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Purpose: To develop and evaluate a patch-based convolutional neural network (CNN) to generate
synthetic computed tomography (sCT) images for magnetic resonance (MR)-only workflow for
radiotherapy of head and neck tumors. A patch-based deep learning method was chosen to improve
robustness to abnormal anatomies caused by large tumors, surgical excisions, or dental artifacts. In
this study, we evaluate whether the generated sCT images enable accurate MR-based dose calcula-
tions in the head and neck region.
Methods: We conducted a retrospective study on 34 patients with head and neck cancer who under-
went both CT and MR imaging for radiotherapy treatment planning. To generate the sCTs, a large
field-of-view T2-weighted Turbo Spin Echo MR sequence was used from the clinical protocol for
multiple types of head and neck tumors. To align images as well as possible on a voxel-wise level,
CT scans were nonrigidly registered to the MR (CTreg). The CNN was based on a U-net architecture
and consisted of 14 layers with 3 9 3 9 3 filters. Patches of 48 9 48 9 48 were randomly
extracted and fed into the training. sCTs were created for all patients using threefold cross validation.
For each patient, the clinical CT-based treatment plan was recalculated on sCT using Monaco TPS
(Elekta). We evaluated mean absolute error (MAE) and mean error (ME) within the body contours
and dice scores in air and bone mask. Also, dose differences and gamma pass rates between CT- and
sCT-based plans inside the body contours were calculated.
Results: sCT generation took 4 min per patient. The MAE over the patient population of the sCT
within the intersection of body contours was 75 � 9 Hounsfield Units (HU) (�1 SD), and the ME
was 9 � 11 HU. Dice scores of the air and bone masks (CTreg vs sCT) were 0.79 � 0.08 and
0.70 � 0.07, respectively. Dosimetric analysis showed mean deviations of �0.03% � 0.05% for
dose within the body contours and �0.07% � 0.22% inside the >90% dose volume. Dental artifacts
obscuring the CT could be circumvented in the sCT by the CNN-based approach in combination with
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Turbo Spin Echo (TSE) magnetic resonance imaging (MRI) sequence that typically is less prone to
susceptibility artifacts.
Conclusions: The presented CNN generated sCTs from conventional MR images without adding
scan time to the acquisition. Dosimetric evaluation suggests that dose calculations performed on the
sCTs are accurate, and can therefore be used for MR-only radiotherapy treatment planning of the
head and neck. © 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf
of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13663]

Key words: deep learning, head and neck cancer, MR-guided therapy, MR-only radiotherapy,
synthetic CT

1. INTRODUCTION

The use of magnetic resonance imaging (MRI) in radiother-
apy is growing rapidly, due to its superior soft tissue contrast
as compared to computed tomography (CT).1 In radiation
treatment of head and neck cancers, MRI is often used in
addition to CT to reduce interobserver variability of target
delineation.2,3 The excellent soft-tissue contrast of anatomical
MRI makes this modality ideally suited for staging and fol-
low-up in the head and neck region.4 In addition, reduced
dental artifacts compared to CT may improve delineation of
target and organs at risk (OARs) for treatment planning.5,6

However, dose calculation and patient positioning still rely on
CT, which provides electron density information and high
geometrical accuracy.7 Therefore, a multimodality imaging
workflow is currently used: MR images are registered to CT
images allowing the use of both scans for treatment prepara-
tion. To facilitate rigid registration between CT and MR
images, the MRI is acquired in treatment position with dedi-
cated fixation devices used both during CT and MRI exami-
nation.8–11 Nevertheless, the head and neck region is a
challenging region for image registration and can lead to sys-
tematic errors of 2–3 mm.12–15 An attractive approach mak-
ing the registration step in the treatment simulation obsolete
is an MR-only workflow. Using only MR images during sim-
ulation is beneficial since it simplifies the simulation work-
flow and exploits the benefits of MRI for high-precision
treatment planning. Moreover, the emergence of combined
MRI and treatment delivery machines16 drives the develop-
ment of fast online MR-guided treatment planning and MR-
based dose calculation.

Heterogeneity correction is required for accurate dose cal-
culations, since bulk assignment of the whole body to water
density can lead to large dosimetric errors for the head and
neck region.17 To overcome the lack of electron densities on
MRI, a so-called pseudo-CT or synthetic CT needs to be gen-
erated.7,13,18–20 Several methods have been proposed in litera-
ture to produce a synthetic computed tomography (sCT). The
two main approaches are voxel-based conversion21 and atlas-
based methods.22–24 With voxel-based methods, often non-
conventional sequences like ultrashort or zero echo time
sequences are acquired to enhance bone visualization and aid
the differentiation between air and bone on MRI.25–27 In
addition, these methods usually require multiple sequences to
be added to the exam, including the aforementioned

specialized sequences increasing total scan time. Most cur-
rent sCT methods focus on the skull or pelvic region, and less
work has been done on the entire head and neck region, pos-
sibly due to the large field of view (FOV) required for the
MRI/sCT. Despite acquiring CT and MR imaging on the
same day and using the same fixation devices, image registra-
tion between head and neck scans can be difficult. Neverthe-
less, atlas-based methods for sCT generation are most
common in the head and neck region, but nonstandard patient
anatomies and dental artifacts remain challenging. Farjam
et al. presented a multi-atlas method with mean absolute error
(MAE) of 124 � 21 HU and good dosimetric results.23

However, their method was quite time consuming (�20 min).
Also, they noted that one of the most important challenges in
using atlas-based synthetic CT generation is to deform the
atlas to patients with large anatomical abnormalities such as
surgical resection and large tumors. Guerreiro et al. presented
another multi-atlas approach with lower MAE (90 + 12 HU)
but for limited FOV neck scans, which contained only the
planning target volume (PTV) region.22 They also reported
that patient-specific abnormalities not represented in the atlas
are an exclusion criterion.

A relatively new approach in sCT generation is to train
a convolutional neural network (CNN) to convert the MR
images to CT.18,28–30 A CNN is a fully trainable model
that can learn the mapping between input MR and output
CT images. The network consists of many convolutional
filters with tunable weights whose values are optimized
during training by minimizing an error function for paired
input and output data. Once the network is trained, it can
convert a newly presented MR to CT. Han trained a U-
Net architecture31 using sixfold cross validation with 19
patients to successfully produce sCT images of the head
in two-dimensional (2D). To address issues with disconti-
nuities across slices with a 2D approach, Nie et al.
applied a three-dimensional (3D) patch-based approach to
estimate the CTs for the prostate.32 Training a 3D fully
convolutional network requires more GPU memory and
more data; moreover, they are generally difficult to train
due to the large number of weights in the network.28,32

Choosing a patch-based approach can exploit the 3D infor-
mation that is available in medical image dataset, while
limiting the number of parameters. In this work, we inves-
tigated the use of a 3D U-NET.28,31,32 Another reason for
the patch-based approach is that it is expected to be
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relatively insensitive to variations in patient anatomy that
may occur frequently in head and neck patients.

In this work, we aimed to generate sCTs of the head and
neck with the proposed network to facilitate an MR-only
radiotherapy workflow. We want to investigate the feasibility
of generating sCTs without having to add an additional dedi-
cated sequence but instead use a multipurpose sequence. The
sequence that we selected was optimized for delineation of
OARs. Priority was therefore given to the contrast of the
OARs and obtaining sufficient geometrical fidelity. More-
over, since Turbo Spin Echo (TSE) MRI is typically less
prone to susceptibility artifacts, the choice of these images as
input for sCT generation for head and neck cancers has as
particular advantage that it is less affected by dental artifacts
compared to commonly used gradient echo sequences. We
hypothesize that with a deep learning-based method, we can
generate accurate sCTs from these MR images. We evaluated
the dosimetric accuracy of dose calculations based on the
obtained sCT images with respect to the gold standard CT.

2. MATERIALS AND METHODS

2.A. Patient data selection

We collected image data from 34 head and neck cases
treated at our department between December 2017 and June
2018. Data were collected according to local ethical stan-
dards. Tumors were classified according to the TNM staging
protocol between stage 1 and 4, with lymph node involve-
ment between 0 and 3. For all oropharyngeal and nasopha-
ryngeal cancer patients who underwent 3 T MRI as part of
the treatment preparation, a large FOV T2-weighted MRI
with Dixon reconstruction was available that could be used
for sCT generation. This sequence was optimized for OAR
delineation, having sufficient contrast and a large FOV
(Fig. 1). The majority was treated for oropharyngeal cancer
(24 patients, in base of mouth, base of tongue, or tonsil).
Seven patients were treated in the nasopharynx and two had
unilateral recurrent disease in the neck region. For most
patients, the CT and the MRI were acquired on the same day
(median spacing was 1 day); however, in some cases, there
was much more time in between, up to a maximum of
28 days. These patients of whom the CT and MR were
spaced further apart were not excluded, since we adopt
deformable image registration in this study. To facilitate train-
ing, patients with severe dental streaking artifacts on the CT
were excluded from the training data as well as insufficient
quality of the MRI (due to motion/aliasing artifacts, or signal
voids due to implants). Patients with limited streaking on the
CT due to dental implants were not excluded.

2.B. Image acquisition

Patients were scanned head first in treatment position and
with the head immobilized in a custom thermoplastic mask
during both CT and MR imaging. Both at the CT and at the
MRI, patients were positioned on an in-house developed

dedicated base plate that accommodates individualized head
support and the immobilization mask. For the MRI, two med-
ium-sized flexible general-purpose surface receive coils
(dStream Flex M, Philips Healthcare, the Netherlands) were
placed on the immobilization mask on lateral sides of the
head/neck opposing each other.9 An additional torso coil/ab-
dominal receiver array (dS Torso, Philips Healthcare, The
Netherlands) was placed anteriorly, supported by two coil
bridges to avoid compression (Fig. 2). MRI acquisition was
performed on the same dedicated MR-RT simulator (3T Inge-
nia, Philips Healthcare, the Netherlands) and a multislice T2-
weighted TSE with mDixon reconstruction was used for
training the CNN to generate the sCT images. Transversal
images were acquired with the following imaging parameters:
90° flip angle, TR/TE = 9023/100 ms, TSE factor = 27, and
readout bandwidth of 876 Hz/vox in the right–left direction,
corresponding to 0.5 pixel. In the phase encoding direction
(anterior–posterior), an acceleration factor SENSE of 2 was
applied resulting in a total acquisition time of 5 min 24 s.
The FOV was 45 9 45 9 24.9 cm3, acquired voxel size
1.3 9 1.18 9 3 mm3, and reconstructed voxel size
0.9375 9 0.9375 9 3 mm3. 2D Geometry correction as pro-
vided by the vendor was applied and uniformity correction
“CLEAR.” Finally, a Dixon reconstruction was performed to
obtain in-phase, water, and fat images.33 All planning CT
scans were acquired helically on the same scanner (Philips
Brilliance Big Bore, Philips Healthcare, the Netherlands),
with fixed tube potential of 120 kV, while current (mAs) var-
ied with FOV. Slices were 2 mm thick with in-plane resolu-
tion of around 1 mm.

2.C. Image registration

Despite the uniformity of scanning position and patient
immobilization, head and neck images are prone to misalign-
ment due to differences in neck flexion,11 especially with a
large FOV containing the shoulder region. Since paired learn-
ing of a neural network may be sensitive to pixel-wise
misalignments between input training data,18,32,34,35 we
aligned the CTs to the MRI with a nonrigid registration. First,
the CT was rigidly registered to the water and in-phase
images simultaneously using Euler registration based on
mutual information with Elastix 4.7,36 which was subse-
quently used as initial transformation for the nonrigid regis-
tration of the CT to the in-phase MR images only. A B-
Spline transform was then performed based on two metrics:
normalized mutual information (MI) and a transform rigidity
penalty (TRP) on the CT inside the bone mask (>200 HU),
resulting in a cost function of 0.2 9 MI + 0.8 9 TRP. After
registration, the CT and MR images were resampled to an
isotropic resolution of 1 9 1 9 1 mm3. To evaluate the per-
formance of the registration between CT and MRI/sCT, we
calculated the Dice similarity coefficients (DSC) of the body
contours. The found transformations were applied to the body
contours, to obtain a body mask in the frame of reference of
the MR and CTreg. For training, we applied a dilation of 50
voxels to these masks to include a region outside the body
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contour to also include (MR) image background in the train-
ing. The background of the CT images was masked by setting
all voxels outside the body contour to �1000 HU. Subse-
quently, CT Hounsfield Units (HU) were normalized using
constant scaling parameters to ensure that most values lie
between �1 and 1 by: 2 � CT�CTMin

CTMax�CTMin
� 1, where CTMin and

CTMax were set to �1000 and 3000, respectively. The regis-
tered and masked CT images will be referred to as CTreg. The
in-phase MR images were selected for sCT generation, whose
intensities were also normalized from the minimum to maxi-
mum intensities to �1 and 1.

2.D. sCT generation

A patch-based deep neural network was used to generate
sCTs from MR inputs. The architecture of the network was
derived from the U-Net31 and composed of 14 layers. A sche-
matic representation of the method including our network is

given in Fig. 3. One layer consists of multiple convolution fil-
ters with size 3 9 3 9 3 voxels. In addition, every layer
includes instance normalization37 and a rectified linear unit
activation function. Specifically for this image generation
task, nearest-neighbor interpolation was implemented as an
upsampling method to avoid the checkerboard artifact
reported by Odena et al.38 The network was implemented
using Keras 2.1.3 with a Tensorflow 1.7 backend.

The network was trained for approximately 11 h on mini-
batches of eight 3D patches of size 48 9 48 9 48 voxels.
Corresponding patches from the in-phase MRI and CTreg
were randomly extracted from within body contour, balancing
the presence of soft tissue and bone.

A L1 loss function measured the error between the ground
truth CT and the generated sCT. Optimization was done using
Nadam39 with a learning rate of 10�3 and 4 million parame-
ters to learn. After 100 epochs with 1000 iterations per
epochs, convergence was reached using a single Nvidia
GeForce GTX 1080 GPU.

We trained the network using 22 datasets and kept the
remaining patients for validation. By performing a threefold
cross validation, we obtained synthetic CT for all 34 patients.
The sCT reconstruction took approximately 4 min on the
aforementioned GPU.

2.E. sCT evaluation

Synthesized CT images were compared to CTreg on a
voxel-wise basis. Only voxels within the intersection of the
body contours were evaluated to compare HU. An additional
body contour was created based on the sCT for this purpose.
For each patient, the accuracy of the sCT was evaluated by
calculating the MAE and Mean Error (ME) in the body region
(Matlab release 2015a, Mathworks, Natick, MA, USA).

2.F. Dosimetric evaluation

To assess dose calculation accuracy, the clinically opti-
mized dose plan was recalculated on the sCT and CTreg for

FIG. 1. Two (a&b) transversal slices of a T2 Turbo Spin Echo (TSE) magnetic resonance imaging (MRI) (Dixon water reconstruction), showing sufficient contrast
for OAR delineation, since the T2-weighting results in good visibility of the parotid and submandibular glands containing a relatively large amount of free
water.(a) The right parotid is delineated in orange. (b) The right submandibular gland is delineated in pink (same patient). [Color figure can be viewed at wileyon
linelibrary.com]

FIG. 2. Patient setup during magnetic resonance (MR) acquisition. The
patient is immobilized in a thermoplastic mask attached to an in-house devel-
oped base plate. The Flex-M coils are placed on both sides of the neck and
fixated using sand bags and the headphones. The anterior body coil is sup-
ported by two coil bridges. [Color figure can be viewed at wileyonlinelibra
ry.com]
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32 patients, since two patients did not have a treatment plan.
Dose calculation was performed with the Monte Carlo dose
algorithm with a 3-mm3 grid, with 3% statistical uncertainty
using the Monaco treatment planning system (TPS) (v
5.11.02, Elekta AB, Sweden). Dose cubes were exported and
analyzed in Matlab. Dosimetric performance of the sCTs was
evaluated by calculating the mean error and 3D gamma pass
rates of the dose distributions (CTreg-sCT) calculated using
two different criteria: 2 mm/2% and 3 mm/3%, with a 10%
dose threshold.

3. RESULTS

3.A. sCT evaluation

The body masks of the CTreg and sCTs agreed well with a
mean dice score of 0.98 + 0.01 (�1 SD, range: 0.96–0.99).
An example of an sCT is given in Fig. 4. Despite some CT
scans having streaking artifacts from dental implants, the
CNN can reconstruct the sCT without artifacts, as can be
appreciated in Fig. 5. Quantitatively, the average of the MAEs
over all 34 generated sCTs was 75 � 9 HU. Average ME
was 9 � 11 HU. Values of the MAE and ME of bone, soft
tissue, and air regions are given in Table I. Dice scores of the
air and bone masks (CTreg vs sCT) were 0.79 � 0.08 (�1
SD, range: 0.63–0.91) and 0.70 � 0.07 (�1 SD, range:
0.52–0.84), respectively.

3.B. Dosimetric evaluation

Mean voxel-wise differences of the dose distribution cal-
culated on the sCTwere within 1% (Table II). An example of
the dose distributions calculated on CTreg and sCT is given in
Fig. 6. The dose inside the target volume is represented by
calculating voxel-wise dose differences in the high-dose

region only, for voxels receiving dose above 90% of the pre-
scribed dose. The mean difference in this volume was limited
to �0.07% � 0.22%, with a maximum mean deviation is
�0.52% over all patients (Fig. 7). Mean gamma pass rates for
c2mm2% and c3mm3% were 95.6% � 2.9% (�1 SD, range:
87.5%–98.6%) and 98.7% � 1.4% (�1 SD, range: 93.0%–
99.7%), respectively. With the patch-based approach, also
nonstandard patient anatomies were reconstructed correctly,
as shown in Fig. 8. For this postoperative case, the mean dose
difference was 0.0% � 0.6% within the body volume and
�0.36% � 2.3% in the high-dose volume (>90%).

4. DISCUSSION

In this study, we evaluated the feasibility of using a 3D
patch-based deep learning approach for generating sCT
images of the head and neck to be used for dose calculation.
We aimed at finding a generic solution to enable fast and
accurate MR-based dose calculations in the head and neck
region, without the need to acquire additional dedicated MR
sequences for sCT generation such as ultrashort or zero echo
time MR to discriminate bone from air. This is advantageous
for clinical implementation of an MR-only workflow, since
time on the scanner is generally limited. Such dedicated 3D
scans are relatively time consuming, especially for the large
FOVs that are required for this patient group, who find it par-
ticularly difficult to endure the entire exam. Furthermore,
specialized sequences are difficult to tune, may not be avail-
able at all scanners, and would need to be registered to the
other image. The presented method utilized just one MRI
sequence for both OAR delineation and sCT generation, miti-
gating the need for additional image registration. With this
method, locations of the air and bone are learned in the net-
work, resulting in a high mean dose calculation accuracy of
within 1% when compared to CT. Therefore, the benefit of

FIG. 3. A schematic representation of our method, including network architecture. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (9), September 2019

4099 Dinkla et al.: Patch-based 3D CNN for H&N synthetic CT 4099

www.wileyonlinelibrary.com


adding a dedicated sequence to aid in bone/air discrimination
will likely be limited.

The sCTs obtained in this study had a MAE of
75 � 9 HU and a ME of 9 � 11 HU, which was comparable
to what is found in literature.18,22,23,28 In our previous work,
we obtained a MAE of 67 � 11 HU and ME of 13 � 9 HU,
despite using a different network architecture and using head

images for brain radiotherapy only.18 These values are compa-
rable to the first synthetic CTs obtained by training a CNN,
reported in a study in which a 2D U-Net was trained on head
images, resulting in a MAE of 84.8 � 17.3.28 Head and neck
synthetic CT is somewhat more challenging due to a wider
variety in patient anatomies and often lower resolution
images. Nevertheless, Farjam et al. obtained a MAE of

FIG. 4. Example (patient 1) of a coronal (left) and sagittal (right) slice of a magnetic resonance imaging (MRI), CTreg, synthetic computed tomography (sCT),
and the difference for an oropharyngeal cancer case. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Example of a patient with streaking artifacts on the computed tomography (CT) from dental implants, which are not manifested on the synthetic com-
puted tomography (sCT). This patient was not excluded in the MAE and ME evaluation, since we did not observe any impact of a few slices with artifacts on the
total mean absolute error (MAE) and mean error (ME). [Color figure can be viewed at wileyonlinelibrary.com]
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64 � 10 HU of head and neck synthetic CT by using a mul-
ti-atlas approach with bone suppression during deformable
registration and a generalized registration error metric for
weighting of the Hounsfield Unit.23 Also using an atlas-based
approach for (prostate and) head and neck images, Guerreiro
et al obtained a MAE of 90.7 � 12.1 HU.22 MAEs are gener-
ally sensitive to differences in image resolution, field of view,
and image resampling or other image processing, making
these difficult to compare. Moreover, head and neck images
are more challenging to properly align due to positioning and
other interscan differences, hampering the evaluation of dif-
ferences between CT and sCT by calculating MAEs in the
head and neck region.

As is more often the case for synthetically generated CTs,
the average HU values of bone were lower in the sCTs than in
the CTs.18 We hypothesize that this is mainly caused by regis-
tration issues, as can be observed in the difference image in
Fig. 4, where the borders of bony structures show misalign-
ment between the CT and the MRI (and thus sCT). This slight
misalignment may result in blurring of the cortical bone and
therefore a lowering of the attenuation value on the sCT. A
second explanation could be that there were less training
patches containing the shoulder and ribs and the estimation
of the sCT in these regions suffered from border effects.
Patch-based methods are prone to border effects, meaning
that voxels in the center of a patch can be predicted with a
higher certainty than voxels at the border of an image, who

are never at the center of a patch. Lastly, streaking artifacts
present on the CT but absent on the sCT may also have con-
tributed slightly to a higher ME of the bones.

In terms of dose, this method showed minor dosimetric
differences between the dose calculated on CT and the dose
calculated on sCT. Mean difference in dose to the high dose
region of the target volume (dose > 90%) was within 1%
(close to 0.5%) for all patients. On average, this difference
was close to zero, so no bias could be observed. For larger
regions, containing lower doses, these differences were even
smaller. These results are comparable to what was reported
by Farjam et al., who compared several DVH parameters like
Dmean, Dmax, and D95% of the PTVs. Largest differences were
observed for the D95% of the PTV50 (1.12% � 2.1%) and
Dmean to the (left) parotid glands (1.58% � 2.09%). It should
be noted, however, that comparing DVH parameters based on
a structure could result in different numbers than performing
a voxel-wise comparison of doses. DVH parameters are more
sensitive to how a structure is defined on the two image sets
and how the DVHs are calculated. Similarly, Guerreiro et al.
reported a difference in PTV Dmean of �0.09% � 0.33%
[range: �0.60–0.23) D98% of �0.67% � 0.62% [range:
0.19–1.78].

We chose a CNN-based approach as an alternative to
atlas-based sCTgeneration which is based on deformable reg-
istration(s) that may be time consuming and not robust. It
should be noted that despite circumventing the need for
deformable registration in the training and testing phase,
deformable image registration was required to optimally pre-
pare our training data. Nevertheless, after data preparation
and training, creating a synthetic CT is fast and requires mini-
mal preprocessing. In addition, by training our network on
available data from the clinical scan protocol, it is not neces-
sary to add a new sequence to the protocol. Not having to add
scan time to the protocol is advantageous since MR scan time
is generally limited and it is difficult for patients to endure
long scan times while wearing the immobilization mask. The
MR sequence that was used in this study is used for delin-
eation of the OARs, which means that these contours will be
present on the sCT as well, avoiding any rigid or deformable
registration to propagate these contours. CT scan quality is
often degraded by the presence of streaking artifacts from
dental implants. In this study, patients with severe dental arti-
facts were excluded in the training. This eliminates streaking
artifacts for patients of whom the CT would present with
these artifacts. In addition, since TSE MRI is less prone to
susceptibility artifacts at tissue–air interfaces, it is easier to
obtain artifact-free MR images which will be reconstructed to
an sCT in which no streaking artifacts are present. Lastly,
with our 3D patch-based approach, we exploit the 3D nature
of these images while being robust to anatomical outliers or
nonstandard patients.

Training a CNN for sCT generation also comes with some
limitations. The training is generally performed on a carefully
selected set of images that are scanned within a fixed scan
protocol, having exactly the same scan acquisition parame-
ters. If a scan protocol is adapted over the course of time, the

TABLE I. Mean (�1 SD) and range of the mean absolute error (MAE) and
mean error (ME) [in Hounsfield Units (HU)] for the whole body, bone
(>250 HU), soft tissue, and air (<�200 HU) regions.

Mean (�1 SD) Range

MAE

Body 75 (9) [62; 94]

Bone 214 (26) [167; 266]

Soft tissue 35 (3) [27; 44]

Air 130 (24) [100; 193]

ME

Body 9 (11) [�17; 32]

Bone 106 (51) [8; 208]

Soft tissue �2 (5) [�10; 7]

Air �57 (41) [�134; 28]

TABLE II. Mean (�1 SD) and range of voxel-wise dose differences (in per-
centage of prescribed dose).

Parameter

Mean error dose (%)

Mean (�1 SD) Range

Body �0.03 (0.05) [�0.15; 0.06]

Dose > 10% 0.32 (0.25) [�0.03; 0.85]

Dose > 50% 0.12 (0.28) [�0.36; 0.75]

Dose > 90% �0.07 (0.22) [�0.52; 0.45]
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FIG. 6. Coronal, sagittal, and transversal slice through the dose calculated on the CTreg, synthetic computed tomography (sCT), and difference of a 30 9 2.3 Gy
VMAT plan for an oropharyngeal cancer patient with a tumor in the right tonsil (patient 1). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. Mean dose difference inside high-dose region (>90% of PD) for all patients. Error bars represent 95% confidence intervals.
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network may need to be retrained and evaluated. If retraining
is required, a new set of training data (including CT) will
need to be acquired first. The same issue holds for changing
between systems with different field strengths. The generaliz-
ability of this method will need to be further investigated. In
this study, we used the in-phase images of a Dixon recon-
struction from T2 TSE MRI scans, as this already existing
sequence in our protocol has a large scan volume and was
used to delineate OARs. The disadvantage of this sequence is
that Dixon reconstruction may not be available on all scan-
ners and Dixon reconstruction may sometimes fail.

Besides Dixon reconstruction-related issues, other image
quality issues may be a limiting factor in sCT generation.
Image artifacts may hamper the quality of the sCT and may
result in incorrect dose calculations. The head and the neck
are a challenging body site for MRI, due to the large FOV,
(breathing) motion, bone–air interfaces, and coil setup. The
sCT solution proposed here is most likely not robust to all
image artifacts, such as breathing motion. As insufficient
image quality may be a limiting factor in the quality of the
sCT, an optimized standardized imaging protocol has been
used to minimize artifacts and maximize image quality.9 Nev-
ertheless, QA of the MRI and of the sCT is required and of
vital importance to ensure an sCT solution that can safely be
introduced clinically.

The use of MRI in radiotherapy is growing rapidly. Clinics
are adopting MR imaging for delineation of OARs and target
volumes to prepare (conventional) radiation treatment. By
eliminating the CT in this preparation phase, we improve

patient comfort and avoid image registration. For MR-only
treatments, all delineations and treatment planning are based
on MR imaging. Specifically for MR-guided treatment treat-
ments on an MR-linac, it is of particular importance to obtain
HU in a fast and reliable way, to limit treatment time, and to
avoid the need for a CT-based treatment simulation and
image registration. Especially if this scan is performed first,
the 4 min that our method currently requires to synthesize
the sCT could be used to verify the delineations, after which
plan optimization and dose calculations can start.

5. CONCLUSIONS

Synthetic CTs were generated from T2-weighted 2D MRI
of 34 head and neck cancer patients with deep learning using
a 3D patch-based U-net model. This method is relatively fast
and robust to anatomical variation in the head and neck
region. Mean differences between the dose calculated on the
reference CT and sCTwere below 1% of the prescribed dose,
showing that it is feasible to generate large field-of-view sCTs
for dose calculation purposes from a generic MRI scan from
the clinical protocol, without adding scan time.
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FIG. 8. Coronal slice of the MRI, CTreg, sCT, and difference image (left) and the dose calculated on the CTreg, synthetic computed tomography (sCT), and differ-
ence (right) for a postoperative case with nonstandard anatomy. This oropharyngeal cancer patient was treated with 35 9 2 Gy for a tumor in the base of tongue.
[Color figure can be viewed at wileyonlinelibrary.com]
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