonneveld et al.,
2010). Indeed, Schreuder et al. (2018) found that levoglucosan is partially
degraded at the sediment‐water interface. However, this issue is only pro-
blematic when preservational conditions, for example, the time of oxygen
exposure and/or the oxygen concentrations, have substantially changed
over time. In that case, the levoglucosan record could be biased, leading
to incorrect interpretation of the levoglucosan record in terms of the
intensity of continental biomass burning. Changes in bottom water oxy-
gen content can be inferred from Atlantic Meridional Ocean Circulation
(AMOC) strength, since this governs the influx of North Atlantic Deep
Water (NADW, oxygen‐depleted) and Southern Ocean Water (SOW,
oxygen‐rich) to the core site. The AMOC strength can be reconstructed
using the stable carbon isotope composition of the benthic foraminifer
Cibicidoides wuellerstorfi (δ13Cbenthic), since minima in δ13Cbenthic coin-
cide with reductions in AMOC strength (Duplessy & Shackleton, 1985;
Vidal et al., 1997), and thus an increased influx of oxygen‐rich SOW to
the core site. We see no direct correlation between levoglucosan accumu-
lation rates and δ13Cbenthic (Figures 3b and 3e), ruling out a primary con-
trol by bottomwater oxygen content. Furthermore, long‐term degradation
could have impacted the levoglucosan record. However, levoglucosan
concentrations do not steadily decrease over the last 192 kyr (Figure S1).

Figure 3. Comparison of geochemical records from core GeoB9528‐3:
(a) sedimentation rate; (b) levoglucosan accumulation rate; (c) accumula-
tion rate of the sum of long‐chain n‐alkanes (C29, C31, and C33); (d) δ

13C of
the C29 n‐alkane (Castañeda et al., 2009); (e) δ

13C of the benthic foraminifer
C. wuellerstorfi (Castañeda et al., 2009); (f) insolation at 10°N for June,
March, and September (Laskar et al., 2004); (g) sea surface temperature
(SST) based on alkenones (UK’

37; Castañeda et al., 2009). All isotope data are
reported in delta notation (‰) against the VPDB standard. All thick lines
in the graphs represent the smoothed data, three‐point running mean.
Marine isotope stages (MISs) are shown in the age axis. The grey shaded area
represents the period of increased levoglucosan accumulation.
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Therefore, we assume that preservation did not play a major role in influ-
encing our levoglucosan record.

Other controlling factors on levoglucosan accumulation are the mode of
transport and changes in source regions. Levoglucosan can be trans-
ported to the ocean by wind (e.g., Simoneit et al., 1999) or by rivers
(e.g., Hunsinger et al., 2008). However, fluvial input from Africa is not
likely at site GeoB9528‐3 since it is located far offshore on the continen-
tal slope with no major rivers close by. Furthermore, the Branched and
Isoprenoid Tetraether index values were on average only 0.06, signifying
a low input of riverine transported organic matter (Hopmans et al., 2004;
Schouten et al., 2013). Therefore, levoglucosan was likely transported to
the core site by wind, in agreement with our previous study on the tropi-
cal North Atlantic (Schreuder et al., 2018). While we cannot fully rule
out the possibility that some of the levoglucosan was transported from
outside of the African continent, it seems likely that the predominant
source is from continental Africa, since the position and direction of
the AEJ likely remained constant during previous glacial and interglacial
periods (Grousset et al., 1998). Therefore, the core GeoB9528‐3 provides
a continuous record of environmental changes in the forest‐woodland‐
savanna boundary in the Guinean area of sub‐Saharan Northwest
Africa. No statistically significant relationship was found between levo-
glucosan concentrations and dust percentages in this core (Collins
et al., 2013) over the last 60 ka (R2 = 0.015, p = 0.332). Furthermore,
there is a poor correlation between levoglucosan and long‐chain n‐
alkane concentrations (R2 = 0.027, p = 0.026). This suggests that there
is no relationship between levoglucosan and aeolian input and therefore
that levoglucosan trends are probably not related to changes in
terrestrial input.

To further validate our levoglucosan record, we compared trends in levo-
glucosan accumulation rates with charcoal abundances in nearby marine
sediment cores. In marine core ODP‐668B (Figure 1), oxidation resistant
elemental carbon (OREC) abundance was used as a proxy for wind‐blown
debris from biomass burning in the Northwest African sub‐Sahara region
(Bird & Cali, 1998; Bird & Cali, 2002). A sharp increase in OREC was
found at the onset of MIS 3, coinciding with our levoglucosan peaks in
core GeoB9528‐3 at 57 and 55 ka (Figures 4a and 4b). In a marine core
located further southeast (RC24‐07; Figure 1), charcoal concentrations
increased during glacials and do not coincide with changes in levogluco-
san accumulation rate in our core (Figures 4a and 4c). However, the
source area of fire‐derivedmaterial in core RC24‐07 is likely to be different
than the one recorded in core GeoB9528‐3. The agreement between the
ODP‐668B OREC record and our levoglucosan record implies that the
levoglucosan record of GeoB9528‐3 represents a continuous record of bio-
mass burning in sub‐Saharan Northwest Africa and that major biomass‐
burning events took place at the onset of MIS 3.

4.2. Factors Impacting the Fire History of Northwest Africa

Biomass burning is widespread in Africa and can be impacted by several
factors including climate, vegetation, and human influence (e.g., Bond
& Keeley, 2005; Bowman et al., 2009). Here we will discuss the impact
of each of these factors on biomass burning in the Guinean area of sub‐
Saharan Northwest Africa.

Figure 4. Comparison of the GeoB9528‐3 levoglucosan accumulation rate
with other records of fire‐derived material from Africa: (a) levoglucosan
accumulation rate (the thick line represents the smoothed data, three‐point
running mean) in marine core GeoB9528‐3, (b) oxidation‐resistant elemen-
tal carbon (OREC) as a ratio of the aeolian dust content in marine core
ODP‐668B (Bird & Cali, 1998; Bird & Cali, 2002), (c) elemental charcoal
concentration (wt%) in marine sediment core RC24‐07 (Verardo &
Ruddiman, 1996), (d) microcharcoal (average length 4‐200 μm) concentra-
tion in marine sediment core MD96‐2098 (Daniau et al., 2013), (e) charcoal
accumulation rate in lake core MAL05‐1C (Ivory et al., 2018), and (f) char-
coal concentration in Maundi crater (Schüler et al., 2012). Marine isotope
stages (MISs) are shown in the age axis. The grey shaded area represents the
period of increased levoglucosan accumulation. The location of the sites is
indicated in Figure 1.
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4.2.1. Climate

The amount and seasonality of precipitation can impact biomass burning in the tropical savanna regions of
Africa, by influencing tree and grass cover, which in turn has an impact on the fire regime (e.g., D'Onofrio
et al., 2018; Lehmann et al., 2014). For example, in grass‐dominated savanna areas on the African continent,
increased precipitation antecedent to the fire season usually results in increased burned area, because of
increased fuel buildup prior to the fire season (Abatzoglou et al., 2018; Archibald et al., 2009). In North
Africa, hydrological conditions are controlled by the position of the tropical rainbelt over the African conti-
nent (Nicholson, 2009). The position of the tropical rainbelt is in turn influenced by precession‐forced varia-
bility in summer insolation (e.g., deMenocal et al., 2000; Kuechler et al., 2018; Kutzbach & Liu, 1997).
However, in sub‐Saharan Northwest Africa, insolation is not of major influence on the position of the tropi-
cal rainbelt during the studied period (Castañeda et al., 2009). Here the position of the tropical rainbelt is
predominantly controlled by the strength of the AMOC, since AMOC weakening causes sea surface tem-
perature (SST) cooling in the North Atlantic region (Chang et al., 2008; Chiang et al., 2008) and a strength-
ening of the northeast trade winds (Chiang et al., 2008; Mulitza et al., 2008). These intensified trade winds, in
combination with advection of cold air from the high latitudes, cause a southward shift of the tropical rain-
belt (Chiang et al., 2008; Mulitza et al., 2008), leading to dry conditions in North Africa. Therefore, past
hydrological conditions in sub‐Saharan Northwest Africa were correlated to AMOC strength, which was
reconstructed using δ13Cbenthic, as previously done by Castañeda et al. (2009). The stable carbon isotope
composition of long‐chain n‐alkanes (C29 and C31) can provide information on vegetation composition
(C3 versus C4 plants) from the savanna region (e.g., Castañeda et al., 2009). In tropical Africa, changes in
hydrological conditions (wet season length and mean annual rainfall) are recognized as the dominant con-
trol on the large‐scale distribution of C3 versus C4 vegetation on longer time scales. C4 plants are enriched in
δ13C compared to C3 plants (Collister et al., 1994), and in the Guinean area of sub‐Saharan Northwest Africa,
more C4 vegetation reflects drier conditions (Castañeda et al., 2009; Kuechler et al., 2013). Therefore, past
changes in C3 versus C4 vegetation, and related hydrological conditions, can be inferred from the n‐alkane
δ13C record. We found no statistically significant relationship between levoglucosan accumulation rates and
δ13Cbenthic (R

2 = 0.00002, p = 0.958) and a poor correlation between levoglucosan accumulation rates and
δ13C of the C29 n‐alkane (R

2 = 0.099, p < 0.05). Thus, we do not have evidence that changes in African con-
tinental hydrology on glacial/interglacial timescales are of major influence on biomass burning in the
savanna region in Northwest Africa. Air temperature could also affect fire in the Northwest African savanna
region (Lehmann et al., 2014). For example, in warmer regions, fuels are more likely to cure, resulting in
more frequent fire (Archibald et al., 2013). Direct records for air temperatures for the Northwest African
savanna region on glacial/interglacial timescales are not available, and therefore, as general proxies for
regional temperature, we used tropical North Atlantic SST (Castañeda et al., 2009) and June, March, and
September insolation at 10°N (Laskar et al., 2004). We found that changes in tropical North Atlantic SST
are not strongly correlated with changes in levoglucosan accumulation rates (R2 = 0.211, p < 0.05), and
we found no statistically significant relationship between levoglucosan accumulation rates and June,
March, or September insolation (R2 = 0.0006, p = 0.746; R2 = 0.0002, p = 0.847; and R2 = 0.0004,
p= 0.774, respectively) over the last 192 kyr nor do they change when levoglucosan accumulation rate peaks
around 57 and 55 ka (Figures 3b and 3f). This suggests that changes in regional temperature on
glacial/interglacial timescales are also not the major influence on biomass burning in the savanna region
of Northwest Africa.

4.2.2. Vegetation

Another factor that can impact biomass burning is vegetation composition and abundance. The stable car-
bon isotope composition of long‐chain n‐alkanes (C29 and C31) can provide information on vegetation com-
position (C3 versus C4 plants) from the savanna region (e.g., Castañeda et al., 2009; Schefuß et al., 2004).
Interestingly, there is no strong relationship between glacial/interglacial changes in δ13C of the C29 n‐alkane
(Castañeda et al., 2009) and levoglucosan accumulation in core GeoB9528‐3 over the last 192 ka (R2 = 0.099,
p < 0.05; Figures 3b and 3d). It thus seems that on longer (glacial/interglacial) timescales, biomass burning
and vegetation composition in the savanna region of Northwest Africa are not coupled. This is in contrast
with the general understanding that fire occurrence and vegetation composition are closely connected
(e.g., Bond et al., 2005; Bond & Keeley, 2005; Lehmann et al., 2014). In Africa, the few available long‐term
(glacial/interglacial) fire studies found increased biomass burning during colder and wetter conditions, for

10.1029/2018PA003467Paleoceanography and Paleoclimatology

SCHREUDER ET AL. 159



example, in Northwest Africa (Figure 4c; Verardo & Ruddiman, 1996) and in Southern Africa (Figure 4d;
Daniau et al., 2013). This was related to increased fuel availability due to a shift in rainfall amount and sea-
sonality and therefore increased biomass burning (Daniau et al., 2013). In the southern African tropics,
extreme arid conditions resulted in decreased fire occurrence, related to insufficient vegetation to maintain
substantial fires. Furthermore, a minor peak in charcoal accumulation rate occurred at approximately 50 ka,
at the same time as the levoglucosan peaks in our record (Figure 4e; Cohen et al., 2007; Ivory et al., 2018). In
equatorial East Africa, biomass burning played an important role in controlling the development and eleva-
tion of the ericaceous zone and the tree line onMt Kilimanjaro (Figure 4f; Schüler et al., 2012). However, our
record indicates that there may be a decoupling between vegetation composition and fire activity in the
savanna region in Northwest Africa on glacial to interglacial time scales, while the two levoglucosan peaks
at the onset of MIS 3 in our record coincide with a period of increased C3 vegetation and wetter conditions
(Figure 3d; Castañeda et al., 2009). We hypothesize that this increase in C3 vegetation resulted in increased
fuel load and biomass‐burning activity, supported by earlier studies that have found increased fire activity
during wetter climate conditions (e.g., Daniau et al., 2013).
4.2.3. Impact of Humans
Another factor may be the human influence on fire frequency in Africa, as suggested by Bird and Cali
(1998) and found for the West Pacific‐East Asian region (Thevenon et al., 2004) and Australia (Van Der
Kaars et al., 2017). Indeed, humans can affect fire occurrence in Africa through manipulation of the fre-
quency of ignition events, the timing of ignition events in the year, and the connectivity of the fuel bed
by changing the proportion of cultivated and grazed land (Archibald et al., 2010; Archibald et al., 2012).
However, it has been proven to be difficult to assess when humans started to influence biomass burning
(Archibald et al., 2012). Archeological evidence suggested that the first unequivocal evidence for human
fire use was around 300–200 ka, but evidence is sporadic for this time period (e.g., Karkanas et al., 2007).
Other evidence has shown that the routine domestic use of fire began around 100–50 ka (Bowman et al.,
2009), and hunter‐gatherers used fire for hunting activities and to reduce fuels beginning tens of thousands
of years ago (Pyne, 2011).

The earliest remains of fully modern humans date to 195 ka and originate from Ethiopia (McDougall et al.,
2005), and fossils displaying some features of early anatomical modernity are dated to 315 ka, in Morocco
(Hublin et al., 2017). Northwest Africa played a key role in the dispersal of anatomically modern humans
(e.g., Osborne et al., 2008; Stringer, 2000), which originated in sub‐Saharan Africa and had to pass
through/settle in the savanna region. A major dispersal period occurred between 100 and 130 ka (Osborne
et al., 2008; Stringer, 2000), and a second major dispersal period of hominins out of Africa occurred around
40–60 ka (Forster et al., 2001; Mellars, 2006; Stringer, 2000). Interestingly, the latter dispersal coincided with
the two major peaks in levoglucosan accumulation rate at 57 and 55 ka (Figure 3b). This suggests that there
might be a relationship between the second dispersal of hominids out of Africa and fire occurrence in the
Guinean area of sub‐Saharan Northwest Africa. As inferred by Castañeda et al. (2009), this region became
wetter and C3 vegetation increased at that time (Figure 3d) and therefore was more hospitable for humans
allowing them to disperse into Europe and Asia. Furthermore, this period coincides with the boundary
between the Middle and Upper Paleolithic, which is generally associated with a change in the social and
technological behavior of humans (e.g., Rebollo et al., 2011). The increased fuel load together with the
human occupation of the savanna region may thus have led to increased use of fire and increased levels
of biomass burning. Only a minor increase in levoglucosan accumulation rate was observed at around
100–130 ka, though conditions were also more hospitable then (Castañeda et al., 2009) and humans likely
crossed or settled in this region. However, there was less C3 vegetation during this time than around 40–
60 ka, and also, the use of fire was probably much less common than around 40–60 ka, as routine domestic
use of fire began only around 100–50 ka (Bowman et al., 2009).

5. Conclusions

We reconstructed biomass burning in the Guinean area of sub‐Saharan Northwest Africa for the last 192 kyr
by using the accumulation rate of the fire biomarker levoglucosan in a marine core from the Guinean mar-
gin. Changes in levoglucosan accumulation rate are probably not related to changes in input of terrestrial
material or changes in preservation conditions. Therefore, the levoglucosan record represents a continuous
record of biomass burning in the sub‐Saharan savanna region of Northwest Africa. Comparison with other
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records shows that glacial/interglacial changes in regional climate and vegetation composition did not exert
the dominant influence on biomass burning over the last 192 kyr in this area. In contrast, the two biomass‐
burning maxima at the onset of MIS 3 are likely related to a strong increase in C3 vegetation and human
occupation of the savanna region around 40–60 ka. The strong C3 expansion likely led to increased fuel loads
and increased levels of (human‐induced) biomass burning in the sub‐Saharan savanna region of
Northwest Africa.
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